1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-06 04:05:55 +01:00

Merge branch 'develop' of https://github.com/paboyle/Grid into develop

This commit is contained in:
fionnoh 2018-11-16 16:32:12 +00:00
commit 17b3f47b1e
92 changed files with 5277 additions and 996 deletions

View File

@ -380,6 +380,12 @@ namespace Grid {
template<class Field> class OperatorFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
virtual void operator() (LinearOperatorBase<Field> &Linop, const std::vector<Field> &in,std::vector<Field> &out) {
assert(in.size()==out.size());
for(int k=0;k<in.size();k++){
(*this)(Linop,in[k],out[k]);
}
};
};
template<class Field> class LinearFunction {
@ -421,7 +427,7 @@ namespace Grid {
// Hermitian operator Linear function and operator function
////////////////////////////////////////////////////////////////////////////////////////////
template<class Field>
class HermOpOperatorFunction : public OperatorFunction<Field> {
class HermOpOperatorFunction : public OperatorFunction<Field> {
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
Linop.HermOp(in,out);
};

View File

@ -55,6 +55,14 @@ namespace Grid {
template<class Field> class CheckerBoardedSparseMatrixBase : public SparseMatrixBase<Field> {
public:
virtual GridBase *RedBlackGrid(void)=0;
//////////////////////////////////////////////////////////////////////
// Query the even even properties to make algorithmic decisions
//////////////////////////////////////////////////////////////////////
virtual RealD Mass(void) { return 0.0; };
virtual int ConstEE(void) { return 0; }; // Disable assumptions unless overridden
virtual int isTrivialEE(void) { return 0; }; // by a derived class that knows better
// half checkerboard operaions
virtual void Meooe (const Field &in, Field &out)=0;
virtual void Mooee (const Field &in, Field &out)=0;

View File

@ -33,7 +33,7 @@ directory
namespace Grid {
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS };
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS, BlockCGVec, BlockCGrQVec };
//////////////////////////////////////////////////////////////////////////
// Block conjugate gradient. Dimension zero should be the block direction
@ -42,7 +42,6 @@ template <class Field>
class BlockConjugateGradient : public OperatorFunction<Field> {
public:
typedef typename Field::scalar_type scomplex;
int blockDim ;
@ -54,21 +53,15 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
Integer PrintInterval; //GridLogMessages or Iterative
BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol), CGtype(cgtype), blockDim(_Orthog), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv)
: Tolerance(tol), CGtype(cgtype), blockDim(_Orthog), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv),PrintInterval(100)
{};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Thin QR factorisation (google it)
////////////////////////////////////////////////////////////////////////////////////////////////////
void ThinQRfact (Eigen::MatrixXcd &m_rr,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
Field & Q,
const Field & R)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
////////////////////////////////////////////////////////////////////////////////////////////////////
//Dimensions
// R_{ferm x Nblock} = Q_{ferm x Nblock} x C_{Nblock x Nblock} -> ferm x Nblock
@ -85,22 +78,20 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
// Cdag C = Rdag R ; passes.
// QdagQ = 1 ; passes
////////////////////////////////////////////////////////////////////////////////////////////////////
void ThinQRfact (Eigen::MatrixXcd &m_rr,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
Field & Q,
const Field & R)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
sliceInnerProductMatrix(m_rr,R,R,Orthog);
// Force manifest hermitian to avoid rounding related
m_rr = 0.5*(m_rr+m_rr.adjoint());
#if 0
std::cout << " Calling Cholesky ldlt on m_rr " << m_rr <<std::endl;
Eigen::MatrixXcd L_ldlt = m_rr.ldlt().matrixL();
std::cout << " Called Cholesky ldlt on m_rr " << L_ldlt <<std::endl;
auto D_ldlt = m_rr.ldlt().vectorD();
std::cout << " Called Cholesky ldlt on m_rr " << D_ldlt <<std::endl;
#endif
// std::cout << " Calling Cholesky llt on m_rr " <<std::endl;
Eigen::MatrixXcd L = m_rr.llt().matrixL();
// std::cout << " Called Cholesky llt on m_rr " << L <<std::endl;
C = L.adjoint();
Cinv = C.inverse();
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -112,6 +103,25 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
////////////////////////////////////////////////////////////////////////////////////////////////////
sliceMulMatrix(Q,Cinv,R,Orthog);
}
// see comments above
void ThinQRfact (Eigen::MatrixXcd &m_rr,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
std::vector<Field> & Q,
const std::vector<Field> & R)
{
InnerProductMatrix(m_rr,R,R);
m_rr = 0.5*(m_rr+m_rr.adjoint());
Eigen::MatrixXcd L = m_rr.llt().matrixL();
C = L.adjoint();
Cinv = C.inverse();
MulMatrix(Q,Cinv,R);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Call one of several implementations
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -119,14 +129,20 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
if ( CGtype == BlockCGrQ ) {
BlockCGrQsolve(Linop,Src,Psi);
} else if (CGtype == BlockCG ) {
BlockCGsolve(Linop,Src,Psi);
} else if (CGtype == CGmultiRHS ) {
CGmultiRHSsolve(Linop,Src,Psi);
} else {
assert(0);
}
}
virtual void operator()(LinearOperatorBase<Field> &Linop, const std::vector<Field> &Src, std::vector<Field> &Psi)
{
if ( CGtype == BlockCGrQVec ) {
BlockCGrQsolveVec(Linop,Src,Psi);
} else {
assert(0);
}
}
////////////////////////////////////////////////////////////////////////////
// BlockCGrQ implementation:
@ -139,7 +155,8 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
Nblock = B._grid->_fdimensions[Orthog];
/* FAKE */
Nblock=8;
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
X.checkerboard = B.checkerboard;
@ -202,15 +219,10 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
std::cout << GridLogMessage<<"BlockCGrQ algorithm initialisation " <<std::endl;
//1. QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
Linop.HermOp(X, AD);
tmp = B - AD;
//std::cout << GridLogMessage << " initial tmp " << norm2(tmp)<< std::endl;
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
//std::cout << GridLogMessage << " initial Q " << norm2(Q)<< std::endl;
//std::cout << GridLogMessage << " m_rr " << m_rr<<std::endl;
//std::cout << GridLogMessage << " m_C " << m_C<<std::endl;
//std::cout << GridLogMessage << " m_Cinv " << m_Cinv<<std::endl;
D=Q;
std::cout << GridLogMessage<<"BlockCGrQ computed initial residual and QR fact " <<std::endl;
@ -232,14 +244,12 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
MatrixTimer.Start();
Linop.HermOp(D, Z);
MatrixTimer.Stop();
//std::cout << GridLogMessage << " norm2 Z " <<norm2(Z)<<std::endl;
//4. M = [D^dag Z]^{-1}
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_DZ,D,Z,Orthog);
sliceInnerTimer.Stop();
m_M = m_DZ.inverse();
//std::cout << GridLogMessage << " m_DZ " <<m_DZ<<std::endl;
//5. X = X + D MC
m_tmp = m_M * m_C;
@ -257,6 +267,7 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
//7. D = Q + D S^dag
m_tmp = m_S.adjoint();
sliceMaddTimer.Start();
sliceMaddMatrix(D,m_tmp,D,Q,Orthog);
sliceMaddTimer.Stop();
@ -317,152 +328,6 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
IterationsToComplete = k;
}
//////////////////////////////////////////////////////////////////////////
// Block conjugate gradient; Original O'Leary Dimension zero should be the block direction
//////////////////////////////////////////////////////////////////////////
void BlockCGsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.checkerboard = Src.checkerboard;
conformable(Psi, Src);
Field P(Src);
Field AP(Src);
Field R(Src);
Eigen::MatrixXcd m_pAp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_pAp_inv= Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_rr_inv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_alpha = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_beta = Eigen::MatrixXcd::Zero(Nblock,Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
sliceNorm(ssq,Src,Orthog);
RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
sliceNorm(residuals,Src,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
sliceNorm(residuals,Psi,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
// Initial search dir is guess
Linop.HermOp(Psi, AP);
/************************************************************************
* Block conjugate gradient (Stephen Pickles, thesis 1995, pp 71, O Leary 1980)
************************************************************************
* O'Leary : R = B - A X
* O'Leary : P = M R ; preconditioner M = 1
* O'Leary : alpha = PAP^{-1} RMR
* O'Leary : beta = RMR^{-1}_old RMR_new
* O'Leary : X=X+Palpha
* O'Leary : R_new=R_old-AP alpha
* O'Leary : P=MR_new+P beta
*/
R = Src - AP;
P = R;
sliceInnerProductMatrix(m_rr,R,R,Orthog);
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
RealD rrsum=0;
for(int b=0;b<Nblock;b++) rrsum+=real(m_rr(b,b));
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
MatrixTimer.Start();
Linop.HermOp(P, AP);
MatrixTimer.Stop();
// Alpha
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
m_pAp_inv = m_pAp.inverse();
m_alpha = m_pAp_inv * m_rr ;
// Psi, R update
sliceMaddTimer.Start();
sliceMaddMatrix(Psi,m_alpha, P,Psi,Orthog); // add alpha * P to psi
sliceMaddMatrix(R ,m_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
sliceMaddTimer.Stop();
// Beta
m_rr_inv = m_rr.inverse();
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_rr,R,R,Orthog);
sliceInnerTimer.Stop();
m_beta = m_rr_inv *m_rr;
// Search update
sliceMaddTimer.Start();
sliceMaddMatrix(AP,m_beta,P,R,Orthog);
sliceMaddTimer.Stop();
P= AP;
/*********************
* convergence monitor
*********************
*/
RealD max_resid=0;
RealD rr;
for(int b=0;b<Nblock;b++){
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCG converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "
<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BlockConjugateGradient did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
//////////////////////////////////////////////////////////////////////////
// multiRHS conjugate gradient. Dimension zero should be the block direction
// Use this for spread out across nodes
//////////////////////////////////////////////////////////////////////////
@ -600,6 +465,233 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
IterationsToComplete = k;
}
void InnerProductMatrix(Eigen::MatrixXcd &m , const std::vector<Field> &X, const std::vector<Field> &Y){
for(int b=0;b<Nblock;b++){
for(int bp=0;bp<Nblock;bp++) {
m(b,bp) = innerProduct(X[b],Y[bp]);
}}
}
void MaddMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X,const std::vector<Field> &Y,RealD scale=1.0){
// Should make this cache friendly with site outermost, parallel_for
// Deal with case AP aliases with either Y or X
std::vector<Field> tmp(Nblock,X[0]);
for(int b=0;b<Nblock;b++){
tmp[b] = Y[b];
for(int bp=0;bp<Nblock;bp++) {
tmp[b] = tmp[b] + (scale*m(bp,b))*X[bp];
}
}
for(int b=0;b<Nblock;b++){
AP[b] = tmp[b];
}
}
void MulMatrix(std::vector<Field> &AP, Eigen::MatrixXcd &m , const std::vector<Field> &X){
// Should make this cache friendly with site outermost, parallel_for
for(int b=0;b<Nblock;b++){
AP[b] = zero;
for(int bp=0;bp<Nblock;bp++) {
AP[b] += (m(bp,b))*X[bp];
}
}
}
double normv(const std::vector<Field> &P){
double nn = 0.0;
for(int b=0;b<Nblock;b++) {
nn+=norm2(P[b]);
}
return nn;
}
////////////////////////////////////////////////////////////////////////////
// BlockCGrQvec implementation:
//--------------------------
// X is guess/Solution
// B is RHS
// Solve A X_i = B_i ; i refers to Nblock index
////////////////////////////////////////////////////////////////////////////
void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field> &B, std::vector<Field> &X)
{
Nblock = B.size();
assert(Nblock == X.size());
std::cout<<GridLogMessage<<" Block Conjugate Gradient Vec rQ : Nblock "<<Nblock<<std::endl;
for(int b=0;b<Nblock;b++){
X[b].checkerboard = B[b].checkerboard;
conformable(X[b], B[b]);
conformable(X[b], X[0]);
}
Field Fake(B[0]);
std::vector<Field> tmp(Nblock,Fake);
std::vector<Field> Q(Nblock,Fake);
std::vector<Field> D(Nblock,Fake);
std::vector<Field> Z(Nblock,Fake);
std::vector<Field> AD(Nblock,Fake);
Eigen::MatrixXcd m_DZ = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_M = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_C = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_Cinv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_S = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_Sinv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_tmp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_tmp1 = Eigen::MatrixXcd::Identity(Nblock,Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
RealD sssum=0;
for(int b=0;b<Nblock;b++){ ssq[b] = norm2(B[b]);}
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(B[b]);}
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
for(int b=0;b<Nblock;b++){ residuals[b] = norm2(X[b]);}
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
/************************************************************************
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
************************************************************************
* Dimensions:
*
* X,B==(Nferm x Nblock)
* A==(Nferm x Nferm)
*
* Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
*
* QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
* for k:
* Z = AD
* M = [D^dag Z]^{-1}
* X = X + D MC
* QS = Q - ZM
* D = Q + D S^dag
* C = S C
*/
///////////////////////////////////////
// Initial block: initial search dir is guess
///////////////////////////////////////
std::cout << GridLogMessage<<"BlockCGrQvec algorithm initialisation " <<std::endl;
//1. QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
for(int b=0;b<Nblock;b++) {
Linop.HermOp(X[b], AD[b]);
tmp[b] = B[b] - AD[b];
}
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
for(int b=0;b<Nblock;b++) D[b]=Q[b];
std::cout << GridLogMessage<<"BlockCGrQ vec computed initial residual and QR fact " <<std::endl;
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch QRTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
//3. Z = AD
MatrixTimer.Start();
for(int b=0;b<Nblock;b++) Linop.HermOp(D[b], Z[b]);
MatrixTimer.Stop();
//4. M = [D^dag Z]^{-1}
sliceInnerTimer.Start();
InnerProductMatrix(m_DZ,D,Z);
sliceInnerTimer.Stop();
m_M = m_DZ.inverse();
//5. X = X + D MC
m_tmp = m_M * m_C;
sliceMaddTimer.Start();
MaddMatrix(X,m_tmp, D,X);
sliceMaddTimer.Stop();
//6. QS = Q - ZM
sliceMaddTimer.Start();
MaddMatrix(tmp,m_M,Z,Q,-1.0);
sliceMaddTimer.Stop();
QRTimer.Start();
ThinQRfact (m_rr, m_S, m_Sinv, Q, tmp);
QRTimer.Stop();
//7. D = Q + D S^dag
m_tmp = m_S.adjoint();
sliceMaddTimer.Start();
MaddMatrix(D,m_tmp,D,Q);
sliceMaddTimer.Stop();
//8. C = S C
m_C = m_S*m_C;
/*********************
* convergence monitor
*********************
*/
m_rr = m_C.adjoint() * m_C;
RealD max_resid=0;
RealD rrsum=0;
RealD rr;
for(int b=0;b<Nblock;b++) {
rrsum+=real(m_rr(b,b));
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< sqrt(rrsum/sssum) << " max "<< sqrt(max_resid) <<std::endl;
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCGrQ converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
for(int b=0;b<Nblock;b++) Linop.HermOp(X[b], AD[b]);
for(int b=0;b<Nblock;b++) AD[b] = AD[b]-B[b];
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(normv(AD)/normv(B)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tThinQRfact " << QRTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
}

View File

@ -133,7 +133,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
LinalgTimer.Stop();
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
<< " residual^2 " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
// Stopping condition
if (cp <= rsq) {

View File

@ -86,229 +86,23 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
*/
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Use base class to share code
///////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Now make the norm reflect extra factor of Mee
template<class Field> class SchurRedBlackStaggeredSolve {
private:
template<class Field> class SchurRedBlackBase {
protected:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix, class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out, Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
std::cout << GridLogMessage << " SchurRedBlackStaggeredSolve " <<std::endl;
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
std::cout << GridLogMessage << " SchurRedBlackStaggeredSolve checkerboards picked" <<std::endl;
/////////////////////////////////////////////////////
// src_o = (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
//src_o = tmp; assert(src_o.checkerboard ==Odd);
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver calling the Mpc solver" <<std::endl;
guess(src_o, sol_o);
Mtmp = sol_o;
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver called the Mpc solver" <<std::endl;
// Fionn A2A boolean behavioural control
if (subGuess) sol_o = sol_o-Mtmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver reconstructed other CB" <<std::endl;
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
std::cout<<GridLogMessage << "SchurRedBlackStaggeredSolver inserted solution" <<std::endl;
// Verify the unprec residual
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
};
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagMooeeSolve {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0, const bool initSubGuess = false) : _HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=cb;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix, class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
guess(src_o,sol_o);
Mtmp = sol_o;
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
// Fionn A2A boolean behavioural control
if (subGuess) sol_o = sol_o-Mtmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
// Verify the unprec residual
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackDiagMooee solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoSolve {
private:
OperatorFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
_HermitianRBSolver(HermitianRBSolver)
SchurRedBlackBase(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise = 0;
subtractGuess(initSubGuess);
@ -322,12 +116,86 @@ namespace Grid {
return subGuess;
}
template<class Matrix>
/////////////////////////////////////////////////////////////
// Shared code
/////////////////////////////////////////////////////////////
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix,class Guesser>
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out)
{
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Guesser>
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
int nblock = in.size();
std::vector<Field> src_o(nblock,grid);
std::vector<Field> sol_o(nblock,grid);
std::vector<Field> guess_save;
Field resid(fgrid);
Field tmp(grid);
////////////////////////////////////////////////
// Prepare RedBlack source
////////////////////////////////////////////////
for(int b=0;b<nblock;b++){
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
}
////////////////////////////////////////////////
// Make the guesses
////////////////////////////////////////////////
if ( subGuess ) guess_save.resize(nblock,grid);
for(int b=0;b<nblock;b++){
guess(src_o[b],sol_o[b]);
if ( subGuess ) {
guess_save[b] = sol_o[b];
}
}
//////////////////////////////////////////////////////////////
// Call the block solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlackBase calling the solver for "<<nblock<<" RHS" <<std::endl;
RedBlackSolve(_Matrix,src_o,sol_o);
////////////////////////////////////////////////
// A2A boolean behavioural control & reconstruct other checkerboard
////////////////////////////////////////////////
for(int b=0;b<nblock;b++) {
if (subGuess) sol_o[b] = sol_o[b] - guess_save[b];
///////// Needs even source //////////////
pickCheckerboard(Even,tmp,in[b]);
RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
/////////////////////////////////////////////////
// Check unprec residual if possible
/////////////////////////////////////////////////
if ( ! subGuess ) {
_Matrix.M(out[b],resid);
resid = resid-in[b];
RealD ns = norm2(in[b]);
RealD nr = norm2(resid);
std::cout<<GridLogMessage<< "SchurRedBlackBase solver true unprec resid["<<b<<"] "<<std::sqrt(nr/ns) << std::endl;
} else {
std::cout<<GridLogMessage<< "SchurRedBlackBase Guess subtracted after solve["<<b<<"] " << std::endl;
}
}
}
template<class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
@ -335,52 +203,39 @@ namespace Grid {
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
Field src_o(grid);
Field src_e(grid);
Field sol_o(grid);
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
////////////////////////////////////////////////
// RedBlack source
////////////////////////////////////////////////
RedBlackSource(_Matrix,in,src_e,src_o);
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
////////////////////////////////
// Construct the guess
////////////////////////////////
Field tmp(grid);
guess(src_o,sol_o);
Field guess_save(grid);
guess_save = sol_o;
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
guess(src_o,tmp);
Mtmp = tmp;
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
RedBlackSolve(_Matrix,src_o,sol_o);
////////////////////////////////////////////////
// Fionn A2A boolean behavioural control
if (subGuess) tmp = tmp-Mtmp;
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
////////////////////////////////////////////////
if (subGuess) sol_o= sol_o-guess_save;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
// RedBlack solution needs the even source
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
RedBlackSolution(_Matrix,sol_o,src_e,out);
// Verify the unprec residual
if ( ! subGuess ) {
@ -389,68 +244,182 @@ namespace Grid {
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
std::cout<<GridLogMessage << "SchurRedBlackBase solver true unprec resid "<< std::sqrt(nr/ns) << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
std::cout << GridLogMessage << "SchurRedBlackBase Guess subtracted after solve." << std::endl;
}
}
/////////////////////////////////////////////////////////////
// Override in derived. Not virtual as template methods
/////////////////////////////////////////////////////////////
virtual void RedBlackSource (Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o) =0;
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol) =0;
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o) =0;
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)=0;
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Take a matrix and form a Red Black solver calling a Herm solver
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoMixed {
private:
LinearFunction<Field> & _HermitianRBSolver;
int CBfactorise;
bool subGuess;
template<class Field> class SchurRedBlackStaggeredSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess)
{
}
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
_Matrix.Mooee(tmp,src_o); // Extra factor of "m" in source from dumb choice of matrix norm.
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e_c,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e(grid);
src_e = src_e_c; // Const correctness
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.checkerboard ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal has Mooee on it.
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)
: SchurRedBlackBase<Field> (HermitianRBSolver,initSubGuess) {};
//////////////////////////////////////////////////////
// Override RedBlack specialisation
//////////////////////////////////////////////////////
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field Mtmp(grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
/////////////////////////////////////////////////////
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
// get the right MpcDag
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
}
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field tmp(grid);
Field sol_e(grid);
Field src_e_i(grid);
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e_i = src_e-tmp; assert( src_e_i.checkerboard ==Even);
_Matrix.MooeeInv(src_e_i,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(sol,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(sol,sol_o); assert( sol_o.checkerboard ==Odd );
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurDiagMooeeOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Site diagonal is identity, right preconditioned by Mee^inv
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
//=> psi = MeeInv phi
///////////////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class SchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field> {
public:
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
/////////////////////////////////////////////////////
// Wrap the usual normal equations Schur trick
/////////////////////////////////////////////////////
SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver, const bool initSubGuess = false) :
_HermitianRBSolver(HermitianRBSolver)
{
CBfactorise=0;
subtractGuess(initSubGuess);
};
void subtractGuess(const bool initSubGuess)
{
subGuess = initSubGuess;
}
bool isSubtractGuess(void)
{
return subGuess;
}
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver, const bool initSubGuess = false)
: SchurRedBlackBase<Field>(HermitianRBSolver,initSubGuess) {};
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix, class Guesser>
void operator() (Matrix & _Matrix,const Field &in, Field &out,Guesser &guess){
// FIXME CGdiagonalMee not implemented virtual function
// FIXME use CBfactorise to control schur decomp
virtual void RedBlackSource(Matrix & _Matrix,const Field &src, Field &src_e,Field &src_o)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
Field src_e(grid);
Field src_o(grid);
Field sol_e(grid);
Field sol_o(grid);
Field tmp(grid);
Field Mtmp(grid);
Field resid(fgrid);
pickCheckerboard(Even,src_e,in);
pickCheckerboard(Odd ,src_o,in);
pickCheckerboard(Even,sol_e,out);
pickCheckerboard(Odd ,sol_o,out);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd ,src_o,src);
/////////////////////////////////////////////////////
// src_o = Mdag * (source_o - Moe MeeInv source_e)
@ -461,43 +430,44 @@ namespace Grid {
// get the right MpcDag
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
}
//////////////////////////////////////////////////////////////
// Call the red-black solver
//////////////////////////////////////////////////////////////
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
// _HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
guess(src_o,tmp);
Mtmp = tmp;
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
// Fionn A2A boolean behavioural control
if (subGuess) tmp = tmp-Mtmp;
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
virtual void RedBlackSolution(Matrix & _Matrix,const Field &sol_o, const Field &src_e,Field &sol)
{
GridBase *grid = _Matrix.RedBlackGrid();
GridBase *fgrid= _Matrix.Grid();
Field sol_o_i(grid);
Field tmp(grid);
Field sol_e(grid);
////////////////////////////////////////////////
// MooeeInv due to pecond
////////////////////////////////////////////////
_Matrix.MooeeInv(sol_o,tmp);
sol_o_i = tmp;
///////////////////////////////////////////////////
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
///////////////////////////////////////////////////
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
_Matrix.Meooe(sol_o_i,tmp); assert( tmp.checkerboard ==Even);
tmp = src_e-tmp; assert( src_e.checkerboard ==Even);
_Matrix.MooeeInv(tmp,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
setCheckerboard(sol,sol_e); assert( sol_e.checkerboard ==Even);
setCheckerboard(sol,sol_o_i); assert( sol_o_i.checkerboard ==Odd );
};
// Verify the unprec residual
if ( ! subGuess ) {
_Matrix.M(out,resid);
resid = resid-in;
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout << GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid " << std::sqrt(nr / ns) << " nr " << nr << " ns " << ns << std::endl;
} else {
std::cout << GridLogMessage << "Guess subtracted after solve." << std::endl;
}
}
virtual void RedBlackSolve (Matrix & _Matrix,const Field &src_o, Field &sol_o)
{
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
};
virtual void RedBlackSolve (Matrix & _Matrix,const std::vector<Field> &src_o, std::vector<Field> &sol_o)
{
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
}
};
}
#endif

View File

@ -50,8 +50,6 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
assert(0);
}
Grid_quiesce_nodes();
// Never clean up as done once.
MPI_Comm_dup (MPI_COMM_WORLD,&communicator_world);
@ -124,10 +122,8 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,
// split the communicator
//////////////////////////////////////////////////////////////////////////////////////////////////////
// int Nparent = parent._processors ;
// std::cout << " splitting from communicator "<<parent.communicator <<std::endl;
int Nparent;
MPI_Comm_size(parent.communicator,&Nparent);
// std::cout << " Parent size "<<Nparent <<std::endl;
int childsize=1;
for(int d=0;d<processors.size();d++) {
@ -136,8 +132,6 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,
int Nchild = Nparent/childsize;
assert (childsize * Nchild == Nparent);
// std::cout << " child size "<<childsize <<std::endl;
std::vector<int> ccoor(_ndimension); // coor within subcommunicator
std::vector<int> scoor(_ndimension); // coor of split within parent
std::vector<int> ssize(_ndimension); // coor of split within parent

View File

@ -413,7 +413,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
assert(((uint64_t)ptr&0x3F)==0);
close(fd);
WorldShmCommBufs[r] =ptr;
std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
}
_ShmAlloc=1;
_ShmAllocBytes = bytes;
@ -455,7 +455,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
assert(((uint64_t)ptr&0x3F)==0);
close(fd);
WorldShmCommBufs[r] =ptr;
std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
}
_ShmAlloc=1;
_ShmAllocBytes = bytes;
@ -499,7 +499,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#endif
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl;
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl;
if ( ptr == (void * )MAP_FAILED ) {
perror("failed mmap");
assert(0);

View File

@ -392,14 +392,10 @@ namespace Grid {
void SeedUniqueString(const std::string &s){
std::vector<int> seeds;
std::stringstream sha;
seeds = GridChecksum::sha256_seeds(s);
for(int i=0;i<seeds.size();i++) {
sha << std::hex << seeds[i];
}
std::cout << GridLogMessage << "Intialising parallel RNG with unique string '"
<< s << "'" << std::endl;
std::cout << GridLogMessage << "Seed SHA256: " << sha.str() << std::endl;
std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
SeedFixedIntegers(seeds);
}
void SeedFixedIntegers(const std::vector<int> &seeds){

View File

@ -464,8 +464,10 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
assert(orthog>=0);
for(int d=0;d<nh;d++){
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
if ( d!=orthog ) {
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
}
// the above should guarantee that the operations are local
@ -499,8 +501,10 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slic
assert(orthog>=0);
for(int d=0;d<nh;d++){
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
if ( d!=orthog ) {
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
}
// the above should guarantee that the operations are local

View File

@ -146,9 +146,11 @@ public:
if ( log.timestamp ) {
log.StopWatch->Stop();
GridTime now = log.StopWatch->Elapsed();
if ( log.timing_mode==1 ) log.StopWatch->Reset();
log.StopWatch->Start();
stream << log.evidence()<< std::setw(6)<<now << log.background() << " : " ;
stream << log.evidence()
<< now << log.background() << " : " ;
}
stream << log.colour();
return stream;

View File

@ -233,7 +233,8 @@ class GridLimeReader : public BinaryIO {
// std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
/////////////////////////////////////////////
// Insist checksum is next record
/////////////////////////////////////////////

View File

@ -49,21 +49,35 @@ inline double usecond(void) {
typedef std::chrono::system_clock GridClock;
typedef std::chrono::time_point<GridClock> GridTimePoint;
typedef std::chrono::milliseconds GridMillisecs;
typedef std::chrono::microseconds GridTime;
typedef std::chrono::microseconds GridUsecs;
inline std::ostream& operator<< (std::ostream & stream, const std::chrono::milliseconds & time)
typedef std::chrono::seconds GridSecs;
typedef std::chrono::milliseconds GridMillisecs;
typedef std::chrono::microseconds GridUsecs;
typedef std::chrono::microseconds GridTime;
inline std::ostream& operator<< (std::ostream & stream, const GridSecs & time)
{
stream << time.count()<<" ms";
stream << time.count()<<" s";
return stream;
}
inline std::ostream& operator<< (std::ostream & stream, const std::chrono::microseconds & time)
inline std::ostream& operator<< (std::ostream & stream, const GridMillisecs & now)
{
stream << time.count()<<" usec";
GridSecs second(1);
auto secs = now/second ;
auto subseconds = now%second ;
stream << secs<<"."<<std::setw(3)<<std::setfill('0')<<subseconds.count()<<" s";
return stream;
}
inline std::ostream& operator<< (std::ostream & stream, const GridUsecs & now)
{
GridSecs second(1);
auto seconds = now/second ;
auto subseconds = now%second ;
stream << seconds<<"."<<std::setw(6)<<std::setfill('0')<<subseconds.count()<<" s";
return stream;
}
class GridStopWatch {
private:
bool running;

View File

@ -90,17 +90,20 @@ namespace QCD {
// That probably makes for GridRedBlack4dCartesian grid.
// s,sp,c,spc,lc
template<typename vtype> using iSinglet = iScalar<iScalar<iScalar<vtype> > >;
template<typename vtype> using iSpinMatrix = iScalar<iMatrix<iScalar<vtype>, Ns> >;
template<typename vtype> using iColourMatrix = iScalar<iScalar<iMatrix<vtype, Nc> > > ;
template<typename vtype> using iSpinColourMatrix = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
template<typename vtype> using iLorentzColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ;
template<typename vtype> using iDoubleStoredColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ;
template<typename vtype> using iSpinVector = iScalar<iVector<iScalar<vtype>, Ns> >;
template<typename vtype> using iColourVector = iScalar<iScalar<iVector<vtype, Nc> > >;
template<typename vtype> using iSpinColourVector = iScalar<iVector<iVector<vtype, Nc>, Ns> >;
template<typename vtype> using iHalfSpinVector = iScalar<iVector<iScalar<vtype>, Nhs> >;
template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVector<vtype, Nc>, Nhs> >;
template<typename vtype> using iSinglet = iScalar<iScalar<iScalar<vtype> > >;
template<typename vtype> using iSpinMatrix = iScalar<iMatrix<iScalar<vtype>, Ns> >;
template<typename vtype> using iColourMatrix = iScalar<iScalar<iMatrix<vtype, Nc> > > ;
template<typename vtype> using iSpinColourMatrix = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
template<typename vtype> using iLorentzColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ;
template<typename vtype> using iDoubleStoredColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ;
template<typename vtype> using iSpinVector = iScalar<iVector<iScalar<vtype>, Ns> >;
template<typename vtype> using iColourVector = iScalar<iScalar<iVector<vtype, Nc> > >;
template<typename vtype> using iSpinColourVector = iScalar<iVector<iVector<vtype, Nc>, Ns> >;
template<typename vtype> using iHalfSpinVector = iScalar<iVector<iScalar<vtype>, Nhs> >;
template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVector<vtype, Nc>, Nhs> >;
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
@ -127,10 +130,28 @@ namespace QCD {
typedef iSpinColourMatrix<Complex > SpinColourMatrix;
typedef iSpinColourMatrix<ComplexF > SpinColourMatrixF;
typedef iSpinColourMatrix<ComplexD > SpinColourMatrixD;
typedef iSpinColourMatrix<vComplex > vSpinColourMatrix;
typedef iSpinColourMatrix<vComplexF> vSpinColourMatrixF;
typedef iSpinColourMatrix<vComplexD> vSpinColourMatrixD;
// SpinColourSpinColour matrix
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<ComplexF > SpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<ComplexD > SpinColourSpinColourMatrixD;
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
// SpinColourSpinColour matrix
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<ComplexF > SpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<ComplexD > SpinColourSpinColourMatrixD;
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
// LorentzColour
typedef iLorentzColourMatrix<Complex > LorentzColourMatrix;
@ -229,6 +250,9 @@ namespace QCD {
typedef Lattice<vSpinColourMatrixF> LatticeSpinColourMatrixF;
typedef Lattice<vSpinColourMatrixD> LatticeSpinColourMatrixD;
typedef Lattice<vSpinColourSpinColourMatrix> LatticeSpinColourSpinColourMatrix;
typedef Lattice<vSpinColourSpinColourMatrixF> LatticeSpinColourSpinColourMatrixF;
typedef Lattice<vSpinColourSpinColourMatrixD> LatticeSpinColourSpinColourMatrixD;
typedef Lattice<vLorentzColourMatrix> LatticeLorentzColourMatrix;
typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;

View File

@ -44,12 +44,15 @@ namespace QCD {
struct WilsonImplParams {
bool overlapCommsCompute;
std::vector<Real> twist_n_2pi_L;
std::vector<Complex> boundary_phases;
WilsonImplParams() : overlapCommsCompute(false) {
boundary_phases.resize(Nd, 1.0);
twist_n_2pi_L.resize(Nd, 0.0);
};
WilsonImplParams(const std::vector<Complex> phi)
: boundary_phases(phi), overlapCommsCompute(false) {}
WilsonImplParams(const std::vector<Complex> phi) : boundary_phases(phi), overlapCommsCompute(false) {
twist_n_2pi_L.resize(Nd, 0.0);
}
};
struct StaggeredImplParams {

View File

@ -68,6 +68,26 @@ void CayleyFermion5D<Impl>::ExportPhysicalFermionSolution(const FermionField &so
ExtractSlice(exported4d, tmp, 0, 0);
}
template<class Impl>
void CayleyFermion5D<Impl>::P(const FermionField &psi, FermionField &chi)
{
int Ls= this->Ls;
chi=zero;
for(int s=0;s<Ls;s++){
axpby_ssp_pminus(chi,1.0,chi,1.0,psi,s,s);
axpby_ssp_pplus (chi,1.0,chi,1.0,psi,s,(s+1)%Ls);
}
}
template<class Impl>
void CayleyFermion5D<Impl>::Pdag(const FermionField &psi, FermionField &chi)
{
int Ls= this->Ls;
chi=zero;
for(int s=0;s<Ls;s++){
axpby_ssp_pminus(chi,1.0,chi,1.0,psi,s,s);
axpby_ssp_pplus (chi,1.0,chi,1.0,psi,s,(s-1+Ls)%Ls);
}
}
template<class Impl>
void CayleyFermion5D<Impl>::ExportPhysicalFermionSource(const FermionField &solution5d,FermionField &exported4d)
{
int Ls = this->Ls;
@ -465,9 +485,13 @@ void CayleyFermion5D<Impl>::SetCoefficientsInternal(RealD zolo_hi,std::vector<Co
double bpc = b+c;
double bmc = b-c;
_b = b;
_c = c;
_gamma = gamma; // Save the parameters so we can change mass later.
_zolo_hi= zolo_hi;
for(int i=0; i < Ls; i++){
as[i] = 1.0;
omega[i] = gamma[i]*zolo_hi; //NB reciprocal relative to Chroma NEF code
omega[i] = _gamma[i]*_zolo_hi; //NB reciprocal relative to Chroma NEF code
assert(omega[i]!=Coeff_t(0.0));
bs[i] = 0.5*(bpc/omega[i] + bmc);
cs[i] = 0.5*(bpc/omega[i] - bmc);

View File

@ -93,6 +93,17 @@ namespace Grid {
virtual void ImportPhysicalFermionSource(const FermionField &input4d,FermionField &imported5d);
virtual void ImportUnphysicalFermion(const FermionField &solution5d, FermionField &exported4d);
///////////////////////////////////////////////////////////////
// Support for MADWF tricks
///////////////////////////////////////////////////////////////
RealD Mass(void) { return mass; };
void SetMass(RealD _mass) {
mass=_mass;
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
} ;
void P(const FermionField &psi, FermionField &chi);
void Pdag(const FermionField &psi, FermionField &chi);
/////////////////////////////////////////////////////
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
@ -139,6 +150,12 @@ namespace Grid {
// protected:
RealD mass;
// Save arguments to SetCoefficientsInternal
std::vector<Coeff_t> _gamma;
RealD _zolo_hi;
RealD _b;
RealD _c;
// Cayley form Moebius (tanh and zolotarev)
std::vector<Coeff_t> omega;
std::vector<Coeff_t> bs; // S dependent coeffs

View File

@ -80,12 +80,24 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
///////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/g5HermitianLinop.h>
///////////////////////////////////////////////////////////////////////////////
// Fourier accelerated Pauli Villars inverse support
///////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/WilsonTMFermion5D.h>
////////////////////////////////////////////////////////////////////////////////
// Move this group to a DWF specific tools/algorithms subdir?
////////////////////////////////////////////////////////////////////////////////
#include <Grid/qcd/action/fermion/FourierAcceleratedPV.h>
#include <Grid/qcd/action/fermion/PauliVillarsInverters.h>
#include <Grid/qcd/action/fermion/Reconstruct5Dprop.h>
#include <Grid/qcd/action/fermion/MADWF.h>
////////////////////////////////////////////////////////////////////////////////////////////////////
// More maintainable to maintain the following typedef list centrally, as more "impl" targets
// are added, (e.g. extension for gparity, half precision project in comms etc..)
////////////////////////////////////////////////////////////////////////////////////////////////////
// Cayley 5d
namespace Grid {
namespace QCD {

View File

@ -64,11 +64,6 @@ namespace Grid {
virtual RealD M (const FermionField &in, FermionField &out)=0;
virtual RealD Mdag (const FermionField &in, FermionField &out)=0;
// Query the even even properties to make algorithmic decisions
virtual int ConstEE(void) { return 1; }; // clover returns zero as EE depends on gauge field
virtual int isTrivialEE(void) { return 0; };
virtual RealD Mass(void) {return 0.0;};
// half checkerboard operaions
virtual void Meooe (const FermionField &in, FermionField &out)=0;
virtual void MeooeDag (const FermionField &in, FermionField &out)=0;

View File

@ -141,6 +141,7 @@ namespace QCD {
////////////////////////////////////////////////////////////////////////
#define INHERIT_FIMPL_TYPES(Impl)\
typedef Impl Impl_t; \
typedef typename Impl::FermionField FermionField; \
typedef typename Impl::PropagatorField PropagatorField; \
typedef typename Impl::DoubledGaugeField DoubledGaugeField; \
@ -239,16 +240,30 @@ namespace QCD {
GaugeLinkField tmp(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid);
////////////////////////////////////////////////////
// apply any boundary phase or twists
////////////////////////////////////////////////////
for (int mu = 0; mu < Nd; mu++) {
auto pha = Params.boundary_phases[mu];
scalar_type phase( real(pha),imag(pha) );
////////// boundary phase /////////////
auto pha = Params.boundary_phases[mu];
scalar_type phase( real(pha),imag(pha) );
int Lmu = GaugeGrid->GlobalDimensions()[mu] - 1;
int L = GaugeGrid->GlobalDimensions()[mu];
int Lmu = L - 1;
LatticeCoordinate(coor, mu);
U = PeekIndex<LorentzIndex>(Umu, mu);
// apply any twists
RealD theta = Params.twist_n_2pi_L[mu] * 2*M_PI / L;
if ( theta != 0.0) {
scalar_type twphase(::cos(theta),::sin(theta));
U = twphase*U;
std::cout << GridLogMessage << " Twist ["<<mu<<"] "<< Params.twist_n_2pi_L[mu]<< " phase"<<phase <<std::endl;
}
tmp = where(coor == Lmu, phase * U, U);
PokeIndex<LorentzIndex>(Uds, tmp, mu);

View File

@ -0,0 +1,237 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/FourierAcceleratedPV.h
Copyright (C) 2015
Author: Christoph Lehner (lifted with permission by Peter Boyle, brought back to Grid)
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
namespace Grid {
namespace QCD {
template<typename M>
void get_real_const_bc(M& m, RealD& _b, RealD& _c) {
ComplexD b,c;
b=m.bs[0];
c=m.cs[0];
std::cout << GridLogMessage << "b=" << b << ", c=" << c << std::endl;
for (size_t i=1;i<m.bs.size();i++) {
assert(m.bs[i] == b);
assert(m.cs[i] == c);
}
assert(b.imag() == 0.0);
assert(c.imag() == 0.0);
_b = b.real();
_c = c.real();
}
template<typename Vi, typename M, typename G>
class FourierAcceleratedPV {
public:
ConjugateGradient<Vi> &cg;
M& dwfPV;
G& Umu;
GridCartesian* grid5D;
GridRedBlackCartesian* gridRB5D;
int group_in_s;
FourierAcceleratedPV(M& _dwfPV, G& _Umu, ConjugateGradient<Vi> &_cg, int _group_in_s = 2)
: dwfPV(_dwfPV), Umu(_Umu), cg(_cg), group_in_s(_group_in_s)
{
assert( dwfPV.FermionGrid()->_fdimensions[0] % (2*group_in_s) == 0);
grid5D = QCD::SpaceTimeGrid::makeFiveDimGrid(2*group_in_s, (GridCartesian*)Umu._grid);
gridRB5D = QCD::SpaceTimeGrid::makeFiveDimRedBlackGrid(2*group_in_s, (GridCartesian*)Umu._grid);
}
void rotatePV(const Vi& _src, Vi& dst, bool forward) const {
GridStopWatch gsw1, gsw2;
typedef typename Vi::scalar_type Coeff_t;
int Ls = dst._grid->_fdimensions[0];
Vi _tmp(dst._grid);
double phase = M_PI / (double)Ls;
Coeff_t bzero(0.0,0.0);
FFT theFFT((GridCartesian*)dst._grid);
if (!forward) {
gsw1.Start();
for (int s=0;s<Ls;s++) {
Coeff_t a(::cos(phase*s),-::sin(phase*s));
axpby_ssp(_tmp,a,_src,bzero,_src,s,s);
}
gsw1.Stop();
gsw2.Start();
theFFT.FFT_dim(dst,_tmp,0,FFT::forward);
gsw2.Stop();
} else {
gsw2.Start();
theFFT.FFT_dim(_tmp,_src,0,FFT::backward);
gsw2.Stop();
gsw1.Start();
for (int s=0;s<Ls;s++) {
Coeff_t a(::cos(phase*s),::sin(phase*s));
axpby_ssp(dst,a,_tmp,bzero,_tmp,s,s);
}
gsw1.Stop();
}
std::cout << GridLogMessage << "Timing rotatePV: " << gsw1.Elapsed() << ", " << gsw2.Elapsed() << std::endl;
}
void pvInv(const Vi& _src, Vi& _dst) const {
std::cout << GridLogMessage << "Fourier-Accelerated Outer Pauli Villars"<<std::endl;
typedef typename Vi::scalar_type Coeff_t;
int Ls = _dst._grid->_fdimensions[0];
GridStopWatch gswT;
gswT.Start();
RealD b,c;
get_real_const_bc(dwfPV,b,c);
RealD M5 = dwfPV.M5;
// U(true) Rightinv TMinv U(false) = Minv
Vi _src_diag(_dst._grid);
Vi _src_diag_slice(dwfPV.GaugeGrid());
Vi _dst_diag_slice(dwfPV.GaugeGrid());
Vi _src_diag_slices(grid5D);
Vi _dst_diag_slices(grid5D);
Vi _dst_diag(_dst._grid);
rotatePV(_src,_src_diag,false);
// now do TM solves
Gamma G5(Gamma::Algebra::Gamma5);
GridStopWatch gswA, gswB;
gswA.Start();
typedef typename M::Impl_t Impl;
//WilsonTMFermion<Impl> tm(x.Umu,*x.UGridF,*x.UrbGridF,0.0,0.0,solver_outer.parent.par.wparams_f);
std::vector<RealD> vmass(grid5D->_fdimensions[0],0.0);
std::vector<RealD> vmu(grid5D->_fdimensions[0],0.0);
WilsonTMFermion5D<Impl> tm(Umu,*grid5D,*gridRB5D,
*(GridCartesian*)dwfPV.GaugeGrid(),
*(GridRedBlackCartesian*)dwfPV.GaugeRedBlackGrid(),
vmass,vmu);
//SchurRedBlackDiagTwoSolve<Vi> sol(cg);
SchurRedBlackDiagMooeeSolve<Vi> sol(cg); // same performance as DiagTwo
gswA.Stop();
gswB.Start();
for (int sgroup=0;sgroup<Ls/2/group_in_s;sgroup++) {
for (int sidx=0;sidx<group_in_s;sidx++) {
int s = sgroup*group_in_s + sidx;
int sprime = Ls-s-1;
RealD phase = M_PI / (RealD)Ls * (2.0 * s + 1.0);
RealD cosp = ::cos(phase);
RealD sinp = ::sin(phase);
RealD denom = b*b + c*c + 2.0*b*c*cosp;
RealD mass = -(b*b*M5 + c*(1.0 - cosp + c*M5) + b*(-1.0 + cosp + 2.0*c*cosp*M5))/denom;
RealD mu = (b+c)*sinp/denom;
vmass[2*sidx + 0] = mass;
vmass[2*sidx + 1] = mass;
vmu[2*sidx + 0] = mu;
vmu[2*sidx + 1] = -mu;
}
tm.update(vmass,vmu);
for (int sidx=0;sidx<group_in_s;sidx++) {
int s = sgroup*group_in_s + sidx;
int sprime = Ls-s-1;
ExtractSlice(_src_diag_slice,_src_diag,s,0);
InsertSlice(_src_diag_slice,_src_diag_slices,2*sidx + 0,0);
ExtractSlice(_src_diag_slice,_src_diag,sprime,0);
InsertSlice(_src_diag_slice,_src_diag_slices,2*sidx + 1,0);
}
GridStopWatch gsw;
gsw.Start();
_dst_diag_slices = zero; // zero guess
sol(tm,_src_diag_slices,_dst_diag_slices);
gsw.Stop();
std::cout << GridLogMessage << "Solve[sgroup=" << sgroup << "] completed in " << gsw.Elapsed() << ", " << gswA.Elapsed() << std::endl;
for (int sidx=0;sidx<group_in_s;sidx++) {
int s = sgroup*group_in_s + sidx;
int sprime = Ls-s-1;
RealD phase = M_PI / (RealD)Ls * (2.0 * s + 1.0);
RealD cosp = ::cos(phase);
RealD sinp = ::sin(phase);
// now rotate with inverse of
Coeff_t pA = b + c*cosp;
Coeff_t pB = - Coeff_t(0.0,1.0)*c*sinp;
Coeff_t pABden = pA*pA - pB*pB;
// (pA + pB * G5) * (pA - pB*G5) = (pA^2 - pB^2)
ExtractSlice(_dst_diag_slice,_dst_diag_slices,2*sidx + 0,0);
_dst_diag_slice = (pA/pABden) * _dst_diag_slice - (pB/pABden) * (G5 * _dst_diag_slice);
InsertSlice(_dst_diag_slice,_dst_diag,s,0);
ExtractSlice(_dst_diag_slice,_dst_diag_slices,2*sidx + 1,0);
_dst_diag_slice = (pA/pABden) * _dst_diag_slice + (pB/pABden) * (G5 * _dst_diag_slice);
InsertSlice(_dst_diag_slice,_dst_diag,sprime,0);
}
}
gswB.Stop();
rotatePV(_dst_diag,_dst,true);
gswT.Stop();
std::cout << GridLogMessage << "PV completed in " << gswT.Elapsed() << " (Setup: " << gswA.Elapsed() << ", s-loop: " << gswB.Elapsed() << ")" << std::endl;
}
};
}}

View File

@ -0,0 +1,193 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/MADWF.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
namespace Grid {
namespace QCD {
template <class Fieldi, class Fieldo,IfNotSame<Fieldi,Fieldo> X=0>
inline void convert(const Fieldi &from,Fieldo &to)
{
precisionChange(to,from);
}
template <class Fieldi, class Fieldo,IfSame<Fieldi,Fieldo> X=0>
inline void convert(const Fieldi &from,Fieldo &to)
{
to=from;
}
template<class Matrixo,class Matrixi,class PVinverter,class SchurSolver, class Guesser>
class MADWF
{
private:
typedef typename Matrixo::FermionField FermionFieldo;
typedef typename Matrixi::FermionField FermionFieldi;
PVinverter & PauliVillarsSolvero;// For the outer field
SchurSolver & SchurSolveri; // For the inner approx field
Guesser & Guesseri; // To deflate the inner approx solves
Matrixo & Mato; // Action object for outer
Matrixi & Mati; // Action object for inner
RealD target_resid;
int maxiter;
public:
MADWF(Matrixo &_Mato,
Matrixi &_Mati,
PVinverter &_PauliVillarsSolvero,
SchurSolver &_SchurSolveri,
Guesser & _Guesseri,
RealD resid,
int _maxiter) :
Mato(_Mato),Mati(_Mati),
SchurSolveri(_SchurSolveri),
PauliVillarsSolvero(_PauliVillarsSolvero),Guesseri(_Guesseri)
{
target_resid=resid;
maxiter =_maxiter;
};
void operator() (const FermionFieldo &src4,FermionFieldo &sol5)
{
std::cout << GridLogMessage<< " ************************************************" << std::endl;
std::cout << GridLogMessage<< " MADWF-like algorithm " << std::endl;
std::cout << GridLogMessage<< " ************************************************" << std::endl;
FermionFieldi c0i(Mati.GaugeGrid()); // 4d
FermionFieldi y0i(Mati.GaugeGrid()); // 4d
FermionFieldo c0 (Mato.GaugeGrid()); // 4d
FermionFieldo y0 (Mato.GaugeGrid()); // 4d
FermionFieldo A(Mato.FermionGrid()); // Temporary outer
FermionFieldo B(Mato.FermionGrid()); // Temporary outer
FermionFieldo b(Mato.FermionGrid()); // 5d source
FermionFieldo c(Mato.FermionGrid()); // PVinv source; reused so store
FermionFieldo defect(Mato.FermionGrid()); // 5d source
FermionFieldi ci(Mati.FermionGrid());
FermionFieldi yi(Mati.FermionGrid());
FermionFieldi xi(Mati.FermionGrid());
FermionFieldi srci(Mati.FermionGrid());
FermionFieldi Ai(Mati.FermionGrid());
RealD m=Mati.Mass();
///////////////////////////////////////
//Import source, include Dminus factors
///////////////////////////////////////
Mato.ImportPhysicalFermionSource(src4,b);
std::cout << GridLogMessage << " src4 " <<norm2(src4)<<std::endl;
std::cout << GridLogMessage << " b " <<norm2(b)<<std::endl;
defect = b;
sol5=zero;
for (int i=0;i<maxiter;i++) {
///////////////////////////////////////
// Set up c0 from current defect
///////////////////////////////////////
PauliVillarsSolvero(Mato,defect,A);
Mato.Pdag(A,c);
ExtractSlice(c0, c, 0 , 0);
////////////////////////////////////////////////
// Solve the inner system with surface term c0
////////////////////////////////////////////////
ci = zero;
convert(c0,c0i); // Possible precison change
InsertSlice(c0i,ci,0, 0);
// Dwm P y = Dwm x = D(1) P (c0,0,0,0)^T
Mati.P(ci,Ai);
Mati.SetMass(1.0); Mati.M(Ai,srci); Mati.SetMass(m);
SchurSolveri(Mati,srci,xi,Guesseri);
Mati.Pdag(xi,yi);
ExtractSlice(y0i, yi, 0 , 0);
convert(y0i,y0); // Possible precision change
//////////////////////////////////////
// Propagate solution back to outer system
// Build Pdag PV^-1 Dm P [-sol4,c2,c3... cL]
//////////////////////////////////////
c0 = - y0;
InsertSlice(c0, c, 0 , 0);
/////////////////////////////
// Reconstruct the bulk solution Pdag PV^-1 Dm P
/////////////////////////////
Mato.P(c,B);
Mato.M(B,A);
PauliVillarsSolvero(Mato,A,B);
Mato.Pdag(B,A);
//////////////////////////////
// Reinsert surface prop
//////////////////////////////
InsertSlice(y0,A,0,0);
//////////////////////////////
// Convert from y back to x
//////////////////////////////
Mato.P(A,B);
// sol5' = sol5 + M^-1 defect
// = sol5 + M^-1 src - M^-1 M sol5 ...
sol5 = sol5 + B;
std::cout << GridLogMessage << "***************************************" <<std::endl;
std::cout << GridLogMessage << " Sol5 update "<<std::endl;
std::cout << GridLogMessage << "***************************************" <<std::endl;
std::cout << GridLogMessage << " Sol5 now "<<norm2(sol5)<<std::endl;
std::cout << GridLogMessage << " delta "<<norm2(B)<<std::endl;
// New defect = b - M sol5
Mato.M(sol5,A);
defect = b - A;
std::cout << GridLogMessage << " defect "<<norm2(defect)<<std::endl;
double resid = ::sqrt(norm2(defect) / norm2(b));
std::cout << GridLogMessage << "Residual " << i << ": " << resid << std::endl;
std::cout << GridLogMessage << "***************************************" <<std::endl;
if (resid < target_resid) {
return;
}
}
std::cout << GridLogMessage << "MADWF : Exceeded maxiter "<<std::endl;
assert(0);
}
};
}}

View File

@ -0,0 +1,95 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/SchurRedBlack.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
namespace Grid {
namespace QCD {
template<class Field>
class PauliVillarsSolverUnprec
{
public:
ConjugateGradient<Field> & CG;
PauliVillarsSolverUnprec( ConjugateGradient<Field> &_CG) : CG(_CG){};
template<class Matrix>
void operator() (Matrix &_Matrix,const Field &src,Field &sol)
{
RealD m = _Matrix.Mass();
Field A (_Matrix.FermionGrid());
MdagMLinearOperator<Matrix,Field> HermOp(_Matrix);
_Matrix.SetMass(1.0);
_Matrix.Mdag(src,A);
CG(HermOp,A,sol);
_Matrix.SetMass(m);
};
};
template<class Field,class SchurSolverType>
class PauliVillarsSolverRBprec
{
public:
SchurSolverType & SchurSolver;
PauliVillarsSolverRBprec( SchurSolverType &_SchurSolver) : SchurSolver(_SchurSolver){};
template<class Matrix>
void operator() (Matrix &_Matrix,const Field &src,Field &sol)
{
RealD m = _Matrix.Mass();
Field A (_Matrix.FermionGrid());
_Matrix.SetMass(1.0);
SchurSolver(_Matrix,src,sol);
_Matrix.SetMass(m);
};
};
template<class Field,class GaugeField>
class PauliVillarsSolverFourierAccel
{
public:
GaugeField & Umu;
ConjugateGradient<Field> & CG;
PauliVillarsSolverFourierAccel(GaugeField &_Umu,ConjugateGradient<Field> &_CG) : Umu(_Umu), CG(_CG)
{
};
template<class Matrix>
void operator() (Matrix &_Matrix,const Field &src,Field &sol)
{
FourierAcceleratedPV<Field, Matrix, typename Matrix::GaugeField > faPV(_Matrix,Umu,CG) ;
faPV.pvInv(src,sol);
};
};
}
}

View File

@ -0,0 +1,135 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/SchurRedBlack.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
namespace Grid {
namespace QCD {
template<class Field,class PVinverter> class Reconstruct5DfromPhysical {
private:
PVinverter & PauliVillarsSolver;
public:
/////////////////////////////////////////////////////
// First cut works, 10 Oct 2018.
//
// Must form a plan to get this into production for Zmobius acceleration
// of the Mobius exact AMA corrections.
//
// TODO : understand absence of contact term in eqns in Hantao's thesis
// sol4 is contact term subtracted, but thesis & Brower's paper suggests not.
//
// Step 1: Localise PV inverse in a routine. [DONE]
// Step 2: Schur based PV inverse [DONE]
// Step 3: Fourier accelerated PV inverse [DONE]
//
/////////////////////////////////////////////////////
Reconstruct5DfromPhysical(PVinverter &_PauliVillarsSolver)
: PauliVillarsSolver(_PauliVillarsSolver)
{
};
template<class Matrix>
void PV(Matrix &_Matrix,const Field &src,Field &sol)
{
RealD m = _Matrix.Mass();
_Matrix.SetMass(1.0);
_Matrix.M(src,sol);
_Matrix.SetMass(m);
}
template<class Matrix>
void PVdag(Matrix &_Matrix,const Field &src,Field &sol)
{
RealD m = _Matrix.Mass();
_Matrix.SetMass(1.0);
_Matrix.Mdag(src,sol);
_Matrix.SetMass(m);
}
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &sol4,const Field &src4, Field &sol5){
int Ls = _Matrix.Ls;
Field psi4(_Matrix.GaugeGrid());
Field psi(_Matrix.FermionGrid());
Field A (_Matrix.FermionGrid());
Field B (_Matrix.FermionGrid());
Field c (_Matrix.FermionGrid());
typedef typename Matrix::Coeff_t Coeff_t;
std::cout << GridLogMessage<< " ************************************************" << std::endl;
std::cout << GridLogMessage<< " Reconstruct5Dprop: c.f. MADWF algorithm " << std::endl;
std::cout << GridLogMessage<< " ************************************************" << std::endl;
///////////////////////////////////////
//Import source, include Dminus factors
///////////////////////////////////////
_Matrix.ImportPhysicalFermionSource(src4,B);
///////////////////////////////////////
// Set up c from src4
///////////////////////////////////////
PauliVillarsSolver(_Matrix,B,A);
_Matrix.Pdag(A,c);
//////////////////////////////////////
// Build Pdag PV^-1 Dm P [-sol4,c2,c3... cL]
//////////////////////////////////////
psi4 = - sol4;
InsertSlice(psi4, psi, 0 , 0);
for (int s=1;s<Ls;s++) {
ExtractSlice(psi4,c,s,0);
InsertSlice(psi4,psi,s,0);
}
/////////////////////////////
// Pdag PV^-1 Dm P
/////////////////////////////
_Matrix.P(psi,B);
_Matrix.M(B,A);
PauliVillarsSolver(_Matrix,A,B);
_Matrix.Pdag(B,A);
//////////////////////////////
// Reinsert surface prop
//////////////////////////////
InsertSlice(sol4,A,0,0);
//////////////////////////////
// Convert from y back to x
//////////////////////////////
_Matrix.P(A,sol5);
}
};
}
}

View File

@ -0,0 +1,155 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonTMFermion5D.h
Copyright (C) 2015
Author: paboyle <paboyle@ph.ed.ac.uk> ; NB Christoph did similar in GPT
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/WilsonFermion.h>
namespace Grid {
namespace QCD {
template<class Impl>
class WilsonTMFermion5D : public WilsonFermion5D<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
virtual void Instantiatable(void) {};
// Constructors
WilsonTMFermion5D(GaugeField &_Umu,
GridCartesian &Fgrid,
GridRedBlackCartesian &Frbgrid,
GridCartesian &Ugrid,
GridRedBlackCartesian &Urbgrid,
const std::vector<RealD> _mass,
const std::vector<RealD> _mu,
const ImplParams &p= ImplParams()
) :
WilsonFermion5D<Impl>(_Umu,
Fgrid,
Frbgrid,
Ugrid,
Urbgrid,
4.0,p)
{
update(_mass,_mu);
}
virtual void Meooe(const FermionField &in, FermionField &out) {
if (in.checkerboard == Odd) {
this->DhopEO(in, out, DaggerNo);
} else {
this->DhopOE(in, out, DaggerNo);
}
}
virtual void MeooeDag(const FermionField &in, FermionField &out) {
if (in.checkerboard == Odd) {
this->DhopEO(in, out, DaggerYes);
} else {
this->DhopOE(in, out, DaggerYes);
}
}
// allow override for twisted mass and clover
virtual void Mooee(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
//axpibg5x(out,in,a,b); // out = a*in + b*i*G5*in
for (int s=0;s<(int)this->mass.size();s++) {
ComplexD a = 4.0+this->mass[s];
ComplexD b(0.0,this->mu[s]);
axpbg5y_ssp(out,a,in,b,in,s,s);
}
}
virtual void MooeeDag(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
for (int s=0;s<(int)this->mass.size();s++) {
ComplexD a = 4.0+this->mass[s];
ComplexD b(0.0,-this->mu[s]);
axpbg5y_ssp(out,a,in,b,in,s,s);
}
}
virtual void MooeeInv(const FermionField &in, FermionField &out) {
for (int s=0;s<(int)this->mass.size();s++) {
RealD m = this->mass[s];
RealD tm = this->mu[s];
RealD mtil = 4.0+this->mass[s];
RealD sq = mtil*mtil+tm*tm;
ComplexD a = mtil/sq;
ComplexD b(0.0, -tm /sq);
axpbg5y_ssp(out,a,in,b,in,s,s);
}
}
virtual void MooeeInvDag(const FermionField &in, FermionField &out) {
for (int s=0;s<(int)this->mass.size();s++) {
RealD m = this->mass[s];
RealD tm = this->mu[s];
RealD mtil = 4.0+this->mass[s];
RealD sq = mtil*mtil+tm*tm;
ComplexD a = mtil/sq;
ComplexD b(0.0,tm /sq);
axpbg5y_ssp(out,a,in,b,in,s,s);
}
}
virtual RealD M(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
this->Dhop(in, out, DaggerNo);
FermionField tmp(out._grid);
for (int s=0;s<(int)this->mass.size();s++) {
ComplexD a = 4.0+this->mass[s];
ComplexD b(0.0,this->mu[s]);
axpbg5y_ssp(tmp,a,in,b,in,s,s);
}
return axpy_norm(out, 1.0, tmp, out);
}
// needed for fast PV
void update(const std::vector<RealD>& _mass, const std::vector<RealD>& _mu) {
assert(_mass.size() == _mu.size());
assert(_mass.size() == this->FermionGrid()->_fdimensions[0]);
this->mass = _mass;
this->mu = _mu;
}
private:
std::vector<RealD> mu;
std::vector<RealD> mass;
};
typedef WilsonTMFermion5D<WilsonImplF> WilsonTMFermion5DF;
typedef WilsonTMFermion5D<WilsonImplD> WilsonTMFermion5DD;
}}

View File

@ -38,7 +38,21 @@ public:
{
return ::crc32(0L,(unsigned char *)data,bytes);
}
static inline std::vector<unsigned char> sha256(void *data,size_t bytes)
template <typename T>
static inline std::string sha256_string(const std::vector<T> &hash)
{
std::stringstream sha;
std::string s;
for(unsigned int i = 0; i < hash.size(); i++)
{
sha << std::hex << static_cast<unsigned int>(hash[i]);
}
s = sha.str();
return s;
}
static inline std::vector<unsigned char> sha256(const void *data,size_t bytes)
{
std::vector<unsigned char> hash(SHA256_DIGEST_LENGTH);
SHA256_CTX sha256;

View File

@ -36,7 +36,7 @@ See the full license in the file "LICENSE" in the top level distribution directo
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Classes to generate V & W all-to-all vectors *
* Class to generate V & W all-to-all vectors *
******************************************************************************/
template <typename FImpl>
class A2AVectorsSchurDiagTwo
@ -70,6 +70,42 @@ private:
SchurDiagTwoOperator<FMat, FermionField> op_;
};
/******************************************************************************
* Methods for V & W all-to-all vectors I/O *
******************************************************************************/
class A2AVectorsIo
{
public:
struct Record: Serializable
{
GRID_SERIALIZABLE_CLASS_MEMBERS(Record,
unsigned int, index);
Record(void): index(0) {}
};
public:
template <typename Field>
static void write(const std::string fileStem, std::vector<Field> &vec,
const bool multiFile, const int trajectory = -1);
template <typename Field>
static void read(std::vector<Field> &vec, const std::string fileStem,
const bool multiFile, const int trajectory = -1);
private:
static inline std::string vecFilename(const std::string stem, const int traj,
const bool multiFile)
{
std::string t = (traj < 0) ? "" : ("." + std::to_string(traj));
if (multiFile)
{
return stem + t;
}
else
{
return stem + t + ".bin";
}
}
};
/******************************************************************************
* A2AVectorsSchurDiagTwo template implementation *
******************************************************************************/
@ -217,6 +253,90 @@ void A2AVectorsSchurDiagTwo<FImpl>::makeHighModeW5D(FermionField &wout_4d,
}
}
/******************************************************************************
* all-to-all vectors I/O template implementation *
******************************************************************************/
template <typename Field>
void A2AVectorsIo::write(const std::string fileStem, std::vector<Field> &vec,
const bool multiFile, const int trajectory)
{
Record record;
GridBase *grid = vec[0]._grid;
ScidacWriter binWriter(grid->IsBoss());
std::string filename = vecFilename(fileStem, trajectory, multiFile);
if (multiFile)
{
std::string fullFilename;
for (unsigned int i = 0; i < vec.size(); ++i)
{
fullFilename = filename + "/elem" + std::to_string(i) + ".bin";
LOG(Message) << "Writing vector " << i << std::endl;
makeFileDir(fullFilename, grid);
binWriter.open(fullFilename);
record.index = i;
binWriter.writeScidacFieldRecord(vec[i], record);
binWriter.close();
}
}
else
{
makeFileDir(filename, grid);
binWriter.open(filename);
for (unsigned int i = 0; i < vec.size(); ++i)
{
LOG(Message) << "Writing vector " << i << std::endl;
record.index = i;
binWriter.writeScidacFieldRecord(vec[i], record);
}
binWriter.close();
}
}
template <typename Field>
void A2AVectorsIo::read(std::vector<Field> &vec, const std::string fileStem,
const bool multiFile, const int trajectory)
{
Record record;
ScidacReader binReader;
std::string filename = vecFilename(fileStem, trajectory, multiFile);
if (multiFile)
{
std::string fullFilename;
for (unsigned int i = 0; i < vec.size(); ++i)
{
fullFilename = filename + "/elem" + std::to_string(i) + ".bin";
LOG(Message) << "Reading vector " << i << std::endl;
binReader.open(fullFilename);
binReader.readScidacFieldRecord(vec[i], record);
binReader.close();
if (record.index != i)
{
HADRONS_ERROR(Io, "vector index mismatch");
}
}
}
else
{
binReader.open(filename);
for (unsigned int i = 0; i < vec.size(); ++i)
{
LOG(Message) << "Reading vector " << i << std::endl;
binReader.readScidacFieldRecord(vec[i], record);
if (record.index != i)
{
HADRONS_ERROR(Io, "vector index mismatch");
}
}
binReader.close();
}
}
END_HADRONS_NAMESPACE
#endif // A2A_Vectors_hpp_

View File

@ -7,6 +7,7 @@ Source file: Hadrons/DilutedNoise.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -76,6 +77,22 @@ private:
unsigned int nt_;
};
template <typename FImpl>
class FullVolumeSpinColorDiagonalNoise: public DilutedNoise<FImpl>
{
public:
typedef typename FImpl::FermionField FermionField;
public:
// constructor/destructor
FullVolumeSpinColorDiagonalNoise(GridCartesian *g, unsigned int n_src);
virtual ~FullVolumeSpinColorDiagonalNoise(void) = default;
// generate noise
virtual void generateNoise(GridParallelRNG &rng);
private:
unsigned int nSrc_;
};
/******************************************************************************
* DilutedNoise template implementation *
******************************************************************************/
@ -186,6 +203,47 @@ void TimeDilutedSpinColorDiagonalNoise<FImpl>::generateNoise(GridParallelRNG &rn
}
}
/******************************************************************************
* FullVolumeSpinColorDiagonalNoise template implementation *
******************************************************************************/
template <typename FImpl>
FullVolumeSpinColorDiagonalNoise<FImpl>::
FullVolumeSpinColorDiagonalNoise(GridCartesian *g, unsigned int nSrc)
: DilutedNoise<FImpl>(g, nSrc*Ns*FImpl::Dimension), nSrc_(nSrc)
{}
template <typename FImpl>
void FullVolumeSpinColorDiagonalNoise<FImpl>::generateNoise(GridParallelRNG &rng)
{
typedef decltype(peekColour((*this)[0], 0)) SpinField;
auto &noise = *this;
auto g = this->getGrid();
auto nd = g->GlobalDimensions().size();
auto nc = FImpl::Dimension;
Complex shift(1., 1.);
LatticeComplex eta(g);
SpinField etas(g);
unsigned int i = 0;
bernoulli(rng, eta);
eta = (2.*eta - shift)*(1./::sqrt(2.));
for (unsigned int n = 0; n < nSrc_; ++n)
{
for (unsigned int s = 0; s < Ns; ++s)
{
etas = zero;
pokeSpin(etas, eta, s);
for (unsigned int c = 0; c < nc; ++c)
{
noise[i] = zero;
pokeColour(noise[i], etas, c);
i++;
}
}
}
}
END_HADRONS_NAMESPACE
#endif // Hadrons_DilutedNoise_hpp_

View File

@ -34,6 +34,12 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <ftw.h>
#include <unistd.h>
#ifdef DV_DEBUG
#define DV_DEBUG_MSG(dv, stream) LOG(Debug) << "diskvector " << (dv) << ": " << stream << std::endl
#else
#define DV_DEBUG_MSG(dv, stream)
#endif
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
@ -56,9 +62,7 @@ public:
// write to disk and cache
T &operator=(const T &obj) const
{
#ifdef DV_DEBUG
LOG(Debug) << "diskvector " << &master_ << ": writing to " << i_ << std::endl;
#endif
DV_DEBUG_MSG(&master_, "writing to " << i_);
master_.cacheInsert(i_, obj);
master_.save(master_.filename(i_), obj);
@ -82,6 +86,8 @@ public:
virtual ~DiskVectorBase(void);
const T & operator[](const unsigned int i) const;
RwAccessHelper operator[](const unsigned int i);
double hitRatio(void) const;
void resetStat(void);
private:
virtual void load(T &obj, const std::string filename) const = 0;
virtual void save(const std::string filename, const T &obj) const = 0;
@ -93,6 +99,7 @@ private:
private:
std::string dirname_;
unsigned int size_, cacheSize_;
double access_{0.}, hit_{0.};
bool clean_;
// using pointers to allow modifications when class is const
// semantic: const means data unmodified, but cache modification allowed
@ -115,6 +122,7 @@ private:
read(reader, basename(filename), obj);
}
virtual void save(const std::string filename, const T &obj) const
{
Writer writer(filename);
@ -123,13 +131,76 @@ private:
}
};
/******************************************************************************
* Specialisation for Eigen matrices *
******************************************************************************/
template <typename T>
using EigenDiskVectorMat = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>;
template <typename T>
class EigenDiskVector: public DiskVectorBase<EigenDiskVectorMat<T>>
{
public:
using DiskVectorBase<EigenDiskVectorMat<T>>::DiskVectorBase;
typedef EigenDiskVectorMat<T> Matrix;
public:
T operator()(const unsigned int i, const Eigen::Index j,
const Eigen::Index k) const
{
return (*this)[i](j, k);
}
private:
virtual void load(EigenDiskVectorMat<T> &obj, const std::string filename) const
{
std::ifstream f(filename, std::ios::binary);
std::vector<unsigned char> hash(SHA256_DIGEST_LENGTH);
Eigen::Index nRow, nCol;
size_t matSize;
double t;
f.read(reinterpret_cast<char *>(hash.data()), hash.size()*sizeof(unsigned char));
f.read(reinterpret_cast<char *>(&nRow), sizeof(Eigen::Index));
f.read(reinterpret_cast<char *>(&nCol), sizeof(Eigen::Index));
obj.resize(nRow, nCol);
matSize = nRow*nCol*sizeof(T);
t = -usecond();
f.read(reinterpret_cast<char *>(obj.data()), matSize);
t += usecond();
DV_DEBUG_MSG(this, "Eigen read " << matSize/t*1.0e6/1024/1024 << " MB/s");
auto check = GridChecksum::sha256(obj.data(), matSize);
DV_DEBUG_MSG(this, "Eigen sha256 " << GridChecksum::sha256_string(check));
if (hash != check)
{
HADRONS_ERROR(Io, "checksum failed")
}
}
virtual void save(const std::string filename, const EigenDiskVectorMat<T> &obj) const
{
std::ofstream f(filename, std::ios::binary);
std::vector<unsigned char> hash(SHA256_DIGEST_LENGTH);
Eigen::Index nRow, nCol;
size_t matSize;
double t;
nRow = obj.rows();
nCol = obj.cols();
matSize = nRow*nCol*sizeof(T);
hash = GridChecksum::sha256(obj.data(), matSize);
DV_DEBUG_MSG(this, "Eigen sha256 " << GridChecksum::sha256_string(hash));
f.write(reinterpret_cast<char *>(hash.data()), hash.size()*sizeof(unsigned char));
f.write(reinterpret_cast<char *>(&nRow), sizeof(Eigen::Index));
f.write(reinterpret_cast<char *>(&nCol), sizeof(Eigen::Index));
t = -usecond();
f.write(reinterpret_cast<const char *>(obj.data()), matSize);
t += usecond();
DV_DEBUG_MSG(this, "Eigen write " << matSize/t*1.0e6/1024/1024 << " MB/s");
}
};
/******************************************************************************
* DiskVectorBase implementation *
******************************************************************************/
#ifdef DV_DEBUG
#define DV_DEBUG_MSG(stream) LOG(Debug) << "diskvector " << this << ": " << stream << std::endl
#endif
template <typename T>
DiskVectorBase<T>::DiskVectorBase(const std::string dirname,
const unsigned int size,
@ -160,28 +231,29 @@ DiskVectorBase<T>::~DiskVectorBase(void)
template <typename T>
const T & DiskVectorBase<T>::operator[](const unsigned int i) const
{
auto &cache = *cachePtr_;
auto &loads = *loadsPtr_;
auto &cache = *cachePtr_;
auto &loads = *loadsPtr_;
DV_DEBUG_MSG("accessing " << i << " (RO)");
DV_DEBUG_MSG(this, "accessing " << i << " (RO)");
if (i >= size_)
{
HADRONS_ERROR(Size, "index out of range");
}
const_cast<double &>(access_)++;
if (cache.find(i) == cache.end())
{
// cache miss
DV_DEBUG_MSG("cache miss");
DV_DEBUG_MSG(this, "cache miss");
fetch(i);
}
else
{
DV_DEBUG_MSG("cache hit");
DV_DEBUG_MSG(this, "cache hit");
auto pos = std::find(loads.begin(), loads.end(), i);
const_cast<double &>(hit_)++;
loads.erase(pos);
loads.push_back(i);
}
@ -193,7 +265,7 @@ const T & DiskVectorBase<T>::operator[](const unsigned int i) const
{
msg += std::to_string(p) + " ";
}
DV_DEBUG_MSG("in cache: " << msg);
DV_DEBUG_MSG(this, "in cache: " << msg);
#endif
return cache.at(i);
@ -202,7 +274,7 @@ const T & DiskVectorBase<T>::operator[](const unsigned int i) const
template <typename T>
typename DiskVectorBase<T>::RwAccessHelper DiskVectorBase<T>::operator[](const unsigned int i)
{
DV_DEBUG_MSG("accessing " << i << " (RW)");
DV_DEBUG_MSG(this, "accessing " << i << " (RW)");
if (i >= size_)
{
@ -212,6 +284,19 @@ typename DiskVectorBase<T>::RwAccessHelper DiskVectorBase<T>::operator[](const u
return RwAccessHelper(*this, i);
}
template <typename T>
double DiskVectorBase<T>::hitRatio(void) const
{
return hit_/access_;
}
template <typename T>
void DiskVectorBase<T>::resetStat(void)
{
access_ = 0.;
hit_ = 0.;
}
template <typename T>
std::string DiskVectorBase<T>::filename(const unsigned int i) const
{
@ -226,7 +311,7 @@ void DiskVectorBase<T>::evict(void) const
if (cache.size() >= cacheSize_)
{
DV_DEBUG_MSG("evicting " << loads.front());
DV_DEBUG_MSG(this, "evicting " << loads.front());
cache.erase(loads.front());
loads.pop_front();
}
@ -239,7 +324,7 @@ void DiskVectorBase<T>::fetch(const unsigned int i) const
auto &loads = *loadsPtr_;
struct stat s;
DV_DEBUG_MSG("loading " << i << " from disk");
DV_DEBUG_MSG(this, "loading " << i << " from disk");
evict();
if(stat(filename(i).c_str(), &s) != 0)
@ -267,7 +352,7 @@ void DiskVectorBase<T>::cacheInsert(const unsigned int i, const T &obj) const
{
msg += std::to_string(p) + " ";
}
DV_DEBUG_MSG("in cache: " << msg);
DV_DEBUG_MSG(this, "in cache: " << msg);
#endif
}

View File

@ -16,6 +16,7 @@
#include <Hadrons/Modules/MSource/Wall.hpp>
#include <Hadrons/Modules/MSource/Z2.hpp>
#include <Hadrons/Modules/MSource/SeqConserved.hpp>
#include <Hadrons/Modules/MSource/Momentum.hpp>
#include <Hadrons/Modules/MSink/Smear.hpp>
#include <Hadrons/Modules/MSink/Point.hpp>
#include <Hadrons/Modules/MSolver/MixedPrecisionRBPrecCG.hpp>
@ -23,13 +24,17 @@
#include <Hadrons/Modules/MSolver/Guesser.hpp>
#include <Hadrons/Modules/MSolver/RBPrecCG.hpp>
#include <Hadrons/Modules/MSolver/A2AVectors.hpp>
#include <Hadrons/Modules/MSolver/A2AAslashVector.hpp>
#include <Hadrons/Modules/MGauge/UnitEm.hpp>
#include <Hadrons/Modules/MGauge/StoutSmearing.hpp>
#include <Hadrons/Modules/MGauge/Unit.hpp>
#include <Hadrons/Modules/MGauge/Electrify.hpp>
#include <Hadrons/Modules/MGauge/Random.hpp>
#include <Hadrons/Modules/MGauge/GaugeFix.hpp>
#include <Hadrons/Modules/MGauge/FundtoHirep.hpp>
#include <Hadrons/Modules/MGauge/StochEm.hpp>
#include <Hadrons/Modules/MNoise/TimeDilutedSpinColorDiagonal.hpp>
#include <Hadrons/Modules/MNoise/FullVolumeSpinColorDiagonal.hpp>
#include <Hadrons/Modules/MUtilities/PrecisionCast.hpp>
#include <Hadrons/Modules/MUtilities/RandomVectors.hpp>
#include <Hadrons/Modules/MUtilities/TestSeqGamma.hpp>
@ -40,6 +45,9 @@
#include <Hadrons/Modules/MScalar/ScalarVP.hpp>
#include <Hadrons/Modules/MScalar/Scalar.hpp>
#include <Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Hadrons/Modules/MNPR/Bilinear.hpp>
#include <Hadrons/Modules/MNPR/Amputate.hpp>
#include <Hadrons/Modules/MNPR/FourQuark.hpp>
#include <Hadrons/Modules/MAction/DWF.hpp>
#include <Hadrons/Modules/MAction/MobiusDWF.hpp>
#include <Hadrons/Modules/MAction/Wilson.hpp>
@ -50,7 +58,6 @@
#include <Hadrons/Modules/MScalarSUN/TwoPointNPR.hpp>
#include <Hadrons/Modules/MScalarSUN/ShiftProbe.hpp>
#include <Hadrons/Modules/MScalarSUN/Div.hpp>
#include <Hadrons/Modules/MScalarSUN/TimeMomProbe.hpp>
#include <Hadrons/Modules/MScalarSUN/TrMag.hpp>
#include <Hadrons/Modules/MScalarSUN/EMT.hpp>
#include <Hadrons/Modules/MScalarSUN/TwoPoint.hpp>
@ -61,6 +68,7 @@
#include <Hadrons/Modules/MScalarSUN/TrKinetic.hpp>
#include <Hadrons/Modules/MIO/LoadEigenPack.hpp>
#include <Hadrons/Modules/MIO/LoadNersc.hpp>
#include <Hadrons/Modules/MIO/LoadA2AVectors.hpp>
#include <Hadrons/Modules/MIO/LoadCosmHol.hpp>
#include <Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp>
#include <Hadrons/Modules/MIO/LoadBinary.hpp>

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TDWF<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TDWF<FIMPLF>;
#endif

View File

@ -49,7 +49,8 @@ public:
unsigned int, Ls,
double , mass,
double , M5,
std::string , boundary);
std::string , boundary,
std::string , twist);
};
template <typename FImpl>
@ -73,7 +74,9 @@ protected:
};
MODULE_REGISTER_TMP(DWF, TDWF<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(DWFF, TDWF<FIMPLF>, MAction);
#endif
/******************************************************************************
* DWF template implementation *
@ -117,8 +120,9 @@ void TDWF<FImpl>::setup(void)
auto &grb4 = *envGetRbGrid(FermionField);
auto &g5 = *envGetGrid(FermionField, par().Ls);
auto &grb5 = *envGetRbGrid(FermionField, par().Ls);
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename DomainWallFermion<FImpl>::ImplParams implParams(boundary);
typename DomainWallFermion<FImpl>::ImplParams implParams;
implParams.boundary_phases = strToVec<Complex>(par().boundary);
implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
envCreateDerived(FMat, DomainWallFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, implParams);
}

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TMobiusDWF<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TMobiusDWF<FIMPLF>;
#endif

View File

@ -49,7 +49,8 @@ public:
double , M5,
double , b,
double , c,
std::string , boundary);
std::string , boundary,
std::string , twist);
};
template <typename FImpl>
@ -72,7 +73,9 @@ public:
};
MODULE_REGISTER_TMP(MobiusDWF, TMobiusDWF<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(MobiusDWFF, TMobiusDWF<FIMPLF>, MAction);
#endif
/******************************************************************************
* TMobiusDWF implementation *
@ -117,8 +120,9 @@ void TMobiusDWF<FImpl>::setup(void)
auto &grb4 = *envGetRbGrid(FermionField);
auto &g5 = *envGetGrid(FermionField, par().Ls);
auto &grb5 = *envGetRbGrid(FermionField, par().Ls);
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename MobiusFermion<FImpl>::ImplParams implParams(boundary);
typename MobiusFermion<FImpl>::ImplParams implParams;
implParams.boundary_phases = strToVec<Complex>(par().boundary);
implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
envCreateDerived(FMat, MobiusFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, par().b, par().c,
implParams);

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TScaledDWF<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TScaledDWF<FIMPLF>;
#endif

View File

@ -48,7 +48,8 @@ public:
double , mass,
double , M5,
double , scale,
std::string , boundary);
std::string , boundary,
std::string , twist);
};
template <typename FImpl>
@ -71,7 +72,9 @@ public:
};
MODULE_REGISTER_TMP(ScaledDWF, TScaledDWF<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(ScaledDWFF, TScaledDWF<FIMPLF>, MAction);
#endif
/******************************************************************************
* TScaledDWF implementation *
@ -116,8 +119,9 @@ void TScaledDWF<FImpl>::setup(void)
auto &grb4 = *envGetRbGrid(FermionField);
auto &g5 = *envGetGrid(FermionField, par().Ls);
auto &grb5 = *envGetRbGrid(FermionField, par().Ls);
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename MobiusFermion<FImpl>::ImplParams implParams(boundary);
typename ScaledShamirFermion<FImpl>::ImplParams implParams;
implParams.boundary_phases = strToVec<Complex>(par().boundary);
implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
envCreateDerived(FMat, ScaledShamirFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, par().scale,
implParams);

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TWilson<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TWilson<FIMPLF>;
#endif

View File

@ -47,7 +47,9 @@ public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonPar,
std::string, gauge,
double , mass,
std::string, boundary);
std::string, boundary,
std::string, string,
std::string, twist);
};
template <typename FImpl>
@ -71,7 +73,9 @@ protected:
};
MODULE_REGISTER_TMP(Wilson, TWilson<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(WilsonF, TWilson<FIMPLF>, MAction);
#endif
/******************************************************************************
* TWilson template implementation *
@ -111,8 +115,9 @@ void TWilson<FImpl>::setup(void)
auto &U = envGet(GaugeField, par().gauge);
auto &grid = *envGetGrid(FermionField);
auto &gridRb = *envGetRbGrid(FermionField);
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename WilsonFermion<FImpl>::ImplParams implParams(boundary);
typename WilsonFermion<FImpl>::ImplParams implParams;
implParams.boundary_phases = strToVec<Complex>(par().boundary);
implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
envCreateDerived(FMat, WilsonFermion<FImpl>, getName(), 1, U, grid, gridRb,
par().mass, implParams);
}

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TWilsonClover<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TWilsonClover<FIMPLF>;
#endif

View File

@ -51,7 +51,8 @@ public:
double , csw_r,
double , csw_t,
WilsonAnisotropyCoefficients ,clover_anisotropy,
std::string, boundary
std::string, boundary,
std::string, twist
);
};
@ -75,7 +76,9 @@ public:
};
MODULE_REGISTER_TMP(WilsonClover, TWilsonClover<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(WilsonCloverF, TWilsonClover<FIMPLF>, MAction);
#endif
/******************************************************************************
* TWilsonClover template implementation *
@ -117,8 +120,9 @@ void TWilsonClover<FImpl>::setup(void)
auto &U = envGet(GaugeField, par().gauge);
auto &grid = *envGetGrid(FermionField);
auto &gridRb = *envGetRbGrid(FermionField);
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename WilsonCloverFermion<FImpl>::ImplParams implParams(boundary);
typename WilsonCloverFermion<FImpl>::ImplParams implParams;
implParams.boundary_phases = strToVec<Complex>(par().boundary);
implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
envCreateDerived(FMat, WilsonCloverFermion<FImpl>, getName(), 1, U, grid,
gridRb, par().mass, par().csw_r, par().csw_t,
par().clover_anisotropy, implParams);

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TZMobiusDWF<ZFIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TZMobiusDWF<ZFIMPLF>;
#endif

View File

@ -50,7 +50,8 @@ public:
double , b,
double , c,
std::vector<std::complex<double>>, omega,
std::string , boundary);
std::string , boundary,
std::string , twist);
};
template <typename FImpl>
@ -73,7 +74,9 @@ public:
};
MODULE_REGISTER_TMP(ZMobiusDWF, TZMobiusDWF<ZFIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(ZMobiusDWFF, TZMobiusDWF<ZFIMPLF>, MAction);
#endif
/******************************************************************************
* TZMobiusDWF implementation *
@ -125,8 +128,9 @@ void TZMobiusDWF<FImpl>::setup(void)
auto &g5 = *envGetGrid(FermionField, par().Ls);
auto &grb5 = *envGetRbGrid(FermionField, par().Ls);
auto omega = par().omega;
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
typename ZMobiusFermion<FImpl>::ImplParams implParams(boundary);
typename ZMobiusFermion<FImpl>::ImplParams implParams;
implParams.boundary_phases = strToVec<Complex>(par().boundary);
implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
envCreateDerived(FMat, ZMobiusFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, omega,
par().b, par().c, implParams);

View File

@ -1,3 +1,30 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/A2AAslashField.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/A2AAslashField.hpp>
using namespace Grid;

View File

@ -1,3 +1,30 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/A2AAslashField.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_A2AAslashField_hpp_
#define Hadrons_MContraction_A2AAslashField_hpp_

View File

@ -0,0 +1,34 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MGauge/Electrify.cc
Copyright (C) 2015-2018
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MGauge/Electrify.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MGauge;
template class Grid::Hadrons::MGauge::TElectrify<GIMPL>;

View File

@ -0,0 +1,151 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MGauge/Electrify.hpp
Copyright (C) 2015-2018
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MGauge_Electrify_hpp_
#define Hadrons_MGauge_Electrify_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Electrify gauge *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MGauge)
/****************************************************************************
* Electrify a gauge field:
*
* Ue_mu(x) = U_mu(x)*exp(ieqA_mu(x))
*
* with
*
* - gauge: U_mu(x): gauge field
* - emField: A_mu(x): electromagnetic photon field
* - e: value for the elementary charge
* - q: charge in units of e
*
*****************************************************************************/
class ElectrifyPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ElectrifyPar,
std::string, gauge,
std::string, emField,
double, e,
double, charge);
};
template <typename GImpl>
class TElectrify: public Module<ElectrifyPar>
{
public:
GAUGE_TYPE_ALIASES(GImpl,);
public:
typedef PhotonR::GaugeField EmField;
public:
// constructor
TElectrify(const std::string name);
// destructor
virtual ~TElectrify(void) {};
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Electrify, TElectrify<GIMPL>, MGauge);
/******************************************************************************
* TElectrify implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename GImpl>
TElectrify<GImpl>::TElectrify(const std::string name)
: Module<ElectrifyPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename GImpl>
std::vector<std::string> TElectrify<GImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge, par().emField};
return in;
}
template <typename GImpl>
std::vector<std::string> TElectrify<GImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename GImpl>
void TElectrify<GImpl>::setup(void)
{
envCreateLat(GaugeField, getName());
envTmpLat(LatticeComplex, "eiAmu");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename GImpl>
void TElectrify<GImpl>::execute(void)
{
LOG(Message) << "Electrify the gauge field " << par().gauge << " using the photon field "
<< par().emField << " with charge e*q= " << par().e << "*" << par().charge << std::endl;
auto &Ue = envGet(GaugeField, getName());
auto &U = envGet(GaugeField, par().gauge);
auto &A = envGet(EmField, par().emField);
envGetTmp(LatticeComplex, eiAmu);
Complex i(0.0,1.0);
for(unsigned int mu = 0; mu < env().getNd(); mu++)
{
eiAmu = exp(i * (Real)(par().e * par().charge) * PeekIndex<LorentzIndex>(A, mu));
PokeIndex<LorentzIndex>(Ue, PeekIndex<LorentzIndex>(U, mu) * eiAmu, mu);
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MGauge_Electrify_hpp_

View File

@ -2,11 +2,12 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MScalarSUN/TimeMomProbe.cc
Source file: Hadrons/Modules/MGauge/GaugeFix.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -25,14 +26,11 @@ with this program; if not, write to the Free Software Foundation, Inc.,
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MScalarSUN/TimeMomProbe.hpp>
#include <Hadrons/Modules/MGauge/GaugeFix.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MScalarSUN;
using namespace MGauge;
template class Grid::Hadrons::MScalarSUN::TTimeMomProbe<ScalarNxNAdjImplR<2>>;
template class Grid::Hadrons::MScalarSUN::TTimeMomProbe<ScalarNxNAdjImplR<3>>;
template class Grid::Hadrons::MScalarSUN::TTimeMomProbe<ScalarNxNAdjImplR<4>>;
template class Grid::Hadrons::MScalarSUN::TTimeMomProbe<ScalarNxNAdjImplR<5>>;
template class Grid::Hadrons::MScalarSUN::TTimeMomProbe<ScalarNxNAdjImplR<6>>;
template class Grid::Hadrons::MGauge::TGaugeFix<GIMPL>;

View File

@ -0,0 +1,135 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MGauge/GaugeFix.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MGaugeFix_hpp_
#define Hadrons_MGaugeFix_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Grid/qcd/utils/GaugeFix.h>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Fix gauge *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MGauge)
class GaugeFixPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(GaugeFixPar,
std::string, gauge,
Real, alpha,
int, maxiter,
Real, Omega_tol,
Real, Phi_tol,
bool, Fourier);
};
template <typename GImpl>
class TGaugeFix: public Module<GaugeFixPar>
{
public:
GAUGE_TYPE_ALIASES(GImpl,);
public:
// constructor
TGaugeFix(const std::string name);
// destructor
virtual ~TGaugeFix(void) {};
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(GaugeFix, TGaugeFix<GIMPL>, MGauge);
/******************************************************************************
* TGaugeFix implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename GImpl>
TGaugeFix<GImpl>::TGaugeFix(const std::string name)
: Module<GaugeFixPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename GImpl>
std::vector<std::string> TGaugeFix<GImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge};
return in;
}
template <typename GImpl>
std::vector<std::string> TGaugeFix<GImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename GImpl>
void TGaugeFix<GImpl>::setup(void)
{
envCreateLat(GaugeField, getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <typename GImpl>
void TGaugeFix<GImpl>::execute(void)
//Loads the gauge and fixes it
{
std::cout << "executing" << std::endl;
LOG(Message) << "Fixing the Gauge" << std::endl;
LOG(Message) << par().gauge << std::endl;
auto &U = envGet(GaugeField, par().gauge);
auto &Umu = envGet(GaugeField, getName());
LOG(Message) << "Gauge Field fetched" << std::endl;
//do we allow maxiter etc to be user set?
Real alpha = par().alpha;
int maxiter = par().maxiter;
Real Omega_tol = par().Omega_tol;
Real Phi_tol = par().Phi_tol;
bool Fourier = par().Fourier;
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(U,alpha,maxiter,Omega_tol,Phi_tol,Fourier);
Umu = U;
LOG(Message) << "Gauge Fixed" << std::endl;
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MGaugeFix_hpp_

View File

@ -0,0 +1,34 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MIO/LoadA2AVectors.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MIO/LoadA2AVectors.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MIO;
template class Grid::Hadrons::MIO::TLoadA2AVectors<FIMPL>;

View File

@ -0,0 +1,120 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MIO/LoadA2AVectors.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MIO_LoadA2AVectors_hpp_
#define Hadrons_MIO_LoadA2AVectors_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/A2AVectors.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Module to load all-to-all vectors *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MIO)
class LoadA2AVectorsPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LoadA2AVectorsPar,
std::string, filestem,
bool, multiFile,
unsigned int, size);
};
template <typename FImpl>
class TLoadA2AVectors: public Module<LoadA2AVectorsPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TLoadA2AVectors(const std::string name);
// destructor
virtual ~TLoadA2AVectors(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(LoadA2AVectors, TLoadA2AVectors<FIMPL>, MIO);
/******************************************************************************
* TLoadA2AVectors implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TLoadA2AVectors<FImpl>::TLoadA2AVectors(const std::string name)
: Module<LoadA2AVectorsPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TLoadA2AVectors<FImpl>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename FImpl>
std::vector<std::string> TLoadA2AVectors<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TLoadA2AVectors<FImpl>::setup(void)
{
envCreate(std::vector<FermionField>, getName(), 1, par().size,
envGetGrid(FermionField));
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TLoadA2AVectors<FImpl>::execute(void)
{
auto &vec = envGet(std::vector<FermionField>, getName());
A2AVectorsIo::read(vec, par().filestem, par().multiFile, vm().getTrajectory());
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MIO_LoadA2AVectors_hpp_

View File

@ -32,4 +32,6 @@ using namespace Hadrons;
using namespace MIO;
template class Grid::Hadrons::MIO::TLoadEigenPack<FermionEigenPack<FIMPL>>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MIO::TLoadEigenPack<FermionEigenPack<FIMPL, FIMPLF>>;
#endif

View File

@ -72,7 +72,9 @@ public:
};
MODULE_REGISTER_TMP(LoadFermionEigenPack, TLoadEigenPack<FermionEigenPack<FIMPL>>, MIO);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(LoadFermionEigenPackIo32, ARG(TLoadEigenPack<FermionEigenPack<FIMPL, FIMPLF>>), MIO);
#endif
/******************************************************************************
* TLoadEigenPack implementation *

View File

@ -0,0 +1,36 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MNPR/Amputate.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MNPR/Amputate.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MNPR;
template class Grid::Hadrons::MNPR::TAmputate<FIMPL,FIMPL>;

View File

@ -0,0 +1,200 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MNPR/Amputate.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Julia Kettle J.R.Kettle-2@sms.ed.ac.uk
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Amputate_hpp_
#define Hadrons_Amputate_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Grid/Eigen/LU>
//#include <Grid/qcd/utils/PropagatorUtils.h>
//#include <Grid/serialisation/Serialisation.h>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* TAmputate *
Performs bilinear contractions of the type tr[g5*adj(Sout)*g5*G*Sin]
Suitable for non exceptional momenta
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MNPR)
class AmputatePar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(AmputatePar,
std::string, Sin, //need to make this a propogator type?
std::string, Sout, //same
std::string, vertex,
std::string, pin,
std::string, pout,
std::string, output,
std::string, input);
};
template <typename FImpl1, typename FImpl2>
class TAmputate: public Module<AmputatePar>
{
public:
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::vector<Complex>, Vamp,
);
};
public:
// constructor
TAmputate(const std::string name);
// destructor
virtual ~TAmputate(void) {};
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual SpinColourMatrix invertspincolmat(SpinColourMatrix &scmat);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Amputate, ARG(TAmputate<FIMPL, FIMPL>), MNPR);
/******************************************************************************
* TAmputate implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
TAmputate<FImpl1, FImpl2>::TAmputate(const std::string name)
: Module<AmputatePar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
std::vector<std::string> TAmputate<FImpl1, FImpl2>::getInput(void)
{
std::vector<std::string> input = {par().Sin, par().Sout, par().vertex};
return input;
}
template <typename FImpl1, typename FImpl2>
std::vector<std::string> TAmputate<FImpl1, FImpl2>::getOutput(void)
{
std::vector<std::string> output = {getName()};
return output;
}
// Invert spin colour matrix using Eigen
template <typename Fimpl1, typename Fimpl2>
SpinColourMatrix TAmputate<Fimpl1, Fimpl2>::invertspincolmat(SpinColourMatrix &scmat)
{
Eigen::MatrixXcf scmat_2d(Ns*Nc,Ns*Nc);
for(int ic=0; ic<Nc; ic++){
for(int jc=0; jc<Nc; jc++){
for(int is=0; is<Ns; is++){
for(int js=0; js<Ns; js++){
scmat_2d(Ns*ic+is,Ns*jc+js) = scmat()(is,js)(ic,jc);
}}
}}
Eigen::MatrixXcf scmat_2d_inv = scmat_2d.inverse();
SpinColourMatrix scmat_inv;
for(int ic=0; ic<Nc; ic++){
for(int jc=0; jc<Nc; jc++){
for(int is=0; is<Ns; is++){
for(int js=0; js<Ns; js++){
scmat_inv()(is,js)(ic,jc) = scmat_2d_inv(Ns*ic+is,Ns*jc+js);
}}
}}
return scmat_inv;
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
void TAmputate<FImpl1, FImpl2>::execute(void)
{
LOG(Message) << "Computing bilinear amputations '" << getName() << "' using"
<< " momentum '" << par().Sin << "' and '" << par().Sout << "'"
<< std::endl;
BinaryWriter writer(par().output);
PropagatorField1 &Sin = *env().template getObject<PropagatorField1>(par().Sin); //Do these have the phases taken into account?? Don't think so. FIX
PropagatorField2 &Sout = *env().template getObject<PropagatorField2>(par().Sout);
std::vector<int> pin = strToVec<int>(par().pin), pout = strToVec<int>(par().pout);
std::vector<Real> latt_size(pin.begin(), pin.end());
LatticeComplex pdotxin(env().getGrid()), pdotxout(env().getGrid()), coor(env().getGrid());
LOG(Message) << "Propagators set up " << std::endl;
std::vector<SpinColourMatrix> vertex; // Let's read from file here
Gamma g5(Gamma::Algebra::Gamma5);
Result result;
LOG(Message) << "reading file - " << par().input << std::endl;
BinaryReader reader(par().input);
Complex Ci(0.0,1.0);
std::string svertex;
read(reader,"vertex", vertex);
LOG(Message) << "vertex read" << std::endl;
pdotxin=zero;
pdotxout=zero;
for (unsigned int mu = 0; mu < 4; ++mu)
{
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(coor,mu);
pdotxin = pdotxin +(TwoPiL * pin[mu]) * coor;
pdotxout= pdotxout +(TwoPiL * pout[mu]) * coor;
}
Sin = Sin*exp(-Ci*pdotxin); //phase corrections
Sout = Sout*exp(-Ci*pdotxout);
SpinColourMatrix Sin_mom = sum(Sin);
SpinColourMatrix Sout_mom = sum(Sout);
LOG(Message) << "summed over lattice" << std::endl;
LOG(Message) << "Lattice -> spincolourmatrix conversion" << std::endl;
SpinColourMatrix Sin_inv = invertspincolmat(Sin_mom);
SpinColourMatrix Sout_inv = invertspincolmat(Sout_mom);
LOG(Message) << "Inversions done" << std::endl;
result.Vamp.resize(Gamma::nGamma/2);
for( int mu=0; mu < Gamma::nGamma/2; mu++){
Gamma::Algebra gam = mu;
result.Vamp[mu] = 1/12.0*trace(adj(Gamma(mu*2+1))*g5*Sout_inv*g5*vertex[mu]*Sin_inv);
LOG(Message) << "Vamp[" << mu << "] - " << result.Vamp[mu] << std::endl;
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Amputate_hpp_

View File

@ -0,0 +1,36 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MNPR/Bilinear.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MNPR/Bilinear.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MNPR;
template class Grid::Hadrons::MNPR::TBilinear<FIMPL,FIMPL>;

View File

@ -0,0 +1,225 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MNPR/Bilinear.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Julia Kettle J.R.Kettle-2@sms.ed.ac.uk
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Bilinear_hpp_
#define Hadrons_Bilinear_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/ModuleFactory.hpp>
//#include <Grid/qcd/utils/PropagatorUtils.h>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* TBilinear *
Performs bilinear contractions of the type tr[g5*adj(Sout)*g5*G*Sin]
Suitable for non exceptional momenta in Rome-Southampton NPR
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MNPR)
class BilinearPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(BilinearPar,
std::string, Sin,
std::string, Sout,
std::string, pin,
std::string, pout,
std::string, output);
};
template <typename FImpl1, typename FImpl2>
class TBilinear: public Module<BilinearPar>
{
public:
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::vector<SpinColourMatrix>, bilinear);
};
public:
// constructor
TBilinear(const std::string name);
// destructor
virtual ~TBilinear(void) {};
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
//LatticeSpinColourMatrix PhaseProps(LatticeSpinColourMatrix S, std::vector<Real> p);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Bilinear, ARG(TBilinear<FIMPL, FIMPL>), MNPR);
/******************************************************************************
* TBilinear implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
TBilinear<FImpl1, FImpl2>::TBilinear(const std::string name)
: Module<BilinearPar>(name)
{}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
void TBilinear<FImpl1, FImpl2>::setup(void)
{
//env().template registerLattice<LatticeSpinColourMatrix>(getName());
//env().template registerObject<SpinColourMatrix>(getName());
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
std::vector<std::string> TBilinear<FImpl1, FImpl2>::getInput(void)
{
std::vector<std::string> input = {par().Sin, par().Sout};
return input;
}
template <typename FImpl1, typename FImpl2>
std::vector<std::string> TBilinear<FImpl1, FImpl2>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
/*
/////Phase propagators//////////////////////////
template <typename FImpl1, typename FImpl2>
LatticeSpinColourMatrix TBilinear<FImpl1, FImpl2>::PhaseProps(LatticeSpinColourMatrix S, std::vector<Real> p)
{
GridBase *grid = S._grid;
LatticeComplex pdotx(grid), coor(grid);
std::vector<int> latt_size = grid->_fdimensions;
Complex Ci(0.0,1.0);
pdotx=zero;
for (unsigned int mu = 0; mu < 4; ++mu)
{
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(coor,mu);
pdotx = pdotx +(TwoPiL * p[mu]) * coor;
}
S = S*exp(-Ci*pdotx);
return S;
}
*/
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
void TBilinear<FImpl1, FImpl2>::execute(void)
{
/**************************************************************************
Compute the bilinear vertex needed for the NPR.
V(G) = sum_x [ g5 * adj(S'(x,p2)) * g5 * G * S'(x,p1) ]_{si,sj,ci,cj}
G is one of the 16 gamma vertices [I,gmu,g5,g5gmu,sig(mu,nu)]
* G
/ \
p1/ \p2
/ \
/ \
Returns a spin-colour matrix, with indices si,sj, ci,cj
Conventions:
p1 - incoming momenta
p2 - outgoing momenta
q = (p1-p2)
**************************************************************************/
LOG(Message) << "Computing bilinear contractions '" << getName() << "' using"
<< " momentum '" << par().Sin << "' and '" << par().Sout << "'"
<< std::endl;
BinaryWriter writer(par().output);
// Propogators
LatticeSpinColourMatrix &Sin = *env().template getObject<LatticeSpinColourMatrix>(par().Sin);
LatticeSpinColourMatrix &Sout = *env().template getObject<LatticeSpinColourMatrix>(par().Sout);
LatticeComplex pdotxin(env().getGrid()), pdotxout(env().getGrid()), coor(env().getGrid());
// momentum on legs
std::vector<Real> pin = strToVec<Real>(par().pin), pout = strToVec<Real>(par().pout);
std::vector<Real> latt_size(pin.begin(), pin.end());
//bilinears
LatticeSpinColourMatrix bilinear_x(env().getGrid());
SpinColourMatrix bilinear;
Gamma g5(Gamma::Algebra::Gamma5);
Result result;
Complex Ci(0.0,1.0);
//
pdotxin=zero;
pdotxout=zero;
for (unsigned int mu = 0; mu < 4; ++mu)
{
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(coor,mu);
pdotxin = pdotxin +(TwoPiL * pin[mu]) * coor;
pdotxout= pdotxout +(TwoPiL * pout[mu]) * coor;
}
Sin = Sin*exp(-Ci*pdotxin); //phase corrections
Sout = Sout*exp(-Ci*pdotxout);
////Set up gamma vector//////////////////////////
std::vector<Gamma> gammavector;
for( int i=0; i<Gamma::nGamma; i++){
Gamma::Algebra gam = i;
gammavector.push_back(Gamma(gam));
}
result.bilinear.resize(Gamma::nGamma);
/////////////////////////////////////////////////
//LatticeSpinMatrix temp = g5*Sout;
////////Form Vertex//////////////////////////////
for (int i=0; i < Gamma::nGamma; i++){
bilinear_x = g5*adj(Sout)*g5*gammavector[i]*Sin;
result.bilinear[i] = sum(bilinear_x); //sum over lattice sites
}
//////////////////////////////////////////////////
write(writer, par().output, result.bilinear);
LOG(Message) << "Complete. Writing results to " << par().output << std:: endl;
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Bilinear_hpp_

View File

@ -0,0 +1,36 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MNPR/FourQuark.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MNPR/FourQuark.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MNPR;
template class Grid::Hadrons::MNPR::TFourQuark<FIMPL,FIMPL>;

View File

@ -0,0 +1,274 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MNPR/FourQuark.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Julia Kettle J.R.Kettle-2@sms.ed.ac.uk
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_FourQuark_hpp_
#define Hadrons_FourQuark_hpp_
#include <typeinfo>
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Grid/serialisation/Serialisation.h>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* TFourQuark *
Performs fourquark contractions of the type tr[g5*adj(Sout)*g5*G*Sin]
Suitable for non exceptional momenta
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MNPR)
class FourQuarkPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(FourQuarkPar,
std::string, Sin, //need to make this a propogator type?
std::string, Sout, //same
std::string, pin,
std::string, pout,
bool, fullbasis,
std::string, output);
};
template <typename FImpl1, typename FImpl2>
class TFourQuark: public Module<FourQuarkPar>
{
public:
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::vector<SpinColourSpinColourMatrix>, fourquark);
};
public:
// constructor
TFourQuark(const std::string name);
// destructor
virtual ~TFourQuark(void) {};
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void tensorprod(LatticeSpinColourSpinColourMatrix &lret, LatticeSpinColourMatrix a, LatticeSpinColourMatrix b);
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(FourQuark, ARG(TFourQuark<FIMPL, FIMPL>), MNPR);
/******************************************************************************
* TFourQuark implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
TFourQuark<FImpl1, FImpl2>::TFourQuark(const std::string name)
: Module<FourQuarkPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
std::vector<std::string> TFourQuark<FImpl1, FImpl2>::getInput(void)
{
std::vector<std::string> input = {par().Sin, par().Sout};
return input;
}
template <typename FImpl1, typename FImpl2>
std::vector<std::string> TFourQuark<FImpl1, FImpl2>::getOutput(void)
{
std::vector<std::string> output = {getName()};
return output;
}
template <typename FImpl1, typename FImpl2>
void TFourQuark<FImpl1, FImpl2>::tensorprod(LatticeSpinColourSpinColourMatrix &lret, LatticeSpinColourMatrix a, LatticeSpinColourMatrix b)
{
#if 0
parallel_for(auto site=lret.begin();site<lret.end();site++) {
for (int si; si < 4; ++si){
for(int sj; sj <4; ++sj){
for (int ci; ci < 3; ++ci){
for (int cj; cj < 3; ++cj){
for (int sk; sk < 4; ++sk){
for(int sl; sl <4; ++sl){
for (int ck; ck < 3; ++ck){
for (int cl; cl < 3; ++cl){
lret[site]()(si,sj)(ci,cj)(sk,sl)(ck,cl)=a[site]()(si,sj)(ci,cj)*b[site]()(sk,sl)(ck,cl);
}}
}}
}}
}}
}
#else
// FIXME ; is there a general need for this construct ? In which case we should encapsulate the
// below loops in a helper function.
//LOG(Message) << "sp co mat a is - " << a << std::endl;
//LOG(Message) << "sp co mat b is - " << b << std::endl;
parallel_for(auto site=lret.begin();site<lret.end();site++) {
vTComplex left;
for(int si=0; si < Ns; ++si){
for(int sj=0; sj < Ns; ++sj){
for (int ci=0; ci < Nc; ++ci){
for (int cj=0; cj < Nc; ++cj){
//LOG(Message) << "si, sj, ci, cj - " << si << ", " << sj << ", "<< ci << ", "<< cj << std::endl;
left()()() = a[site]()(si,sj)(ci,cj);
//LOG(Message) << left << std::endl;
lret[site]()(si,sj)(ci,cj)=left()*b[site]();
}}
}}
}
#endif
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
void TFourQuark<FImpl1, FImpl2>::setup(void)
{
envCreateLat(LatticeSpinColourMatrix, getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
void TFourQuark<FImpl1, FImpl2>::execute(void)
{
/*********************************************************************************
TFourQuark : Creates the four quark vertex required for the NPR of four-quark ops
V_{Gamma_1,Gamma_2} = sum_x [ ( g5 * adj(S'(x,p2)) * g5 * G1 * S'(x,p1) )_ci,cj;si,sj x ( g5 * adj(S'(x,p2)) * g5 * G2 S'(x,p1) )_ck,cl;sk,cl ]
Create a bilinear vertex for G1 and G2 the spin and colour indices are kept free. Where there are 16 potential Gs.
We then find the outer product of V1 and V2, keeping the spin and colour indices uncontracted
Then this is summed over the lattice coordinate
Result is a SpinColourSpinColourMatrix - with 4 colour and 4 spin indices.
We have up to 256 of these including the offdiag (G1 != G2).
\ /
\p1 p1/
\ /
\ /
G1 * * G2
/ \
/ \
/p2 p2\
/ \
*********************************************************************************/
LOG(Message) << "Computing fourquark contractions '" << getName() << "' using"
<< " momentum '" << par().Sin << "' and '" << par().Sout << "'"
<< std::endl;
BinaryWriter writer(par().output);
PropagatorField1 &Sin = *env().template getObject<PropagatorField1>(par().Sin);
PropagatorField2 &Sout = *env().template getObject<PropagatorField2>(par().Sout);
std::vector<Real> pin = strToVec<Real>(par().pin), pout = strToVec<Real>(par().pout);
bool fullbasis = par().fullbasis;
Gamma g5(Gamma::Algebra::Gamma5);
Result result;
std::vector<Real> latt_size(pin.begin(), pin.end());
LatticeComplex pdotxin(env().getGrid()), pdotxout(env().getGrid()), coor(env().getGrid());
LatticeSpinColourMatrix bilinear_mu(env().getGrid()), bilinear_nu(env().getGrid());
LatticeSpinColourSpinColourMatrix lret(env().getGrid());
Complex Ci(0.0,1.0);
//Phase propagators
//Sin = Grid::QCD::PropUtils::PhaseProps(Sin,pin);
//Sout = Grid::QCD::PropUtils::PhaseProps(Sout,pout);
//find p.x for in and out so phase can be accounted for in propagators
pdotxin=zero;
pdotxout=zero;
for (unsigned int mu = 0; mu < 4; ++mu)
{
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(coor,mu);
pdotxin = pdotxin +(TwoPiL * pin[mu]) * coor;
pdotxout= pdotxout +(TwoPiL * pout[mu]) * coor;
}
Sin = Sin*exp(-Ci*pdotxin); //phase corrections
Sout = Sout*exp(-Ci*pdotxout);
//Set up Gammas
std::vector<Gamma> gammavector;
for( int i=1; i<Gamma::nGamma; i+=2){
Gamma::Algebra gam = i;
gammavector.push_back(Gamma(gam));
}
lret = zero;
if (fullbasis == true){ // all combinations of mu and nu
result.fourquark.resize(Gamma::nGamma/2*Gamma::nGamma/2);
for( int mu=0; mu<Gamma::nGamma/2; mu++){
bilinear_mu = g5*adj(Sout)*g5*gammavector[mu]*Sin;
for ( int nu=0; nu<Gamma::nGamma; nu++){
LatticeSpinColourMatrix bilinear_nu(env().getGrid());
bilinear_nu = g5*adj(Sout)*g5*gammavector[nu]*Sin;
LOG(Message) << "bilinear_nu for nu = " << nu << " is - " << bilinear_mu << std::endl;
result.fourquark[mu*Gamma::nGamma/2 + nu] = zero;
tensorprod(lret,bilinear_mu,bilinear_nu);
result.fourquark[mu*Gamma::nGamma/2 + nu] = sum(lret);
}
}
} else {
result.fourquark.resize(Gamma::nGamma/2);
for ( int mu=0; mu<1; mu++){
//for( int mu=0; mu<Gamma::nGamma/2; mu++ ){
bilinear_mu = g5*adj(Sout)*g5*gammavector[mu]*Sin;
//LOG(Message) << "bilinear_mu for mu = " << mu << " is - " << bilinear_mu << std::endl;
result.fourquark[mu] = zero;
tensorprod(lret,bilinear_mu,bilinear_mu); //tensor outer product
result.fourquark[mu] = sum(lret);
}
}
write(writer, "fourquark", result.fourquark);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_FourQuark_hpp_

View File

@ -0,0 +1,36 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MNoise/FullVolumeSpinColorDiagonal.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MNoise/FullVolumeSpinColorDiagonal.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MNoise;
template class Grid::Hadrons::MNoise::TFullVolumeSpinColorDiagonal<FIMPL>;
template class Grid::Hadrons::MNoise::TFullVolumeSpinColorDiagonal<ZFIMPL>;

View File

@ -0,0 +1,121 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MNoise/FullVolumeSpinColorDiagonal.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MNoise_FullVolumeSpinColorDiagonal_hpp_
#define Hadrons_MNoise_FullVolumeSpinColorDiagonal_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/DilutedNoise.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Generate full volume spin-color diagonal noise *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MNoise)
class FullVolumeSpinColorDiagonalPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(FullVolumeSpinColorDiagonalPar,
unsigned int, nsrc);
};
template <typename FImpl>
class TFullVolumeSpinColorDiagonal: public Module<FullVolumeSpinColorDiagonalPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TFullVolumeSpinColorDiagonal(const std::string name);
// destructor
virtual ~TFullVolumeSpinColorDiagonal(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(FullVolumeSpinColorDiagonal, TFullVolumeSpinColorDiagonal<FIMPL>, MNoise);
MODULE_REGISTER_TMP(ZFullVolumeSpinColorDiagonal, TFullVolumeSpinColorDiagonal<ZFIMPL>, MNoise);
/******************************************************************************
* TFullVolumeSpinColorDiagonal implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TFullVolumeSpinColorDiagonal<FImpl>::TFullVolumeSpinColorDiagonal(const std::string name)
: Module<FullVolumeSpinColorDiagonalPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TFullVolumeSpinColorDiagonal<FImpl>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename FImpl>
std::vector<std::string> TFullVolumeSpinColorDiagonal<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TFullVolumeSpinColorDiagonal<FImpl>::setup(void)
{
envCreateDerived(DilutedNoise<FImpl>,
FullVolumeSpinColorDiagonalNoise<FImpl>,
getName(), 1, envGetGrid(FermionField), par().nsrc);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TFullVolumeSpinColorDiagonal<FImpl>::execute(void)
{
auto &noise = envGet(DilutedNoise<FImpl>, getName());
LOG(Message) << "Generating full volume, spin-color diagonal noise" << std::endl;
noise.generateNoise(rng4d());
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MNoise_FullVolumeSpinColorDiagonal_hpp_

View File

@ -1,268 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MScalarSUN/TimeMomProbe.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MScalarSUN_TimeMomProbe_hpp_
#define Hadrons_MScalarSUN_TimeMomProbe_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/Modules/MScalarSUN/Utils.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* n-point functions O(t,p)*tr(phi(t_1,p_1)*...*phi(t_n,p_n)) *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MScalarSUN)
class TimeMomProbePar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(TimeMomProbePar,
std::string, field,
std::vector<std::string>, op,
std::vector<std::vector<std::string>>, timeMom,
std::string, output);
};
class TimeMomProbeResult: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(TimeMomProbeResult,
std::string, op,
std::vector<std::vector<int>>, timeMom,
std::vector<Complex>, data);
};
template <typename SImpl>
class TTimeMomProbe: public Module<TimeMomProbePar>
{
public:
typedef typename SImpl::Field Field;
typedef typename SImpl::SiteField::scalar_object Site;
typedef typename SImpl::ComplexField ComplexField;
typedef std::vector<Complex> SlicedOp;
public:
// constructor
TTimeMomProbe(const std::string name);
// destructor
virtual ~TTimeMomProbe(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
void vectorModulo(std::vector<int> &v);
};
MODULE_REGISTER_TMP(TimeMomProbeSU2, TTimeMomProbe<ScalarNxNAdjImplR<2>>, MScalarSUN);
MODULE_REGISTER_TMP(TimeMomProbeSU3, TTimeMomProbe<ScalarNxNAdjImplR<3>>, MScalarSUN);
MODULE_REGISTER_TMP(TimeMomProbeSU4, TTimeMomProbe<ScalarNxNAdjImplR<4>>, MScalarSUN);
MODULE_REGISTER_TMP(TimeMomProbeSU5, TTimeMomProbe<ScalarNxNAdjImplR<5>>, MScalarSUN);
MODULE_REGISTER_TMP(TimeMomProbeSU6, TTimeMomProbe<ScalarNxNAdjImplR<6>>, MScalarSUN);
/******************************************************************************
* TTimeMomProbe implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename SImpl>
TTimeMomProbe<SImpl>::TTimeMomProbe(const std::string name)
: Module<TimeMomProbePar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename SImpl>
std::vector<std::string> TTimeMomProbe<SImpl>::getInput(void)
{
std::vector<std::string> in = par().op;
in.push_back(par().field);
return in;
}
template <typename SImpl>
std::vector<std::string> TTimeMomProbe<SImpl>::getOutput(void)
{
std::vector<std::string> out;
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename SImpl>
void TTimeMomProbe<SImpl>::setup(void)
{
envTmpLat(ComplexField, "ftBuf");
envTmpLat(Field, "ftMatBuf");
}
// execution ///////////////////////////////////////////////////////////////////
// NB: time is direction 0
template <typename SImpl>
void TTimeMomProbe<SImpl>::vectorModulo(std::vector<int> &v)
{
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
auto d = env().getDim(mu);
v[mu] = ((v[mu] % d) + d) % d;
}
}
template <typename SImpl>
void TTimeMomProbe<SImpl>::execute(void)
{
const unsigned int nd = env().getNd();
const unsigned int nt = env().getDim(0);
double partVol = 1.;
std::set<std::vector<int>> timeMomSet;
std::vector<std::vector<std::vector<int>>> timeMom;
std::vector<std::vector<int>> transferMom;
FFT fft(envGetGrid(Field));
std::vector<int> dMask(nd, 1);
std::vector<TimeMomProbeResult> result;
std::map<std::string, std::vector<SlicedOp>> slicedOp;
std::vector<SlicedOp> slicedProbe;
auto &phi = envGet(Field, par().field);
envGetTmp(ComplexField, ftBuf);
envGetTmp(Field, ftMatBuf);
dMask[0] = 0;
for (unsigned int mu = 1; mu < nd; ++mu)
{
partVol *= env().getDim(mu);
}
timeMom.resize(par().timeMom.size());
for (unsigned int p = 0; p < timeMom.size(); ++p)
{
for (auto &tms: par().timeMom[p])
{
std::vector<int> tm = strToVec<int>(tms);
timeMom[p].push_back(tm);
timeMomSet.insert(tm);
}
transferMom.push_back(std::vector<int>(nd - 1, 0));
for (auto &tm: timeMom[p])
{
for (unsigned int j = 1; j < nd; ++j)
{
transferMom[p][j - 1] -= tm[j];
}
}
LOG(Message) << "Probe " << p << " (" << timeMom[p].size() << " points) : " << std::endl;
LOG(Message) << " phi(t_i, p_i) for (t_i, p_i) in " << timeMom[p] << std::endl;
LOG(Message) << " operator with momentum " << transferMom[p] << std::endl;
}
LOG(Message) << "FFT: field '" << par().field << "'" << std::endl;
fft.FFT_dim_mask(ftMatBuf, phi, dMask, FFT::forward);
slicedProbe.resize(timeMom.size());
for (unsigned int p = 0; p < timeMom.size(); ++p)
{
std::vector<int> qt;
LOG(Message) << "Making probe " << p << std::endl;
slicedProbe[p].resize(nt);
for (unsigned int t = 0; t < nt; ++t)
{
Site acc;
for (unsigned int i = 0; i < timeMom[p].size(); ++i)
{
Site buf;
qt = timeMom[p][i];
qt[0] += t;
vectorModulo(qt);
peekSite(buf, ftMatBuf, qt);
if (i == 0)
{
acc = buf;
}
else
{
acc *= buf;
}
}
slicedProbe[p][t] = TensorRemove(trace(acc));
}
//std::cout << slicedProbe[p]<< std::endl;
}
for (auto &o: par().op)
{
auto &op = envGet(ComplexField, o);
slicedOp[o].resize(transferMom.size());
LOG(Message) << "FFT: operator '" << o << "'" << std::endl;
fft.FFT_dim_mask(ftBuf, op, dMask, FFT::forward);
//std::cout << ftBuf << std::endl;
for (unsigned int p = 0; p < transferMom.size(); ++p)
{
std::vector<int> qt(nd, 0);
for (unsigned int j = 1; j < nd; ++j)
{
qt[j] = transferMom[p][j - 1];
}
slicedOp[o][p].resize(nt);
for (unsigned int t = 0; t < nt; ++t)
{
TComplex buf;
qt[0] = t;
vectorModulo(qt);
peekSite(buf, ftBuf, qt);
slicedOp[o][p][t] = TensorRemove(buf);
}
//std::cout << ftBuf << std::endl;
//std::cout << slicedOp[o][p] << std::endl;
}
}
LOG(Message) << "Making correlators" << std::endl;
for (auto &o: par().op)
for (unsigned int p = 0; p < timeMom.size(); ++p)
{
TimeMomProbeResult r;
LOG(Message) << " <" << o << " probe_" << p << ">" << std::endl;
r.op = o;
r.timeMom = timeMom[p];
r.data = makeTwoPoint(slicedOp[o][p], slicedProbe[p], 1./partVol);
result.push_back(r);
}
saveResult(par().output, "timemomprobe", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MScalarSUN_TimeMomProbe_hpp_

View File

@ -124,7 +124,8 @@ void TTrMag<SImpl>::execute(void)
std::vector<TrMagResult> result;
auto &phi = envGet(Field, par().field);
auto m2 = sum(phi), mn = m2;
auto m2 = sum(phi);
auto mn = m2;
m2 = -m2*m2;
mn = 1.;

View File

@ -103,7 +103,7 @@ std::vector<Complex> makeTwoPoint(const std::vector<SinkSite> &sink,
{
for (unsigned int t = 0; t < nt; ++t)
{
res[dt] += trace(sink[(t+dt)%nt]*source[t]);
res[dt] += trace(sink[(t+dt)%nt]*adj(source[t]));
}
res[dt] *= factor/static_cast<double>(nt);
}

View File

@ -0,0 +1,35 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MSolver/A2AAslashVector.cc
Copyright (C) 2015-2018
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MSolver/A2AAslashVector.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MSolver;
template class Grid::Hadrons::MSolver::TA2AAslashVector<FIMPL>;
template class Grid::Hadrons::MSolver::TA2AAslashVector<ZFIMPL>;

View File

@ -0,0 +1,189 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MSolver/A2AAslashVector.hpp
Copyright (C) 2015-2018
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MSolver_A2AAslashVector_hpp_
#define Hadrons_MSolver_A2AAslashVector_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/Solver.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Create all-to-all V & W vectors *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MSolver)
/****************************************************************************
* Calculate a sequential propagator on an insertion of i*g_mu*A_mu
* on an A2A vector
*
* vv_i(y) = S(y,x) * i * g_mu*A_mu(x) * v_i(x)
*
* with
*
* - vector: A2A vector v_i(x)
* - emField: A_mu(x): electromagnetic photon field
* - solver: the solver for calculating the sequential propagator
*
*****************************************************************************/
class A2AAslashVectorPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AAslashVectorPar,
std::string, vector,
std::string, emField,
std::string, solver);
};
template <typename FImpl>
class TA2AAslashVector : public Module<A2AAslashVectorPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
SOLVER_TYPE_ALIASES(FImpl,);
public:
typedef PhotonR::GaugeField EmField;
public:
// constructor
TA2AAslashVector(const std::string name);
// destructor
virtual ~TA2AAslashVector(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
unsigned int Ls_;
};
MODULE_REGISTER_TMP(A2AAslashVector,TA2AAslashVector<FIMPL>, MSolver);
MODULE_REGISTER_TMP(ZA2AAslashVector,TA2AAslashVector<ZFIMPL>, MSolver);
/******************************************************************************
* TA2AAslashVector implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2AAslashVector<FImpl>::TA2AAslashVector(const std::string name)
: Module<A2AAslashVectorPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2AAslashVector<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().vector, par().emField, par().solver};
return in;
}
template <typename FImpl>
std::vector<std::string> TA2AAslashVector<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AAslashVector<FImpl>::setup(void)
{
Ls_ = env().getObjectLs(par().solver);
auto &vvector = envGet(std::vector<FermionField>, par().vector);
unsigned int Nmodes = vvector.size();
envCreate(std::vector<FermionField>, getName(), 1,
Nmodes, envGetGrid(FermionField));
envTmpLat(FermionField, "v4dtmp");
envTmpLat(FermionField, "v5dtmp", Ls_);
envTmpLat(FermionField, "v5dtmp_sol", Ls_);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AAslashVector<FImpl>::execute(void)
{
auto &solver = envGet(Solver, par().solver);
auto &stoch_photon = envGet(EmField, par().emField);
auto &vvector = envGet(std::vector<FermionField>, par().vector);
auto &Aslashv = envGet(std::vector<FermionField>, getName());
unsigned int Nmodes = vvector.size();
auto &mat = solver.getFMat();
envGetTmp(FermionField, v4dtmp);
envGetTmp(FermionField, v5dtmp);
envGetTmp(FermionField, v5dtmp_sol);
Complex ci(0.0,1.0);
startTimer("Seq Aslash");
LOG(Message) << "Calculate Sequential propagator on Aslash * v with the A2A vector " << par().vector
<< " and the photon field " << par().emField << std::endl;
for(unsigned int i=0; i<Nmodes; i++)
{
v4dtmp = zero;
startTimer("Multiply Aslash");
for(unsigned int mu=0;mu<=3;mu++)
{
Gamma gmu(Gamma::gmu[mu]);
v4dtmp += ci * PeekIndex<LorentzIndex>(stoch_photon, mu) * (gmu * vvector[i]);
}
stopTimer("Multiply Aslash");
if (Ls_ == 1)
{
solver(Aslashv[i], v4dtmp);
}
else
{
mat.ImportPhysicalFermionSource(v4dtmp, v5dtmp);
solver(v5dtmp_sol, v5dtmp);
mat.ExportPhysicalFermionSolution(v5dtmp_sol, v4dtmp);
Aslashv[i] = v4dtmp;
}
}
stopTimer("Seq Aslash");
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MSolver_A2AAslashVector_hpp_

View File

@ -51,7 +51,9 @@ public:
std::string, noise,
std::string, action,
std::string, eigenPack,
std::string, solver);
std::string, solver,
std::string, output,
bool, multiFile);
};
template <typename FImpl, typename Pack>
@ -236,6 +238,17 @@ void TA2AVectors<FImpl, Pack>::execute(void)
}
stopTimer("W high mode");
}
// I/O if necessary
if (!par().output.empty())
{
startTimer("V I/O");
A2AVectorsIo::write(par().output + "_v", v, par().multiFile, vm().getTrajectory());
stopTimer("V I/O");
startTimer("W I/O");
A2AVectorsIo::write(par().output + "_w", w, par().multiFile, vm().getTrajectory());
stopTimer("W I/O");
}
}
END_MODULE_NAMESPACE

View File

@ -33,4 +33,7 @@ using namespace MSolver;
template class Grid::Hadrons::MSolver::TLocalCoherenceLanczos<FIMPL,HADRONS_DEFAULT_LANCZOS_NBASIS>;
template class Grid::Hadrons::MSolver::TLocalCoherenceLanczos<ZFIMPL,HADRONS_DEFAULT_LANCZOS_NBASIS>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MSolver::TLocalCoherenceLanczos<FIMPL,HADRONS_DEFAULT_LANCZOS_NBASIS, FIMPLF>;
template class Grid::Hadrons::MSolver::TLocalCoherenceLanczos<ZFIMPL,HADRONS_DEFAULT_LANCZOS_NBASIS, ZFIMPLF>;
#endif

View File

@ -55,17 +55,17 @@ public:
bool, multiFile);
};
template <typename FImpl, int nBasis>
template <typename FImpl, int nBasis, typename FImplIo = FImpl>
class TLocalCoherenceLanczos: public Module<LocalCoherenceLanczosPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
typedef LocalCoherenceLanczos<typename FImpl::SiteSpinor,
typename FImpl::SiteComplex,
nBasis> LCL;
typedef BaseFermionEigenPack<FImpl> BasePack;
typedef CoarseFermionEigenPack<FImpl, nBasis> CoarsePack;
typedef HADRONS_DEFAULT_SCHUR_OP<FMat, FermionField> SchurFMat;
nBasis> LCL;
typedef BaseFermionEigenPack<FImpl> BasePack;
typedef CoarseFermionEigenPack<FImpl, nBasis, FImplIo> CoarsePack;
typedef HADRONS_DEFAULT_SCHUR_OP<FMat, FermionField> SchurFMat;
public:
// constructor
TLocalCoherenceLanczos(const std::string name);
@ -82,27 +82,31 @@ public:
MODULE_REGISTER_TMP(LocalCoherenceLanczos, ARG(TLocalCoherenceLanczos<FIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>), MSolver);
MODULE_REGISTER_TMP(ZLocalCoherenceLanczos, ARG(TLocalCoherenceLanczos<ZFIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>), MSolver);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(LocalCoherenceLanczosIo32, ARG(TLocalCoherenceLanczos<FIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS, FIMPLF>), MSolver);
MODULE_REGISTER_TMP(ZLocalCoherenceLanczosIo32, ARG(TLocalCoherenceLanczos<ZFIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS, ZFIMPLF>), MSolver);
#endif
/******************************************************************************
* TLocalCoherenceLanczos implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl, int nBasis>
TLocalCoherenceLanczos<FImpl, nBasis>::TLocalCoherenceLanczos(const std::string name)
template <typename FImpl, int nBasis, typename FImplIo>
TLocalCoherenceLanczos<FImpl, nBasis, FImplIo>::TLocalCoherenceLanczos(const std::string name)
: Module<LocalCoherenceLanczosPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl, int nBasis>
std::vector<std::string> TLocalCoherenceLanczos<FImpl, nBasis>::getInput(void)
template <typename FImpl, int nBasis, typename FImplIo>
std::vector<std::string> TLocalCoherenceLanczos<FImpl, nBasis, FImplIo>::getInput(void)
{
std::vector<std::string> in = {par().action};
return in;
}
template <typename FImpl, int nBasis>
std::vector<std::string> TLocalCoherenceLanczos<FImpl, nBasis>::getOutput(void)
template <typename FImpl, int nBasis, typename FImplIo>
std::vector<std::string> TLocalCoherenceLanczos<FImpl, nBasis, FImplIo>::getOutput(void)
{
std::vector<std::string> out = {getName()};
@ -110,8 +114,8 @@ std::vector<std::string> TLocalCoherenceLanczos<FImpl, nBasis>::getOutput(void)
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl, int nBasis>
void TLocalCoherenceLanczos<FImpl, nBasis>::setup(void)
template <typename FImpl, int nBasis, typename FImplIo>
void TLocalCoherenceLanczos<FImpl, nBasis, FImplIo>::setup(void)
{
LOG(Message) << "Setting up local coherence Lanczos eigensolver for"
<< " action '" << par().action << "' (" << nBasis
@ -138,8 +142,8 @@ void TLocalCoherenceLanczos<FImpl, nBasis>::setup(void)
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl, int nBasis>
void TLocalCoherenceLanczos<FImpl, nBasis>::execute(void)
template <typename FImpl, int nBasis, typename FImplIo>
void TLocalCoherenceLanczos<FImpl, nBasis, FImplIo>::execute(void)
{
auto &finePar = par().fineParams;
auto &coarsePar = par().coarseParams;

View File

@ -0,0 +1,36 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MSource/Momentum.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MSource/Momentum.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MSource;
template class Grid::Hadrons::MSource::TMomentum<FIMPL>;

View File

@ -0,0 +1,149 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MSource/Momentum.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Momentum_hpp_
#define Hadrons_Momentum_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
Plane Wave source
-----------------
src_x = e^i2pi/L * p *position
*/
/******************************************************************************
* Plane Wave source *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MSource)
class MomentumPar: Serializable
{
public:
//What is meant by serializable in this context
GRID_SERIALIZABLE_CLASS_MEMBERS(MomentumPar,
std::string, mom);
};
template <typename FImpl>
class TMomentum: public Module<MomentumPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TMomentum(const std::string name);
// destructor
virtual ~TMomentum(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Momentum, TMomentum<FIMPL>, MSource);
//MODULE_REGISTER_NS(Momentum, TMomentum, MSource);
/******************************************************************************
* TMomentum template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TMomentum<FImpl>::TMomentum(const std::string name)
: Module<MomentumPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TMomentum<FImpl>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename FImpl>
std::vector<std::string> TMomentum<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TMomentum<FImpl>::setup(void)
{
envCreateLat(PropagatorField, getName());
}
//execution//////////////////////////////////////////////////////////////////
template <typename FImpl>
void TMomentum<FImpl>::execute(void)
{
LOG(Message) << "Generating planewave momentum source with momentum " << par().mom << std::endl;
//what does this env do?
PropagatorField &src = envGet(PropagatorField, getName());
Lattice<iScalar<vInteger>> t(env().getGrid());
LatticeComplex C(env().getGrid()), coor(env().getGrid());
std::vector<Real> p;
std::vector<Real> latt_size(GridDefaultLatt().begin(), GridDefaultLatt().end());
Complex i(0.0,1.0);
LOG(Message) << " " << std::endl;
//get the momentum from parameters
p = strToVec<Real>(par().mom);
C = zero;
LOG(Message) << "momentum converted from string - " << std::to_string(p[0]) <<std::to_string(p[1]) <<std::to_string(p[2]) << std::to_string(p[3]) << std::endl;
for(int mu=0;mu<4;mu++){
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(coor,mu);
C = C +(TwoPiL * p[mu]) * coor;
}
C = exp(C*i);
LOG(Message) << "exponential of pdotx taken " << std::endl;
src = src + C;
LOG(Message) << "source created" << std::endl;
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Momentum_hpp_

View File

@ -1,3 +1,30 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/TimerArray.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/TimerArray.hpp>
using namespace Grid;

View File

@ -1,3 +1,30 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/TimerArray.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_TimerArray_hpp_
#define Hadrons_TimerArray_hpp_

View File

@ -1,3 +1,30 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Utilities/EigenPackCast.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/EigenPack.hpp>
#include <Hadrons/Environment.hpp>
@ -8,7 +35,7 @@ using namespace Hadrons;
template <typename FOut, typename FIn>
void convert(const std::string outFilename, const std::string inFilename,
const unsigned int Ls, const bool rb, const unsigned int size,
const bool multiFile)
const bool multiFile, const bool testRead)
{
assert(outFilename != inFilename);
@ -75,6 +102,7 @@ void convert(const std::string outFilename, const std::string inFilename,
LOG(Message) << "Out type : " << typeName<FOut>() << std::endl;
LOG(Message) << "#vectors : " << size << std::endl;
LOG(Message) << "Multifile : " << (multiFile ? "yes" : "no") << std::endl;
LOG(Message) << "Test read : " << (testRead ? "yes" : "no") << std::endl;
if (multiFile)
{
for(unsigned int k = 0; k < size; ++k)
@ -85,6 +113,8 @@ void convert(const std::string outFilename, const std::string inFilename,
LOG(Message) << "==== Converting vector " << k << std::endl;
LOG(Message) << "In : " << inV << std::endl;
LOG(Message) << "Out: " << outV << std::endl;
// conversion
LOG(Message) << "-- Doing conversion" << std::endl;
makeFileDir(outV, gOut);
binWriter.open(outV);
binReader.open(inV);
@ -94,10 +124,20 @@ void convert(const std::string outFilename, const std::string inFilename,
EigenPackIo::writeElement<FIn, FOut>(binWriter, bufIn, eval, k, &bufOut, &testIn);
binWriter.close();
binReader.close();
// read test
if (testRead)
{
LOG(Message) << "-- Test read" << std::endl;
binReader.open(outV);
EigenPackIo::readElement<FOut>(bufOut, eval, k, binReader);
binReader.close();
}
}
}
else
{
// conversion
LOG(Message) << "-- Doing conversion" << std::endl;
makeFileDir(outFilename, gOut);
binWriter.open(outFilename);
binReader.open(inFilename);
@ -110,6 +150,18 @@ void convert(const std::string outFilename, const std::string inFilename,
}
binWriter.close();
binReader.close();
// read test
if (testRead)
{
LOG(Message) << "-- Test read" << std::endl;
binReader.open(outFilename);
EigenPackIo::readHeader(record, binReader);
for(unsigned int k = 0; k < size; ++k)
{
EigenPackIo::readElement<FOut>(bufOut, eval, k, binReader);
}
binReader.close();
}
}
}
@ -127,11 +179,11 @@ int main(int argc, char *argv[])
// parse command line
std::string outFilename, inFilename;
unsigned int size, Ls;
bool rb, multiFile;
bool rb, multiFile, testRead;
if (argc < 7)
if (argc < 8)
{
std::cerr << "usage: " << argv[0] << " <out eigenpack> <in eigenpack> <Ls> <red-black (0|1)> <#vector> <multifile (0|1)> [Grid options]";
std::cerr << "usage: " << argv[0] << " <out eigenpack> <in eigenpack> <Ls> <red-black {0|1}> <#vector> <multifile {0|1}> <test read {0|1}> [Grid options]";
std::cerr << std::endl;
std::exit(EXIT_FAILURE);
}
@ -141,6 +193,7 @@ int main(int argc, char *argv[])
rb = (std::string(argv[4]) != "0");
size = std::stoi(std::string(argv[5]));
multiFile = (std::string(argv[6]) != "0");
testRead = (std::string(argv[7]) != "0");
// initialization
Grid_init(&argc, &argv);
@ -149,7 +202,7 @@ int main(int argc, char *argv[])
// execution
try
{
convert<FOUT, FIN>(outFilename, inFilename, Ls, rb, size, multiFile);
convert<FOUT, FIN>(outFilename, inFilename, Ls, rb, size, multiFile, testRead);
}
catch (const std::exception& e)
{

View File

@ -2,7 +2,7 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/HadronsXmlRun.cc
Source file: Hadrons/Utilities/HadronsXmlRun.cc
Copyright (C) 2015-2018

View File

@ -11,6 +11,7 @@ modules_cc =\
Modules/MContraction/Gamma3pt.cc \
Modules/MFermion/FreeProp.cc \
Modules/MFermion/GaugeProp.cc \
Modules/MSource/Momentum.cc \
Modules/MSource/Point.cc \
Modules/MSource/Wall.cc \
Modules/MSource/SeqConserved.cc \
@ -19,16 +20,20 @@ modules_cc =\
Modules/MSink/Point.cc \
Modules/MSink/Smear.cc \
Modules/MSolver/A2AVectors.cc \
Modules/MSolver/A2AAslashVector.cc \
Modules/MSolver/RBPrecCG.cc \
Modules/MSolver/MixedPrecisionRBPrecCG.cc \
Modules/MSolver/LocalCoherenceLanczos.cc \
Modules/MGauge/StoutSmearing.cc \
Modules/MGauge/Unit.cc \
Modules/MGauge/Electrify.cc \
Modules/MGauge/UnitEm.cc \
Modules/MGauge/StochEm.cc \
Modules/MGauge/Random.cc \
Modules/MGauge/FundtoHirep.cc \
Modules/MGauge/GaugeFix.cc \
Modules/MNoise/TimeDilutedSpinColorDiagonal.cc \
Modules/MNoise/FullVolumeSpinColorDiagonal.cc \
Modules/MUtilities/RandomVectors.cc \
Modules/MUtilities/TestSeqGamma.cc \
Modules/MUtilities/PrecisionCast.cc \
@ -38,6 +43,9 @@ modules_cc =\
Modules/MScalar/VPCounterTerms.cc \
Modules/MScalar/ChargedProp.cc \
Modules/MScalar/ScalarVP.cc \
Modules/MNPR/Amputate.cc \
Modules/MNPR/Bilinear.cc \
Modules/MNPR/FourQuark.cc \
Modules/MAction/Wilson.cc \
Modules/MAction/MobiusDWF.cc \
Modules/MAction/ZMobiusDWF.cc \
@ -46,7 +54,6 @@ modules_cc =\
Modules/MAction/ScaledDWF.cc \
Modules/MScalarSUN/TrPhi.cc \
Modules/MScalarSUN/Grad.cc \
Modules/MScalarSUN/TimeMomProbe.cc \
Modules/MScalarSUN/TrMag.cc \
Modules/MScalarSUN/TrKinetic.cc \
Modules/MScalarSUN/EMT.cc \
@ -60,7 +67,8 @@ modules_cc =\
Modules/MIO/LoadBinary.cc \
Modules/MIO/LoadNersc.cc \
Modules/MIO/LoadCoarseEigenPack.cc \
Modules/MIO/LoadCosmHol.cc
Modules/MIO/LoadCosmHol.cc \
Modules/MIO/LoadA2AVectors.cc
modules_hpp =\
Modules/MContraction/Baryon.hpp \
@ -81,6 +89,7 @@ modules_hpp =\
Modules/MSource/Wall.hpp \
Modules/MSource/Z2.hpp \
Modules/MSource/SeqConserved.hpp \
Modules/MSource/Momentum.hpp \
Modules/MSink/Smear.hpp \
Modules/MSink/Point.hpp \
Modules/MSolver/MixedPrecisionRBPrecCG.hpp \
@ -88,13 +97,17 @@ modules_hpp =\
Modules/MSolver/Guesser.hpp \
Modules/MSolver/RBPrecCG.hpp \
Modules/MSolver/A2AVectors.hpp \
Modules/MSolver/A2AAslashVector.hpp \
Modules/MGauge/UnitEm.hpp \
Modules/MGauge/StoutSmearing.hpp \
Modules/MGauge/Unit.hpp \
Modules/MGauge/Electrify.hpp \
Modules/MGauge/Random.hpp \
Modules/MGauge/GaugeFix.hpp \
Modules/MGauge/FundtoHirep.hpp \
Modules/MGauge/StochEm.hpp \
Modules/MNoise/TimeDilutedSpinColorDiagonal.hpp \
Modules/MNoise/FullVolumeSpinColorDiagonal.hpp \
Modules/MUtilities/PrecisionCast.hpp \
Modules/MUtilities/RandomVectors.hpp \
Modules/MUtilities/TestSeqGamma.hpp \
@ -105,6 +118,9 @@ modules_hpp =\
Modules/MScalar/ScalarVP.hpp \
Modules/MScalar/Scalar.hpp \
Modules/MScalar/ChargedProp.hpp \
Modules/MNPR/Bilinear.hpp \
Modules/MNPR/Amputate.hpp \
Modules/MNPR/FourQuark.hpp \
Modules/MAction/DWF.hpp \
Modules/MAction/MobiusDWF.hpp \
Modules/MAction/Wilson.hpp \
@ -115,7 +131,6 @@ modules_hpp =\
Modules/MScalarSUN/TwoPointNPR.hpp \
Modules/MScalarSUN/ShiftProbe.hpp \
Modules/MScalarSUN/Div.hpp \
Modules/MScalarSUN/TimeMomProbe.hpp \
Modules/MScalarSUN/TrMag.hpp \
Modules/MScalarSUN/EMT.hpp \
Modules/MScalarSUN/TwoPoint.hpp \
@ -126,6 +141,7 @@ modules_hpp =\
Modules/MScalarSUN/TrKinetic.hpp \
Modules/MIO/LoadEigenPack.hpp \
Modules/MIO/LoadNersc.hpp \
Modules/MIO/LoadA2AVectors.hpp \
Modules/MIO/LoadCosmHol.hpp \
Modules/MIO/LoadCoarseEigenPack.hpp \
Modules/MIO/LoadBinary.hpp

View File

@ -1,108 +1,48 @@
#include <Grid/Grid.h>
#ifdef HAVE_LIME
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
#include "Benchmark_IO.hpp"
#define MSG cout << GridLogMessage
#define SEP \
"============================================================================="
#ifndef BENCH_IO_LMAX
#define BENCH_IO_LMAX 40
#endif
typedef function<void(const string, LatticeFermion &)> WriterFn;
typedef function<void(LatticeFermion &, const string)> ReaderFn;
using namespace Grid;
using namespace QCD;
string filestem(const int l)
std::string filestem(const int l)
{
return "iobench_l" + to_string(l);
}
void limeWrite(const string filestem, LatticeFermion &vec)
{
emptyUserRecord record;
ScidacWriter binWriter(vec._grid->IsBoss());
binWriter.open(filestem + ".bin");
binWriter.writeScidacFieldRecord(vec, record);
binWriter.close();
}
void limeRead(LatticeFermion &vec, const string filestem)
{
emptyUserRecord record;
ScidacReader binReader;
binReader.open(filestem + ".bin");
binReader.readScidacFieldRecord(vec, record);
binReader.close();
}
void writeBenchmark(const int l, const WriterFn &write)
{
auto mpi = GridDefaultMpi();
auto simd = GridDefaultSimd(Nd, vComplex::Nsimd());
vector<int> latt = {l*mpi[0], l*mpi[1], l*mpi[2], l*mpi[3]};
unique_ptr<GridCartesian> gPt(SpaceTimeGrid::makeFourDimGrid(latt, simd, mpi));
GridCartesian *g = gPt.get();
GridParallelRNG rng(g);
LatticeFermion vec(g);
emptyUserRecord record;
ScidacWriter binWriter(g->IsBoss());
cout << "-- Local volume " << l << "^4" << endl;
random(rng, vec);
write(filestem(l), vec);
}
void readBenchmark(const int l, const ReaderFn &read)
{
auto mpi = GridDefaultMpi();
auto simd = GridDefaultSimd(Nd, vComplex::Nsimd());
vector<int> latt = {l*mpi[0], l*mpi[1], l*mpi[2], l*mpi[3]};
unique_ptr<GridCartesian> gPt(SpaceTimeGrid::makeFourDimGrid(latt, simd, mpi));
GridCartesian *g = gPt.get();
LatticeFermion vec(g);
emptyUserRecord record;
ScidacReader binReader;
cout << "-- Local volume " << l << "^4" << endl;
read(vec, filestem(l));
return "iobench_l" + std::to_string(l);
}
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
auto simd = GridDefaultSimd(Nd,vComplex::Nsimd());
auto mpi = GridDefaultMpi();
int64_t threads = GridThread::GetThreads();
MSG << "Grid is setup to use " << threads << " threads" << endl;
MSG << SEP << endl;
MSG << "Benchmark Lime write" << endl;
MSG << SEP << endl;
MSG << "Grid is setup to use " << threads << " threads" << std::endl;
MSG << SEP << std::endl;
MSG << "Benchmark Lime write" << std::endl;
MSG << SEP << std::endl;
for (int l = 4; l <= BENCH_IO_LMAX; l += 2)
{
writeBenchmark(l, limeWrite);
auto mpi = GridDefaultMpi();
std::vector<int> latt = {l*mpi[0], l*mpi[1], l*mpi[2], l*mpi[3]};
std::cout << "-- Local volume " << l << "^4" << std::endl;
writeBenchmark<LatticeFermion>(latt, filestem(l), limeWrite<LatticeFermion>);
}
MSG << "Benchmark Lime read" << endl;
MSG << SEP << endl;
MSG << "Benchmark Lime read" << std::endl;
MSG << SEP << std::endl;
for (int l = 4; l <= BENCH_IO_LMAX; l += 2)
{
readBenchmark(l, limeRead);
auto mpi = GridDefaultMpi();
std::vector<int> latt = {l*mpi[0], l*mpi[1], l*mpi[2], l*mpi[3]};
std::cout << "-- Local volume " << l << "^4" << std::endl;
readBenchmark<LatticeFermion>(latt, filestem(l), limeRead<LatticeFermion>);
}
Grid_finalize();
return EXIT_SUCCESS;
}
#else
int main (int argc, char ** argv)
{
return EXIT_SUCCESS;
}
#endif

107
benchmarks/Benchmark_IO.hpp Normal file
View File

@ -0,0 +1,107 @@
#ifndef Benchmark_IO_hpp_
#define Benchmark_IO_hpp_
#include <Grid/Grid.h>
#define MSG std::cout << GridLogMessage
#define SEP \
"============================================================================="
namespace Grid {
template <typename Field>
using WriterFn = std::function<void(const std::string, Field &)> ;
template <typename Field>
using ReaderFn = std::function<void(Field &, const std::string)>;
template <typename Field>
void limeWrite(const std::string filestem, Field &vec)
{
emptyUserRecord record;
QCD::ScidacWriter binWriter(vec._grid->IsBoss());
binWriter.open(filestem + ".bin");
binWriter.writeScidacFieldRecord(vec, record);
binWriter.close();
}
template <typename Field>
void limeRead(Field &vec, const std::string filestem)
{
emptyUserRecord record;
QCD::ScidacReader binReader;
binReader.open(filestem + ".bin");
binReader.readScidacFieldRecord(vec, record);
binReader.close();
}
inline void makeGrid(std::shared_ptr<GridBase> &gPt,
const std::shared_ptr<GridCartesian> &gBasePt,
const unsigned int Ls = 1, const bool rb = false)
{
if (rb)
{
if (Ls > 1)
{
gPt.reset(QCD::SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, gBasePt.get()));
}
else
{
gPt.reset(QCD::SpaceTimeGrid::makeFourDimRedBlackGrid(gBasePt.get()));
}
}
else
{
if (Ls > 1)
{
gPt.reset(QCD::SpaceTimeGrid::makeFiveDimGrid(Ls, gBasePt.get()));
}
else
{
gPt = gBasePt;
}
}
}
template <typename Field>
void writeBenchmark(const std::vector<int> &latt, const std::string filename,
const WriterFn<Field> &write,
const unsigned int Ls = 1, const bool rb = false)
{
auto mpi = GridDefaultMpi();
auto simd = GridDefaultSimd(latt.size(), Field::vector_type::Nsimd());
std::shared_ptr<GridCartesian> gBasePt(QCD::SpaceTimeGrid::makeFourDimGrid(latt, simd, mpi));
std::shared_ptr<GridBase> gPt;
makeGrid(gPt, gBasePt, Ls, rb);
GridBase *g = gPt.get();
GridParallelRNG rng(g);
Field vec(g);
random(rng, vec);
write(filename, vec);
}
template <typename Field>
void readBenchmark(const std::vector<int> &latt, const std::string filename,
const ReaderFn<Field> &read,
const unsigned int Ls = 1, const bool rb = false)
{
auto mpi = GridDefaultMpi();
auto simd = GridDefaultSimd(latt.size(), Field::vector_type::Nsimd());
std::shared_ptr<GridCartesian> gBasePt(QCD::SpaceTimeGrid::makeFourDimGrid(latt, simd, mpi));
std::shared_ptr<GridBase> gPt;
makeGrid(gPt, gBasePt, Ls, rb);
GridBase *g = gPt.get();
Field vec(g);
read(vec, filename);
}
}
#endif // Benchmark_IO_hpp_

View File

@ -0,0 +1,79 @@
#include "Benchmark_IO.hpp"
#define MSG std::cout << GridLogMessage
#define SEP \
"============================================================================="
using namespace Grid;
using namespace QCD;
int main (int argc, char ** argv)
{
std::vector<std::string> dir;
unsigned int Ls;
bool rb;
if (argc < 4)
{
std::cerr << "usage: " << argv[0] << " <Ls> <RB {0|1}> <dir1> [<dir2> ... <dirn>] [Grid options]";
std::cerr << std::endl;
}
Ls = std::stoi(argv[1]);
rb = (std::string(argv[2]) == "1");
for (unsigned int i = 3; i < argc; ++i)
{
std::string a = argv[i];
if (a[0] != '-')
{
dir.push_back(std::string(argv[i]));
}
else
{
break;
}
}
Grid_init(&argc,&argv);
int64_t threads = GridThread::GetThreads();
MSG << "Grid is setup to use " << threads << " threads" << std::endl;
MSG << SEP << std::endl;
MSG << "Benchmark double precision Lime write" << std::endl;
MSG << SEP << std::endl;
for (auto &d: dir)
{
MSG << "-- Directory " << d << std::endl;
writeBenchmark<LatticeFermion>(GridDefaultLatt(), d + "/ioBench", limeWrite<LatticeFermion>, Ls, rb);
}
MSG << SEP << std::endl;
MSG << "Benchmark double precision Lime read" << std::endl;
MSG << SEP << std::endl;
for (auto &d: dir)
{
MSG << "-- Directory " << d << std::endl;
readBenchmark<LatticeFermion>(GridDefaultLatt(), d + "/ioBench", limeRead<LatticeFermion>, Ls, rb);
}
MSG << SEP << std::endl;
MSG << "Benchmark single precision Lime write" << std::endl;
MSG << SEP << std::endl;
for (auto &d: dir)
{
MSG << "-- Directory " << d << std::endl;
writeBenchmark<LatticeFermionF>(GridDefaultLatt(), d + "/ioBench", limeWrite<LatticeFermionF>, Ls, rb);
}
MSG << SEP << std::endl;
MSG << "Benchmark single precision Lime read" << std::endl;
MSG << SEP << std::endl;
for (auto &d: dir)
{
MSG << "-- Directory " << d << std::endl;
readBenchmark<LatticeFermionF>(GridDefaultLatt(), d + "/ioBench", limeRead<LatticeFermionF>, Ls, rb);
}
Grid_finalize();
return EXIT_SUCCESS;
}

View File

@ -485,6 +485,7 @@ DX_INIT_DOXYGEN([$PACKAGE_NAME], [doxygen.cfg])
############### Ouput
cwd=`pwd -P`; cd ${srcdir}; abs_srcdir=`pwd -P`; cd ${cwd}
GRID_CXX="$CXX"
GRID_CXXFLAGS="$AM_CXXFLAGS $CXXFLAGS"
GRID_LDFLAGS="$AM_LDFLAGS $LDFLAGS"
GRID_LIBS=$LIBS
@ -497,6 +498,7 @@ AM_LDFLAGS="-L${cwd}/Grid $AM_LDFLAGS"
AC_SUBST([AM_CFLAGS])
AC_SUBST([AM_CXXFLAGS])
AC_SUBST([AM_LDFLAGS])
AC_SUBST([GRID_CXX])
AC_SUBST([GRID_CXXFLAGS])
AC_SUBST([GRID_LDFLAGS])
AC_SUBST([GRID_LIBS])

View File

@ -61,6 +61,10 @@ while test $# -gt 0; do
echo @GRID_CXXFLAGS@
;;
--cxx)
echo @GRID_CXX@
;;
--ldflags)
echo @GRID_LDFLAGS@
;;

View File

@ -1,5 +1,4 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_cayley_cg.cc
@ -27,6 +26,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/qcd/action/fermion/Reconstruct5Dprop.h>
using namespace std;
using namespace Grid;
@ -46,6 +46,7 @@ struct scal {
template<class What>
void TestCGinversions(What & Ddwf,
LatticeGaugeField &Umu,
GridCartesian * FGrid, GridRedBlackCartesian * FrbGrid,
GridCartesian * UGrid, GridRedBlackCartesian * UrbGrid,
RealD mass, RealD M5,
@ -75,6 +76,25 @@ void TestCGprec(What & Ddwf,
GridParallelRNG *RNG4,
GridParallelRNG *RNG5);
template<class What>
void TestReconstruct5D(What & Ddwf,
LatticeGaugeField &Umu,
GridCartesian * FGrid, GridRedBlackCartesian * FrbGrid,
GridCartesian * UGrid, GridRedBlackCartesian * UrbGrid,
RealD mass, RealD M5,
GridParallelRNG *RNG4,
GridParallelRNG *RNG5);
template<class What,class WhatF>
void TestReconstruct5DFA(What & Ddwf,
WhatF & DdwfF,
LatticeGaugeField &Umu,
GridCartesian * FGrid, GridRedBlackCartesian * FrbGrid,
GridCartesian * UGrid, GridRedBlackCartesian * UrbGrid,
RealD mass, RealD M5,
GridParallelRNG *RNG4,
GridParallelRNG *RNG5);
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
@ -83,63 +103,104 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
const int Ls=8;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
GridCartesian * UGridF = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplexF::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGridF = SpaceTimeGrid::makeFourDimRedBlackGrid(UGridF);
GridCartesian * FGridF = SpaceTimeGrid::makeFiveDimGrid(Ls,UGridF);
GridRedBlackCartesian * FrbGridF = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGridF);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu(UGrid);
LatticeGaugeFieldF UmuF(UGridF);
SU3::HotConfiguration(RNG4,Umu);
precisionChange(UmuF,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
RealD mass=0.1;
RealD M5 =1.8;
std::cout<<GridLogMessage <<"======================"<<std::endl;
std::cout<<GridLogMessage <<"DomainWallFermion test"<<std::endl;
std::cout<<GridLogMessage <<"======================"<<std::endl;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
TestCGinversions<DomainWallFermionR>(Ddwf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
DomainWallFermionF DdwfF(UmuF,*FGridF,*FrbGridF,*UGridF,*UrbGridF,mass,M5);
TestCGinversions<DomainWallFermionR>(Ddwf,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
TestReconstruct5DFA<DomainWallFermionR,DomainWallFermionF>(Ddwf,DdwfF,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
RealD b=1.5;// Scale factor b+c=2, b-c=1
RealD c=0.5;
std::vector<ComplexD> gamma(Ls,ComplexD(1.0,0.0));
std::cout<<GridLogMessage <<"======================"<<std::endl;
std::cout<<GridLogMessage <<"MobiusFermion test"<<std::endl;
std::cout<<GridLogMessage <<"======================"<<std::endl;
MobiusFermionR Dmob(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
TestCGinversions<MobiusFermionR>(Dmob,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
MobiusFermionF DmobF(UmuF,*FGridF,*FrbGridF,*UGridF,*UrbGridF,mass,M5,b,c);
TestCGinversions<MobiusFermionR>(Dmob,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
TestReconstruct5DFA<MobiusFermionR,MobiusFermionF>(Dmob,DmobF,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"======================"<<std::endl;
std::cout<<GridLogMessage <<"ZMobiusFermion test"<<std::endl;
std::cout<<GridLogMessage <<"======================"<<std::endl;
ZMobiusFermionR ZDmob(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,gamma,b,c);
TestCGinversions<ZMobiusFermionR>(ZDmob,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
TestCGinversions<ZMobiusFermionR>(ZDmob,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
TestReconstruct5D<ZMobiusFermionR>(ZDmob,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"======================"<<std::endl;
std::cout<<GridLogMessage <<"MobiusZolotarevFermion test"<<std::endl;
std::cout<<GridLogMessage <<"======================"<<std::endl;
MobiusZolotarevFermionR Dzolo(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c,0.1,2.0);
TestCGinversions<MobiusZolotarevFermionR>(Dzolo,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
TestCGinversions<MobiusZolotarevFermionR>(Dzolo,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
TestReconstruct5D<MobiusZolotarevFermionR>(Dzolo,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"======================"<<std::endl;
std::cout<<GridLogMessage <<"ScaledShamirFermion test"<<std::endl;
std::cout<<GridLogMessage <<"======================"<<std::endl;
ScaledShamirFermionR Dsham(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,2.0);
TestCGinversions<ScaledShamirFermionR>(Dsham,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
ScaledShamirFermionF DshamF(UmuF,*FGridF,*FrbGridF,*UGridF,*UrbGridF,mass,M5,2.0);
TestCGinversions<ScaledShamirFermionR>(Dsham,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
TestReconstruct5DFA<ScaledShamirFermionR,ScaledShamirFermionF>(Dsham,DshamF,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"======================"<<std::endl;
std::cout<<GridLogMessage <<"ShamirZolotarevFermion test"<<std::endl;
std::cout<<GridLogMessage <<"======================"<<std::endl;
ShamirZolotarevFermionR Dshamz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,2.0);
TestCGinversions<ShamirZolotarevFermionR>(Dshamz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
TestCGinversions<ShamirZolotarevFermionR>(Dshamz,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
TestReconstruct5D<ShamirZolotarevFermionR>(Dshamz,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"======================"<<std::endl;
std::cout<<GridLogMessage <<"OverlapWilsonCayleyTanhFermion test"<<std::endl;
OverlapWilsonCayleyTanhFermionR Dov(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestCGinversions<OverlapWilsonCayleyTanhFermionR>(Dov,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"======================"<<std::endl;
OverlapWilsonCayleyTanhFermionR Dov (Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
OverlapWilsonCayleyTanhFermionF DovF(UmuF,*FGridF,*FrbGridF,*UGridF,*UrbGridF,mass,M5,1.0);
TestCGinversions<OverlapWilsonCayleyTanhFermionR>(Dov,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
TestReconstruct5DFA<OverlapWilsonCayleyTanhFermionR,OverlapWilsonCayleyTanhFermionF>(Dov,DovF,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"======================"<<std::endl;
std::cout<<GridLogMessage <<"OverlapWilsonCayleyZolotarevFermion test"<<std::endl;
std::cout<<GridLogMessage <<"======================"<<std::endl;
OverlapWilsonCayleyZolotarevFermionR Dovz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,2.0);
TestCGinversions<OverlapWilsonCayleyZolotarevFermionR>(Dovz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
TestCGinversions<OverlapWilsonCayleyZolotarevFermionR>(Dovz,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
TestReconstruct5D<OverlapWilsonCayleyZolotarevFermionR>(Dovz,Umu,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
Grid_finalize();
}
template<class What>
void TestCGinversions(What & Ddwf,
LatticeGaugeField &Umu,
GridCartesian * FGrid, GridRedBlackCartesian * FrbGrid,
GridCartesian * UGrid, GridRedBlackCartesian * UrbGrid,
RealD mass, RealD M5,
@ -154,6 +215,7 @@ void TestCGinversions(What & Ddwf,
TestCGschur<What>(Ddwf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,RNG4,RNG5);
}
template<class What>
void TestCGunprec(What & Ddwf,
GridCartesian * FGrid, GridRedBlackCartesian * FrbGrid,
@ -189,6 +251,147 @@ void TestCGprec(What & Ddwf,
CG(HermOpEO,src_o,result_o);
}
template<class What>
void TestReconstruct5D(What & Ddwf,
LatticeGaugeField & Umu,
GridCartesian * FGrid, GridRedBlackCartesian * FrbGrid,
GridCartesian * UGrid, GridRedBlackCartesian * UrbGrid,
RealD mass, RealD M5,
GridParallelRNG *RNG4,
GridParallelRNG *RNG5)
{
LatticeFermion src4 (UGrid); random(*RNG4,src4);
LatticeFermion res4 (UGrid); res4 = zero;
LatticeFermion src (FGrid);
LatticeFermion src_NE(FGrid);
LatticeFermion result(FGrid);
LatticeFermion result_rec(FGrid);
LatticeFermion result_madwf(FGrid);
MdagMLinearOperator<What,LatticeFermion> HermOp(Ddwf);
double Resid = 1.0e-12;
double Residi = 1.0e-6;
ConjugateGradient<LatticeFermion> CG(Resid,10000);
ConjugateGradient<LatticeFermion> CGi(Residi,10000);
Ddwf.ImportPhysicalFermionSource(src4,src);
Ddwf.Mdag(src,src_NE);
CG(HermOp,src_NE,result);
Ddwf.ExportPhysicalFermionSolution(result, res4);
Ddwf.M(result,src_NE);
src_NE = src_NE - src;
std::cout <<GridLogMessage<< " True residual is " << norm2(src_NE)<<std::endl;
std::cout <<GridLogMessage<< " Reconstructing " <<std::endl;
////////////////////////////
// RBprec PV inverse
////////////////////////////
typedef LatticeFermion Field;
typedef SchurRedBlackDiagTwoSolve<Field> SchurSolverType;
typedef SchurRedBlackDiagTwoSolve<Field> SchurSolverTypei;
typedef PauliVillarsSolverRBprec<Field,SchurSolverType> PVinverter;
SchurSolverType SchurSolver(CG);
PVinverter PVinverse(SchurSolver);
Reconstruct5DfromPhysical<LatticeFermion,PVinverter> reconstructor(PVinverse);
reconstructor(Ddwf,res4,src4,result_rec);
std::cout <<GridLogMessage << "Result "<<norm2(result)<<std::endl;
std::cout <<GridLogMessage << "Result_rec "<<norm2(result_rec)<<std::endl;
result_rec = result_rec - result;
std::cout <<GridLogMessage << "Difference "<<norm2(result_rec)<<std::endl;
//////////////////////////////
// Now try MADWF
//////////////////////////////
SchurSolverTypei SchurSolveri(CGi);
ZeroGuesser<LatticeFermion> Guess;
MADWF<What,What,PVinverter,SchurSolverTypei,ZeroGuesser<LatticeFermion> >
madwf(Ddwf,Ddwf,PVinverse,SchurSolveri,Guess,Resid,10);
madwf(src4,result_madwf);
result_madwf = result_madwf - result;
std::cout <<GridLogMessage << "Difference "<<norm2(result_madwf)<<std::endl;
}
template<class What,class WhatF>
void TestReconstruct5DFA(What & Ddwf,
WhatF & DdwfF,
LatticeGaugeField & Umu,
GridCartesian * FGrid, GridRedBlackCartesian * FrbGrid,
GridCartesian * UGrid, GridRedBlackCartesian * UrbGrid,
RealD mass, RealD M5,
GridParallelRNG *RNG4,
GridParallelRNG *RNG5)
{
LatticeFermion src4 (UGrid); random(*RNG4,src4);
LatticeFermion res4 (UGrid); res4 = zero;
LatticeFermion src (FGrid);
LatticeFermion src_NE(FGrid);
LatticeFermion result(FGrid);
LatticeFermion result_rec(FGrid);
LatticeFermion result_madwf(FGrid);
MdagMLinearOperator<What,LatticeFermion> HermOp(Ddwf);
double Resid = 1.0e-12;
double Residi = 1.0e-5;
ConjugateGradient<LatticeFermion> CG(Resid,10000);
ConjugateGradient<LatticeFermionF> CGi(Residi,10000);
Ddwf.ImportPhysicalFermionSource(src4,src);
Ddwf.Mdag(src,src_NE);
CG(HermOp,src_NE,result);
Ddwf.ExportPhysicalFermionSolution(result, res4);
Ddwf.M(result,src_NE);
src_NE = src_NE - src;
std::cout <<GridLogMessage<< " True residual is " << norm2(src_NE)<<std::endl;
std::cout <<GridLogMessage<< " Reconstructing " <<std::endl;
////////////////////////////
// Fourier accel PV inverse
////////////////////////////
typedef LatticeFermion Field;
typedef LatticeFermionF FieldF;
typedef SchurRedBlackDiagTwoSolve<FieldF> SchurSolverTypei;
typedef PauliVillarsSolverFourierAccel<LatticeFermion,LatticeGaugeField> PVinverter;
PVinverter PVinverse(Umu,CG);
Reconstruct5DfromPhysical<LatticeFermion,PVinverter> reconstructor(PVinverse);
reconstructor(Ddwf,res4,src4,result_rec);
std::cout <<GridLogMessage << "Result "<<norm2(result)<<std::endl;
std::cout <<GridLogMessage << "Result_rec "<<norm2(result_rec)<<std::endl;
result_rec = result_rec - result;
std::cout <<GridLogMessage << "Difference "<<norm2(result_rec)<<std::endl;
//////////////////////////////
// Now try MADWF
//////////////////////////////
SchurSolverTypei SchurSolver(CGi);
ZeroGuesser<LatticeFermionF> Guess;
MADWF<What,WhatF,PVinverter,SchurSolverTypei,ZeroGuesser<LatticeFermionF> >
madwf(Ddwf,DdwfF,PVinverse,SchurSolver,Guess,Resid,10);
madwf(src4,result_madwf);
result_madwf = result_madwf - result;
std::cout <<GridLogMessage << "Difference "<<norm2(result_madwf)<<std::endl;
}
template<class What>
void TestCGschur(What & Ddwf,

View File

@ -0,0 +1,104 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_mrhs_cg.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef LatticeComplex ComplexField;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
int nd = latt_size.size();
int ndm1 = nd-1;
std::vector<int> simd_layout = GridDefaultSimd(nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<int> mpi_split (mpi_layout.size(),1);
std::cout << " Full " << GridCmdVectorIntToString(latt_size) << " subgrid" <<std::endl;
std::cout << " Full " << GridCmdVectorIntToString(mpi_layout) << " sub communicator"<<std::endl;
std::cout << " Full " << GridCmdVectorIntToString(simd_layout)<< " simd layout " <<std::endl;
GridCartesian * GridN = new GridCartesian(latt_size,
simd_layout,
mpi_layout);
std::vector<int> latt_m = latt_size; latt_m[nd-1] = 1;
std::vector<int> mpi_m = mpi_layout; mpi_m [nd-1] = 1;
std::vector<int> simd_m = GridDefaultSimd(ndm1,vComplex::Nsimd()); simd_m.push_back(1);
std::cout << " Requesting " << GridCmdVectorIntToString(latt_m)<< " subgrid" <<std::endl;
std::cout << " Requesting " << GridCmdVectorIntToString(mpi_m) << " sub communicator"<<std::endl;
std::cout << " Requesting " << GridCmdVectorIntToString(simd_m)<< " simd layout " <<std::endl;
GridCartesian * Grid_m = new GridCartesian(latt_m,
simd_m,
mpi_m,
*GridN);
Complex C(1.0);
Complex tmp;
ComplexField Full(GridN); Full = C;
ComplexField Full_cpy(GridN);
ComplexField Split(Grid_m);Split= C;
std::cout << GridLogMessage<< " Full volume "<< norm2(Full) <<std::endl;
std::cout << GridLogMessage<< " Split volume "<< norm2(Split) <<std::endl;
tmp=C;
GridN->GlobalSum(tmp);
std::cout << GridLogMessage<< " Full nodes "<< tmp <<std::endl;
tmp=C;
Grid_m->GlobalSum(tmp);
std::cout << GridLogMessage<< " Split nodes "<< tmp <<std::endl;
GridN->Barrier();
auto local_latt = GridN->LocalDimensions();
Full_cpy = zero;
std::vector<int> seeds({1,2,3,4});
GridParallelRNG RNG(GridN); RNG.SeedFixedIntegers(seeds);
random(RNG,Full);
for(int t=0;t<local_latt[nd-1];t++){
ExtractSliceLocal(Split,Full,0,t,Tp);
InsertSliceLocal (Split,Full_cpy,0,t,Tp);
}
Full_cpy = Full_cpy - Full;
std::cout << " NormFull " << norm2(Full)<<std::endl;
std::cout << " NormDiff " << norm2(Full_cpy)<<std::endl;
Grid_finalize();
}

View File

@ -72,6 +72,7 @@ int main(int argc, char *argv[])
// set fermion boundary conditions to be periodic space, antiperiodic time.
std::string boundary = "1 1 1 -1";
std::string twist = "0. 0. 0. 0.";
//stochastic photon field
MGauge::StochEm::Par photonPar;
@ -90,6 +91,7 @@ int main(int argc, char *argv[])
actionPar.M5 = 1.8;
actionPar.mass = mass[i];
actionPar.boundary = boundary;
actionPar.twist = "0. 0. 0. 0.";
application.createModule<MAction::DWF>("DWF_" + flavour[i], actionPar);

View File

@ -91,6 +91,22 @@ int main(int argc, char *argv[])
v13r = v[13];
LOG(Message) << "v[13] correct? "
<< ((v13r == v13w) ? "yes" : "no" ) << std::endl;
LOG(Message) << "hit ratio " << v.hitRatio() << std::endl;
EigenDiskVector<ComplexD> w("eigendiskvector_test", 1000, 4);
EigenDiskVector<ComplexD>::Matrix m,n;
w[2] = EigenDiskVectorMat<ComplexD>::Random(2000, 2000);
m = w[2];
w[3] = EigenDiskVectorMat<ComplexD>::Random(2000, 2000);
w[4] = EigenDiskVectorMat<ComplexD>::Random(2000, 2000);
w[5] = EigenDiskVectorMat<ComplexD>::Random(2000, 2000);
w[6] = EigenDiskVectorMat<ComplexD>::Random(2000, 2000);
w[7] = EigenDiskVectorMat<ComplexD>::Random(2000, 2000);
n = w[2];
LOG(Message) << "w[2] correct? "
<< ((m == n) ? "yes" : "no" ) << std::endl;
LOG(Message) << "hit ratio " << w.hitRatio() << std::endl;
Grid_finalize();

View File

@ -126,6 +126,7 @@ inline void makeWilsonAction(Application &application, std::string actionName,
actionPar.gauge = gaugeField;
actionPar.mass = mass;
actionPar.boundary = boundary;
actionPar.twist = "0. 0. 0. 0.";
application.createModule<MAction::Wilson>(actionName, actionPar);
}
}
@ -154,6 +155,7 @@ inline void makeDWFAction(Application &application, std::string actionName,
actionPar.M5 = M5;
actionPar.mass = mass;
actionPar.boundary = boundary;
actionPar.twist = "0. 0. 0. 0.";
application.createModule<MAction::DWF>(actionName, actionPar);
}
}

View File

@ -66,6 +66,7 @@ int main(int argc, char *argv[])
// set fermion boundary conditions to be periodic space, antiperiodic time.
std::string boundary = "1 1 1 -1";
std::string twist = "0. 0. 0. 0.";
// sink
MSink::Point::Par sinkPar;
@ -80,6 +81,7 @@ int main(int argc, char *argv[])
actionPar.M5 = 1.8;
actionPar.mass = mass[i];
actionPar.boundary = boundary;
actionPar.twist = twist;
application.createModule<MAction::DWF>("DWF_" + flavour[i], actionPar);
// solvers

View File

@ -72,6 +72,7 @@ int main(int argc, char *argv[])
// set fermion boundary conditions to be periodic space, antiperiodic time.
std::string boundary = "1 1 1 -1";
std::string twist = "0. 0. 0. 0.";
for (unsigned int i = 0; i < flavour.size(); ++i)
{
@ -82,6 +83,7 @@ int main(int argc, char *argv[])
actionPar.M5 = 1.8;
actionPar.mass = mass[i];
actionPar.boundary = boundary;
actionPar.twist = twist;
application.createModule<MAction::DWF>("DWF_" + flavour[i], actionPar);
// solvers

View File

@ -38,6 +38,7 @@ int main (int argc, char ** argv)
typedef typename DomainWallFermionR::ComplexField ComplexField;
typename DomainWallFermionR::ImplParams params;
double stp=1.0e-5;
const int Ls=4;
Grid_init(&argc,&argv);
@ -197,7 +198,7 @@ int main (int argc, char ** argv)
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOpCk(Dchk);
ConjugateGradient<FermionField> CG((1.0e-2),10000);
ConjugateGradient<FermionField> CG((stp),10000);
s_res = zero;
CG(HermOp,s_src,s_res);
@ -227,5 +228,11 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage<<" resid["<<n<<"] "<< norm2(tmp)/norm2(src[n])<<std::endl;
}
for(int s=0;s<nrhs;s++) result[s]=zero;
int blockDim = 0;//not used for BlockCGVec
BlockConjugateGradient<FermionField> BCGV (BlockCGVec,blockDim,stp,10000);
BCGV.PrintInterval=10;
BCGV(HermOpCk,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,220 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_mrhs_cg.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename MobiusFermionR::FermionField FermionField;
typedef typename MobiusFermionR::ComplexField ComplexField;
typename MobiusFermionR::ImplParams params;
const int Ls=12;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<int> mpi_split (mpi_layout.size(),1);
std::vector<int> split_coor (mpi_layout.size(),1);
std::vector<int> split_dim (mpi_layout.size(),1);
std::vector<ComplexD> boundary_phases(Nd,1.);
boundary_phases[Nd-1]=-1.;
params.boundary_phases = boundary_phases;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
/////////////////////////////////////////////
// Split into 1^4 mpi communicators
/////////////////////////////////////////////
for(int i=0;i<argc;i++){
if(std::string(argv[i]) == "--split"){
for(int k=0;k<mpi_layout.size();k++){
std::stringstream ss;
ss << argv[i+1+k];
ss >> mpi_split[k];
}
break;
}
}
double stp = 1.e-8;
int nrhs = 1;
int me;
for(int i=0;i<mpi_layout.size();i++){
// split_dim[i] = (mpi_layout[i]/mpi_split[i]);
nrhs *= (mpi_layout[i]/mpi_split[i]);
// split_coor[i] = FGrid._processor_coor[i]/mpi_split[i];
}
std::cout << GridLogMessage << "Creating split grids " <<std::endl;
GridCartesian * SGrid = new GridCartesian(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
mpi_split,
*UGrid,me);
std::cout << GridLogMessage <<"Creating split ferm grids " <<std::endl;
GridCartesian * SFGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,SGrid);
std::cout << GridLogMessage <<"Creating split rb grids " <<std::endl;
GridRedBlackCartesian * SrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(SGrid);
std::cout << GridLogMessage <<"Creating split ferm rb grids " <<std::endl;
GridRedBlackCartesian * SFrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,SGrid);
std::cout << GridLogMessage << "Made the grids"<<std::endl;
///////////////////////////////////////////////
// Set up the problem as a 4d spreadout job
///////////////////////////////////////////////
std::vector<int> seeds({1,2,3,4});
std::vector<FermionField> src(nrhs,FGrid);
std::vector<FermionField> src_chk(nrhs,FGrid);
std::vector<FermionField> result(nrhs,FGrid);
FermionField tmp(FGrid);
std::cout << GridLogMessage << "Made the Fermion Fields"<<std::endl;
for(int s=0;s<nrhs;s++) result[s]=zero;
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
for(int s=0;s<nrhs;s++) {
random(pRNG5,src[s]);
std::cout << GridLogMessage << " src ["<<s<<"] "<<norm2(src[s])<<std::endl;
}
std::cout << GridLogMessage << "Intialised the Fermion Fields"<<std::endl;
LatticeGaugeField Umu(UGrid);
if(0) {
FieldMetaData header;
std::string file("./lat.in");
NerscIO::readConfiguration(Umu,header,file);
std::cout << GridLogMessage << " "<<file<<" successfully read" <<std::endl;
} else {
GridParallelRNG pRNG(UGrid );
std::cout << GridLogMessage << "Intialising 4D RNG "<<std::endl;
pRNG.SeedFixedIntegers(seeds);
std::cout << GridLogMessage << "Intialised 4D RNG "<<std::endl;
SU3::HotConfiguration(pRNG,Umu);
std::cout << GridLogMessage << "Intialised the HOT Gauge Field"<<std::endl;
std::cout << " Site zero "<< Umu._odata[0] <<std::endl;
}
/////////////////
// MPI only sends
/////////////////
LatticeGaugeField s_Umu(SGrid);
FermionField s_src(SFGrid);
FermionField s_tmp(SFGrid);
FermionField s_res(SFGrid);
std::cout << GridLogMessage << "Made the split grid fields"<<std::endl;
///////////////////////////////////////////////////////////////
// split the source out using MPI instead of I/O
///////////////////////////////////////////////////////////////
Grid_split (Umu,s_Umu);
Grid_split (src,s_src);
std::cout << GridLogMessage << " split rank " <<me << " s_src "<<norm2(s_src)<<std::endl;
///////////////////////////////////////////////////////////////
// Set up N-solvers as trivially parallel
///////////////////////////////////////////////////////////////
std::cout << GridLogMessage << " Building the solvers"<<std::endl;
// RealD mass=0.00107;
RealD mass=0.1;
RealD M5=1.8;
RealD mobius_factor=32./12.;
RealD mobius_b=0.5*(mobius_factor+1.);
RealD mobius_c=0.5*(mobius_factor-1.);
MobiusFermionR Dchk(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5,mobius_b,mobius_c,params);
MobiusFermionR Ddwf(s_Umu,*SFGrid,*SFrbGrid,*SGrid,*SrbGrid,mass,M5,mobius_b,mobius_c,params);
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling DWF CG "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
MdagMLinearOperator<MobiusFermionR,FermionField> HermOp(Ddwf);
MdagMLinearOperator<MobiusFermionR,FermionField> HermOpCk(Dchk);
ConjugateGradient<FermionField> CG((stp),100000);
s_res = zero;
CG(HermOp,s_src,s_res);
std::cout << GridLogMessage << " split residual norm "<<norm2(s_res)<<std::endl;
/////////////////////////////////////////////////////////////
// Report how long they all took
/////////////////////////////////////////////////////////////
std::vector<uint32_t> iterations(nrhs,0);
iterations[me] = CG.IterationsToComplete;
for(int n=0;n<nrhs;n++){
UGrid->GlobalSum(iterations[n]);
std::cout << GridLogMessage<<" Rank "<<n<<" "<< iterations[n]<<" CG iterations"<<std::endl;
}
/////////////////////////////////////////////////////////////
// Gather and residual check on the results
/////////////////////////////////////////////////////////////
std::cout << GridLogMessage<< "Unsplitting the result"<<std::endl;
Grid_unsplit(result,s_res);
std::cout << GridLogMessage<< "Checking the residuals"<<std::endl;
for(int n=0;n<nrhs;n++){
std::cout << GridLogMessage<< " res["<<n<<"] norm "<<norm2(result[n])<<std::endl;
HermOpCk.HermOp(result[n],tmp); tmp = tmp - src[n];
std::cout << GridLogMessage<<" resid["<<n<<"] "<< std::sqrt(norm2(tmp)/norm2(src[n]))<<std::endl;
}
for(int s=0;s<nrhs;s++){
result[s]=zero;
}
/////////////////////////////////////////////////////////////
// Try block CG
/////////////////////////////////////////////////////////////
int blockDim = 0;//not used for BlockCGVec
BlockConjugateGradient<FermionField> BCGV (BlockCGrQVec,blockDim,stp,100000);
{
BCGV(HermOpCk,src,result);
}
Grid_finalize();
}

View File

@ -0,0 +1,144 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_mrhs_cg.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename DomainWallFermionR::FermionField FermionField;
typedef typename DomainWallFermionR::ComplexField ComplexField;
typename DomainWallFermionR::ImplParams params;
const int Ls=16;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<ComplexD> boundary_phases(Nd,1.);
boundary_phases[Nd-1]=-1.;
params.boundary_phases = boundary_phases;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
double stp = 1.e-8;
int nrhs = 2;
///////////////////////////////////////////////
// Set up the problem as a 4d spreadout job
///////////////////////////////////////////////
std::vector<int> seeds({1,2,3,4});
std::vector<FermionField> src(nrhs,FGrid);
std::vector<FermionField> src_chk(nrhs,FGrid);
std::vector<FermionField> result(nrhs,FGrid);
FermionField tmp(FGrid);
std::cout << GridLogMessage << "Made the Fermion Fields"<<std::endl;
for(int s=0;s<nrhs;s++) result[s]=zero;
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
for(int s=0;s<nrhs;s++) {
random(pRNG5,src[s]);
std::cout << GridLogMessage << " src ["<<s<<"] "<<norm2(src[s])<<std::endl;
}
std::cout << GridLogMessage << "Intialised the Fermion Fields"<<std::endl;
LatticeGaugeField Umu(UGrid);
int conf = 0;
if(conf==0) {
FieldMetaData header;
std::string file("./lat.in");
NerscIO::readConfiguration(Umu,header,file);
std::cout << GridLogMessage << " Config "<<file<<" successfully read" <<std::endl;
} else if (conf==1){
GridParallelRNG pRNG(UGrid );
pRNG.SeedFixedIntegers(seeds);
SU3::HotConfiguration(pRNG,Umu);
std::cout << GridLogMessage << "Intialised the HOT Gauge Field"<<std::endl;
} else {
SU3::ColdConfiguration(Umu);
std::cout << GridLogMessage << "Intialised the COLD Gauge Field"<<std::endl;
}
///////////////////////////////////////////////////////////////
// Set up N-solvers as trivially parallel
///////////////////////////////////////////////////////////////
std::cout << GridLogMessage << " Building the solvers"<<std::endl;
RealD mass=0.01;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5,params);
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling DWF CG "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
ConjugateGradient<FermionField> CG((stp),100000);
for(int rhs=0;rhs<1;rhs++){
result[rhs] = zero;
CG(HermOp,src[rhs],result[rhs]);
}
for(int rhs=0;rhs<1;rhs++){
std::cout << " Result["<<rhs<<"] norm = "<<norm2(result[rhs])<<std::endl;
}
/////////////////////////////////////////////////////////////
// Try block CG
/////////////////////////////////////////////////////////////
int blockDim = 0;//not used for BlockCGVec
for(int s=0;s<nrhs;s++){
result[s]=zero;
}
BlockConjugateGradient<FermionField> BCGV (BlockCGrQVec,blockDim,stp,100000);
{
BCGV(HermOp,src,result);
}
for(int rhs=0;rhs<nrhs;rhs++){
std::cout << " Result["<<rhs<<"] norm = "<<norm2(result[rhs])<<std::endl;
}
Grid_finalize();
}

View File

@ -0,0 +1,148 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_mrhs_cg.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename DomainWallFermionR::FermionField FermionField;
typedef typename DomainWallFermionR::ComplexField ComplexField;
typename DomainWallFermionR::ImplParams params;
const int Ls=16;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<ComplexD> boundary_phases(Nd,1.);
boundary_phases[Nd-1]=-1.;
params.boundary_phases = boundary_phases;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
double stp = 1.e-8;
int nrhs = 2;
///////////////////////////////////////////////
// Set up the problem as a 4d spreadout job
///////////////////////////////////////////////
std::vector<int> seeds({1,2,3,4});
std::vector<FermionField> src4(nrhs,UGrid);
std::vector<FermionField> src(nrhs,FGrid);
std::vector<FermionField> src_chk(nrhs,FGrid);
std::vector<FermionField> result(nrhs,FGrid);
FermionField tmp(FGrid);
std::cout << GridLogMessage << "Made the Fermion Fields"<<std::endl;
for(int s=0;s<nrhs;s++) result[s]=zero;
GridParallelRNG pRNG4(UGrid); pRNG4.SeedFixedIntegers(seeds);
for(int s=0;s<nrhs;s++) {
random(pRNG4,src4[s]);
std::cout << GridLogMessage << " src ["<<s<<"] "<<norm2(src[s])<<std::endl;
}
std::cout << GridLogMessage << "Intialised the Fermion Fields"<<std::endl;
LatticeGaugeField Umu(UGrid);
int conf = 0;
if(conf==0) {
FieldMetaData header;
std::string file("./lat.in");
NerscIO::readConfiguration(Umu,header,file);
std::cout << GridLogMessage << " Config "<<file<<" successfully read" <<std::endl;
} else if (conf==1){
GridParallelRNG pRNG(UGrid );
pRNG.SeedFixedIntegers(seeds);
SU3::HotConfiguration(pRNG,Umu);
std::cout << GridLogMessage << "Intialised the HOT Gauge Field"<<std::endl;
} else {
SU3::ColdConfiguration(Umu);
std::cout << GridLogMessage << "Intialised the COLD Gauge Field"<<std::endl;
}
///////////////////////////////////////////////////////////////
// Set up N-solvers as trivially parallel
///////////////////////////////////////////////////////////////
std::cout << GridLogMessage << " Building the solvers"<<std::endl;
RealD mass=0.01;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5,params);
for(int s=0;s<nrhs;s++) {
Ddwf.ImportPhysicalFermionSource(src4[s],src[s]);
}
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling DWF CG "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
ConjugateGradient<FermionField> CG((stp),100000);
for(int rhs=0;rhs<1;rhs++){
result[rhs] = zero;
// CG(HermOp,src[rhs],result[rhs]);
}
for(int rhs=0;rhs<1;rhs++){
std::cout << " Result["<<rhs<<"] norm = "<<norm2(result[rhs])<<std::endl;
}
/////////////////////////////////////////////////////////////
// Try block CG
/////////////////////////////////////////////////////////////
int blockDim = 0;//not used for BlockCGVec
for(int s=0;s<nrhs;s++){
result[s]=zero;
}
BlockConjugateGradient<FermionField> BCGV (BlockCGrQVec,blockDim,stp,100000);
{
BCGV(HermOp,src,result);
}
for(int rhs=0;rhs<nrhs;rhs++){
std::cout << " Result["<<rhs<<"] norm = "<<norm2(result[rhs])<<std::endl;
}
Grid_finalize();
}

View File

@ -0,0 +1,147 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_mrhs_cg.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
typedef typename DomainWallFermionR::FermionField FermionField;
typedef typename DomainWallFermionR::ComplexField ComplexField;
typename DomainWallFermionR::ImplParams params;
const int Ls=16;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<ComplexD> boundary_phases(Nd,1.);
boundary_phases[Nd-1]=-1.;
params.boundary_phases = boundary_phases;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
double stp = 1.e-8;
int nrhs = 4;
///////////////////////////////////////////////
// Set up the problem as a 4d spreadout job
///////////////////////////////////////////////
std::vector<int> seeds({1,2,3,4});
std::vector<FermionField> src(nrhs,FGrid);
std::vector<FermionField> src_chk(nrhs,FGrid);
std::vector<FermionField> result(nrhs,FGrid);
FermionField tmp(FGrid);
std::cout << GridLogMessage << "Made the Fermion Fields"<<std::endl;
for(int s=0;s<nrhs;s++) result[s]=zero;
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
for(int s=0;s<nrhs;s++) {
random(pRNG5,src[s]);
std::cout << GridLogMessage << " src ["<<s<<"] "<<norm2(src[s])<<std::endl;
}
std::cout << GridLogMessage << "Intialised the Fermion Fields"<<std::endl;
LatticeGaugeField Umu(UGrid);
int conf = 2;
if(conf==0) {
FieldMetaData header;
std::string file("./lat.in");
NerscIO::readConfiguration(Umu,header,file);
std::cout << GridLogMessage << " Config "<<file<<" successfully read" <<std::endl;
} else if (conf==1){
GridParallelRNG pRNG(UGrid );
pRNG.SeedFixedIntegers(seeds);
SU3::HotConfiguration(pRNG,Umu);
std::cout << GridLogMessage << "Intialised the HOT Gauge Field"<<std::endl;
} else {
SU3::ColdConfiguration(Umu);
std::cout << GridLogMessage << "Intialised the COLD Gauge Field"<<std::endl;
}
///////////////////////////////////////////////////////////////
// Set up N-solvers as trivially parallel
///////////////////////////////////////////////////////////////
std::cout << GridLogMessage << " Building the solvers"<<std::endl;
RealD mass=0.01;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*rbGrid,mass,M5,params);
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling DWF CG "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
MdagMLinearOperator<DomainWallFermionR,FermionField> HermOp(Ddwf);
ConjugateGradient<FermionField> CG((stp),100000);
for(int rhs=0;rhs<1;rhs++){
result[rhs] = zero;
CG(HermOp,src[rhs],result[rhs]);
}
for(int rhs=0;rhs<1;rhs++){
std::cout << " Result["<<rhs<<"] norm = "<<norm2(result[rhs])<<std::endl;
}
/////////////////////////////////////////////////////////////
// Try block CG
/////////////////////////////////////////////////////////////
int blockDim = 0;//not used for BlockCGVec
for(int s=0;s<nrhs;s++){
result[s]=zero;
}
{
BlockConjugateGradient<FermionField> BCGV (BlockCGrQVec,blockDim,stp,100000);
SchurRedBlackDiagTwoSolve<FermionField> SchurSolver(BCGV);
SchurSolver(Ddwf,src,result);
}
for(int rhs=0;rhs<nrhs;rhs++){
std::cout << " Result["<<rhs<<"] norm = "<<norm2(result[rhs])<<std::endl;
}
Grid_finalize();
}

View File

@ -67,7 +67,22 @@ int main (int argc, char ** argv)
GridParallelRNG pRNG(UGrid ); pRNG.SeedFixedIntegers(seeds);
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
FermionField src(FGrid); random(pRNG5,src);
FermionField src(FGrid);
FermionField tt(FGrid);
#if 1
random(pRNG5,src);
#else
src=zero;
ComplexField coor(FGrid);
LatticeCoordinate(coor,0);
for(int ss=0;ss<FGrid->oSites();ss++){
src._odata[ss]()()(0)=coor._odata[ss]()()();
}
LatticeCoordinate(coor,1);
for(int ss=0;ss<FGrid->oSites();ss++){
src._odata[ss]()()(0)+=coor._odata[ss]()()();
}
#endif
FermionField src_o(FrbGrid); pickCheckerboard(Odd,src_o,src);
FermionField result_o(FrbGrid); result_o=zero;
RealD nrm = norm2(src);
@ -89,7 +104,8 @@ int main (int argc, char ** argv)
ConjugateGradient<FermionField> CG(1.0e-8,10000);
int blockDim = 0;
BlockConjugateGradient<FermionField> BCGrQ(BlockCGrQ,blockDim,1.0e-8,10000);
BlockConjugateGradient<FermionField> BCG (BlockCG,blockDim,1.0e-8,10000);
BlockConjugateGradient<FermionField> BCG (BlockCGrQ,blockDim,1.0e-8,10000);
BlockConjugateGradient<FermionField> BCGv (BlockCGrQVec,blockDim,1.0e-8,10000);
BlockConjugateGradient<FermionField> mCG (CGmultiRHS,blockDim,1.0e-8,10000);
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
@ -158,7 +174,7 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling Block CG for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << " Calling Block CGrQ for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
Ds.ZeroCounters();
result_o=zero;
@ -176,6 +192,49 @@ int main (int argc, char ** argv)
Ds.Report();
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling Block CG for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
Ds.ZeroCounters();
result_o=zero;
{
double t1=usecond();
BCG(HermOp,src_o,result_o);
double t2=usecond();
double ncall=BCGrQ.IterationsToComplete*Ls;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
HermOp.Report();
}
Ds.Report();
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling BCGvec "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::vector<FermionField> src_v (Ls,UrbGrid);
std::vector<FermionField> result_v(Ls,UrbGrid);
for(int s=0;s<Ls;s++) result_v[s] = zero;
for(int s=0;s<Ls;s++) {
FermionField src4(UGrid);
ExtractSlice(src4,src,s,0);
pickCheckerboard(Odd,src_v[s],src4);
}
{
double t1=usecond();
BCGv(HermOp4d,src_v,result_v);
double t2=usecond();
double ncall=BCGv.IterationsToComplete*Ls;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
// HermOp4d.Report();
}
Grid_finalize();
}