mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
Merge branch 'master' of https://github.com/paboyle/Grid
This commit is contained in:
commit
308d53858b
414
lib/qcd/utils/SUn.h
Normal file
414
lib/qcd/utils/SUn.h
Normal file
@ -0,0 +1,414 @@
|
||||
#ifndef QCD_UTIL_SUN_H
|
||||
#define QCD_UTIL_SUN_H
|
||||
|
||||
|
||||
namespace Grid {
|
||||
namespace QCD {
|
||||
|
||||
template<int ncolour>
|
||||
class SU {
|
||||
public:
|
||||
|
||||
static int generators(void) { return ncolour*ncolour-1; }
|
||||
static int su2subgroups(void) { return (ncolour*(ncolour-1))/2; }
|
||||
|
||||
template<typename vtype> using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > > ;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix, SU<2>::LatticeMatrix etc...
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
typedef iSUnMatrix<Complex> Matrix;
|
||||
typedef iSUnMatrix<ComplexF> MatrixF;
|
||||
typedef iSUnMatrix<ComplexD> MatrixD;
|
||||
|
||||
typedef iSUnMatrix<vComplex> vMatrix;
|
||||
typedef iSUnMatrix<vComplexF> vMatrixF;
|
||||
typedef iSUnMatrix<vComplexD> vMatrixD;
|
||||
|
||||
typedef Lattice<vMatrix> LatticeMatrix;
|
||||
typedef Lattice<vMatrixF> LatticeMatrixF;
|
||||
typedef Lattice<vMatrixD> LatticeMatrixD;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// There are N^2-1 generators for SU(N).
|
||||
//
|
||||
// We take a traceless hermitian generator basis as follows
|
||||
//
|
||||
// * Normalisation: trace ta tb = 1/2 delta_ab
|
||||
//
|
||||
// * Off diagonal
|
||||
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
|
||||
//
|
||||
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
|
||||
// direct count off each row
|
||||
//
|
||||
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
|
||||
//
|
||||
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
|
||||
// 1+ 2+ + + Nc-1
|
||||
//
|
||||
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
|
||||
//
|
||||
// - We enumerate the row-col pairs.
|
||||
// - for each row col pair there is a (sigma_x) and a (sigma_y) like generator
|
||||
//
|
||||
//
|
||||
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => delta_{i,i1} delta_{j,i2} + delta_{i,i1} delta_{j,i2}
|
||||
// t^a_ij = { in Nc(Nc-1)/2 ... Nc^(Nc-1) -1} => i delta_{i,i1} delta_{j,i2} - i delta_{i,i1} delta_{j,i2}
|
||||
//
|
||||
// * Diagonal; must be traceless and normalised
|
||||
// - Sequence is
|
||||
// N (1,-1,0,0...)
|
||||
// N (1, 1,-2,0...)
|
||||
// N (1, 1, 1,-3,0...)
|
||||
// N (1, 1, 1, 1,-4,0...)
|
||||
//
|
||||
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
|
||||
// NB this gives the famous SU3 result for su2 index 8
|
||||
//
|
||||
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
|
||||
//
|
||||
// ( 1 )
|
||||
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
|
||||
// ( -2)
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
template<class cplx>
|
||||
static void generator(int lieIndex,iSUnMatrix<cplx> &ta){
|
||||
// map lie index to which type of generator
|
||||
int diagIndex;
|
||||
int su2Index;
|
||||
int sigxy;
|
||||
int NNm1 = ncolour*(ncolour-1);
|
||||
if ( lieIndex>= NNm1 ) {
|
||||
diagIndex = lieIndex -NNm1;
|
||||
generatorDiagonal(diagIndex,ta);
|
||||
return;
|
||||
}
|
||||
sigxy = lieIndex&0x1;
|
||||
su2Index= lieIndex>>1;
|
||||
if ( sigxy ) generatorSigmaY(su2Index,ta);
|
||||
else generatorSigmaX(su2Index,ta);
|
||||
}
|
||||
template<class cplx>
|
||||
static void generatorSigmaX(int su2Index,iSUnMatrix<cplx> &ta){
|
||||
ta=zero;
|
||||
int i1,i2;
|
||||
su2SubGroupIndex(i1,i2,su2Index);
|
||||
ta()()(i1,i2)=1.0;
|
||||
ta()()(i2,i1)=1.0;
|
||||
ta= ta *0.5;
|
||||
}
|
||||
template<class cplx>
|
||||
static void generatorSigmaY(int su2Index,iSUnMatrix<cplx> &ta){
|
||||
ta=zero;
|
||||
cplx i(0.0,1.0);
|
||||
int i1,i2;
|
||||
su2SubGroupIndex(i1,i2,su2Index);
|
||||
ta()()(i1,i2)=-i;
|
||||
ta()()(i2,i1)= i;
|
||||
ta= ta *0.5;
|
||||
}
|
||||
template<class cplx>
|
||||
static void generatorDiagonal(int diagIndex,iSUnMatrix<cplx> &ta){
|
||||
ta=zero;
|
||||
int trsq=0;
|
||||
int last=diagIndex+1;
|
||||
for(int i=0;i<=diagIndex;i++){
|
||||
ta()()(i,i) = 1.0;
|
||||
trsq++;
|
||||
}
|
||||
ta()()(last,last) = -last;
|
||||
trsq+=last*last;
|
||||
RealD nrm = 1.0/std::sqrt(2.0*trsq);
|
||||
ta = ta *nrm;
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Map a su2 subgroup number to the pair of rows that are non zero
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
static void su2SubGroupIndex(int &i1,int &i2,int su2_index){
|
||||
|
||||
assert( (su2_index>=0) && (su2_index< (ncolour*(ncolour-1))/2) );
|
||||
|
||||
int spare=su2_index;
|
||||
for(i1=0;spare >= (ncolour-1-i1);i1++ ){
|
||||
spare = spare - (ncolour-1-i1); // remove the Nc-1-i1 terms
|
||||
}
|
||||
i2=i1+1+spare;
|
||||
}
|
||||
template<class vreal,class vcplx>
|
||||
static void su2Extract(std::vector<Lattice<iSinglet <vreal> > > &r,
|
||||
const Lattice<iSUnMatrix<vcplx> > &source,
|
||||
int su2_index)
|
||||
{
|
||||
GridBase *grid(source._grid);
|
||||
|
||||
assert(r.size() == 4); // store in 4 real parts
|
||||
|
||||
for(int i=0;i<4;i++){
|
||||
conformable(r[i],source);
|
||||
}
|
||||
|
||||
int i1,i2;
|
||||
su2SubGroupIndex(i1,i2,su2_index);
|
||||
|
||||
/* Compute the b(k) of A_SU(2) = b0 + i sum_k bk sigma_k */
|
||||
|
||||
// r[0] = toReal(real(peekColour(source,i1,i1)) + real(peekColour(source,i2,i2)));
|
||||
// r[1] = toReal(imag(peekColour(source,i1,i2)) + imag(peekColour(source,i2,i1)));
|
||||
// r[2] = toReal(real(peekColour(source,i1,i2)) - real(peekColour(source,i2,i1)));
|
||||
// r[3] = toReal(imag(peekColour(source,i1,i1)) - imag(peekColour(source,i2,i2)));
|
||||
r[0] = toReal(real(peekColour(source,i1,i1)) + real(peekColour(source,i2,i2)));
|
||||
r[1] = toReal(imag(peekColour(source,i1,i2)) + imag(peekColour(source,i2,i1)));
|
||||
r[2] = toReal(real(peekColour(source,i1,i2)) - real(peekColour(source,i2,i1)));
|
||||
r[3] = toReal(imag(peekColour(source,i1,i1)) - imag(peekColour(source,i2,i2)));
|
||||
|
||||
}
|
||||
|
||||
template<class vreal,class vcplx>
|
||||
static void su2Insert(const std::vector<Lattice<iSinglet<vreal> > > &r,
|
||||
Lattice<iSUnMatrix<vcplx> > &dest,
|
||||
int su2_index)
|
||||
{
|
||||
typedef typename Lattice<iSUnMatrix<vcplx> >::scalar_type cplx;
|
||||
typedef Lattice<iSinglet<vcplx> > Lcomplex;
|
||||
GridBase * grid = dest._grid;
|
||||
|
||||
assert(r.size() == 4); // store in 4 real parts
|
||||
|
||||
Lcomplex tmp(grid);
|
||||
|
||||
std::vector<Lcomplex > cr(4,grid);
|
||||
for(int i=0;i<r.size();i++){
|
||||
conformable(r[i],dest);
|
||||
cr[i]=toComplex(r[i]);
|
||||
}
|
||||
|
||||
int i1,i2;
|
||||
su2SubGroupIndex(i1,i2,su2_index);
|
||||
|
||||
cplx one (1.0,0.0);
|
||||
cplx cplx_i(0.0,1.0);
|
||||
|
||||
tmp = cr[0]*one+ cr[3]*cplx_i; pokeColour(dest,tmp,i1,i2);
|
||||
tmp = cr[2]*one+ cr[1]*cplx_i; pokeColour(dest,tmp,i1,i2);
|
||||
tmp = -cr[2]*one+ cr[1]*cplx_i; pokeColour(dest,tmp,i2,i1);
|
||||
tmp = cr[0]*one- cr[3]*cplx_i; pokeColour(dest,tmp,i2,i2);
|
||||
}
|
||||
|
||||
static void SubGroupHeatBath( GridSerialRNG &sRNG,
|
||||
GridParallelRNG &pRNG,
|
||||
RealD beta,
|
||||
LatticeMatrix &link,
|
||||
const LatticeMatrix &staple,
|
||||
int su2_subgroup,
|
||||
int nheatbath,
|
||||
int& ntrials,
|
||||
int& nfails,
|
||||
LatticeInteger &wheremask)
|
||||
{
|
||||
GridBase *grid = link._grid;
|
||||
|
||||
LatticeMatrix V(grid);
|
||||
V = link*staple;
|
||||
|
||||
std::vector<LatticeReal> r(4,grid);
|
||||
std::vector<LatticeReal> a(4,grid);
|
||||
su2Extract(r,V,su2_subgroup); // HERE
|
||||
|
||||
LatticeReal r_l(grid);
|
||||
r_l = r[0]*r[0]+r[1]*r[1]+r[2]*r[2]+r[3]*r[3];
|
||||
r_l = sqrt(r_l);
|
||||
|
||||
LatticeReal ftmp(grid);
|
||||
LatticeReal ftmp1(grid);
|
||||
LatticeReal ftmp2(grid);
|
||||
LatticeReal one (grid); one = 1.0;
|
||||
LatticeReal zz (grid); zz = zero;
|
||||
LatticeReal recip(grid); recip = one/r_l;
|
||||
|
||||
Real machine_epsilon= 1.0e-14;
|
||||
|
||||
ftmp = where(r_l>machine_epsilon,recip,one);
|
||||
a[0] = where(r_l>machine_epsilon, r[0] * ftmp , one);
|
||||
a[1] = where(r_l>machine_epsilon, -(r[1] * ftmp), zz);
|
||||
a[2] = where(r_l>machine_epsilon, -(r[2] * ftmp), zz);
|
||||
a[3] = where(r_l>machine_epsilon, -(r[3] * ftmp), zz);
|
||||
|
||||
r_l *= beta / ncolour;
|
||||
|
||||
ftmp1 = where(wheremask,one,zz);
|
||||
Real num_sites = TensorRemove(sum(ftmp1));
|
||||
|
||||
Integer itrials = (Integer)num_sites;
|
||||
ntrials = 0;
|
||||
nfails = 0;
|
||||
|
||||
LatticeInteger lupdate(grid);
|
||||
LatticeInteger lbtmp(grid);
|
||||
LatticeInteger lbtmp2(grid); lbtmp2=zero;
|
||||
|
||||
int n_done = 0;
|
||||
int nhb = 0;
|
||||
|
||||
r[0] = a[0];
|
||||
lupdate = 1;
|
||||
|
||||
LatticeReal ones (grid); ones = 1.0;
|
||||
LatticeReal zeros(grid); zeros=zero;
|
||||
|
||||
const RealD twopi=2.0*M_PI;
|
||||
while ( nhb < nheatbath && n_done < num_sites ) {
|
||||
|
||||
ntrials += itrials;
|
||||
|
||||
random(pRNG,r[1]);
|
||||
std::cout<<"RANDOM SPARSE FLOAT r[1]"<<std::endl;
|
||||
std::cout<<r[1]<<std::endl;
|
||||
|
||||
random(pRNG,r[2]);
|
||||
random(pRNG,ftmp);
|
||||
|
||||
r[1] = log(r[1]);
|
||||
r[2] = log(r[2]);
|
||||
|
||||
ftmp = ftmp*twopi;
|
||||
r[3] = cos(ftmp);
|
||||
r[3] = r[3]*r[3];
|
||||
|
||||
r[1] += r[2] * r[3];
|
||||
r[2] = r[1] / r_l;
|
||||
|
||||
random(pRNG,ftmp);
|
||||
r[1] = ftmp*ftmp;
|
||||
|
||||
{
|
||||
LatticeInteger mask_true (grid); mask_true = 1;
|
||||
LatticeInteger mask_false(grid); mask_false= 0;
|
||||
LatticeReal thresh(grid); thresh = (1.0 + 0.5*r[2]);
|
||||
lbtmp = where(r[1] <= thresh,mask_true,mask_false);
|
||||
}
|
||||
lbtmp2= lbtmp && lupdate;
|
||||
r[0] = where(lbtmp2, 1.0+r[2], r[0]);
|
||||
|
||||
ftmp1 = where(lbtmp2,ones,zeros);
|
||||
RealD sitesum = sum(ftmp1);
|
||||
Integer itmp = sitesum;
|
||||
|
||||
n_done += itmp;
|
||||
itrials -= itmp;
|
||||
nfails += itrials;
|
||||
lbtmp = !lbtmp;
|
||||
lupdate = lupdate & lbtmp;
|
||||
++nhb;
|
||||
}
|
||||
// Now create r[1], r[2] and r[3] according to the spherical measure
|
||||
// Take absolute value to guard against round-off
|
||||
random(pRNG,ftmp1);
|
||||
r[2] = 1.0 - 2.0*ftmp1;
|
||||
|
||||
ftmp1 = abs(1.0 - r[0]*r[0]);
|
||||
r[3] = -(sqrt(ftmp1) * r[2]);
|
||||
|
||||
// Take absolute value to guard against round-off
|
||||
r_l = sqrt(abs(ftmp1 - r[3]*r[3]));
|
||||
|
||||
random(pRNG,ftmp1);
|
||||
ftmp1 *= twopi;
|
||||
r[1] = r_l * cos(ftmp1);
|
||||
r[2] = r_l * sin(ftmp1);
|
||||
|
||||
// Update matrix is B = R * A, with B, R and A given by b_i, r_i and a_i
|
||||
std::vector<LatticeReal> b(4,grid);
|
||||
b[0] = r[0]*a[0] - r[1]*a[1] - r[2]*a[2] - r[3]*a[3];
|
||||
b[1] = r[0]*a[1] + r[1]*a[0] - r[2]*a[3] + r[3]*a[2];
|
||||
b[2] = r[0]*a[2] + r[2]*a[0] - r[3]*a[1] + r[1]*a[3];
|
||||
b[3] = r[0]*a[3] + r[3]*a[0] - r[1]*a[2] + r[2]*a[1];
|
||||
|
||||
//
|
||||
// Now fill an SU(3) matrix V with the SU(2) submatrix su2_index
|
||||
// parametrized by a_k in the sigma matrix basis.
|
||||
//
|
||||
su2Insert(b,V,su2_subgroup);
|
||||
|
||||
// U = V*U
|
||||
LatticeMatrix tmp(grid);
|
||||
tmp = V * link;
|
||||
|
||||
//mask the assignment back
|
||||
link = where(wheremask,tmp,link);
|
||||
|
||||
}
|
||||
|
||||
static void printGenerators(void)
|
||||
{
|
||||
for(int gen=0;gen<generators();gen++){
|
||||
Matrix ta;
|
||||
generator(gen,ta);
|
||||
std::cout<< "Nc = "<<ncolour<<" t_"<<gen<<std::endl;
|
||||
std::cout<<ta<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
static void testGenerators(void){
|
||||
Matrix ta;
|
||||
Matrix tb;
|
||||
std::cout<<"Checking trace ta tb is 0.5 delta_ab"<<std::endl;
|
||||
for(int a=0;a<generators();a++){
|
||||
for(int b=0;b<generators();b++){
|
||||
generator(a,ta);
|
||||
generator(b,tb);
|
||||
Complex tr =TensorRemove(trace(ta*tb));
|
||||
std::cout<<tr<<" ";
|
||||
if(a==b) assert(abs(tr-Complex(0.5))<1.0e-6);
|
||||
if(a!=b) assert(abs(tr)<1.0e-6);
|
||||
}
|
||||
std::cout<<std::endl;
|
||||
}
|
||||
std::cout<<"Checking hermitian"<<std::endl;
|
||||
for(int a=0;a<generators();a++){
|
||||
generator(a,ta);
|
||||
std::cout<<a<<" ";
|
||||
assert(norm2(ta-adj(ta))<1.0e-6);
|
||||
}
|
||||
std::cout<<std::endl;
|
||||
|
||||
std::cout<<"Checking traceless"<<std::endl;
|
||||
for(int a=0;a<generators();a++){
|
||||
generator(a,ta);
|
||||
Complex tr =TensorRemove(trace(ta));
|
||||
std::cout<<a<<" ";
|
||||
assert(abs(tr)<1.0e-6);
|
||||
}
|
||||
std::cout<<std::endl;
|
||||
}
|
||||
|
||||
// reunitarise??
|
||||
|
||||
static void taProj( const LatticeMatrix &in, LatticeMatrix &out){
|
||||
out = Ta(in);
|
||||
}
|
||||
static void taExp( const LatticeMatrix &x, LatticeMatrix &ex){
|
||||
LatticeMatrix xn = x;
|
||||
|
||||
RealD nfac = 1.0;
|
||||
ex = 1+x; // 1+x
|
||||
|
||||
// Do a 12th order exponentiation
|
||||
for(int i= 2; i <= 12; ++i)
|
||||
{
|
||||
nfac = nfac/i;
|
||||
xn = xn * x; // x2, x3,x4....
|
||||
ex += xn*nfac;// x2/2!, x3/3!....
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
typedef SU<2> SU2;
|
||||
typedef SU<3> SU3;
|
||||
typedef SU<4> SU4;
|
||||
typedef SU<5> SU5;
|
||||
|
||||
}
|
||||
}
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user