1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Zero changes, acceleartor on kernels and some thread loop changes

This commit is contained in:
paboyle 2018-01-27 23:47:38 +00:00
parent 45df59720e
commit 2d0bcc2606
40 changed files with 174 additions and 175 deletions

View File

@ -96,15 +96,14 @@ void CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField
}
// For the non-vectorised s-direction this is simple
for(auto site=0;site<vol;site++){
thread_loop( (auto site=0;site<vol;site++), {
SiteSpinor SiteChi;
SiteHalfSpinor SitePplus;
SiteHalfSpinor SitePminus;
for(int s1=0;s1<Ls;s1++){
SiteChi =zero;
SiteChi =Zero();
for(int s2=0;s2<Ls;s2++){
int lex2 = s2+Ls*site;
@ -120,7 +119,7 @@ void CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField
}
chi[s1+Ls*site] = SiteChi*0.5;
}
}
});
}
#ifdef CAYLEY_DPERP_DENSE

View File

@ -360,8 +360,8 @@ void CayleyFermion5D<Impl>::MooeeInternalAsm(const FermionField &psi, FermionFie
int lex=s2+LLs*site;
if ( s2==0 && l==0) {
SiteChiP=zero;
SiteChiM=zero;
SiteChiP=Zero();
SiteChiM=Zero();
}
for(int sp=0;sp<2;sp++){
@ -532,8 +532,8 @@ void CayleyFermion5D<Impl>::MooeeInternalZAsm(const FermionField &psi, FermionFi
int lex=s2+LLs*site;
if ( s2==0 && l==0) {
SiteChiP=zero;
SiteChiM=zero;
SiteChiP=Zero();
SiteChiM=Zero();
}
for(int sp=0;sp<2;sp++){

View File

@ -69,7 +69,7 @@ void DomainWallEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& D
{
int Ls = this->Ls;
Din = zero;
Din = Zero();
if((sign == 1) && (dag == 0)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, Ls-1, 0); }
else if((sign == -1) && (dag == 0)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, 0); }
else if((sign == 1 ) && (dag == 1)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, Ls-1); }

View File

@ -106,7 +106,7 @@ void DomainWallEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, Fermion
SiteHalfSpinor SitePminus;
for(int s1=0; s1<Ls; s1++){
SiteChi = zero;
SiteChi = Zero();
for(int s2=0; s2<Ls; s2++){
int lex2 = s2 + Ls*site;
if(PplusMat(s1,s2) != 0.0){

View File

@ -362,8 +362,8 @@ void DomainWallEOFAFermion<Impl>::MooeeInternalAsm(const FermionField& psi, Ferm
int lex = s2 + LLs*site;
if( s2==0 && l==0 ){
SiteChiP=zero;
SiteChiM=zero;
SiteChiP=Zero();
SiteChiM=Zero();
}
for(int sp=0; sp<2; sp++){

View File

@ -81,8 +81,8 @@ public:
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDeriv(mat,U,V,dag);};
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivOE(mat,U,V,dag);};
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivEO(mat,U,V,dag);};
virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;}; // Clover can override these
virtual void MeeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=Zero();}; // Clover can override these
virtual void MeeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=Zero();};
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;

View File

@ -266,7 +266,7 @@ public:
int Ls=Btilde.Grid()->_fdimensions[0];
GaugeLinkField tmp(mat.Grid());
tmp = zero;
tmp = Zero();
parallel_for(int sss=0;sss<tmp.Grid()->oSites();sss++){
int sU=sss;
@ -406,7 +406,7 @@ public:
unsigned int dimU = grid->Nd();
unsigned int dimF = Bgrid->Nd();
GaugeLinkField tmp(grid);
tmp = zero;
tmp = Zero();
// FIXME
// Current implementation works, thread safe, probably suboptimal
@ -417,7 +417,7 @@ public:
std::vector<typename result_type::scalar_object> vres(Bgrid->Nsimd());
std::vector<int> ocoor; grid->oCoorFromOindex(ocoor,so);
for (int si = 0; si < tmp.Grid()->iSites(); si++){
typename result_type::scalar_object scalar_object; scalar_object = zero;
typename result_type::scalar_object scalar_object; scalar_object = Zero();
std::vector<int> local_coor;
std::vector<int> icoor; grid->iCoorFromIindex(icoor,si);
grid->InOutCoorToLocalCoor(ocoor, icoor, local_coor);
@ -639,7 +639,7 @@ public:
int Ls = Btilde.Grid()->_fdimensions[0];
GaugeLinkField tmp(mat.Grid());
tmp = zero;
tmp = Zero();
parallel_for(int ss = 0; ss < tmp.Grid()->oSites(); ss++) {
for (int s = 0; s < Ls; s++) {
int sF = s + Ls * ss;

View File

@ -87,7 +87,7 @@ void MobiusEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din,
int Ls = this->Ls;
RealD alpha = this->alpha;
Din = zero;
Din = Zero();
if((sign == 1) && (dag == 0)) { // \Omega_{+}
for(int s=0; s<Ls; ++s){
axpby_ssp(Din, 0.0, psi, 2.0*std::pow(1.0-alpha,Ls-s-1)/std::pow(1.0+alpha,Ls-s), psi, s, 0);

View File

@ -175,7 +175,7 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi, const Fermio
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
chi[ss+Ls-1] = zero;
chi[ss+Ls-1] = Zero();
auto tmp = psi[0];
for(int s=0; s<Ls; s++){
if(s==0) {

View File

@ -131,7 +131,7 @@ void MobiusEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionFiel
SiteHalfSpinor SitePminus;
for(int s1=0; s1<Ls; s1++){
SiteChi = zero;
SiteChi = Zero();
for(int s2=0; s2<Ls; s2++){
int lex2 = s2 + Ls*site;
if(PplusMat(s1,s2) != 0.0){

View File

@ -737,8 +737,8 @@ void MobiusEOFAFermion<Impl>::MooeeInternalAsm(const FermionField& psi, FermionF
int lex = s2 + LLs*site;
if( s2==0 && l==0 ){
SiteChiP=zero;
SiteChiM=zero;
SiteChiP=Zero();
SiteChiM=Zero();
}
for(int sp=0; sp<2; sp++){

View File

@ -152,11 +152,11 @@ void WilsonFermion<Impl>::MomentumSpacePropagator(FermionField &out, const Fermi
std::vector<int> latt_size = _grid->_fdimensions;
FermionField num (_grid); num = zero;
LatComplex wilson(_grid); wilson= zero;
FermionField num (_grid); num = Zero();
LatComplex wilson(_grid); wilson= Zero();
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
LatComplex denom(_grid); denom= zero;
LatComplex denom(_grid); denom= Zero();
LatComplex kmu(_grid);
ScalComplex ci(0.0,1.0);
// momphase = n * 2pi / L
@ -360,7 +360,7 @@ void WilsonFermion<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
conformable(_grid, q_in_2.Grid());
conformable(_grid, q_out.Grid());
PropagatorField tmp1(_grid), tmp2(_grid);
q_out = zero;
q_out = Zero();
// Forward, need q1(x + mu), q2(x). Backward, need q1(x), q2(x + mu).
// Inefficient comms method but not performance critical.
@ -397,7 +397,7 @@ void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
unsigned int LLt = GridDefaultLatt()[Tp];
// Momentum projection
ph = zero;
ph = Zero();
for(unsigned int mu = 0; mu < Nd - 1; mu++)
{
LatticeCoordinate(coor, mu);
@ -405,7 +405,7 @@ void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
}
ph = exp((Real)(2*M_PI)*i*ph);
q_out = zero;
q_out = Zero();
LatticeInteger coords(_grid);
LatticeCoordinate(coords, Tp);

View File

@ -583,14 +583,14 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
std::vector<int> latt_size = _grid->_fdimensions;
FermionField num (_grid); num = zero;
FermionField num (_grid); num = Zero();
LatComplex sk(_grid); sk = zero;
LatComplex sk2(_grid); sk2= zero;
LatComplex W(_grid); W= zero;
LatComplex a(_grid); a= zero;
LatComplex sk(_grid); sk = Zero();
LatComplex sk2(_grid); sk2= Zero();
LatComplex W(_grid); W= Zero();
LatComplex a(_grid); a= Zero();
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
LatComplex denom(_grid); denom= zero;
LatComplex denom(_grid); denom= Zero();
LatComplex cosha(_grid);
LatComplex kmu(_grid);
LatComplex Wea(_grid);
@ -661,16 +661,16 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
std::vector<int> latt_size = _grid->_fdimensions;
LatComplex sk(_grid); sk = zero;
LatComplex sk2(_grid); sk2= zero;
LatComplex sk(_grid); sk = Zero();
LatComplex sk2(_grid); sk2= Zero();
LatComplex w_k(_grid); w_k= zero;
LatComplex b_k(_grid); b_k= zero;
LatComplex w_k(_grid); w_k= Zero();
LatComplex b_k(_grid); b_k= Zero();
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
FermionField num (_grid); num = zero;
LatComplex denom(_grid); denom= zero;
FermionField num (_grid); num = Zero();
LatComplex denom(_grid); denom= Zero();
LatComplex kmu(_grid);
ScalComplex ci(0.0,1.0);
@ -733,7 +733,7 @@ void WilsonFermion5D<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
conformable(_FourDimGrid, q_out.Grid());
PropagatorField tmp1(FermionGrid()), tmp2(FermionGrid());
unsigned int LLs = q_in_1.Grid()->_rdimensions[0];
q_out = zero;
q_out = Zero();
// Forward, need q1(x + mu, s), q2(x, Ls - 1 - s). Backward, need q1(x, s),
// q2(x + mu, Ls - 1 - s). 5D lattice so shift 4D coordinate mu by one.
@ -797,7 +797,7 @@ void WilsonFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
unsigned int LLt = GridDefaultLatt()[Tp];
// Momentum projection.
ph = zero;
ph = Zero();
for(unsigned int nu = 0; nu < Nd - 1; nu++)
{
// Shift coordinate lattice index by 1 to account for 5th dimension.
@ -806,7 +806,7 @@ void WilsonFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
}
ph = exp((Real)(2*M_PI)*i*ph);
q_out = zero;
q_out = Zero();
LatticeInteger coords(_FourDimGrid);
LatticeCoordinate(coords, Tp);

View File

@ -36,7 +36,7 @@ int WilsonKernelsStatic::Opt = WilsonKernelsStatic::OptGeneric;
int WilsonKernelsStatic::Comms = WilsonKernelsStatic::CommsAndCompute;
template <class Impl>
WilsonKernels<Impl>::WilsonKernels(const ImplParams &p) : Base(p){};
accelerator WilsonKernels<Impl>::WilsonKernels(const ImplParams &p) : Base(p){};
////////////////////////////////////////////
// Generic implementation; move to different file?
@ -103,9 +103,9 @@ WilsonKernels<Impl>::WilsonKernels(const ImplParams &p) : Base(p){};
// All legs kernels ; comms then compute
////////////////////////////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
accelerator void WilsonKernels<Impl>::GenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
@ -127,9 +127,9 @@ void WilsonKernels<Impl>::GenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo,
};
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
accelerator void WilsonKernels<Impl>::GenericDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
@ -153,7 +153,7 @@ void WilsonKernels<Impl>::GenericDhopSite(StencilImpl &st, LebesgueOrder &lo, Do
// Interior kernels
////////////////////////////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteDagInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
accelerator void WilsonKernels<Impl>::GenericDhopSiteDagInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
@ -165,7 +165,7 @@ void WilsonKernels<Impl>::GenericDhopSiteDagInt(StencilImpl &st, LebesgueOrder &
StencilEntry *SE;
int ptype;
result=zero;
result=Zero();
GENERIC_STENCIL_LEG_INT(Xp,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_INT(Yp,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG_INT(Zp,spProjZp,accumReconZp);
@ -178,9 +178,9 @@ void WilsonKernels<Impl>::GenericDhopSiteDagInt(StencilImpl &st, LebesgueOrder &
};
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
accelerator void WilsonKernels<Impl>::GenericDhopSiteInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
@ -189,7 +189,7 @@ void WilsonKernels<Impl>::GenericDhopSiteInt(StencilImpl &st, LebesgueOrder &lo,
SiteSpinor result;
StencilEntry *SE;
int ptype;
result=zero;
result=Zero();
GENERIC_STENCIL_LEG_INT(Xm,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_INT(Ym,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG_INT(Zm,spProjZp,accumReconZp);
@ -204,7 +204,7 @@ void WilsonKernels<Impl>::GenericDhopSiteInt(StencilImpl &st, LebesgueOrder &lo,
// Exterior kernels
////////////////////////////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteDagExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
accelerator void WilsonKernels<Impl>::GenericDhopSiteDagExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
@ -216,7 +216,7 @@ void WilsonKernels<Impl>::GenericDhopSiteDagExt(StencilImpl &st, LebesgueOrder &
StencilEntry *SE;
int ptype;
int nmu=0;
result=zero;
result=Zero();
GENERIC_STENCIL_LEG_EXT(Xp,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_EXT(Yp,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG_EXT(Zp,spProjZp,accumReconZp);
@ -231,7 +231,7 @@ void WilsonKernels<Impl>::GenericDhopSiteDagExt(StencilImpl &st, LebesgueOrder &
};
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
accelerator void WilsonKernels<Impl>::GenericDhopSiteExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
@ -243,7 +243,7 @@ void WilsonKernels<Impl>::GenericDhopSiteExt(StencilImpl &st, LebesgueOrder &lo,
StencilEntry *SE;
int ptype;
int nmu=0;
result=zero;
result=Zero();
GENERIC_STENCIL_LEG_EXT(Xm,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_EXT(Ym,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG_EXT(Zm,spProjZp,accumReconZp);
@ -258,8 +258,8 @@ void WilsonKernels<Impl>::GenericDhopSiteExt(StencilImpl &st, LebesgueOrder &lo,
};
template <class Impl>
void WilsonKernels<Impl>::DhopDirK( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out, int dir, int gamma) {
accelerator void WilsonKernels<Impl>::DhopDirK( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out, int dir, int gamma) {
SiteHalfSpinor tmp;
SiteHalfSpinor chi;

View File

@ -544,18 +544,18 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
Simd U_21;
#define ZERO_RESULT \
result_00=zero; \
result_01=zero; \
result_02=zero; \
result_10=zero; \
result_11=zero; \
result_12=zero; \
result_20=zero; \
result_21=zero; \
result_22=zero; \
result_30=zero; \
result_31=zero; \
result_32=zero;
result_00=Zero(); \
result_01=Zero(); \
result_02=Zero(); \
result_10=Zero(); \
result_11=Zero(); \
result_12=Zero(); \
result_20=Zero(); \
result_21=Zero(); \
result_22=Zero(); \
result_30=Zero(); \
result_31=Zero(); \
result_32=Zero();
#define Chimu_00 Chi_00
#define Chimu_01 Chi_01

View File

@ -88,7 +88,7 @@ public:
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG) {
// specific for SU gauge fields
LinkField Pmu(P.Grid());
Pmu = zero;
Pmu = Zero();
for (int mu = 0; mu < Nd; mu++) {
SU<Nrepresentation>::GaussianFundamentalLieAlgebraMatrix(pRNG, Pmu);
PokeIndex<LorentzIndex>(P, Pmu, mu);
@ -113,7 +113,7 @@ public:
static inline RealD FieldSquareNorm(Field& U){
LatticeComplex Hloc(U.Grid());
Hloc = zero;
Hloc = Zero();
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
Hloc += trace(Umu * Umu);

View File

@ -108,7 +108,7 @@ void Photon<Gimpl>::invKHatSquared(GaugeLinkField &out)
TComplex Tzero= Complex(0.0,0.0);
one = Complex(1.0,0.0);
out = zero;
out = Zero();
for(int mu = 0; mu < nd; mu++)
{
Real twoPiL = M_PI*2./l[mu];
@ -144,7 +144,7 @@ void Photon<Gimpl>::zmSub(GaugeLinkField &out)
LatticeInteger spNrm(grid), coor(grid);
GaugeLinkField z(grid);
spNrm = zero;
spNrm = Zero();
for(int d = 0; d < grid->_ndimension - 1; d++)
{
LatticeCoordinate(coor,d);
@ -252,7 +252,7 @@ void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng,
//
// std::vector<int> latt_size = grid->_fdimensions;
//
// LatComplex denom(grid); denom= zero;
// LatComplex denom(grid); denom= Zero();
// LatComplex one(grid); one = ScalComplex(1.0,0.0);
// LatComplex kmu(grid);
//
@ -278,7 +278,7 @@ void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng,
//
// pokeSite(Tzero,denom,zero_mode);
//
// out = zero;
// out = Zero();
// out = in*denom;
// };

View File

@ -131,7 +131,7 @@ public:
spProj(eta, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = zero;
tmp[1] = Zero();
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Lop.RefreshShiftCoefficients(-gamma_l);
@ -141,7 +141,7 @@ public:
Solver(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = zero; // Just use zero as the initial guess
CG_soln = Zero(); // Just use zero as the initial guess
Solver(Lop, CG_src, CG_soln);
}
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
@ -157,7 +157,7 @@ public:
spProj(eta, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = zero;
tmp[1] = Zero();
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
@ -168,7 +168,7 @@ public:
Solver(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = zero;
CG_soln = Zero();
Solver(Rop, CG_src, CG_soln);
}
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
@ -199,7 +199,7 @@ public:
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
tmp[0] = Zero();
Solver(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
@ -210,7 +210,7 @@ public:
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
tmp[0] = Zero();
Solver(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
@ -238,7 +238,7 @@ public:
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = zero;
spProj_Phi = Zero();
Solver(Lop, CG_src, spProj_Phi);
Lop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
@ -250,7 +250,7 @@ public:
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = zero;
spProj_Phi = Zero();
Solver(Rop, CG_src, spProj_Phi);
Rop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);

View File

@ -138,7 +138,7 @@ public:
//////////////////////////////////////////////////////
assert(FermOp.ConstEE() == 1);
PhiEven = zero;
PhiEven = Zero();
};
//////////////////////////////////////////////////////
@ -205,7 +205,7 @@ public:
msCG(Mpc, PhiOdd, MPhi_k);
dSdU = zero;
dSdU = Zero();
for (int k = 0; k < Npole; k++) {
RealD ak = PowerNegHalf.residues[k];

View File

@ -144,7 +144,7 @@ public:
assert(NumOp.ConstEE() == 1);
assert(DenOp.ConstEE() == 1);
PhiEven = zero;
PhiEven = Zero();
};
@ -236,7 +236,7 @@ public:
RealD ak;
dSdU = zero;
dSdU = Zero();
// With these building blocks
//

View File

@ -187,7 +187,7 @@ public:
msCG(MdagMOp,Phi,MPhi_k);
dSdU = zero;
dSdU = Zero();
for(int k=0;k<Npole;k++){
RealD ak = PowerNegHalf.residues[k];

View File

@ -222,7 +222,7 @@ public:
RealD ak;
dSdU = zero;
dSdU = Zero();
// With these building blocks
//

View File

@ -111,7 +111,7 @@ public:
FermionField Y(FermOp.FermionGrid());
MdagMLinearOperator<FermionOperator<Impl>, FermionField> MdagMOp(FermOp);
X = zero;
X = Zero();
ActionSolver(MdagMOp, Phi, X);
MdagMOp.Op(X, Y);
@ -138,7 +138,7 @@ public:
MdagMLinearOperator<FermionOperator<Impl>, FermionField> MdagMOp(FermOp);
X = zero;
X = Zero();
DerivativeSolver(MdagMOp, Phi, X); // X = (MdagM)^-1 phi
MdagMOp.Op(X, Y); // Y = M X = (Mdag)^-1 phi

View File

@ -121,7 +121,7 @@ public:
SchurDifferentiableOperator<Impl> PCop(FermOp);
X=zero;
X=Zero();
ActionSolver(PCop,PhiOdd,X);
PCop.Op(X,Y);
RealD action = norm2(Y);
@ -155,7 +155,7 @@ public:
// Our conventions really make this UdSdU; We do not differentiate wrt Udag here.
// So must take dSdU - adj(dSdU) and left multiply by mom to get dS/dt.
X=zero;
X=Zero();
DerivativeSolver(Mpc,PhiOdd,X);
Mpc.Mpc(X,Y);
Mpc.MpcDeriv(tmp , Y, X ); dSdU=tmp;

View File

@ -109,7 +109,7 @@ public:
// Odd det factors
Mpc.MpcDag(etaOdd,PhiOdd);
tmp=zero;
tmp=Zero();
ActionSolver(Vpc,PhiOdd,tmp);
Vpc.Mpc(tmp,PhiOdd);
@ -137,7 +137,7 @@ public:
FermionField Y(NumOp.FermionRedBlackGrid());
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=zero;
X=Zero();
ActionSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
//Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
// Multiply by Ydag
@ -145,7 +145,7 @@ public:
//RealD action = norm2(Y);
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
// The EE factorised block; normally can replace with Zero() if det is constant (gauge field indept)
// Only really clover term that creates this. Leave the EE portion as a future to do to make most
// rapid progresss on DWF for now.
//
@ -179,7 +179,7 @@ public:
//X = (Mdag M)^-1 V^dag phi
//Y = (Mdag)^-1 V^dag phi
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=zero;
X=Zero();
DerivativeSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi

View File

@ -94,7 +94,7 @@ public:
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(NumOp);
DenOp.Mdag(eta,Phi); // Mdag eta
tmp = zero;
tmp = Zero();
ActionSolver(MdagMOp,Phi,tmp); // (VdagV)^-1 Mdag eta = V^-1 Vdag^-1 Mdag eta
NumOp.M(tmp,Phi); // Vdag^-1 Mdag eta
@ -116,7 +116,7 @@ public:
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
NumOp.Mdag(Phi,Y); // Y= Vdag phi
X=zero;
X=Zero();
ActionSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi
@ -147,7 +147,7 @@ public:
//X = (Mdag M)^-1 V^dag phi
//Y = (Mdag)^-1 V^dag phi
NumOp.Mdag(Phi,Y); // Y= Vdag phi
X=zero;
X=Zero();
DerivativeSolver(MdagMOp,Y,X); // X= (MdagM)^-1 Vdag phi
DenOp.M(X,Y); // Y= Mdag^-1 Vdag phi

View File

@ -130,7 +130,7 @@ public:
}
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
U = zero;
U = Zero();
}
};

View File

@ -229,7 +229,7 @@ public:
Field Ufg(U.Grid());
Field Pfg(U.Grid());
Ufg = U;
Pfg = zero;
Pfg = Zero();
std::cout << GridLogIntegrator << "FG update " << fg_dt << " " << ep
<< std::endl;
// prepare_fg; no prediction/result cache for now

View File

@ -36,7 +36,7 @@ public:
// where t^a is the generator in the fundamental
// T_F is 1/2 for the fundamental representation
conformable(U, Uin);
U = zero;
U = Zero();
LatticeColourMatrix tmp(Uin.Grid());
Vector<typename SU<ncolour>::Matrix> ta(Dimension);
@ -76,13 +76,13 @@ public:
LatticeGaugeField RtoFundamentalProject(const LatticeField &in,
Real scale = 1.0) const {
LatticeGaugeField out(in.Grid());
out = zero;
out = Zero();
for (int mu = 0; mu < Nd; mu++) {
LatticeColourMatrix out_mu(in.Grid()); // fundamental representation
LatticeMatrix in_mu = peekLorentz(in, mu);
out_mu = zero;
out_mu = Zero();
typename SU<ncolour>::LatticeAlgebraVector h(in.Grid());
projectOnAlgebra(h, in_mu, double(Nc) * 2.0); // factor C(r)/C(fund)

View File

@ -39,7 +39,7 @@ public:
// get the U in TwoIndexRep
// (U)_{(ij)(lk)} = tr [ adj(e^(ij)) U e^(lk) transpose(U) ]
conformable(U, Uin);
U = zero;
U = Zero();
LatticeColourMatrix tmp(Uin.Grid());
Vector<typename SU<ncolour>::Matrix> eij(Dimension);
@ -62,13 +62,13 @@ public:
LatticeGaugeField RtoFundamentalProject(const LatticeField &in,
Real scale = 1.0) const {
LatticeGaugeField out(in.Grid());
out = zero;
out = Zero();
for (int mu = 0; mu < Nd; mu++) {
LatticeColourMatrix out_mu(in.Grid()); // fundamental representation
LatticeMatrix in_mu = peekLorentz(in, mu);
out_mu = zero;
out_mu = Zero();
typename SU<ncolour>::LatticeAlgebraVector h(in.Grid());
projectOnAlgebra(h, in_mu, double(Nc + 2 * S)); // factor T(r)/T(fund)

View File

@ -66,10 +66,10 @@ public:
GridBase *grid = U.Grid();
GaugeLinkField Cup(grid), tmp_stpl(grid);
WilsonLoops<Gimpl> WL;
u_smr = zero;
u_smr = Zero();
for(int mu=0; mu<Nd; ++mu){
Cup = zero;
Cup = Zero();
for(int nu=0; nu<Nd; ++nu){
if (nu != mu) {
// get the staple in direction mu, nu
@ -132,7 +132,7 @@ public:
//-r_munu*U_nu(x+mu)*Udag_mu(x+nu)*Lambda_mu(x+nu)*Udag_nu(x)
Gimpl::AddLink(SigmaTerm, temp_Sigma, mu);
staple = zero;
staple = Zero();
sh_field = Cshift(U_nu, mu, 1);
temp_Sigma = -rho_munu*adj(sh_field)*adj(U_mu)*iLambda_mu*U_nu;

View File

@ -64,7 +64,7 @@ private:
if (smearingLevels > 0) {
std::cout << GridLogDebug
<< "[SmearedConfiguration] Filling SmearedSet\n";
GaugeField previous_u(ThinLinks->_grid);
GaugeField previous_u(ThinLinks->Grid());
previous_u = *ThinLinks;
for (int smearLvl = 0; smearLvl < smearingLevels; ++smearLvl) {
@ -89,8 +89,8 @@ private:
GaugeLinkField GaugeKmu(grid), Cmu(grid);
StoutSmearing.BaseSmear(C, GaugeK);
SigmaK = zero;
iLambda = zero;
SigmaK = Zero();
iLambda = Zero();
for (int mu = 0; mu < Nd; mu++) {
Cmu = peekLorentz(C, mu);

View File

@ -159,15 +159,15 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> strong_inline void spProj
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
rfspin(0)=fspin(0);
rfspin(1)=fspin(1);
rfspin(2)=zero;
rfspin(3)=zero;
rfspin(2)=Zero();
rfspin(3)=Zero();
}
// template<class vtype> strong_inline void fspProj5m (iVector<vtype,Ns> &rfspin,const iVector<vtype,Ns> &fspin)
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> strong_inline void spProj5m (iVector<vtype,Ns> &rfspin,const iVector<vtype,Ns> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
rfspin(0)=zero;
rfspin(1)=zero;
rfspin(0)=Zero();
rfspin(1)=Zero();
rfspin(2)=fspin(2);
rfspin(3)=fspin(3);
}
@ -339,14 +339,14 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> strong_inline void spReco
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0)+hspin(0); // add is lower latency than mul
fspin(1)=hspin(1)+hspin(1); // probably no measurable diffence though
fspin(2)=zero;
fspin(3)=zero;
fspin(2)=Zero();
fspin(3)=Zero();
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> strong_inline void spRecon5m (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=zero;
fspin(1)=zero;
fspin(0)=Zero();
fspin(1)=Zero();
fspin(2)=hspin(0)+hspin(0);
fspin(3)=hspin(1)+hspin(1);
}

View File

@ -113,7 +113,7 @@ public:
GaugeLinkField sum(in.Grid());
for (int nu = 0; nu < Nd; nu++) {
sum = zero;
sum = Zero();
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
GaugeLinkField out_nu(out.Grid());
for (int mu = 0; mu < Nd; mu++) {
@ -132,7 +132,7 @@ public:
for (int mu = 0; mu < Nd; mu++){
GaugeLinkField der_mu(der.Grid());
der_mu = zero;
der_mu = Zero();
for (int nu = 0; nu < Nd; nu++){
GaugeLinkField in_nu = PeekIndex<LorentzIndex>(in, nu);
der_mu += U[mu] * Cshift(in_nu, mu, 1) * adj(U[mu]) * in_nu;
@ -151,7 +151,7 @@ public:
for (int mu = 0; mu < Nd; mu++) {
GaugeLinkField der_mu(der.Grid());
der_mu = zero;
der_mu = Zero();
for (int nu = 0; nu < Nd; nu++) {
GaugeLinkField left_nu = PeekIndex<LorentzIndex>(left, nu);
GaugeLinkField right_nu = PeekIndex<LorentzIndex>(right, nu);

View File

@ -46,7 +46,7 @@ public:
}
}
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu) {
dmuAmu=zero;
dmuAmu=Zero();
for(int mu=0;mu<Nd;mu++){
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
}
@ -123,7 +123,7 @@ public:
FFT theFFT((GridCartesian *)grid);
LatticeComplex Fp(grid);
LatticeComplex psq(grid); psq=zero;
LatticeComplex psq(grid); psq=Zero();
LatticeComplex pmu(grid);
LatticeComplex one(grid); one = Complex(1.0,0.0);

View File

@ -63,10 +63,10 @@ public:
// do nothing
}
virtual void MDeriv(const Field& in, Field& out){
out = zero;
out = Zero();
}
virtual void MDeriv(const Field& left, const Field& right, Field& out){
out = zero;
out = Zero();
}
};
@ -119,10 +119,10 @@ public:
// Correct
RealD MomentaAction(){
MomentaField inv(Mom.Grid());
inv = zero;
inv = Zero();
M.Minv(Mom, inv);
LatticeComplex Hloc(Mom.Grid());
Hloc = zero;
Hloc = Zero();
for (int mu = 0; mu < Nd; mu++) {
// This is not very general
// hide in the metric
@ -157,7 +157,7 @@ public:
// with respect to the gauge field
MomentaField MDer(in.Grid());
MomentaField X(in.Grid());
X = zero;
X = Zero();
M.Minv(in, X); // X = G in
M.MDeriv(X, MDer); // MDer = U * dS/dU
der = Implementation::projectForce(MDer); // Ta if gauge fields
@ -165,12 +165,12 @@ public:
}
void AuxiliaryFieldsDerivative(MomentaField& der){
der = zero;
der = Zero();
if (1){
// Auxiliary fields
MomentaField der_temp(der.Grid());
MomentaField X(der.Grid());
X=zero;
X=Zero();
//M.M(AuxMom, X); // X = M Aux
// Two derivative terms
// the Mderiv need separation of left and right terms
@ -185,7 +185,7 @@ public:
}
void DerivativeP(MomentaField& der){
der = zero;
der = Zero();
M.Minv(Mom, der);
// is the projection necessary here?
// no for fields in the algebra

View File

@ -162,7 +162,7 @@ public:
template <class cplx>
static void generatorSigmaY(int su2Index, iSUnMatrix<cplx> &ta) {
ta = zero;
ta = Zero();
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
ta()()(i1, i2) = 1.0;
@ -172,7 +172,7 @@ public:
template <class cplx>
static void generatorSigmaX(int su2Index, iSUnMatrix<cplx> &ta) {
ta = zero;
ta = Zero();
cplx i(0.0, 1.0);
int i1, i2;
su2SubGroupIndex(i1, i2, su2Index);
@ -184,7 +184,7 @@ public:
template <class cplx>
static void generatorDiagonal(int diagIndex, iSUnMatrix<cplx> &ta) {
// diag ({1, 1, ..., 1}(k-times), -k, 0, 0, ...)
ta = zero;
ta = Zero();
int k = diagIndex + 1; // diagIndex starts from 0
for (int i = 0; i <= diagIndex; i++) { // k iterations
ta()()(i, i) = 1.0;
@ -299,11 +299,11 @@ public:
LatticeComplex ones(grid);
ones = 1.0;
LatticeComplex zeros(grid);
zeros = zero;
zeros = Zero();
LatticeReal rones(grid);
rones = 1.0;
LatticeReal rzeros(grid);
rzeros = zero;
rzeros = Zero();
LatticeComplex udet(grid); // determinant of real(staple)
LatticeInteger mask_true(grid);
mask_true = 1;
@ -432,13 +432,13 @@ public:
RealD numSites = sum(rtmp);
RealD numAccepted;
LatticeInteger Accepted(grid);
Accepted = zero;
Accepted = Zero();
LatticeInteger newlyAccepted(grid);
std::vector<LatticeReal> xr(4, grid);
std::vector<LatticeReal> a(4, grid);
LatticeReal d(grid);
d = zero;
d = Zero();
LatticeReal alpha(grid);
// std::cout<<GridLogMessage<<"xi "<<xi <<std::endl;
@ -475,7 +475,7 @@ public:
LatticeInteger ione(grid);
ione = 1;
LatticeInteger izero(grid);
izero = zero;
izero = Zero();
newlyAccepted = where(xrsq < thresh, ione, izero);
Accepted = where(newlyAccepted, newlyAccepted, Accepted);
@ -490,7 +490,7 @@ public:
} while ((numAccepted < numSites) && (hit < nheatbath));
// G. Set a0 = 1 - d;
a[0] = zero;
a[0] = Zero();
a[0] = where(wheremask, 1.0 - d, a[0]);
//////////////////////////////////////////
@ -528,7 +528,7 @@ public:
// Debug Checks
// SU2 check
LatticeSU2Matrix check(grid); // rotated matrix after hb
u = zero;
u = Zero();
check = ua * adj(ua) - 1.0;
check = where(Accepted, check, u);
assert(norm2(check) < 1.0e-4);
@ -538,7 +538,7 @@ public:
assert(norm2(check) < 1.0e-4);
LatticeMatrix Vcheck(grid);
Vcheck = zero;
Vcheck = Zero();
Vcheck = where(Accepted, V * adj(V) - 1.0, Vcheck);
// std::cout<<GridLogMessage << "SU3 check " <<norm2(Vcheck)<<std::endl;
assert(norm2(Vcheck) < 1.0e-4);
@ -622,7 +622,7 @@ public:
ComplexD cone(1.0, 0.0);
MatrixType ta;
lie = zero;
lie = Zero();
for (int a = 0; a < AdjointDimension; a++) {
random(pRNG, ca);
@ -647,7 +647,7 @@ public:
Complex ci(0.0, scale);
Matrix ta;
out = zero;
out = Zero();
for (int a = 0; a < AdjointDimension; a++) {
gaussian(pRNG, ca);
generator(a, ta);
@ -665,7 +665,7 @@ public:
LatticeMatrix la(grid);
Matrix ta;
out = zero;
out = Zero();
for (int a = 0; a < AdjointDimension; a++) {
generator(a, ta);
la = peekColour(h, a) * timesI(ta) * scale;
@ -708,7 +708,7 @@ public:
// inverse operation: FundamentalLieAlgebraMatrix
static void projectOnAlgebra(LatticeAlgebraVector &h_out, const LatticeMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = zero;
h_out = Zero();
Matrix Ta;
for (int a = 0; a < AdjointDimension; a++) {

View File

@ -61,7 +61,7 @@ public:
static void generator(int Index, iSUnAdjointMatrix<cplx> &iAdjTa) {
// returns i(T_Adj)^index necessary for the projectors
// see definitions above
iAdjTa = zero;
iAdjTa = Zero();
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > ta(ncolour * ncolour - 1);
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
@ -118,7 +118,7 @@ public:
LatticeAdjMatrix la(grid);
AMatrix iTa;
out = zero;
out = Zero();
for (int a = 0; a < Dimension; a++) {
generator(a, iTa);
la = peekColour(h, a) * iTa;
@ -130,7 +130,7 @@ public:
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
static void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out, const LatticeAdjMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = zero;
h_out = Zero();
AMatrix iTa;
Real coefficient = - 1.0/(ncolour) * scale;// 1/Nc for the normalization of the trace in the adj rep
@ -145,7 +145,7 @@ public:
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out, const LatticeAdjMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
static std::vector<AMatrix> iTa(Dimension); // to store the generators
h_out = zero;
h_out = Zero();
static bool precalculated = false;
if (!precalculated){
precalculated = true;

View File

@ -71,7 +71,7 @@ public:
static void base(int Index, iSUnMatrix<cplx> &eij) {
// returns (e)^(ij)_{kl} necessary for change of base U_F -> U_R
assert(Index < NumGenerators);
eij = zero;
eij = Zero();
// for the linearisation of the 2 indexes
static int a[ncolour * (ncolour - 1) / 2][2]; // store the a <-> i,j
@ -97,14 +97,14 @@ public:
template <class cplx>
static void baseDiagonal(int Index, iSUnMatrix<cplx> &eij) {
eij = zero;
eij = Zero();
eij()()(Index - ncolour * (ncolour - 1) / 2,
Index - ncolour * (ncolour - 1) / 2) = 1.0;
}
template <class cplx>
static void baseOffDiagonal(int i, int j, iSUnMatrix<cplx> &eij) {
eij = zero;
eij = Zero();
for (int k = 0; k < ncolour; k++)
for (int l = 0; l < ncolour; l++)
eij()()(l, k) = delta(i, k) * delta(j, l) +
@ -130,7 +130,7 @@ public:
ncolour * ncolour - 1);
Vector<typename SU<ncolour>::template iSUnMatrix<cplx> > eij(Dimension);
typename SU<ncolour>::template iSUnMatrix<cplx> tmp;
i2indTa = zero;
i2indTa = Zero();
for (int a = 0; a < ncolour * ncolour - 1; a++)
SU<ncolour>::generator(a, ta[a]);
@ -203,7 +203,7 @@ public:
LatticeTwoIndexMatrix la(grid);
TIMatrix i2indTa;
out = zero;
out = Zero();
for (int a = 0; a < ncolour * ncolour - 1; a++) {
generator(a, i2indTa);
la = peekColour(h, a) * i2indTa;
@ -218,7 +218,7 @@ public:
typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeTwoIndexMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = zero;
h_out = Zero();
TIMatrix i2indTa;
Real coefficient = -2.0 / (ncolour + 2 * S) * scale;
// 2/(Nc +/- 2) for the normalization of the trace in the two index rep
@ -236,7 +236,7 @@ public:
conformable(h_out, in);
// to store the generators
static std::vector<TIMatrix> i2indTa(ncolour * ncolour -1);
h_out = zero;
h_out = Zero();
static bool precalculated = false;
if (!precalculated) {
precalculated = true;

View File

@ -86,7 +86,7 @@ public:
static void sitePlaquette(ComplexField &Plaq,
const std::vector<GaugeMat> &U) {
ComplexField sitePlaq(U[0].Grid());
Plaq = zero;
Plaq = Zero();
for (int mu = 1; mu < Nd; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirPlaquette(sitePlaq, U, mu, nu);
@ -130,7 +130,7 @@ public:
std::vector<GaugeMat> U(Nd, Umu.Grid());
ComplexField Tr(Umu.Grid());
Tr = zero;
Tr = Zero();
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
Tr = Tr + trace(U[mu]);
@ -156,7 +156,7 @@ public:
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
staple = zero;
staple = Zero();
if (nu != mu) {
@ -197,7 +197,7 @@ public:
// this operation is taking too much time
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
staple = zero;
staple = Zero();
GaugeMat tmp1(grid);
GaugeMat tmp2(grid);
@ -225,7 +225,7 @@ public:
for (int d = 0; d < Nd; d++) {
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
staple = zero;
staple = Zero();
for (int nu = 0; nu < Nd; nu++) {
@ -385,7 +385,7 @@ public:
static void siteRectangle(ComplexField &Rect,
const std::vector<GaugeMat> &U) {
ComplexField siteRect(U[0].Grid());
Rect = zero;
Rect = Zero();
for (int mu = 1; mu < Nd; mu++) {
for (int nu = 0; nu < mu; nu++) {
traceDirRectangle(siteRect, U, mu, nu);
@ -443,7 +443,7 @@ public:
static void RectStapleOptimised(GaugeMat &Stap, std::vector<GaugeMat> &U2,
std::vector<GaugeMat> &U, int mu) {
Stap = zero;
Stap = Zero();
GridBase *grid = U[0].Grid();
@ -529,7 +529,7 @@ public:
U[d] = PeekIndex<LorentzIndex>(Umu, d);
}
Stap = zero;
Stap = Zero();
for (int nu = 0; nu < Nd; nu++) {
if (nu != mu) {