mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Merge branch 'master' of https://github.com/paboyle/Grid
This commit is contained in:
commit
3f7a66328a
10
TODO
10
TODO
@ -1,11 +1,15 @@
|
||||
================================================================
|
||||
*** Hacks and bug fixes to clean up and Audits
|
||||
================================================================
|
||||
* Base class to share common code between vRealF, VComplexF etc... done
|
||||
- Performance check on Guido's reimplementation strategy - (GUIDO) tested and no difference was found, merged
|
||||
|
||||
* Extract/merge/set cleanup ; too many variants; rationalise and call simpler ones
|
||||
* Used #define repetitive sequences to minimise code.
|
||||
* Rewrite core tensor arithmetic support to be more systematic
|
||||
* Ensure we ET as much as possible; move unop functions into ET framework.
|
||||
- tests with expression args to all functions
|
||||
|
||||
|
||||
* FIXME audit
|
||||
|
||||
* const audit
|
||||
|
||||
Insert/Extract
|
||||
|
@ -33,7 +33,7 @@ public:
|
||||
~alignedAllocator() throw() { }
|
||||
|
||||
pointer address(reference __x) const { return &__x; }
|
||||
const_pointer address(const_reference __x) const { return &__x; }
|
||||
// const_pointer address(const_reference __x) const { return &__x; }
|
||||
|
||||
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
|
||||
|
||||
|
@ -14,5 +14,6 @@
|
||||
#include <tensors/Tensor_reality.h>
|
||||
#include <tensors/Tensor_unary.h>
|
||||
#include <tensors/Tensor_extract_merge.h>
|
||||
|
||||
#include <tensors/Tensor_logical.h>
|
||||
|
||||
#endif
|
||||
|
@ -183,7 +183,7 @@ namespace Grid {
|
||||
int dir = geom.directions[p];
|
||||
int disp = geom.displacements[p];
|
||||
|
||||
int block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
|
||||
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
|
||||
|
||||
LatticeCoordinate(coor,dir);
|
||||
|
||||
@ -204,8 +204,8 @@ namespace Grid {
|
||||
oblock = where(mod(coor,block)==(block-1),Mphi,zz);
|
||||
iblock = where(mod(coor,block)!=(block-1),Mphi,zz);
|
||||
} else if ( disp==-1 ) {
|
||||
oblock = where(mod(coor,block)==0,Mphi,zz);
|
||||
iblock = where(mod(coor,block)!=0,Mphi,zz);
|
||||
oblock = where(mod(coor,block)==(Integer)0,Mphi,zz);
|
||||
iblock = where(mod(coor,block)!=(Integer)0,Mphi,zz);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
|
@ -9,6 +9,37 @@
|
||||
|
||||
namespace Grid {
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Predicated where support
|
||||
////////////////////////////////////////////////////
|
||||
template<class iobj,class vobj,class robj>
|
||||
inline vobj predicatedWhere(const iobj &predicate,const vobj &iftrue,const robj &iffalse) {
|
||||
|
||||
typename std::remove_const<vobj>::type ret;
|
||||
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
const int Nsimd = vobj::vector_type::Nsimd();
|
||||
const int words = sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
std::vector<Integer> mask(Nsimd);
|
||||
std::vector<scalar_object> truevals (Nsimd);
|
||||
std::vector<scalar_object> falsevals(Nsimd);
|
||||
|
||||
extract(iftrue ,truevals);
|
||||
extract(iffalse ,falsevals);
|
||||
extract<vInteger,Integer>(TensorRemove(predicate),mask);
|
||||
|
||||
for(int s=0;s<Nsimd;s++){
|
||||
if (mask[s]) falsevals[s]=truevals[s];
|
||||
}
|
||||
|
||||
merge(ret,falsevals);
|
||||
return ret;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////
|
||||
// recursive evaluation of expressions; Could
|
||||
// switch to generic approach with variadics, a la
|
||||
@ -142,10 +173,23 @@ template <class arg> struct name\
|
||||
};
|
||||
|
||||
GridUnopClass(UnarySub,-a);
|
||||
GridUnopClass(UnaryNot,Not(a));
|
||||
GridUnopClass(UnaryAdj,adj(a));
|
||||
GridUnopClass(UnaryConj,conjugate(a));
|
||||
GridUnopClass(UnaryTrace,trace(a));
|
||||
GridUnopClass(UnaryTranspose,transpose(a));
|
||||
GridUnopClass(UnaryTa,Ta(a));
|
||||
GridUnopClass(UnaryReal,real(a));
|
||||
GridUnopClass(UnaryImag,imag(a));
|
||||
GridUnopClass(UnaryToReal,toReal(a));
|
||||
GridUnopClass(UnaryToComplex,toComplex(a));
|
||||
GridUnopClass(UnaryAbs,abs(a));
|
||||
GridUnopClass(UnarySqrt,sqrt(a));
|
||||
GridUnopClass(UnaryRsqrt,rsqrt(a));
|
||||
GridUnopClass(UnarySin,sin(a));
|
||||
GridUnopClass(UnaryCos,cos(a));
|
||||
GridUnopClass(UnaryLog,log(a));
|
||||
GridUnopClass(UnaryExp,exp(a));
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Binary operators
|
||||
@ -163,6 +207,28 @@ GridBinOpClass(BinaryAdd,lhs+rhs);
|
||||
GridBinOpClass(BinarySub,lhs-rhs);
|
||||
GridBinOpClass(BinaryMul,lhs*rhs);
|
||||
|
||||
GridBinOpClass(BinaryAnd ,lhs&rhs);
|
||||
GridBinOpClass(BinaryOr ,lhs|rhs);
|
||||
GridBinOpClass(BinaryAndAnd,lhs&&rhs);
|
||||
GridBinOpClass(BinaryOrOr ,lhs||rhs);
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Trinary conditional op
|
||||
////////////////////////////////////////////////////
|
||||
#define GridTrinOpClass(name,combination)\
|
||||
template <class predicate,class left, class right> \
|
||||
struct name\
|
||||
{\
|
||||
static auto inline func(const predicate &pred,const left &lhs,const right &rhs)-> decltype(combination) const \
|
||||
{\
|
||||
return combination;\
|
||||
}\
|
||||
}
|
||||
|
||||
GridTrinOpClass(TrinaryWhere,(predicatedWhere<predicate, \
|
||||
typename std::remove_reference<left>::type, \
|
||||
typename std::remove_reference<right>::type> (pred,lhs,rhs)));
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Operator syntactical glue
|
||||
////////////////////////////////////////////
|
||||
@ -218,15 +284,67 @@ template <typename T1,typename T2,typename T3> inline auto op(const T1 &pred,con
|
||||
////////////////////////
|
||||
|
||||
GRID_DEF_UNOP(operator -,UnarySub);
|
||||
GRID_DEF_UNOP(Not,UnaryNot);
|
||||
GRID_DEF_UNOP(operator !,UnaryNot);
|
||||
GRID_DEF_UNOP(adj,UnaryAdj);
|
||||
GRID_DEF_UNOP(conjugate,UnaryConj);
|
||||
GRID_DEF_UNOP(trace,UnaryTrace);
|
||||
GRID_DEF_UNOP(transpose,UnaryTranspose);
|
||||
GRID_DEF_UNOP(Ta,UnaryTa);
|
||||
GRID_DEF_UNOP(real,UnaryReal);
|
||||
GRID_DEF_UNOP(imag,UnaryImag);
|
||||
GRID_DEF_UNOP(toReal,UnaryToReal);
|
||||
GRID_DEF_UNOP(toComplex,UnaryToComplex);
|
||||
GRID_DEF_UNOP(abs ,UnaryAbs); //abs overloaded in cmath C++98; DON'T do the abs-fabs-dabs-labs thing
|
||||
GRID_DEF_UNOP(sqrt ,UnarySqrt);
|
||||
GRID_DEF_UNOP(rsqrt,UnarySqrt);
|
||||
GRID_DEF_UNOP(sin ,UnarySin);
|
||||
GRID_DEF_UNOP(cos ,UnaryCos);
|
||||
GRID_DEF_UNOP(log ,UnaryLog);
|
||||
GRID_DEF_UNOP(exp ,UnaryExp);
|
||||
|
||||
GRID_DEF_BINOP(operator+,BinaryAdd);
|
||||
GRID_DEF_BINOP(operator-,BinarySub);
|
||||
GRID_DEF_BINOP(operator*,BinaryMul);
|
||||
|
||||
GRID_DEF_BINOP(operator&,BinaryAnd);
|
||||
GRID_DEF_BINOP(operator|,BinaryOr);
|
||||
GRID_DEF_BINOP(operator&&,BinaryAndAnd);
|
||||
GRID_DEF_BINOP(operator||,BinaryOrOr);
|
||||
|
||||
GRID_DEF_TRINOP(where,TrinaryWhere);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Closure convenience to force expression to evaluate
|
||||
/////////////////////////////////////////////////////////////
|
||||
template<class Op,class T1>
|
||||
auto closure(const LatticeUnaryExpression<Op,T1> & expr)
|
||||
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second))))>
|
||||
{
|
||||
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second))))> ret(expr);
|
||||
return ret;
|
||||
}
|
||||
template<class Op,class T1, class T2>
|
||||
auto closure(const LatticeBinaryExpression<Op,T1,T2> & expr)
|
||||
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
||||
eval(0,std::get<1>(expr.second))))>
|
||||
{
|
||||
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
||||
eval(0,std::get<1>(expr.second))))> ret(expr);
|
||||
return ret;
|
||||
}
|
||||
template<class Op,class T1, class T2, class T3>
|
||||
auto closure(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
|
||||
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
||||
eval(0,std::get<1>(expr.second)),
|
||||
eval(0,std::get<2>(expr.second))))>
|
||||
{
|
||||
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
||||
eval(0,std::get<1>(expr.second)),
|
||||
eval(0,std::get<2>(expr.second))))> ret(expr);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#undef GRID_UNOP
|
||||
#undef GRID_BINOP
|
||||
#undef GRID_TRINOP
|
||||
|
@ -93,7 +93,7 @@ PARALLEL_FOR_LOOP
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
template <typename Op, typename T1,typename T2> strong_inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
|
||||
template <typename Op, typename T1,typename T2> strong_inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
|
||||
{
|
||||
GridBase *egrid(nullptr);
|
||||
GridFromExpression(egrid,expr);
|
||||
@ -131,8 +131,8 @@ PARALLEL_FOR_LOOP
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<_grid->oSites();ss++){
|
||||
#ifdef STREAMING_STORES
|
||||
vobj tmp = eval(ss,expr);
|
||||
vstream(_odata[ss] ,tmp);
|
||||
//vobj tmp = eval(ss,expr);
|
||||
vstream(_odata[ss] ,eval(ss,expr));
|
||||
#else
|
||||
_odata[ss] = eval(ss,expr);
|
||||
#endif
|
||||
@ -196,12 +196,7 @@ PARALLEL_FOR_LOOP
|
||||
_odata.resize(_grid->oSites());
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<_grid->oSites();ss++){
|
||||
#ifdef STREAMING_STORES
|
||||
vobj tmp = eval(ss,expr);
|
||||
vstream(_odata[ss] ,tmp);
|
||||
#else
|
||||
_odata[ss]=eval(ss,expr);
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
@ -254,7 +249,7 @@ PARALLEL_FOR_LOOP
|
||||
Lattice<vobj> ret(lhs._grid);
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<lhs._grid->oSites();ss++){
|
||||
ret._odata[ss] = lhs._odata[ss]/rhs._odata[ss];
|
||||
ret._odata[ss] = lhs._odata[ss]*pow(rhs._odata[ss],-1.0);
|
||||
}
|
||||
return ret;
|
||||
};
|
||||
|
@ -11,7 +11,11 @@ namespace Grid {
|
||||
//Query supporting bitwise &, |, ^, !
|
||||
//Query supporting logical &&, ||,
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template<class vfunctor,class lobj,class robj>
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// compare lattice to lattice
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template<class vfunctor,class lobj,class robj>
|
||||
inline Lattice<vInteger> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
|
||||
{
|
||||
Lattice<vInteger> ret(rhs._grid);
|
||||
@ -21,6 +25,9 @@ PARALLEL_FOR_LOOP
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// compare lattice to scalar
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template<class vfunctor,class lobj,class robj>
|
||||
inline Lattice<vInteger> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
|
||||
{
|
||||
@ -31,6 +38,9 @@ PARALLEL_FOR_LOOP
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// compare scalar to lattice
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template<class vfunctor,class lobj,class robj>
|
||||
inline Lattice<vInteger> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
|
||||
{
|
||||
@ -42,6 +52,9 @@ PARALLEL_FOR_LOOP
|
||||
return ret;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Map to functors
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Less than
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
|
||||
@ -99,7 +112,6 @@ PARALLEL_FOR_LOOP
|
||||
return SLComparison(vge<lobj,robj>(),lhs,rhs);
|
||||
}
|
||||
|
||||
|
||||
// equal
|
||||
template<class lobj,class robj>
|
||||
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
|
||||
|
@ -5,140 +5,197 @@ namespace Grid {
|
||||
|
||||
/////////////////////////////////////////
|
||||
// This implementation is a bit poor.
|
||||
// Only support logical operations (== etc)
|
||||
// on scalar objects. Strip any tensor structures.
|
||||
//
|
||||
// Only support relational logical operations (<, > etc)
|
||||
// on scalar objects. Therefore can strip any tensor structures.
|
||||
//
|
||||
// Should guard this with isGridTensor<> enable if?
|
||||
/////////////////////////////////////////
|
||||
// Generic list of functors
|
||||
template<class lobj,class robj> class veq {
|
||||
//
|
||||
// Generic list of functors
|
||||
//
|
||||
template<class lobj,class robj> class veq {
|
||||
public:
|
||||
vInteger operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return (lhs) == (rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class vne {
|
||||
public:
|
||||
vInteger operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return (lhs) != (rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class vlt {
|
||||
public:
|
||||
vInteger operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return (lhs) < (rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class vle {
|
||||
public:
|
||||
vInteger operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return (lhs) <= (rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class vgt {
|
||||
public:
|
||||
vInteger operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return (lhs) > (rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class vge {
|
||||
public:
|
||||
vInteger operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return TensorRemove(lhs) == TensorRemove(rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class vne {
|
||||
public:
|
||||
vInteger operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return TensorRemove(lhs) != TensorRemove(rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class vlt {
|
||||
public:
|
||||
vInteger operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return TensorRemove(lhs) < TensorRemove(rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class vle {
|
||||
public:
|
||||
vInteger operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return TensorRemove(lhs) <= TensorRemove(rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class vgt {
|
||||
public:
|
||||
vInteger operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return TensorRemove(lhs) > TensorRemove(rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class vge {
|
||||
public:
|
||||
vInteger operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return TensorRemove(lhs) >= TensorRemove(rhs);
|
||||
}
|
||||
};
|
||||
vInteger operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return (lhs) >= (rhs);
|
||||
}
|
||||
};
|
||||
|
||||
// Generic list of functors
|
||||
template<class lobj,class robj> class seq {
|
||||
public:
|
||||
Integer operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return (lhs) == (rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class sne {
|
||||
public:
|
||||
Integer operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return (lhs) != (rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class slt {
|
||||
public:
|
||||
Integer operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return (lhs) < (rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class sle {
|
||||
public:
|
||||
Integer operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return (lhs) <= (rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class sgt {
|
||||
public:
|
||||
Integer operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return (lhs) > (rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class sge {
|
||||
public:
|
||||
Integer operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return (lhs) >= (rhs);
|
||||
}
|
||||
};
|
||||
|
||||
// Generic list of functors
|
||||
template<class lobj,class robj> class seq {
|
||||
public:
|
||||
Integer operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return TensorRemove(lhs) == TensorRemove(rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class sne {
|
||||
public:
|
||||
Integer operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return TensorRemove(lhs) != TensorRemove(rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class slt {
|
||||
public:
|
||||
Integer operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return TensorRemove(lhs) < TensorRemove(rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class sle {
|
||||
public:
|
||||
Integer operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return TensorRemove(lhs) <= TensorRemove(rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class sgt {
|
||||
public:
|
||||
Integer operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return TensorRemove(lhs) > TensorRemove(rhs);
|
||||
}
|
||||
};
|
||||
template<class lobj,class robj> class sge {
|
||||
public:
|
||||
Integer operator()(const lobj &lhs, const robj &rhs)
|
||||
{
|
||||
return TensorRemove(lhs) >= TensorRemove(rhs);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Integer gets extra relational functions. Could also implement these for RealF, RealD etc..
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class sfunctor>
|
||||
inline vInteger Comparison(sfunctor sop,const vInteger & lhs, const vInteger & rhs)
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Integer and real get extra relational functions.
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
|
||||
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs)
|
||||
{
|
||||
std::vector<Integer> vlhs(vInteger::Nsimd()); // Use functors to reduce this to single implementation
|
||||
std::vector<Integer> vrhs(vInteger::Nsimd());
|
||||
typedef typename vsimd::scalar_type scalar;
|
||||
std::vector<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
|
||||
std::vector<scalar> vrhs(vsimd::Nsimd());
|
||||
std::vector<Integer> vpred(vsimd::Nsimd());
|
||||
vInteger ret;
|
||||
extract<vInteger,Integer>(lhs,vlhs);
|
||||
extract<vInteger,Integer>(rhs,vrhs);
|
||||
for(int s=0;s<vInteger::Nsimd();s++){
|
||||
vlhs[s] = sop(vlhs[s],vrhs[s]);
|
||||
extract<vsimd,scalar>(lhs,vlhs);
|
||||
extract<vsimd,scalar>(rhs,vrhs);
|
||||
for(int s=0;s<vsimd::Nsimd();s++){
|
||||
vpred[s] = sop(vlhs[s],vrhs[s]);
|
||||
}
|
||||
merge<vInteger,Integer>(ret,vlhs);
|
||||
merge<vInteger,Integer>(ret,vpred);
|
||||
return ret;
|
||||
}
|
||||
inline vInteger operator < (const vInteger & lhs, const vInteger & rhs)
|
||||
|
||||
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
|
||||
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs)
|
||||
{
|
||||
return Comparison(slt<Integer,Integer>(),lhs,rhs);
|
||||
typedef typename vsimd::scalar_type scalar;
|
||||
std::vector<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
|
||||
std::vector<Integer> vpred(vsimd::Nsimd());
|
||||
vInteger ret;
|
||||
extract<vsimd,scalar>(lhs,vlhs);
|
||||
for(int s=0;s<vsimd::Nsimd();s++){
|
||||
vpred[s] = sop(vlhs[s],rhs);
|
||||
}
|
||||
merge<vInteger,Integer>(ret,vpred);
|
||||
return ret;
|
||||
}
|
||||
inline vInteger operator <= (const vInteger & lhs, const vInteger & rhs)
|
||||
|
||||
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
|
||||
inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs)
|
||||
{
|
||||
return Comparison(sle<Integer,Integer>(),lhs,rhs);
|
||||
}
|
||||
inline vInteger operator > (const vInteger & lhs, const vInteger & rhs)
|
||||
{
|
||||
return Comparison(sgt<Integer,Integer>(),lhs,rhs);
|
||||
}
|
||||
inline vInteger operator >= (const vInteger & lhs, const vInteger & rhs)
|
||||
{
|
||||
return Comparison(sge<Integer,Integer>(),lhs,rhs);
|
||||
}
|
||||
inline vInteger operator == (const vInteger & lhs, const vInteger & rhs)
|
||||
{
|
||||
return Comparison(seq<Integer,Integer>(),lhs,rhs);
|
||||
}
|
||||
inline vInteger operator != (const vInteger & lhs, const vInteger & rhs)
|
||||
{
|
||||
return Comparison(sne<Integer,Integer>(),lhs,rhs);
|
||||
typedef typename vsimd::scalar_type scalar;
|
||||
std::vector<scalar> vrhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
|
||||
std::vector<Integer> vpred(vsimd::Nsimd());
|
||||
vInteger ret;
|
||||
extract<vsimd,scalar>(rhs,vrhs);
|
||||
for(int s=0;s<vsimd::Nsimd();s++){
|
||||
vpred[s] = sop(lhs,vrhs[s]);
|
||||
}
|
||||
merge<vInteger,Integer>(ret,vpred);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#define DECLARE_RELATIONAL(op,functor) \
|
||||
template<class vsimd,IfSimd<vsimd> = 0>\
|
||||
inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\
|
||||
{\
|
||||
typedef typename vsimd::scalar_type scalar;\
|
||||
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
|
||||
}\
|
||||
template<class vsimd,IfSimd<vsimd> = 0>\
|
||||
inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \
|
||||
{\
|
||||
typedef typename vsimd::scalar_type scalar;\
|
||||
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
|
||||
}\
|
||||
template<class vsimd,IfSimd<vsimd> = 0>\
|
||||
inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \
|
||||
{\
|
||||
typedef typename vsimd::scalar_type scalar;\
|
||||
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
|
||||
}\
|
||||
template<class vsimd>\
|
||||
inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\
|
||||
{ \
|
||||
return lhs._internal op rhs._internal; \
|
||||
} \
|
||||
template<class vsimd>\
|
||||
inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \
|
||||
{ \
|
||||
return lhs._internal op rhs; \
|
||||
} \
|
||||
template<class vsimd>\
|
||||
inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \
|
||||
{ \
|
||||
return lhs op rhs._internal; \
|
||||
}
|
||||
|
||||
|
||||
DECLARE_RELATIONAL(<,slt);
|
||||
DECLARE_RELATIONAL(<=,sle);
|
||||
DECLARE_RELATIONAL(>,sgt);
|
||||
DECLARE_RELATIONAL(>=,sge);
|
||||
DECLARE_RELATIONAL(==,seq);
|
||||
DECLARE_RELATIONAL(!=,sne);
|
||||
|
||||
#undef DECLARE_RELATIONAL
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -117,7 +117,9 @@ PARALLEL_FOR_LOOP
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.checkerboard == l._grid->CheckerBoard(site));
|
||||
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
|
||||
// FIXME
|
||||
// assert( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
|
||||
int rank,odx,idx;
|
||||
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
|
||||
@ -132,6 +134,7 @@ PARALLEL_FOR_LOOP
|
||||
return;
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// Peek a scalar object from the SIMD array
|
||||
//////////////////////////////////////////////////////////
|
||||
|
@ -27,37 +27,6 @@ PARALLEL_FOR_LOOP
|
||||
return ret;
|
||||
};
|
||||
|
||||
template<class vobj> inline auto real(const Lattice<vobj> &z) -> Lattice<vobj>
|
||||
{
|
||||
Lattice<vobj> ret(z._grid);
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<z._grid->oSites();ss++){
|
||||
ret._odata[ss] = real(z._odata[ss]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vobj> inline auto imag(const Lattice<vobj> &z) -> Lattice<vobj>
|
||||
{
|
||||
Lattice<vobj> ret(z._grid);
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<z._grid->oSites();ss++){
|
||||
ret._odata[ss] = imag(z._odata[ss]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
template<class vobj> inline auto Ta(const Lattice<vobj> &z) -> Lattice<decltype(Ta(z._odata[0]))>
|
||||
{
|
||||
Lattice<decltype(Ta(z._odata[0]))> ret(z._grid);
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<z._grid->oSites();ss++){
|
||||
ret._odata[ss] = Ta(z._odata[ss]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -51,6 +51,31 @@ PARALLEL_FOR_LOOP
|
||||
return nrm;
|
||||
}
|
||||
|
||||
template<class Op,class T1>
|
||||
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
|
||||
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second))))::scalar_object
|
||||
{
|
||||
return sum(closure(expr));
|
||||
}
|
||||
|
||||
template<class Op,class T1,class T2>
|
||||
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
|
||||
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),eval(0,std::get<1>(expr.second))))::scalar_object
|
||||
{
|
||||
return sum(closure(expr));
|
||||
}
|
||||
|
||||
|
||||
template<class Op,class T1,class T2,class T3>
|
||||
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
|
||||
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
|
||||
eval(0,std::get<1>(expr.second)),
|
||||
eval(0,std::get<2>(expr.second))
|
||||
))::scalar_object
|
||||
{
|
||||
return sum(closure(expr));
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg){
|
||||
|
||||
|
@ -24,8 +24,7 @@ PARALLEL_FOR_LOOP
|
||||
// Index level dependent transpose
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<int Index,class vobj>
|
||||
inline auto transposeIndex(const Lattice<vobj> &lhs)
|
||||
-> Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))>
|
||||
inline auto transposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))>
|
||||
{
|
||||
Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))> ret(lhs._grid);
|
||||
PARALLEL_FOR_LOOP
|
||||
|
@ -3,51 +3,6 @@
|
||||
|
||||
namespace Grid {
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// avoid copy back routines for mult, mac, sub, add
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class obj> Lattice<obj> sqrt(const Lattice<obj> &rhs){
|
||||
Lattice<obj> ret(rhs._grid);
|
||||
ret.checkerboard = rhs.checkerboard;
|
||||
conformable(ret,rhs);
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<rhs._grid->oSites();ss++){
|
||||
ret._odata[ss]=sqrt(rhs._odata[ss]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
template<class obj> Lattice<obj> rsqrt(const Lattice<obj> &rhs){
|
||||
Lattice<obj> ret(rhs._grid);
|
||||
ret.checkerboard = rhs.checkerboard;
|
||||
conformable(ret,rhs);
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<rhs._grid->oSites();ss++){
|
||||
ret._odata[ss]=rsqrt(rhs._odata[ss]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
template<class obj> Lattice<obj> sin(const Lattice<obj> &rhs){
|
||||
Lattice<obj> ret(rhs._grid);
|
||||
ret.checkerboard = rhs.checkerboard;
|
||||
conformable(ret,rhs);
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<rhs._grid->oSites();ss++){
|
||||
ret._odata[ss]=sin(rhs._odata[ss]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
template<class obj> Lattice<obj> cos(const Lattice<obj> &rhs){
|
||||
Lattice<obj> ret(rhs._grid);
|
||||
ret.checkerboard = rhs.checkerboard;
|
||||
conformable(ret,rhs);
|
||||
PARALLEL_FOR_LOOP
|
||||
for(int ss=0;ss<rhs._grid->oSites();ss++){
|
||||
ret._odata[ss]=cos(rhs._odata[ss]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs,RealD y){
|
||||
Lattice<obj> ret(rhs._grid);
|
||||
ret.checkerboard = rhs.checkerboard;
|
||||
|
@ -8,13 +8,14 @@ namespace Grid {
|
||||
// and blow away the tensor structures.
|
||||
//
|
||||
template<class vobj,class iobj>
|
||||
inline void where(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse)
|
||||
inline void whereWolf(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse)
|
||||
{
|
||||
conformable(iftrue,iffalse);
|
||||
conformable(iftrue,predicate);
|
||||
conformable(iftrue,ret);
|
||||
|
||||
GridBase *grid=iftrue._grid;
|
||||
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
@ -43,7 +44,7 @@ PARALLEL_FOR_LOOP
|
||||
}
|
||||
|
||||
template<class vobj,class iobj>
|
||||
inline Lattice<vobj> where(const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse)
|
||||
inline Lattice<vobj> whereWolf(const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse)
|
||||
{
|
||||
conformable(iftrue,iffalse);
|
||||
conformable(iftrue,predicate);
|
||||
|
112
lib/qcd/QCD.h
112
lib/qcd/QCD.h
@ -250,6 +250,7 @@ namespace QCD {
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Peek and Poke named after physics attributes
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
//spin
|
||||
template<class vobj> auto peekSpin(const vobj &rhs,int i) -> decltype(peekIndex<SpinIndex>(rhs,0))
|
||||
{
|
||||
@ -289,20 +290,117 @@ namespace QCD {
|
||||
{
|
||||
return peekIndex<LorentzIndex>(rhs,i);
|
||||
}
|
||||
template<class vobj> auto peekLorentz(const vobj &rhs,int i,int j) -> decltype(peekIndex<LorentzIndex>(rhs,0,0))
|
||||
{
|
||||
return peekIndex<LorentzIndex>(rhs,i,j);
|
||||
}
|
||||
template<class vobj> auto peekLorentz(const Lattice<vobj> &rhs,int i) -> decltype(peekIndex<LorentzIndex>(rhs,0))
|
||||
{
|
||||
return peekIndex<LorentzIndex>(rhs,i);
|
||||
}
|
||||
template<class vobj> auto peekLorentz(const Lattice<vobj> &rhs,int i,int j) -> decltype(peekIndex<LorentzIndex>(rhs,0,0))
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Poke lattice
|
||||
//////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
void pokeColour(Lattice<vobj> &lhs,
|
||||
const Lattice<decltype(peekIndex<ColourIndex>(lhs._odata[0],0))> & rhs,
|
||||
int i)
|
||||
{
|
||||
return peekIndex<LorentzIndex>(rhs,i,j);
|
||||
pokeIndex<ColourIndex>(lhs,rhs,i);
|
||||
}
|
||||
template<class vobj>
|
||||
void pokeColour(Lattice<vobj> &lhs,
|
||||
const Lattice<decltype(peekIndex<ColourIndex>(lhs._odata[0],0,0))> & rhs,
|
||||
int i,int j)
|
||||
{
|
||||
pokeIndex<ColourIndex>(lhs,rhs,i,j);
|
||||
}
|
||||
template<class vobj>
|
||||
void pokeSpin(Lattice<vobj> &lhs,
|
||||
const Lattice<decltype(peekIndex<SpinIndex>(lhs._odata[0],0))> & rhs,
|
||||
int i)
|
||||
{
|
||||
pokeIndex<SpinIndex>(lhs,rhs,i);
|
||||
}
|
||||
template<class vobj>
|
||||
void pokeSpin(Lattice<vobj> &lhs,
|
||||
const Lattice<decltype(peekIndex<SpinIndex>(lhs._odata[0],0,0))> & rhs,
|
||||
int i,int j)
|
||||
{
|
||||
pokeIndex<SpinIndex>(lhs,rhs,i,j);
|
||||
}
|
||||
template<class vobj>
|
||||
void pokeLorentz(Lattice<vobj> &lhs,
|
||||
const Lattice<decltype(peekIndex<LorentzIndex>(lhs._odata[0],0))> & rhs,
|
||||
int i)
|
||||
{
|
||||
pokeIndex<LorentzIndex>(lhs,rhs,i);
|
||||
}
|
||||
|
||||
// FIXME transpose Colour, transpose Spin, traceColour traceSpin
|
||||
//////////////////////////////////////////////
|
||||
// Poke scalars
|
||||
//////////////////////////////////////////////
|
||||
|
||||
template<class vobj> void pokeSpin(vobj &lhs,const decltype(peekIndex<SpinIndex>(lhs,0)) & rhs,int i)
|
||||
{
|
||||
pokeIndex<SpinIndex>(lhs,rhs,i);
|
||||
}
|
||||
template<class vobj> void pokeSpin(vobj &lhs,const decltype(peekIndex<SpinIndex>(lhs,0,0)) & rhs,int i,int j)
|
||||
{
|
||||
pokeIndex<SpinIndex>(lhs,rhs,i,j);
|
||||
}
|
||||
|
||||
template<class vobj> void pokeColour(vobj &lhs,const decltype(peekIndex<ColourIndex>(lhs,0)) & rhs,int i)
|
||||
{
|
||||
pokeIndex<ColourIndex>(lhs,rhs,i);
|
||||
}
|
||||
template<class vobj> void pokeColour(vobj &lhs,const decltype(peekIndex<ColourIndex>(lhs,0,0)) & rhs,int i,int j)
|
||||
{
|
||||
pokeIndex<ColourIndex>(lhs,rhs,i,j);
|
||||
}
|
||||
|
||||
template<class vobj> void pokeLorentz(vobj &lhs,const decltype(peekIndex<LorentzIndex>(lhs,0)) & rhs,int i)
|
||||
{
|
||||
pokeIndex<LorentzIndex>(lhs,rhs,i);
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// transpose array and scalar
|
||||
//////////////////////////////////////////////
|
||||
template<int Index,class vobj> inline Lattice<vobj> transposeSpin(const Lattice<vobj> &lhs){
|
||||
return transposeIndex<SpinIndex>(lhs);
|
||||
}
|
||||
template<int Index,class vobj> inline Lattice<vobj> transposeColour(const Lattice<vobj> &lhs){
|
||||
return transposeIndex<ColourIndex>(lhs);
|
||||
}
|
||||
template<int Index,class vobj> inline vobj transposeSpin(const vobj &lhs){
|
||||
return transposeIndex<SpinIndex>(lhs);
|
||||
}
|
||||
template<int Index,class vobj> inline vobj transposeColour(const vobj &lhs){
|
||||
return transposeIndex<ColourIndex>(lhs);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
// Trace lattice and non-lattice
|
||||
//////////////////////////////////////////
|
||||
template<int Index,class vobj>
|
||||
inline auto traceSpin(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(lhs._odata[0]))>
|
||||
{
|
||||
return traceIndex<SpinIndex>(lhs);
|
||||
}
|
||||
template<int Index,class vobj>
|
||||
inline auto traceColour(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(lhs._odata[0]))>
|
||||
{
|
||||
return traceIndex<ColourIndex>(lhs);
|
||||
}
|
||||
template<int Index,class vobj>
|
||||
inline auto traceSpin(const vobj &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(lhs))>
|
||||
{
|
||||
return traceIndex<SpinIndex>(lhs);
|
||||
}
|
||||
template<int Index,class vobj>
|
||||
inline auto traceColour(const vobj &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(lhs))>
|
||||
{
|
||||
return traceIndex<ColourIndex>(lhs);
|
||||
}
|
||||
|
||||
} //namespace QCD
|
||||
} // Grid
|
||||
|
@ -70,7 +70,7 @@ public:
|
||||
//////////////////////////////////////////////////
|
||||
// the sum over all staples on each site
|
||||
//////////////////////////////////////////////////
|
||||
static void Staple(GaugeMat &staple,GaugeLorentz &Umu,int mu){
|
||||
static void Staple(GaugeMat &staple,const GaugeLorentz &Umu,int mu){
|
||||
|
||||
std::vector<GaugeMat> U(4,Umu._grid);
|
||||
for(int d=0;d<Nd;d++){
|
||||
@ -123,12 +123,10 @@ void siteRectangle(GaugeMat &plaq,const std::vector<GaugeMat> &U, const int mu,
|
||||
|
||||
|
||||
typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> ColourWilsonLoops;
|
||||
typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> U1WilsonLoops;
|
||||
typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> SU2WilsonLoops;
|
||||
typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> SU3WilsonLoops;
|
||||
|
||||
}}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
|
@ -28,13 +28,19 @@
|
||||
|
||||
namespace Grid {
|
||||
|
||||
//////////////////////////////////////
|
||||
// To take the floating point type of real/complex type
|
||||
//////////////////////////////////////
|
||||
template <typename T> struct RealPart {
|
||||
typedef T type;
|
||||
};
|
||||
template <typename T> struct RealPart< std::complex<T> >{
|
||||
typedef T type;
|
||||
};
|
||||
|
||||
//////////////////////////////////////
|
||||
// demote a vector to real type
|
||||
//////////////////////////////////////
|
||||
|
||||
// type alias used to simplify the syntax of std::enable_if
|
||||
template <typename T> using Invoke = typename T::type;
|
||||
@ -90,7 +96,7 @@ namespace Grid {
|
||||
Vector_type v;
|
||||
Scalar_type s[sizeof(Vector_type)/sizeof(Scalar_type)];
|
||||
conv_t_union(){};
|
||||
} conv_t;
|
||||
} conv_t;
|
||||
|
||||
|
||||
Vector_type v;
|
||||
@ -205,7 +211,6 @@ namespace Grid {
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Not all functions are supported
|
||||
// through SIMD and must breakout to
|
||||
@ -214,7 +219,6 @@ namespace Grid {
|
||||
///////////////////////////////////////
|
||||
|
||||
template<class functor> friend inline Grid_simd SimdApply (const functor &func,const Grid_simd &v) {
|
||||
|
||||
Grid_simd ret;
|
||||
Grid_simd::conv_t conv;
|
||||
|
||||
@ -225,6 +229,19 @@ namespace Grid {
|
||||
ret.v = conv.v;
|
||||
return ret;
|
||||
}
|
||||
template<class functor> friend inline Grid_simd SimdApplyBinop (const functor &func,const Grid_simd &x,const Grid_simd &y) {
|
||||
Grid_simd ret;
|
||||
Grid_simd::conv_t cx;
|
||||
Grid_simd::conv_t cy;
|
||||
|
||||
cx.v = x.v;
|
||||
cy.v = y.v;
|
||||
for(int i=0;i<Nsimd();i++){
|
||||
cx.s[i]=func(cx.s[i],cy.s[i]);
|
||||
}
|
||||
ret.v = cx.v;
|
||||
return ret;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// General permute; assumes vector length is same across
|
||||
@ -235,6 +252,7 @@ namespace Grid {
|
||||
{
|
||||
Gpermute<Grid_simd>(y,b,perm);
|
||||
}
|
||||
|
||||
|
||||
};// end of Grid_simd class definition
|
||||
|
||||
@ -383,7 +401,6 @@ namespace Grid {
|
||||
return in;
|
||||
}
|
||||
|
||||
|
||||
/////////////////////
|
||||
// Inner, outer
|
||||
/////////////////////
|
||||
@ -405,6 +422,46 @@ namespace Grid {
|
||||
return arg;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// copy/splat complex real parts into real;
|
||||
// insert real into complex and zero imag;
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
//real = toReal( complex )
|
||||
template<class S,class V,IfReal<S> = 0>
|
||||
inline Grid_simd<S,V> toReal(const Grid_simd<std::complex<S>,V> &in)
|
||||
{
|
||||
typedef Grid_simd<S,V> simd;
|
||||
simd ret;
|
||||
typename simd::conv_t conv;
|
||||
conv.v = in.v;
|
||||
for(int i=0;i<simd::Nsimd();i+=2){
|
||||
conv.s[i+1]=conv.s[i]; // duplicate (r,r);(r,r);(r,r); etc...
|
||||
}
|
||||
ret.v = conv.v;
|
||||
return ret;
|
||||
}
|
||||
|
||||
//complex = toComplex( real )
|
||||
template<class R,class V,IfReal<R> = 0 > // must be a real arg
|
||||
inline Grid_simd<std::complex<R>,V> toComplex (const Grid_simd<R,V> &in)
|
||||
{
|
||||
typedef Grid_simd<R,V> Rsimd;
|
||||
typedef Grid_simd<std::complex<R>,V> Csimd;
|
||||
typename Rsimd::conv_t conv;// address as real
|
||||
|
||||
conv.v = in.v;
|
||||
for(int i=0;i<Rsimd::Nsimd();i+=2){
|
||||
assert(conv.s[i+1]==conv.s[i]); // trap any cases where real was not duplicated
|
||||
// indicating the SIMD grids of real and imag assignment did not correctly match
|
||||
conv.s[i+1]=0.0; // zero imaginary parts
|
||||
}
|
||||
Csimd ret;
|
||||
ret.v = conv.v;
|
||||
return ret;
|
||||
}
|
||||
|
||||
///////////////////////////////
|
||||
// Define available types
|
||||
///////////////////////////////
|
||||
@ -413,6 +470,20 @@ namespace Grid {
|
||||
typedef Grid_simd< std::complex< float > , SIMD_Ftype > vComplexF;
|
||||
typedef Grid_simd< std::complex< double >, SIMD_Dtype > vComplexD;
|
||||
typedef Grid_simd< Integer , SIMD_Itype > vInteger;
|
||||
|
||||
/////////////////////////////////////////
|
||||
// Some traits to recognise the types
|
||||
/////////////////////////////////////////
|
||||
template <typename T> struct is_simd : public std::false_type{};
|
||||
template <> struct is_simd<vRealF> : public std::true_type {};
|
||||
template <> struct is_simd<vRealD> : public std::true_type {};
|
||||
template <> struct is_simd<vComplexF>: public std::true_type {};
|
||||
template <> struct is_simd<vComplexD>: public std::true_type {};
|
||||
template <> struct is_simd<vInteger> : public std::true_type {};
|
||||
|
||||
template <typename T> using IfSimd = Invoke<std::enable_if< is_simd<T>::value,int> > ;
|
||||
template <typename T> using IfNotSimd = Invoke<std::enable_if<!is_simd<T>::value,unsigned> > ;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -1,6 +1,8 @@
|
||||
#ifndef GRID_VECTOR_UNOPS
|
||||
#define GRID_VECTOR_UNOPS
|
||||
|
||||
#include <cmath>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class scalar> struct SqrtRealFunctor {
|
||||
@ -27,6 +29,28 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
template<class scalar> struct LogRealFunctor {
|
||||
scalar operator()(const scalar &a) const {
|
||||
return log(real(a));
|
||||
}
|
||||
};
|
||||
|
||||
template<class scalar> struct ExpRealFunctor {
|
||||
scalar operator()(const scalar &a) const {
|
||||
return exp(real(a));
|
||||
}
|
||||
};
|
||||
template<class scalar> struct NotFunctor {
|
||||
scalar operator()(const scalar &a) const {
|
||||
return (!a);
|
||||
}
|
||||
};
|
||||
template<class scalar> struct AbsRealFunctor {
|
||||
scalar operator()(const scalar &a) const {
|
||||
return std::abs(real(a));
|
||||
}
|
||||
};
|
||||
|
||||
template<class scalar> struct PowRealFunctor {
|
||||
double y;
|
||||
PowRealFunctor(double _y) : y(_y) {};
|
||||
@ -43,6 +67,25 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
template<class scalar> struct RealFunctor {
|
||||
scalar operator()(const scalar &a) const {
|
||||
return real(a);
|
||||
}
|
||||
};
|
||||
template<class scalar> struct ImagFunctor {
|
||||
scalar operator()(const scalar &a) const {
|
||||
return imag(a);
|
||||
}
|
||||
};
|
||||
template < class S, class V >
|
||||
inline Grid_simd<S,V> real(const Grid_simd<S,V> &r) {
|
||||
return SimdApply(RealFunctor<S>(),r);
|
||||
}
|
||||
template < class S, class V >
|
||||
inline Grid_simd<S,V> imag(const Grid_simd<S,V> &r) {
|
||||
return SimdApply(ImagFunctor<S>(),r);
|
||||
}
|
||||
|
||||
template < class S, class V >
|
||||
inline Grid_simd<S,V> sqrt(const Grid_simd<S,V> &r) {
|
||||
return SimdApply(SqrtRealFunctor<S>(),r);
|
||||
@ -60,6 +103,22 @@ namespace Grid {
|
||||
return SimdApply(CosRealFunctor<S>(),r);
|
||||
}
|
||||
template < class S, class V >
|
||||
inline Grid_simd<S,V> log(const Grid_simd<S,V> &r) {
|
||||
return SimdApply(LogRealFunctor<S>(),r);
|
||||
}
|
||||
template < class S, class V >
|
||||
inline Grid_simd<S,V> abs(const Grid_simd<S,V> &r) {
|
||||
return SimdApply(AbsRealFunctor<S>(),r);
|
||||
}
|
||||
template < class S, class V >
|
||||
inline Grid_simd<S,V> exp(const Grid_simd<S,V> &r) {
|
||||
return SimdApply(ExpRealFunctor<S>(),r);
|
||||
}
|
||||
template < class S, class V >
|
||||
inline Grid_simd<S,V> Not(const Grid_simd<S,V> &r) {
|
||||
return SimdApply(NotFunctor<S>(),r);
|
||||
}
|
||||
template < class S, class V >
|
||||
inline Grid_simd<S,V> pow(const Grid_simd<S,V> &r,double y) {
|
||||
return SimdApply(PowRealFunctor<S>(y),r);
|
||||
}
|
||||
@ -67,6 +126,55 @@ namespace Grid {
|
||||
inline Grid_simd<S,V> mod(const Grid_simd<S,V> &r,Integer y) {
|
||||
return SimdApply(ModIntFunctor<S>(y),r);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Allows us to assign into **conformable** real vectors from complex
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// template < class S, class V >
|
||||
// inline auto ComplexRemove(const Grid_simd<S,V> &c) -> Grid_simd<Grid_simd<S,V>::Real,V> {
|
||||
// Grid_simd<Grid_simd<S,V>::Real,V> ret;
|
||||
// ret.v = c.v;
|
||||
// return ret;
|
||||
// }
|
||||
template<class scalar> struct AndFunctor {
|
||||
scalar operator()(const scalar &x, const scalar &y) const {
|
||||
return x & y;
|
||||
}
|
||||
};
|
||||
template<class scalar> struct OrFunctor {
|
||||
scalar operator()(const scalar &x, const scalar &y) const {
|
||||
return x | y;
|
||||
}
|
||||
};
|
||||
template<class scalar> struct AndAndFunctor {
|
||||
scalar operator()(const scalar &x, const scalar &y) const {
|
||||
return x && y;
|
||||
}
|
||||
};
|
||||
template<class scalar> struct OrOrFunctor {
|
||||
scalar operator()(const scalar &x, const scalar &y) const {
|
||||
return x || y;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////
|
||||
// Calls to simd binop functors
|
||||
////////////////////////////////
|
||||
template < class S, class V >
|
||||
inline Grid_simd<S,V> operator &(const Grid_simd<S,V> &x,const Grid_simd<S,V> &y) {
|
||||
return SimdApplyBinop(AndFunctor<S>(),x,y);
|
||||
}
|
||||
template < class S, class V >
|
||||
inline Grid_simd<S,V> operator &&(const Grid_simd<S,V> &x,const Grid_simd<S,V> &y) {
|
||||
return SimdApplyBinop(AndAndFunctor<S>(),x,y);
|
||||
}
|
||||
template < class S, class V >
|
||||
inline Grid_simd<S,V> operator |(const Grid_simd<S,V> &x,const Grid_simd<S,V> &y) {
|
||||
return SimdApplyBinop(OrFunctor<S>(),x,y);
|
||||
}
|
||||
template < class S, class V >
|
||||
inline Grid_simd<S,V> operator ||(const Grid_simd<S,V> &x,const Grid_simd<S,V> &y) {
|
||||
return SimdApplyBinop(OrOrFunctor<S>(),x,y);
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -9,12 +9,12 @@ namespace Grid {
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// multiplication by fundamental scalar type
|
||||
template<class l,int N> strong_inline iScalar<l> operator * (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
|
||||
template<class l> strong_inline iScalar<l> operator * (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
|
||||
{
|
||||
typename iScalar<l>::tensor_reduced srhs; srhs=rhs;
|
||||
return lhs*srhs;
|
||||
}
|
||||
template<class l,int N> strong_inline iScalar<l> operator * (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) { return rhs*lhs; }
|
||||
template<class l> strong_inline iScalar<l> operator * (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) { return rhs*lhs; }
|
||||
|
||||
template<class l,int N> strong_inline iVector<l,N> operator * (const iVector<l,N>& lhs,const typename iScalar<l>::scalar_type rhs)
|
||||
{
|
||||
@ -118,12 +118,12 @@ template<class l,int N> strong_inline iMatrix<l,N> operator * (Integer lhs,const
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// addition by fundamental scalar type applies to matrix(down diag) and scalar
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class l,int N> strong_inline iScalar<l> operator + (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
|
||||
template<class l> strong_inline iScalar<l> operator + (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
|
||||
{
|
||||
typename iScalar<l>::tensor_reduced srhs; srhs=rhs;
|
||||
return lhs+srhs;
|
||||
}
|
||||
template<class l,int N> strong_inline iScalar<l> operator + (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) { return rhs+lhs; }
|
||||
template<class l> strong_inline iScalar<l> operator + (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) { return rhs+lhs; }
|
||||
|
||||
template<class l,int N> strong_inline iMatrix<l,N> operator + (const iMatrix<l,N>& lhs,const typename iScalar<l>::scalar_type rhs)
|
||||
{
|
||||
@ -176,12 +176,12 @@ template<class l,int N> strong_inline iMatrix<l,N> operator + (Integer lhs,const
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// subtraction of fundamental scalar type applies to matrix(down diag) and scalar
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class l,int N> strong_inline iScalar<l> operator - (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
|
||||
template<class l> strong_inline iScalar<l> operator - (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
|
||||
{
|
||||
typename iScalar<l>::tensor_reduced srhs; srhs=rhs;
|
||||
return lhs-srhs;
|
||||
}
|
||||
template<class l,int N> strong_inline iScalar<l> operator - (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs)
|
||||
template<class l> strong_inline iScalar<l> operator - (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs)
|
||||
{
|
||||
typename iScalar<l>::tensor_reduced slhs;slhs=lhs;
|
||||
return slhs-rhs;
|
||||
|
@ -23,13 +23,17 @@ template<class vtype> class iScalar
|
||||
public:
|
||||
vtype _internal;
|
||||
|
||||
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
|
||||
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
|
||||
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
|
||||
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
|
||||
typedef iScalar<tensor_reduced_v> tensor_reduced;
|
||||
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
|
||||
typedef iScalar<recurse_scalar_object> scalar_object;
|
||||
|
||||
// substitutes a real or complex version with same tensor structure
|
||||
typedef iScalar<typename GridTypeMapper<vtype>::Complexified > Complexified;
|
||||
typedef iScalar<typename GridTypeMapper<vtype>::Realified > Realified;
|
||||
|
||||
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1};
|
||||
|
||||
// Scalar no action
|
||||
@ -86,9 +90,19 @@ public:
|
||||
strong_inline const vtype & operator ()(void) const {
|
||||
return _internal;
|
||||
}
|
||||
|
||||
operator ComplexD () const { return(TensorRemove(_internal)); };
|
||||
operator RealD () const { return(real(TensorRemove(_internal))); }
|
||||
|
||||
// Type casts meta programmed
|
||||
template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0>
|
||||
operator ComplexF () const { return(TensorRemove(_internal)); };
|
||||
template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0>
|
||||
operator ComplexD () const { return(TensorRemove(_internal)); };
|
||||
template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0>
|
||||
operator RealD () const { return(real(TensorRemove(_internal))); }
|
||||
template<class U=vtype,class V=scalar_type,IfReal<V> = 0,IfNotSimd<U> = 0>
|
||||
operator RealD () const { return TensorRemove(_internal); }
|
||||
template<class U=vtype,class V=scalar_type,IfInteger<V> = 0,IfNotSimd<U> = 0>
|
||||
operator Integer () const { return Integer(TensorRemove(_internal)); }
|
||||
|
||||
|
||||
// convert from a something to a scalar via constructor of something arg
|
||||
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline iScalar<vtype> operator = (T arg)
|
||||
@ -123,6 +137,10 @@ public:
|
||||
typedef iScalar<tensor_reduced_v> tensor_reduced;
|
||||
typedef iVector<recurse_scalar_object,N> scalar_object;
|
||||
|
||||
// substitutes a real or complex version with same tensor structure
|
||||
typedef iVector<typename GridTypeMapper<vtype>::Complexified,N > Complexified;
|
||||
typedef iVector<typename GridTypeMapper<vtype>::Realified,N > Realified;
|
||||
|
||||
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline auto operator = (T arg) -> iVector<vtype,N>
|
||||
{
|
||||
zeroit(*this);
|
||||
@ -211,6 +229,12 @@ public:
|
||||
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
|
||||
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
|
||||
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
|
||||
|
||||
// substitutes a real or complex version with same tensor structure
|
||||
typedef iMatrix<typename GridTypeMapper<vtype>::Complexified,N > Complexified;
|
||||
typedef iMatrix<typename GridTypeMapper<vtype>::Realified,N > Realified;
|
||||
|
||||
// Tensure removal
|
||||
typedef iScalar<tensor_reduced_v> tensor_reduced;
|
||||
typedef iMatrix<recurse_scalar_object,N> scalar_object;
|
||||
|
||||
|
@ -31,18 +31,17 @@ inline void merge(typename std::enable_if<!isGridTensor<vsimd>::value, vsimd >::
|
||||
std::vector<scalar *> &extracted,int offset){
|
||||
int Nextr=extracted.size();
|
||||
int Nsimd=vsimd::Nsimd();
|
||||
int s=Nsimd/Nextr;
|
||||
|
||||
int s=Nsimd/Nextr; // can have sparse occupation of simd vector if simd_layout does not fill it
|
||||
// replicate n-fold. Use to allow Integer masks to
|
||||
// predicate floating point of various width assignments and maintain conformable.
|
||||
scalar *buf =(scalar *) y;
|
||||
for(int i=0;i<Nextr;i++){
|
||||
for(int ii=0;ii<s;ii++){
|
||||
buf[i*s+ii]=extracted[i][offset];
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Extract a fundamental vector type to scalar array
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -55,8 +54,17 @@ inline void extract(typename std::enable_if<!isGridTensor<vsimd>::value, const v
|
||||
|
||||
scalar *buf = (scalar *)&y;
|
||||
for(int i=0;i<Nextr;i++){
|
||||
for(int ii=0;ii<s;ii++){
|
||||
extracted[i]=buf[i*s+ii];
|
||||
extracted[i]=buf[i*s];
|
||||
for(int ii=1;ii<s;ii++){
|
||||
if ( buf[i*s]!=buf[i*s+ii] ){
|
||||
std::cout << " SIMD extract failure splat="<<s<<" ii "<<ii<<" " <<Nextr<<" "<< Nsimd<<" "<<std::endl;
|
||||
for(int vv=0;vv<Nsimd;vv++) {
|
||||
std::cout<< buf[vv]<<" ";
|
||||
}
|
||||
std::cout<<std::endl;
|
||||
assert(0);
|
||||
}
|
||||
assert(buf[i*s]==buf[i*s+ii]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -74,21 +82,7 @@ inline void merge(typename std::enable_if<!isGridTensor<vsimd>::value, vsimd >::
|
||||
|
||||
for(int i=0;i<Nextr;i++){
|
||||
for(int ii=0;ii<s;ii++){
|
||||
buf[i*s+ii]=extracted[i];
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
template<class vsimd,class scalar>
|
||||
inline void AmergeA(typename std::enable_if<!isGridTensor<vsimd>::value, vsimd >::type &y,std::vector<scalar> &extracted){
|
||||
int Nextr=extracted.size();
|
||||
int Nsimd=vsimd::Nsimd();
|
||||
int s=Nsimd/Nextr;
|
||||
|
||||
scalar *buf = (scalar *)&y;
|
||||
for(int i=0;i<Nextr;i++){
|
||||
for(int ii=0;ii<s;ii++){
|
||||
buf[i*s+ii]=extracted[i];
|
||||
buf[i*s+ii]=extracted[i]; // replicates value
|
||||
}
|
||||
}
|
||||
};
|
||||
@ -102,12 +96,12 @@ template<class vobj> inline void extract(const vobj &vec,std::vector<typename vo
|
||||
typedef typename vobj::vector_type vector_type ;
|
||||
|
||||
const int Nsimd=vobj::vector_type::Nsimd();
|
||||
int Nextr=extracted.size();
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
int s=Nsimd/Nextr;
|
||||
|
||||
extracted.resize(Nsimd);
|
||||
|
||||
std::vector<scalar_type *> pointers(Nsimd);
|
||||
for(int i=0;i<Nsimd;i++)
|
||||
std::vector<scalar_type *> pointers(Nextr);
|
||||
for(int i=0;i<Nextr;i++)
|
||||
pointers[i] =(scalar_type *)& extracted[i];
|
||||
|
||||
vector_type *vp = (vector_type *)&vec;
|
||||
@ -127,11 +121,11 @@ void extract(const vobj &vec,std::vector<typename vobj::scalar_object *> &extrac
|
||||
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
const int Nsimd=vobj::vector_type::Nsimd();
|
||||
|
||||
assert(extracted.size()==Nsimd);
|
||||
int Nextr=extracted.size();
|
||||
int s = Nsimd/Nextr;
|
||||
|
||||
std::vector<scalar_type *> pointers(Nsimd);
|
||||
for(int i=0;i<Nsimd;i++) {
|
||||
for(int i=0;i<Nextr;i++) {
|
||||
pointers[i] =(scalar_type *)& extracted[i][offset];
|
||||
}
|
||||
|
||||
@ -153,10 +147,11 @@ void merge(vobj &vec,std::vector<typename vobj::scalar_object> &extracted)
|
||||
const int Nsimd=vobj::vector_type::Nsimd();
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
assert(extracted.size()==Nsimd);
|
||||
int Nextr = extracted.size();
|
||||
int splat=Nsimd/Nextr;
|
||||
|
||||
std::vector<scalar_type *> pointers(Nsimd);
|
||||
for(int i=0;i<Nsimd;i++)
|
||||
std::vector<scalar_type *> pointers(Nextr);
|
||||
for(int i=0;i<Nextr;i++)
|
||||
pointers[i] =(scalar_type *)& extracted[i];
|
||||
|
||||
vector_type *vp = (vector_type *)&vec;
|
||||
@ -177,14 +172,14 @@ void merge(vobj &vec,std::vector<typename vobj::scalar_object *> &extracted,int
|
||||
const int Nsimd=vobj::vector_type::Nsimd();
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
assert(extracted.size()==Nsimd);
|
||||
int Nextr=extracted.size();
|
||||
|
||||
std::vector<scalar_type *> pointers(Nsimd);
|
||||
for(int i=0;i<Nsimd;i++)
|
||||
std::vector<scalar_type *> pointers(Nextr);
|
||||
for(int i=0;i<Nextr;i++)
|
||||
pointers[i] =(scalar_type *)& extracted[i][offset];
|
||||
|
||||
|
||||
vector_type *vp = (vector_type *)&vec;
|
||||
assert((void *)vp!=NULL);
|
||||
|
||||
for(int w=0;w<words;w++){
|
||||
merge<vector_type,scalar_type>(&vp[w],pointers,w);
|
||||
}
|
||||
|
@ -10,7 +10,8 @@ namespace Grid {
|
||||
typedef typename sobj::scalar_type scalar;
|
||||
decltype(innerProduct(arg,arg)) nrm;
|
||||
nrm = innerProduct(arg,arg);
|
||||
return real(nrm);
|
||||
RealD ret = real(nrm);
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class l,class r,int N> inline
|
||||
|
32
lib/tensors/Tensor_logical.h
Normal file
32
lib/tensors/Tensor_logical.h
Normal file
@ -0,0 +1,32 @@
|
||||
#ifndef GRID_TENSOR_LOGICAL_H
|
||||
#define GRID_TENSOR_LOGICAL_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
#define LOGICAL_BINOP(Op)\
|
||||
template<class v> strong_inline iScalar<v> operator Op (const iScalar<v>& lhs,const iScalar<v>& rhs) \
|
||||
{\
|
||||
iScalar<v> ret;\
|
||||
ret._internal = lhs._internal Op rhs._internal ;\
|
||||
return ret;\
|
||||
}\
|
||||
template<class l> strong_inline iScalar<l> operator Op (const iScalar<l>& lhs,Integer rhs) \
|
||||
{\
|
||||
typename iScalar<l>::scalar_type t; t=rhs;\
|
||||
typename iScalar<l>::tensor_reduced srhs; srhs=t;\
|
||||
return lhs Op srhs;\
|
||||
}\
|
||||
template<class l> strong_inline iScalar<l> operator Op (Integer lhs,const iScalar<l>& rhs) \
|
||||
{\
|
||||
typename iScalar<l>::scalar_type t;t=lhs;\
|
||||
typename iScalar<l>::tensor_reduced slhs;slhs=t;\
|
||||
return slhs Op rhs;\
|
||||
}
|
||||
|
||||
LOGICAL_BINOP(|);
|
||||
LOGICAL_BINOP(&);
|
||||
LOGICAL_BINOP(||);
|
||||
LOGICAL_BINOP(&&);
|
||||
|
||||
}
|
||||
#endif
|
@ -26,6 +26,8 @@ namespace Grid {
|
||||
typedef typename T::vector_type vector_type;
|
||||
typedef typename T::tensor_reduced tensor_reduced;
|
||||
typedef typename T::scalar_object scalar_object;
|
||||
typedef typename T::Complexified Complexified;
|
||||
typedef typename T::Realified Realified;
|
||||
enum { TensorLevel = T::TensorLevel };
|
||||
};
|
||||
|
||||
@ -38,6 +40,8 @@ namespace Grid {
|
||||
typedef RealF vector_type;
|
||||
typedef RealF tensor_reduced ;
|
||||
typedef RealF scalar_object;
|
||||
typedef ComplexF Complexified;
|
||||
typedef RealF Realified;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<RealD> {
|
||||
@ -46,6 +50,8 @@ namespace Grid {
|
||||
typedef RealD vector_type;
|
||||
typedef RealD tensor_reduced;
|
||||
typedef RealD scalar_object;
|
||||
typedef ComplexD Complexified;
|
||||
typedef RealD Realified;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<ComplexF> {
|
||||
@ -54,6 +60,8 @@ namespace Grid {
|
||||
typedef ComplexF vector_type;
|
||||
typedef ComplexF tensor_reduced;
|
||||
typedef ComplexF scalar_object;
|
||||
typedef ComplexF Complexified;
|
||||
typedef RealF Realified;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<ComplexD> {
|
||||
@ -62,6 +70,8 @@ namespace Grid {
|
||||
typedef ComplexD vector_type;
|
||||
typedef ComplexD tensor_reduced;
|
||||
typedef ComplexD scalar_object;
|
||||
typedef ComplexD Complexified;
|
||||
typedef RealD Realified;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<Integer> {
|
||||
@ -70,6 +80,8 @@ namespace Grid {
|
||||
typedef Integer vector_type;
|
||||
typedef Integer tensor_reduced;
|
||||
typedef Integer scalar_object;
|
||||
typedef void Complexified;
|
||||
typedef void Realified;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
|
||||
@ -79,6 +91,8 @@ namespace Grid {
|
||||
typedef vRealF vector_type;
|
||||
typedef vRealF tensor_reduced;
|
||||
typedef RealF scalar_object;
|
||||
typedef vComplexF Complexified;
|
||||
typedef vRealF Realified;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<vRealD> {
|
||||
@ -87,6 +101,8 @@ namespace Grid {
|
||||
typedef vRealD vector_type;
|
||||
typedef vRealD tensor_reduced;
|
||||
typedef RealD scalar_object;
|
||||
typedef vComplexD Complexified;
|
||||
typedef vRealD Realified;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<vComplexF> {
|
||||
@ -95,6 +111,8 @@ namespace Grid {
|
||||
typedef vComplexF vector_type;
|
||||
typedef vComplexF tensor_reduced;
|
||||
typedef ComplexF scalar_object;
|
||||
typedef vComplexF Complexified;
|
||||
typedef vRealF Realified;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<vComplexD> {
|
||||
@ -103,6 +121,8 @@ namespace Grid {
|
||||
typedef vComplexD vector_type;
|
||||
typedef vComplexD tensor_reduced;
|
||||
typedef ComplexD scalar_object;
|
||||
typedef vComplexD Complexified;
|
||||
typedef vRealD Realified;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
template<> class GridTypeMapper<vInteger> {
|
||||
@ -111,6 +131,8 @@ namespace Grid {
|
||||
typedef vInteger vector_type;
|
||||
typedef vInteger tensor_reduced;
|
||||
typedef Integer scalar_object;
|
||||
typedef void Complexified;
|
||||
typedef void Realified;
|
||||
enum { TensorLevel = 0 };
|
||||
};
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
#define GRID_TENSOR_UNARY_H
|
||||
namespace Grid {
|
||||
|
||||
#define UNARY_REAL(func)\
|
||||
#define UNARY(func)\
|
||||
template<class obj> inline auto func(const iScalar<obj> &z) -> iScalar<obj>\
|
||||
{\
|
||||
iScalar<obj> ret;\
|
||||
@ -53,14 +53,71 @@ template<class obj> inline iScalar<obj> func(const iScalar<obj> &z,scal y) \
|
||||
return ret;\
|
||||
}
|
||||
|
||||
UNARY_REAL(sqrt);
|
||||
UNARY_REAL(rsqrt);
|
||||
UNARY_REAL(sin);
|
||||
UNARY_REAL(cos);
|
||||
UNARY(sqrt);
|
||||
UNARY(rsqrt);
|
||||
UNARY(sin);
|
||||
UNARY(cos);
|
||||
UNARY(log);
|
||||
UNARY(exp);
|
||||
UNARY(abs);
|
||||
UNARY(Not);
|
||||
|
||||
|
||||
template<class obj> inline auto toReal(const iScalar<obj> &z) -> typename iScalar<obj>::Realified
|
||||
{
|
||||
typename iScalar<obj>::Realified ret;
|
||||
ret._internal = toReal(z._internal);
|
||||
return ret;
|
||||
}
|
||||
template<class obj,int N> inline auto toReal(const iVector<obj,N> &z) -> typename iVector<obj,N>::Realified
|
||||
{
|
||||
typename iVector<obj,N>::Realified ret;
|
||||
for(int c1=0;c1<N;c1++){
|
||||
ret._internal[c1] = toReal(z._internal[c1]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
template<class obj,int N> inline auto toReal(const iMatrix<obj,N> &z) -> typename iMatrix<obj,N>::Realified
|
||||
{
|
||||
typename iMatrix<obj,N>::Realified ret;
|
||||
for(int c1=0;c1<N;c1++){
|
||||
for(int c2=0;c2<N;c2++){
|
||||
ret._internal[c1][c2] = toReal(z._internal[c1][c2]);
|
||||
}}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class obj> inline auto toComplex(const iScalar<obj> &z) -> typename iScalar<obj>::Complexified
|
||||
{
|
||||
typename iScalar<obj>::Complexified ret;
|
||||
ret._internal = toComplex(z._internal);
|
||||
return ret;
|
||||
}
|
||||
template<class obj,int N> inline auto toComplex(const iVector<obj,N> &z) -> typename iVector<obj,N>::Complexified
|
||||
{
|
||||
typename iVector<obj,N>::Complexified ret;
|
||||
for(int c1=0;c1<N;c1++){
|
||||
ret._internal[c1] = toComplex(z._internal[c1]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
template<class obj,int N> inline auto toComplex(const iMatrix<obj,N> &z) -> typename iMatrix<obj,N>::Complexified
|
||||
{
|
||||
typename iMatrix<obj,N>::Complexified ret;
|
||||
for(int c1=0;c1<N;c1++){
|
||||
for(int c2=0;c2<N;c2++){
|
||||
ret._internal[c1][c2] = toComplex(z._internal[c1][c2]);
|
||||
}}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
BINARY_RSCALAR(mod,Integer);
|
||||
BINARY_RSCALAR(pow,RealD);
|
||||
|
||||
#undef UNARY
|
||||
#undef BINARY_RSCALAR
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -1,11 +1,15 @@
|
||||
|
||||
bin_PROGRAMS = Test_GaugeAction Test_cayley_cg Test_cayley_coarsen_support Test_cayley_even_odd Test_cayley_ldop_cg Test_cayley_ldop_cr Test_cayley_ldop_cr_chebyshev Test_cf_coarsen_support Test_cf_cr_unprec Test_contfrac_cg Test_contfrac_even_odd Test_cshift Test_cshift_red_black Test_dwf_cg_prec Test_dwf_cg_schur Test_dwf_cg_unprec Test_dwf_cr_unprec Test_dwf_even_odd Test_gamma Test_lie_generators Test_main Test_multishift_sqrt Test_nersc_io Test_remez Test_rng Test_rng_fixed Test_simd Test_stencil Test_wilson_cg_prec Test_wilson_cg_schur Test_wilson_cg_unprec Test_wilson_cr_unprec Test_wilson_even_odd
|
||||
bin_PROGRAMS = Test_GaugeAction Test_Metropolis Test_cayley_cg Test_cayley_coarsen_support Test_cayley_even_odd Test_cayley_ldop_cg Test_cayley_ldop_cr Test_cf_coarsen_support Test_cf_cr_unprec Test_contfrac_cg Test_contfrac_even_odd Test_cshift Test_cshift_red_black Test_dwf_cg_prec Test_dwf_cg_schur Test_dwf_cg_unprec Test_dwf_cr_unprec Test_dwf_even_odd Test_gamma Test_lie_generators Test_main Test_multishift_sqrt Test_nersc_io Test_remez Test_rng Test_rng_fixed Test_simd Test_stencil Test_wilson_cg_prec Test_wilson_cg_schur Test_wilson_cg_unprec Test_wilson_cr_unprec Test_wilson_even_odd
|
||||
|
||||
|
||||
Test_GaugeAction_SOURCES=Test_GaugeAction.cc
|
||||
Test_GaugeAction_LDADD=-lGrid
|
||||
|
||||
|
||||
Test_Metropolis_SOURCES=Test_Metropolis.cc
|
||||
Test_Metropolis_LDADD=-lGrid
|
||||
|
||||
|
||||
Test_cayley_cg_SOURCES=Test_cayley_cg.cc
|
||||
Test_cayley_cg_LDADD=-lGrid
|
||||
|
||||
@ -26,10 +30,6 @@ Test_cayley_ldop_cr_SOURCES=Test_cayley_ldop_cr.cc
|
||||
Test_cayley_ldop_cr_LDADD=-lGrid
|
||||
|
||||
|
||||
Test_cayley_ldop_cr_chebyshev_SOURCES=Test_cayley_ldop_cr_chebyshev.cc
|
||||
Test_cayley_ldop_cr_chebyshev_LDADD=-lGrid
|
||||
|
||||
|
||||
Test_cf_coarsen_support_SOURCES=Test_cf_coarsen_support.cc
|
||||
Test_cf_coarsen_support_LDADD=-lGrid
|
||||
|
||||
|
@ -27,6 +27,7 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
@ -102,16 +102,11 @@ int main (int argc, char ** argv)
|
||||
CoarseVector c_res (Coarse5d);
|
||||
CoarseVector c_proj(Coarse5d);
|
||||
|
||||
// TODO
|
||||
// -- promote from subspace, check we get the vector we wanted
|
||||
// -- apply ldop; check we get the same as inner product of M times big vec
|
||||
// -- pick blocks one by one. Evaluate matrix elements.
|
||||
Complex one(1.0);
|
||||
c_src = one; // 1 in every element for vector 1.
|
||||
|
||||
blockPromote(c_src,err,subspace);
|
||||
|
||||
|
||||
prom=zero;
|
||||
for(int b=0;b<nbasis;b++){
|
||||
prom=prom+subspace[b];
|
||||
|
@ -66,7 +66,8 @@ int main (int argc, char ** argv)
|
||||
|
||||
nrm = abs(scm-cm()()());
|
||||
std::vector<int> peer(4);
|
||||
int index=real(cm);
|
||||
Complex tmp =cm;
|
||||
Integer index=real(tmp);
|
||||
Fine.CoorFromIndex(peer,index,latt_size);
|
||||
|
||||
if (nrm > 0){
|
||||
|
@ -100,7 +100,8 @@ int main (int argc, char ** argv)
|
||||
|
||||
double nrm = abs(scm-cm()()());
|
||||
std::vector<int> peer(4);
|
||||
int index=real(cm);
|
||||
Complex ctmp = cm;
|
||||
Integer index=real(ctmp);
|
||||
Fine.CoorFromIndex(peer,index,latt_size);
|
||||
|
||||
if (nrm > 0){
|
||||
@ -138,7 +139,8 @@ int main (int argc, char ** argv)
|
||||
|
||||
nrm = abs(scm-cm()()());
|
||||
std::vector<int> peer(4);
|
||||
int index=real(cm);
|
||||
Complex ctmp=cm;
|
||||
Integer index=real(ctmp);
|
||||
Fine.CoorFromIndex(peer,index,latt_size);
|
||||
|
||||
if (nrm > 0){
|
||||
|
@ -95,7 +95,7 @@ int main (int argc, char ** argv)
|
||||
for(int mu=0;mu<6;mu++){
|
||||
result = Gamma(g[mu])* ident * Gamma(g[mu]);
|
||||
result = result - ident;
|
||||
double mag = TensorRemove(norm2(result));
|
||||
RealD mag = norm2(result);
|
||||
std::cout << list[mu]<<" " << mag<<std::endl;
|
||||
}
|
||||
|
||||
@ -103,7 +103,7 @@ int main (int argc, char ** argv)
|
||||
for(int mu=0;mu<6;mu++){
|
||||
result = rnd * Gamma(g[mu]);
|
||||
result = result + rnd * Gamma(g[mu+6]);
|
||||
double mag = TensorRemove(norm2(result));
|
||||
RealD mag = norm2(result);
|
||||
std::cout << list[mu]<<" " << mag<<std::endl;
|
||||
}
|
||||
|
||||
@ -111,7 +111,7 @@ int main (int argc, char ** argv)
|
||||
for(int mu=0;mu<6;mu++){
|
||||
result = Gamma(g[mu]) *rnd;
|
||||
result = result + Gamma(g[mu+6])*rnd;
|
||||
double mag = TensorRemove(norm2(result));
|
||||
RealD mag = norm2(result);
|
||||
std::cout << list[mu]<<" " << mag<<std::endl;
|
||||
}
|
||||
|
||||
|
@ -2,226 +2,91 @@
|
||||
|
||||
#include <qcd/utils/CovariantCshift.h>
|
||||
#include <qcd/utils/WilsonLoops.h>
|
||||
#include <qcd/utils/SUn.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace Grid;
|
||||
using namespace Grid::QCD;
|
||||
|
||||
class suN {
|
||||
public:
|
||||
|
||||
static int generators(int ncolour) { return ncolour*ncolour-1; }
|
||||
static int su2subgroups(int ncolour) { return (ncolour*(ncolour-1))/2; }
|
||||
|
||||
template<typename CComplex,int N> using suNmatrix = iScalar<iScalar<iMatrix<CComplex,N> > > ;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// There are N^2-1 generators for SU(N).
|
||||
//
|
||||
// We take a traceless hermitian generator basis as follows
|
||||
//
|
||||
// * Normalisation: trace ta tb = 1/2 delta_ab
|
||||
//
|
||||
// * Off diagonal
|
||||
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
|
||||
//
|
||||
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
|
||||
// direct count off each row
|
||||
//
|
||||
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
|
||||
//
|
||||
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
|
||||
// 1+ 2+ + + Nc-1
|
||||
//
|
||||
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
|
||||
//
|
||||
// - We enumerate the row-col pairs.
|
||||
// - for each row col pair there is a (sigma_x) and a (sigma_y) like generator
|
||||
//
|
||||
//
|
||||
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => delta_{i,i1} delta_{j,i2} + delta_{i,i1} delta_{j,i2}
|
||||
// t^a_ij = { in Nc(Nc-1)/2 ... Nc^(Nc-1) -1} => i delta_{i,i1} delta_{j,i2} - i delta_{i,i1} delta_{j,i2}
|
||||
//
|
||||
// * Diagonal; must be traceless and normalised
|
||||
// - Sequence is
|
||||
// N (1,-1,0,0...)
|
||||
// N (1, 1,-2,0...)
|
||||
// N (1, 1, 1,-3,0...)
|
||||
// N (1, 1, 1, 1,-4,0...)
|
||||
//
|
||||
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
|
||||
// NB this gives the famous SU3 result for su2 index 8
|
||||
//
|
||||
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
|
||||
//
|
||||
// ( 1 )
|
||||
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
|
||||
// ( -2)
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
template<class CComplex,int Ncolour>
|
||||
static void suNgenerator(int lieIndex,suNmatrix<CComplex,Ncolour> &ta){
|
||||
// map lie index to which type of generator
|
||||
int diagIndex;
|
||||
int su2Index;
|
||||
int sigxy;
|
||||
int NNm1 = Ncolour*(Ncolour-1);
|
||||
if ( lieIndex>= NNm1 ) {
|
||||
diagIndex = lieIndex -NNm1;
|
||||
suNgeneratorDiagonal(diagIndex,ta);
|
||||
return;
|
||||
}
|
||||
sigxy = lieIndex&0x1;
|
||||
su2Index= lieIndex>>1;
|
||||
if ( sigxy ) suNgeneratorSigmaY(su2Index,ta);
|
||||
else suNgeneratorSigmaX(su2Index,ta);
|
||||
}
|
||||
template<class CComplex,int Ncolour>
|
||||
static void suNgeneratorSigmaX(int su2Index,suNmatrix<CComplex,Ncolour> &ta){
|
||||
ta=zero;
|
||||
int i1,i2;
|
||||
su2SubGroupIndex<Ncolour>(i1,i2,su2Index);
|
||||
ta()()(i1,i2)=1.0;
|
||||
ta()()(i2,i1)=1.0;
|
||||
ta= ta *0.5;
|
||||
}
|
||||
template<class CComplex,int Ncolour>
|
||||
static void suNgeneratorSigmaY(int su2Index,suNmatrix<CComplex,Ncolour> &ta){
|
||||
ta=zero;
|
||||
Complex i(0.0,1.0);
|
||||
int i1,i2;
|
||||
su2SubGroupIndex<Ncolour>(i1,i2,su2Index);
|
||||
ta()()(i1,i2)=-i;
|
||||
ta()()(i2,i1)= i;
|
||||
ta= ta *0.5;
|
||||
}
|
||||
template<class CComplex,int Ncolour>
|
||||
static void suNgeneratorDiagonal(int diagIndex,suNmatrix<CComplex,Ncolour> &ta){
|
||||
ta=zero;
|
||||
int trsq=0;
|
||||
int last=diagIndex+1;
|
||||
for(int i=0;i<=diagIndex;i++){
|
||||
ta()()(i,i) = 1.0;
|
||||
trsq++;
|
||||
}
|
||||
ta()()(last,last) = -last;
|
||||
trsq+=last*last;
|
||||
RealD nrm = 1.0/std::sqrt(2.0*trsq);
|
||||
ta = ta *nrm;
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Map a
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
template<int Ncolour>
|
||||
static void su2SubGroupIndex(int &i1,int &i2,int su2_index){
|
||||
|
||||
assert( (su2_index>=0) && (su2_index< (Ncolour*(Ncolour-1))/2) );
|
||||
|
||||
int spare=su2_index;
|
||||
for(i1=0;spare >= (Ncolour-1-i1);i1++ ){
|
||||
spare = spare - (Ncolour-1-i1); // remove the Nc-1-i1 terms
|
||||
}
|
||||
i2=i1+1+spare;
|
||||
}
|
||||
template<class CComplex,int Ncolour>
|
||||
static void su2Extract(std::vector<LatticeComplex> &r,const Lattice<suNmatrix<CComplex,Ncolour> > &source, int su2_index)
|
||||
{
|
||||
assert(r.size() == 4); // store in 4 real parts
|
||||
|
||||
for(int i=0;i<4;i++){
|
||||
conformable(r[i],source);
|
||||
}
|
||||
|
||||
int i1,i2;
|
||||
su2SubGroupIndex<Ncolour>(i1,i2,su2_index);
|
||||
|
||||
/* Compute the b(k) of A_SU(2) = b0 + i sum_k bk sigma_k */
|
||||
r[0] = real(source()()(i1,i1) + source()()(i2,i2));
|
||||
r[1] = imag(source()()(i1,i2) + source()()(i2,i1));
|
||||
r[2] = real(source()()(i1,i2) - source()()(i2,i1));
|
||||
r[3] = imag(source()()(i1,i1) - source()()(i2,i2));
|
||||
}
|
||||
|
||||
|
||||
template<int Ncolour> static void printGenerators(void)
|
||||
{
|
||||
for(int gen=0;gen<suN::generators(Ncolour);gen++){
|
||||
suN::suNmatrix<Complex,Ncolour> ta;
|
||||
suN::suNgenerator(gen,ta);
|
||||
std::cout<< "Nc = "<<Ncolour<<" t_"<<gen<<std::endl;
|
||||
std::cout<<ta<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
template<int Ncolour> static void testGenerators(void){
|
||||
suNmatrix<Complex,Ncolour> ta;
|
||||
suNmatrix<Complex,Ncolour> tb;
|
||||
std::cout<<"Checking trace ta tb is 0.5 delta_ab"<<std::endl;
|
||||
for(int a=0;a<generators(Ncolour);a++){
|
||||
for(int b=0;b<generators(Ncolour);b++){
|
||||
suNgenerator(a,ta);
|
||||
suNgenerator(b,tb);
|
||||
Complex tr =TensorRemove(trace(ta*tb));
|
||||
std::cout<<tr<<" ";
|
||||
if(a==b) assert(abs(tr-Complex(0.5))<1.0e-6);
|
||||
if(a!=b) assert(abs(tr)<1.0e-6);
|
||||
}
|
||||
std::cout<<std::endl;
|
||||
}
|
||||
std::cout<<"Checking hermitian"<<std::endl;
|
||||
for(int a=0;a<generators(Ncolour);a++){
|
||||
suNgenerator(a,ta);
|
||||
std::cout<<a<<" ";
|
||||
assert(norm2(ta-adj(ta))<1.0e-6);
|
||||
}
|
||||
std::cout<<std::endl;
|
||||
|
||||
std::cout<<"Checking traceless"<<std::endl;
|
||||
for(int a=0;a<generators(Ncolour);a++){
|
||||
suNgenerator(a,ta);
|
||||
Complex tr =TensorRemove(trace(ta));
|
||||
std::cout<<a<<" ";
|
||||
assert(abs(tr)<1.0e-6);
|
||||
}
|
||||
std::cout<<std::endl;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
int main (int argc, char ** argv)
|
||||
{
|
||||
Grid_init(&argc,&argv);
|
||||
|
||||
|
||||
std::vector<int> simd_layout = GridDefaultSimd(4,vComplexF::Nsimd());
|
||||
std::vector<int> mpi_layout = GridDefaultMpi();
|
||||
std::vector<int> latt_size ({4,4,4,4});
|
||||
|
||||
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
|
||||
|
||||
LatticeGaugeField Umu(&Fine);
|
||||
std::vector<int> latt({4,4,4,8});
|
||||
GridCartesian * grid = SpaceTimeGrid::makeFourDimGrid(latt,
|
||||
GridDefaultSimd(Nd,vComplexF::Nsimd()),
|
||||
GridDefaultMpi());
|
||||
|
||||
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(grid);
|
||||
|
||||
std::cout<<"*********************************************"<<std::endl;
|
||||
std::cout<<"* Generators for SU(2)"<<std::endl;
|
||||
std::cout<<"*********************************************"<<std::endl;
|
||||
suN::printGenerators<2>();
|
||||
suN::testGenerators<2>();
|
||||
SU2::printGenerators();
|
||||
SU2::testGenerators();
|
||||
|
||||
std::cout<<"*********************************************"<<std::endl;
|
||||
std::cout<<"* Generators for SU(3)"<<std::endl;
|
||||
std::cout<<"*********************************************"<<std::endl;
|
||||
suN::printGenerators<3>();
|
||||
suN::testGenerators<3>();
|
||||
std::cout<<"*********************************************"<<std::endl;
|
||||
std::cout<<"* Generators for SU(4)"<<std::endl;
|
||||
std::cout<<"*********************************************"<<std::endl;
|
||||
suN::printGenerators<4>();
|
||||
suN::testGenerators<4>();
|
||||
std::cout<<"*********************************************"<<std::endl;
|
||||
std::cout<<"* Generators for SU(5)"<<std::endl;
|
||||
std::cout<<"*********************************************"<<std::endl;
|
||||
suN::printGenerators<5>();
|
||||
suN::testGenerators<5>();
|
||||
SU3::printGenerators();
|
||||
SU3::testGenerators();
|
||||
|
||||
// std::cout<<"*********************************************"<<std::endl;
|
||||
// std::cout<<"* Generators for SU(4)"<<std::endl;
|
||||
// std::cout<<"*********************************************"<<std::endl;
|
||||
// SU4::printGenerators();
|
||||
// SU4::testGenerators();
|
||||
|
||||
// std::cout<<"*********************************************"<<std::endl;
|
||||
// std::cout<<"* Generators for SU(5)"<<std::endl;
|
||||
// std::cout<<"*********************************************"<<std::endl;
|
||||
// SU5::printGenerators();
|
||||
// SU5::testGenerators();
|
||||
|
||||
///////////////////////////////
|
||||
// Configuration of known size
|
||||
///////////////////////////////
|
||||
NerscField header;
|
||||
std::string file("./ckpoint_lat.400");
|
||||
LatticeGaugeField Umu(grid);
|
||||
// readNerscConfiguration(Umu,header,file);
|
||||
Umu=1.0; // Cold start
|
||||
|
||||
// RNG set up for test
|
||||
std::vector<int> pseeds({1,2,3,4,5}); // once I caught a fish alive
|
||||
std::vector<int> sseeds({6,7,8,9,10});// then i let it go again
|
||||
GridParallelRNG pRNG(grid); pRNG.SeedFixedIntegers(pseeds);
|
||||
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(sseeds);
|
||||
|
||||
// SU3 colour operatoions
|
||||
LatticeColourMatrix link(grid);
|
||||
LatticeColourMatrix staple(grid);
|
||||
int mu=0;
|
||||
|
||||
// Get Staple
|
||||
ColourWilsonLoops::Staple(staple,Umu,mu);
|
||||
// Get Link
|
||||
link = peekIndex<LorentzIndex>(Umu,mu);
|
||||
|
||||
// Apply heatbath to the link
|
||||
RealD beta=6.0;
|
||||
int subgroup=0;
|
||||
int nhb=1;
|
||||
int trials=0;
|
||||
int fails=0;
|
||||
|
||||
LatticeInteger one(rbGrid); one = 1; // fill with ones
|
||||
LatticeInteger mask(grid); mask= zero;
|
||||
one.checkerboard=Even;
|
||||
setCheckerboard(mask,one);
|
||||
|
||||
// update Even checkerboard
|
||||
|
||||
SU3::SubGroupHeatBath(sRNG,pRNG,beta,link,staple,subgroup,
|
||||
nhb,trials,fails,mask);
|
||||
|
||||
|
||||
|
||||
Grid_finalize();
|
||||
}
|
||||
|
@ -242,7 +242,7 @@ int main (int argc, char ** argv)
|
||||
|
||||
|
||||
{ // Peek-ology and Poke-ology, with a little app-ology
|
||||
TComplex c;
|
||||
Complex c;
|
||||
ColourMatrix c_m;
|
||||
SpinMatrix s_m;
|
||||
SpinColourMatrix sc_m;
|
||||
@ -299,7 +299,7 @@ int main (int argc, char ** argv)
|
||||
}
|
||||
|
||||
Bar = zero;
|
||||
Bar = where(lex<10,Foo,Bar);
|
||||
Bar = where(lex<Integer(10),Foo,Bar);
|
||||
{
|
||||
std::vector<int> coor(4);
|
||||
for(coor[3]=0;coor[3]<latt_size[3]/mpi_layout[3];coor[3]++){
|
||||
@ -467,7 +467,8 @@ int main (int argc, char ** argv)
|
||||
mdiff = shifted1-shifted2;
|
||||
amdiff=adj(mdiff);
|
||||
ColourMatrix prod = amdiff*mdiff;
|
||||
Real Ttr=real(trace(prod));
|
||||
Complex trprod = trace(prod);
|
||||
Real Ttr=real(trprod);
|
||||
double nn=Ttr;
|
||||
if ( nn > 0 )
|
||||
cout<<"Shift real trace fail "<<coor[0]<<coor[1]<<coor[2]<<coor[3] <<endl;
|
||||
|
Loading…
Reference in New Issue
Block a user