mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Quenched works for wilson gauge
This commit is contained in:
parent
4e7300b68d
commit
18d0437f8d
@ -1,7 +1,6 @@
|
||||
#ifndef QCD_UTIL_SUN_H
|
||||
#define QCD_UTIL_SUN_H
|
||||
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
@ -13,6 +12,7 @@ public:
|
||||
static int su2subgroups(void) { return (ncolour*(ncolour-1))/2; }
|
||||
|
||||
template<typename vtype> using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > > ;
|
||||
template<typename vtype> using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > > ;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix, SU<2>::LatticeMatrix etc...
|
||||
@ -29,6 +29,19 @@ public:
|
||||
typedef Lattice<vMatrixF> LatticeMatrixF;
|
||||
typedef Lattice<vMatrixD> LatticeMatrixD;
|
||||
|
||||
typedef iSU2Matrix<Complex> SU2Matrix;
|
||||
typedef iSU2Matrix<ComplexF> SU2MatrixF;
|
||||
typedef iSU2Matrix<ComplexD> SU2MatrixD;
|
||||
|
||||
typedef iSU2Matrix<vComplex> vSU2Matrix;
|
||||
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
|
||||
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
|
||||
|
||||
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
|
||||
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
|
||||
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// There are N^2-1 generators for SU(N).
|
||||
//
|
||||
@ -122,6 +135,7 @@ public:
|
||||
RealD nrm = 1.0/std::sqrt(2.0*trsq);
|
||||
ta = ta *nrm;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Map a su2 subgroup number to the pair of rows that are non zero
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
@ -135,208 +149,333 @@ public:
|
||||
}
|
||||
i2=i1+1+spare;
|
||||
}
|
||||
template<class vreal,class vcplx>
|
||||
static void su2Extract(std::vector<Lattice<iSinglet <vreal> > > &r,
|
||||
const Lattice<iSUnMatrix<vcplx> > &source,
|
||||
int su2_index)
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Pull out a subgroup and project on to real coeffs x pauli basis
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class vcplx>
|
||||
static void su2Extract( Lattice<iSinglet<vcplx> > &Determinant,
|
||||
Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||
const Lattice<iSUnMatrix<vcplx> > &source,
|
||||
int su2_index)
|
||||
{
|
||||
GridBase *grid(source._grid);
|
||||
conformable(subgroup,source);
|
||||
conformable(subgroup,Determinant);
|
||||
int i0,i1;
|
||||
su2SubGroupIndex(i0,i1,su2_index);
|
||||
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss!=grid->oSites();ss++){
|
||||
subgroup._odata[ss]()()(0,0) = source._odata[ss]()()(i0,i0);
|
||||
subgroup._odata[ss]()()(0,1) = source._odata[ss]()()(i0,i1);
|
||||
subgroup._odata[ss]()()(1,0) = source._odata[ss]()()(i1,i0);
|
||||
subgroup._odata[ss]()()(1,1) = source._odata[ss]()()(i1,i1);
|
||||
|
||||
iSU2Matrix<vcplx> Sigma = subgroup._odata[ss];
|
||||
|
||||
Sigma = Sigma-adj(Sigma)+trace(adj(Sigma));
|
||||
|
||||
subgroup._odata[ss] = Sigma;
|
||||
|
||||
// this should be purely real
|
||||
Determinant._odata[ss] = Sigma()()(0,0)*Sigma()()(1,1)
|
||||
- Sigma()()(0,1)*Sigma()()(1,0);
|
||||
|
||||
assert(r.size() == 4); // store in 4 real parts
|
||||
|
||||
for(int i=0;i<4;i++){
|
||||
conformable(r[i],source);
|
||||
}
|
||||
|
||||
int i1,i2;
|
||||
su2SubGroupIndex(i1,i2,su2_index);
|
||||
|
||||
/* Compute the b(k) of A_SU(2) = b0 + i sum_k bk sigma_k */
|
||||
|
||||
// r[0] = toReal(real(peekColour(source,i1,i1)) + real(peekColour(source,i2,i2)));
|
||||
// r[1] = toReal(imag(peekColour(source,i1,i2)) + imag(peekColour(source,i2,i1)));
|
||||
// r[2] = toReal(real(peekColour(source,i1,i2)) - real(peekColour(source,i2,i1)));
|
||||
// r[3] = toReal(imag(peekColour(source,i1,i1)) - imag(peekColour(source,i2,i2)));
|
||||
r[0] = toReal(real(peekColour(source,i1,i1)) + real(peekColour(source,i2,i2)));
|
||||
r[1] = toReal(imag(peekColour(source,i1,i2)) + imag(peekColour(source,i2,i1)));
|
||||
r[2] = toReal(real(peekColour(source,i1,i2)) - real(peekColour(source,i2,i1)));
|
||||
r[3] = toReal(imag(peekColour(source,i1,i1)) - imag(peekColour(source,i2,i2)));
|
||||
|
||||
}
|
||||
|
||||
template<class vreal,class vcplx>
|
||||
static void su2Insert(const std::vector<Lattice<iSinglet<vreal> > > &r,
|
||||
Lattice<iSUnMatrix<vcplx> > &dest,
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Set matrix to one and insert a pauli subgroup
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class vcplx>
|
||||
static void su2Insert( const Lattice<iSU2Matrix<vcplx> > &subgroup,
|
||||
Lattice<iSUnMatrix<vcplx> > &dest,
|
||||
int su2_index)
|
||||
{
|
||||
typedef typename Lattice<iSUnMatrix<vcplx> >::scalar_type cplx;
|
||||
typedef Lattice<iSinglet<vcplx> > Lcomplex;
|
||||
GridBase * grid = dest._grid;
|
||||
GridBase *grid(dest._grid);
|
||||
conformable(subgroup,dest);
|
||||
int i0,i1;
|
||||
su2SubGroupIndex(i0,i1,su2_index);
|
||||
|
||||
assert(r.size() == 4); // store in 4 real parts
|
||||
|
||||
Lcomplex tmp(grid);
|
||||
|
||||
std::vector<Lcomplex > cr(4,grid);
|
||||
for(int i=0;i<r.size();i++){
|
||||
conformable(r[i],dest);
|
||||
cr[i]=toComplex(r[i]);
|
||||
dest = 1.0; // start out with identity
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss!=grid->oSites();ss++){
|
||||
dest._odata[ss]()()(i0,i0) = subgroup._odata[ss]()()(0,0);
|
||||
dest._odata[ss]()()(i0,i1) = subgroup._odata[ss]()()(0,1);
|
||||
dest._odata[ss]()()(i1,i0) = subgroup._odata[ss]()()(1,0);
|
||||
dest._odata[ss]()()(i1,i1) = subgroup._odata[ss]()()(1,1);
|
||||
}
|
||||
|
||||
int i1,i2;
|
||||
su2SubGroupIndex(i1,i2,su2_index);
|
||||
|
||||
cplx one (1.0,0.0);
|
||||
cplx cplx_i(0.0,1.0);
|
||||
|
||||
tmp = cr[0]*one+ cr[3]*cplx_i; pokeColour(dest,tmp,i1,i2);
|
||||
tmp = cr[2]*one+ cr[1]*cplx_i; pokeColour(dest,tmp,i1,i2);
|
||||
tmp = -cr[2]*one+ cr[1]*cplx_i; pokeColour(dest,tmp,i2,i1);
|
||||
tmp = cr[0]*one- cr[3]*cplx_i; pokeColour(dest,tmp,i2,i2);
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Generate e^{ Re Tr Staple Link} dlink
|
||||
//
|
||||
// *** Note Staple should be appropriate linear compbination between all staples.
|
||||
// *** If already by beta pass coefficient 1.0.
|
||||
// *** This routine applies the additional 1/Nc factor that comes after trace in action.
|
||||
//
|
||||
///////////////////////////////////////////////
|
||||
static void SubGroupHeatBath( GridSerialRNG &sRNG,
|
||||
GridParallelRNG &pRNG,
|
||||
RealD beta,
|
||||
RealD beta,//coeff multiplying staple in action (with no 1/Nc)
|
||||
LatticeMatrix &link,
|
||||
const LatticeMatrix &staple,
|
||||
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
|
||||
int su2_subgroup,
|
||||
int nheatbath,
|
||||
int& ntrials,
|
||||
int& nfails,
|
||||
LatticeInteger &wheremask)
|
||||
{
|
||||
GridBase *grid = link._grid;
|
||||
|
||||
LatticeMatrix V(grid);
|
||||
V = link*staple;
|
||||
|
||||
std::vector<LatticeReal> r(4,grid);
|
||||
std::vector<LatticeReal> a(4,grid);
|
||||
su2Extract(r,V,su2_subgroup); // HERE
|
||||
|
||||
LatticeReal r_l(grid);
|
||||
r_l = r[0]*r[0]+r[1]*r[1]+r[2]*r[2]+r[3]*r[3];
|
||||
r_l = sqrt(r_l);
|
||||
|
||||
LatticeReal ftmp(grid);
|
||||
LatticeReal ftmp1(grid);
|
||||
LatticeReal ftmp2(grid);
|
||||
LatticeReal one (grid); one = 1.0;
|
||||
LatticeReal zz (grid); zz = zero;
|
||||
LatticeReal recip(grid); recip = one/r_l;
|
||||
|
||||
Real machine_epsilon= 1.0e-14;
|
||||
|
||||
ftmp = where(r_l>machine_epsilon,recip,one);
|
||||
a[0] = where(r_l>machine_epsilon, r[0] * ftmp , one);
|
||||
a[1] = where(r_l>machine_epsilon, -(r[1] * ftmp), zz);
|
||||
a[2] = where(r_l>machine_epsilon, -(r[2] * ftmp), zz);
|
||||
a[3] = where(r_l>machine_epsilon, -(r[3] * ftmp), zz);
|
||||
|
||||
r_l *= beta / ncolour;
|
||||
|
||||
ftmp1 = where(wheremask,one,zz);
|
||||
Real num_sites = TensorRemove(sum(ftmp1));
|
||||
|
||||
Integer itrials = (Integer)num_sites;
|
||||
ntrials = 0;
|
||||
nfails = 0;
|
||||
|
||||
LatticeInteger lupdate(grid);
|
||||
LatticeInteger lbtmp(grid);
|
||||
LatticeInteger lbtmp2(grid); lbtmp2=zero;
|
||||
|
||||
int n_done = 0;
|
||||
int nhb = 0;
|
||||
|
||||
r[0] = a[0];
|
||||
lupdate = 1;
|
||||
|
||||
LatticeReal ones (grid); ones = 1.0;
|
||||
LatticeReal zeros(grid); zeros=zero;
|
||||
|
||||
int ntrials=0;
|
||||
int nfails=0;
|
||||
const RealD twopi=2.0*M_PI;
|
||||
while ( nhb < nheatbath && n_done < num_sites ) {
|
||||
|
||||
ntrials += itrials;
|
||||
LatticeMatrix staple(grid);
|
||||
|
||||
random(pRNG,r[1]);
|
||||
std::cout<<"RANDOM SPARSE FLOAT r[1]"<<std::endl;
|
||||
std::cout<<r[1]<<std::endl;
|
||||
staple = barestaple * (beta/ncolour);
|
||||
|
||||
random(pRNG,r[2]);
|
||||
random(pRNG,ftmp);
|
||||
LatticeMatrix V(grid); V = link*staple;
|
||||
|
||||
r[1] = log(r[1]);
|
||||
r[2] = log(r[2]);
|
||||
// Subgroup manipulation in the lie algebra space
|
||||
LatticeSU2Matrix u(grid); // Kennedy pendleton "u" real projected normalised Sigma
|
||||
LatticeSU2Matrix uinv(grid);
|
||||
LatticeSU2Matrix ua(grid); // a in pauli form
|
||||
LatticeSU2Matrix b(grid); // rotated matrix after hb
|
||||
|
||||
ftmp = ftmp*twopi;
|
||||
r[3] = cos(ftmp);
|
||||
r[3] = r[3]*r[3];
|
||||
// Some handy constant fields
|
||||
LatticeComplex ones (grid); ones = 1.0;
|
||||
LatticeComplex zeros(grid); zeros=zero;
|
||||
LatticeReal rones (grid); rones = 1.0;
|
||||
LatticeReal rzeros(grid); rzeros=zero;
|
||||
LatticeComplex udet(grid); // determinant of real(staple)
|
||||
LatticeInteger mask_true (grid); mask_true = 1;
|
||||
LatticeInteger mask_false(grid); mask_false= 0;
|
||||
|
||||
r[1] += r[2] * r[3];
|
||||
r[2] = r[1] / r_l;
|
||||
/*
|
||||
PLB 156 P393 (1985) (Kennedy and Pendleton)
|
||||
|
||||
random(pRNG,ftmp);
|
||||
r[1] = ftmp*ftmp;
|
||||
Note: absorb "beta" into the def of sigma compared to KP paper; staple
|
||||
passed to this routine has "beta" already multiplied in
|
||||
|
||||
{
|
||||
LatticeInteger mask_true (grid); mask_true = 1;
|
||||
LatticeInteger mask_false(grid); mask_false= 0;
|
||||
LatticeReal thresh(grid); thresh = (1.0 + 0.5*r[2]);
|
||||
lbtmp = where(r[1] <= thresh,mask_true,mask_false);
|
||||
}
|
||||
lbtmp2= lbtmp && lupdate;
|
||||
r[0] = where(lbtmp2, 1.0+r[2], r[0]);
|
||||
Action linear in links h and of form:
|
||||
|
||||
ftmp1 = where(lbtmp2,ones,zeros);
|
||||
RealD sitesum = sum(ftmp1);
|
||||
Integer itmp = sitesum;
|
||||
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
|
||||
|
||||
n_done += itmp;
|
||||
itrials -= itmp;
|
||||
nfails += itrials;
|
||||
lbtmp = !lbtmp;
|
||||
lupdate = lupdate & lbtmp;
|
||||
++nhb;
|
||||
}
|
||||
// Now create r[1], r[2] and r[3] according to the spherical measure
|
||||
// Take absolute value to guard against round-off
|
||||
random(pRNG,ftmp1);
|
||||
r[2] = 1.0 - 2.0*ftmp1;
|
||||
|
||||
ftmp1 = abs(1.0 - r[0]*r[0]);
|
||||
r[3] = -(sqrt(ftmp1) * r[2]);
|
||||
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
|
||||
|
||||
// Take absolute value to guard against round-off
|
||||
r_l = sqrt(abs(ftmp1 - r[3]*r[3]));
|
||||
|
||||
random(pRNG,ftmp1);
|
||||
ftmp1 *= twopi;
|
||||
r[1] = r_l * cos(ftmp1);
|
||||
r[2] = r_l * sin(ftmp1);
|
||||
beta S = const - beta/Nc Re Tr h Sigma'
|
||||
= const - Re Tr h Sigma
|
||||
|
||||
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex arbitrary.
|
||||
|
||||
// Update matrix is B = R * A, with B, R and A given by b_i, r_i and a_i
|
||||
std::vector<LatticeReal> b(4,grid);
|
||||
b[0] = r[0]*a[0] - r[1]*a[1] - r[2]*a[2] - r[3]*a[3];
|
||||
b[1] = r[0]*a[1] + r[1]*a[0] - r[2]*a[3] + r[3]*a[2];
|
||||
b[2] = r[0]*a[2] + r[2]*a[0] - r[3]*a[1] + r[1]*a[3];
|
||||
b[3] = r[0]*a[3] + r[3]*a[0] - r[1]*a[2] + r[2]*a[1];
|
||||
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
|
||||
Re Tr h Sigma = 2 h_j Re Sigma_j
|
||||
|
||||
//
|
||||
// Now fill an SU(3) matrix V with the SU(2) submatrix su2_index
|
||||
// parametrized by a_k in the sigma matrix basis.
|
||||
//
|
||||
Normalised re Sigma_j = xi u_j
|
||||
|
||||
With u_j a unit vector and U can be in SU(2);
|
||||
|
||||
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
|
||||
|
||||
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
|
||||
xi = sqrt(Det)/2;
|
||||
|
||||
Write a= u h in SU(2); a has pauli decomp a_j;
|
||||
|
||||
Note: Product b' xi is unvariant because scaling Sigma leaves
|
||||
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Real part of Pauli decomposition
|
||||
// Note a subgroup can project to zero in cold start
|
||||
////////////////////////////////////////////////////////
|
||||
su2Extract(udet,u,V,su2_subgroup);
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Normalising this vector if possible; else identity
|
||||
//////////////////////////////////////////////////////
|
||||
LatticeComplex xi(grid);
|
||||
|
||||
LatticeSU2Matrix lident(grid);
|
||||
|
||||
SU2Matrix ident = Complex(1.0);
|
||||
SU2Matrix pauli1; SU<2>::generator(0,pauli1);
|
||||
SU2Matrix pauli2; SU<2>::generator(1,pauli2);
|
||||
SU2Matrix pauli3; SU<2>::generator(2,pauli3);
|
||||
pauli1 = timesI(pauli1)*2.0;
|
||||
pauli2 = timesI(pauli2)*2.0;
|
||||
pauli3 = timesI(pauli3)*2.0;
|
||||
|
||||
LatticeComplex cone(grid);
|
||||
LatticeReal adet(grid);
|
||||
adet = abs(toReal(udet));
|
||||
lident=Complex(1.0);
|
||||
cone =Complex(1.0);
|
||||
Real machine_epsilon=1.0e-7;
|
||||
u = where(adet>machine_epsilon,u,lident);
|
||||
udet= where(adet>machine_epsilon,udet,cone);
|
||||
|
||||
xi = 0.5*sqrt(udet); //4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
u = 0.5*u*pow(xi,-1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
|
||||
|
||||
// Debug test for sanity
|
||||
uinv=adj(u);
|
||||
b=u*uinv-1.0;
|
||||
assert(norm2(b)<1.0e-4);
|
||||
|
||||
/*
|
||||
Measure: Haar measure dh has d^4a delta(1-|a^2|)
|
||||
In polars:
|
||||
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
|
||||
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) + r) )
|
||||
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
|
||||
|
||||
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta enters through xi
|
||||
= e^{2 xi (h.u)} dh
|
||||
= e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi h2u2}.e^{2 xi h3u3} dh
|
||||
|
||||
Therefore for each site, take xi for that site
|
||||
i) generate |a0|<1 with dist
|
||||
(1-a0^2)^0.5 e^{2 xi a0 } da0
|
||||
|
||||
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc factor in Chroma ]
|
||||
A. Generate two uniformly distributed pseudo-random numbers R and R', R'', R''' in the unit interval;
|
||||
B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
|
||||
C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
|
||||
D. Set A = XC;
|
||||
E. Let d = X'+A;
|
||||
F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||
G. Set a0 = 1 - d;
|
||||
|
||||
Note that in step D setting B ~ X - A and using B in place of A in step E will generate a second independent a 0 value.
|
||||
*/
|
||||
|
||||
/////////////////////////////////////////////////////////
|
||||
// count the number of sites by picking "1"'s out of hat
|
||||
/////////////////////////////////////////////////////////
|
||||
Integer hit=0;
|
||||
LatticeReal rtmp(grid);
|
||||
rtmp=where(wheremask,rones,rzeros);
|
||||
RealD numSites = sum(rtmp);
|
||||
RealD numAccepted;
|
||||
LatticeInteger Accepted(grid); Accepted = zero;
|
||||
LatticeInteger newlyAccepted(grid);
|
||||
|
||||
std::vector<LatticeReal> xr(4,grid);
|
||||
std::vector<LatticeReal> a(4,grid);
|
||||
LatticeReal d(grid); d=zero;
|
||||
LatticeReal alpha(grid);
|
||||
|
||||
// std::cout<<"xi "<<xi <<std::endl;
|
||||
alpha = toReal(2.0*xi);
|
||||
|
||||
do {
|
||||
|
||||
// A. Generate two uniformly distributed pseudo-random numbers R and R', R'', R''' in the unit interval;
|
||||
random(pRNG,xr[0]);
|
||||
random(pRNG,xr[1]);
|
||||
random(pRNG,xr[2]);
|
||||
random(pRNG,xr[3]);
|
||||
|
||||
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
|
||||
xr[1] = -log(xr[1])/alpha;
|
||||
xr[2] = -log(xr[2])/alpha;
|
||||
|
||||
// C. Set C = cos^2(2piR'')
|
||||
xr[3] = cos(xr[3]*twopi);
|
||||
xr[3] = xr[3]*xr[3];
|
||||
|
||||
LatticeReal xrsq(grid);
|
||||
|
||||
//D. Set A = XC;
|
||||
//E. Let d = X'+A;
|
||||
xrsq = xr[2]+xr[1]*xr[3];
|
||||
|
||||
d = where(Accepted,d,xr[2]+xr[1]*xr[3]);
|
||||
|
||||
//F. If R'''^2 :> 1 - 0.5 d, go back to A;
|
||||
LatticeReal thresh(grid); thresh = 1.0-d*0.5;
|
||||
xrsq = xr[0]*xr[0];
|
||||
LatticeInteger ione(grid); ione = 1;
|
||||
LatticeInteger izero(grid); izero=zero;
|
||||
|
||||
newlyAccepted = where ( xrsq < thresh,ione,izero);
|
||||
Accepted = where ( newlyAccepted, newlyAccepted,Accepted);
|
||||
Accepted = where ( wheremask, Accepted,izero);
|
||||
|
||||
// FIXME need an iSum for integer to avoid overload on return type??
|
||||
rtmp=where(Accepted,rones,rzeros);
|
||||
numAccepted = sum(rtmp);
|
||||
|
||||
hit++;
|
||||
|
||||
} while ( (numAccepted < numSites) && ( hit < nheatbath) );
|
||||
|
||||
// G. Set a0 = 1 - d;
|
||||
a[0]=zero;
|
||||
a[0]=where(wheremask,1.0-d,a[0]);
|
||||
|
||||
//////////////////////////////////////////
|
||||
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
|
||||
//////////////////////////////////////////
|
||||
|
||||
LatticeReal a123mag(grid);
|
||||
a123mag = sqrt(abs(1.0-a[0]*a[0]));
|
||||
|
||||
LatticeReal cos_theta (grid);
|
||||
LatticeReal sin_theta (grid);
|
||||
LatticeReal phi (grid);
|
||||
|
||||
random(pRNG,phi); phi = phi * twopi; // uniform in [0,2pi]
|
||||
random(pRNG,cos_theta); cos_theta=(cos_theta*2.0)-1.0; // uniform in [-1,1]
|
||||
sin_theta = sqrt(abs(1.0-cos_theta*cos_theta));
|
||||
|
||||
a[1] = a123mag * sin_theta * cos(phi);
|
||||
a[2] = a123mag * sin_theta * sin(phi);
|
||||
a[3] = a123mag * cos_theta;
|
||||
|
||||
ua = toComplex(a[0])*ident
|
||||
+ toComplex(a[1])*pauli1
|
||||
+ toComplex(a[2])*pauli2
|
||||
+ toComplex(a[3])*pauli3;
|
||||
|
||||
b = 1.0;
|
||||
b = where(wheremask,uinv*ua,b);
|
||||
su2Insert(b,V,su2_subgroup);
|
||||
|
||||
// U = V*U
|
||||
LatticeMatrix tmp(grid);
|
||||
tmp = V * link;
|
||||
//mask the assignment back based on Accptance
|
||||
link = where(Accepted,V * link,link);
|
||||
|
||||
//mask the assignment back
|
||||
link = where(wheremask,tmp,link);
|
||||
//////////////////////////////
|
||||
// Debug Checks
|
||||
// SU2 check
|
||||
LatticeSU2Matrix check(grid); // rotated matrix after hb
|
||||
u = zero;
|
||||
check = ua * adj(ua) - 1.0;
|
||||
check = where(Accepted,check,u);
|
||||
assert(norm2(check)<1.0e-4);
|
||||
|
||||
check = b*adj(b)-1.0;
|
||||
check = where(Accepted,check,u);
|
||||
assert(norm2(check)<1.0e-4);
|
||||
|
||||
LatticeMatrix Vcheck(grid);
|
||||
Vcheck = zero;
|
||||
Vcheck = where(Accepted,V*adj(V) - 1.0,Vcheck);
|
||||
// std::cout << "SU3 check " <<norm2(Vcheck)<<std::endl;
|
||||
assert(norm2(Vcheck)<1.0e-4);
|
||||
|
||||
// Verify the link stays in SU(3)
|
||||
// std::cout <<"Checking the modified link"<<std::endl;
|
||||
Vcheck = link*adj(link) - 1.0;
|
||||
assert(norm2(Vcheck)<1.0e-4);
|
||||
/////////////////////////////////
|
||||
}
|
||||
|
||||
static void printGenerators(void)
|
||||
|
Loading…
Reference in New Issue
Block a user