mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Moving these out of algorithms
This commit is contained in:
parent
a34c8a2961
commit
31f99574fa
@ -1,143 +0,0 @@
|
||||
namespace Grid {
|
||||
|
||||
/*
|
||||
BlockProjector
|
||||
|
||||
If _HP_BLOCK_PROJECTORS_ is defined, we assume that _evec is a basis that is not
|
||||
fully orthonormalized (to the precision of the coarse field) and we allow for higher-precision
|
||||
coarse field than basis field.
|
||||
|
||||
*/
|
||||
//#define _HP_BLOCK_PROJECTORS_
|
||||
|
||||
template<typename Field>
|
||||
class BlockProjector {
|
||||
public:
|
||||
|
||||
BasisFieldVector<Field>& _evec;
|
||||
BlockedGrid<Field>& _bgrid;
|
||||
|
||||
BlockProjector(BasisFieldVector<Field>& evec, BlockedGrid<Field>& bgrid) : _evec(evec), _bgrid(bgrid) {
|
||||
}
|
||||
|
||||
void createOrthonormalBasis(RealD thres = 0.0) {
|
||||
|
||||
GridStopWatch sw;
|
||||
sw.Start();
|
||||
|
||||
int cnt = 0;
|
||||
|
||||
#pragma omp parallel shared(cnt)
|
||||
{
|
||||
int lcnt = 0;
|
||||
|
||||
#pragma omp for
|
||||
for (int b=0;b<_bgrid._o_blocks;b++) {
|
||||
|
||||
for (int i=0;i<_evec._Nm;i++) {
|
||||
|
||||
auto nrm0 = _bgrid.block_sp(b,_evec._v[i],_evec._v[i]);
|
||||
|
||||
// |i> -= <j|i> |j>
|
||||
for (int j=0;j<i;j++) {
|
||||
_bgrid.block_caxpy(b,_evec._v[i],-_bgrid.block_sp(b,_evec._v[j],_evec._v[i]),_evec._v[j],_evec._v[i]);
|
||||
}
|
||||
|
||||
auto nrm = _bgrid.block_sp(b,_evec._v[i],_evec._v[i]);
|
||||
|
||||
auto eps = nrm/nrm0;
|
||||
if (Reduce(eps).real() < thres) {
|
||||
lcnt++;
|
||||
}
|
||||
|
||||
// TODO: if norm is too small, remove this eigenvector/mark as not needed; in practice: set it to zero norm here and return a mask
|
||||
// that is then used later to decide not to write certain eigenvectors to disk (add a norm calculation before subtraction step and look at nrm/nrm0 < eps to decide)
|
||||
_bgrid.block_cscale(b,1.0 / sqrt(nrm),_evec._v[i]);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#pragma omp critical
|
||||
{
|
||||
cnt += lcnt;
|
||||
}
|
||||
}
|
||||
sw.Stop();
|
||||
std::cout << GridLogMessage << "Gram-Schmidt to create blocked basis took " << sw.Elapsed() << " (" << ((RealD)cnt / (RealD)_bgrid._o_blocks / (RealD)_evec._Nm)
|
||||
<< " below threshold)" << std::endl;
|
||||
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void coarseToFine(const CoarseField& in, Field& out) {
|
||||
|
||||
out = zero;
|
||||
out.checkerboard = _evec._v[0].checkerboard;
|
||||
|
||||
int Nbasis = sizeof(in._odata[0]._internal._internal) / sizeof(in._odata[0]._internal._internal[0]);
|
||||
assert(Nbasis == _evec._Nm);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int b=0;b<_bgrid._o_blocks;b++) {
|
||||
for (int j=0;j<_evec._Nm;j++) {
|
||||
_bgrid.block_caxpy(b,out,in._odata[b]._internal._internal[j],_evec._v[j],out);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void fineToCoarse(const Field& in, CoarseField& out) {
|
||||
|
||||
out = zero;
|
||||
|
||||
int Nbasis = sizeof(out._odata[0]._internal._internal) / sizeof(out._odata[0]._internal._internal[0]);
|
||||
assert(Nbasis == _evec._Nm);
|
||||
|
||||
|
||||
Field tmp(_bgrid._grid);
|
||||
tmp = in;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int b=0;b<_bgrid._o_blocks;b++) {
|
||||
for (int j=0;j<_evec._Nm;j++) {
|
||||
// |rhs> -= <j|rhs> |j>
|
||||
auto c = _bgrid.block_sp(b,_evec._v[j],tmp);
|
||||
_bgrid.block_caxpy(b,tmp,-c,_evec._v[j],tmp); // may make this more numerically stable
|
||||
out._odata[b]._internal._internal[j] = c;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void deflateFine(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
|
||||
result = zero;
|
||||
for (int i=0;i<N;i++) {
|
||||
Field tmp(result._grid);
|
||||
coarseToFine(_coef._v[i],tmp);
|
||||
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void deflateCoarse(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
|
||||
CoarseField src_coarse(_coef._v[0]._grid);
|
||||
CoarseField result_coarse = src_coarse;
|
||||
result_coarse = zero;
|
||||
fineToCoarse(src_orig,src_coarse);
|
||||
for (int i=0;i<N;i++) {
|
||||
axpy(result_coarse,TensorRemove(innerProduct(_coef._v[i],src_coarse)) / eval[i],_coef._v[i],result_coarse);
|
||||
}
|
||||
coarseToFine(result_coarse,result);
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void deflate(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
|
||||
// Deflation on coarse Grid is much faster, so use it by default. Deflation on fine Grid is kept for legacy reasons for now.
|
||||
deflateCoarse(_coef,eval,N,src_orig,result);
|
||||
}
|
||||
|
||||
};
|
||||
}
|
@ -1,401 +0,0 @@
|
||||
namespace Grid {
|
||||
|
||||
template<typename Field>
|
||||
class BlockedGrid {
|
||||
public:
|
||||
GridBase* _grid;
|
||||
typedef typename Field::scalar_type Coeff_t;
|
||||
typedef typename Field::vector_type vCoeff_t;
|
||||
|
||||
std::vector<int> _bs; // block size
|
||||
std::vector<int> _nb; // number of blocks
|
||||
std::vector<int> _l; // local dimensions irrespective of cb
|
||||
std::vector<int> _l_cb; // local dimensions of checkerboarded vector
|
||||
std::vector<int> _l_cb_o; // local dimensions of inner checkerboarded vector
|
||||
std::vector<int> _bs_cb; // block size in checkerboarded vector
|
||||
std::vector<int> _nb_o; // number of blocks of simd o-sites
|
||||
|
||||
int _nd, _blocks, _cf_size, _cf_block_size, _cf_o_block_size, _o_blocks, _block_sites;
|
||||
|
||||
BlockedGrid(GridBase* grid, const std::vector<int>& block_size) :
|
||||
_grid(grid), _bs(block_size), _nd((int)_bs.size()),
|
||||
_nb(block_size), _l(block_size), _l_cb(block_size), _nb_o(block_size),
|
||||
_l_cb_o(block_size), _bs_cb(block_size) {
|
||||
|
||||
_blocks = 1;
|
||||
_o_blocks = 1;
|
||||
_l = grid->FullDimensions();
|
||||
_l_cb = grid->LocalDimensions();
|
||||
_l_cb_o = grid->_rdimensions;
|
||||
|
||||
_cf_size = 1;
|
||||
_block_sites = 1;
|
||||
for (int i=0;i<_nd;i++) {
|
||||
_l[i] /= grid->_processors[i];
|
||||
|
||||
assert(!(_l[i] % _bs[i])); // lattice must accommodate choice of blocksize
|
||||
|
||||
int r = _l[i] / _l_cb[i];
|
||||
assert(!(_bs[i] % r)); // checkerboarding must accommodate choice of blocksize
|
||||
_bs_cb[i] = _bs[i] / r;
|
||||
_block_sites *= _bs_cb[i];
|
||||
_nb[i] = _l[i] / _bs[i];
|
||||
_nb_o[i] = _nb[i] / _grid->_simd_layout[i];
|
||||
if (_nb[i] % _grid->_simd_layout[i]) { // simd must accommodate choice of blocksize
|
||||
std::cout << GridLogMessage << "Problem: _nb[" << i << "] = " << _nb[i] << " _grid->_simd_layout[" << i << "] = " << _grid->_simd_layout[i] << std::endl;
|
||||
assert(0);
|
||||
}
|
||||
_blocks *= _nb[i];
|
||||
_o_blocks *= _nb_o[i];
|
||||
_cf_size *= _l[i];
|
||||
}
|
||||
|
||||
_cf_size *= 12 / 2;
|
||||
_cf_block_size = _cf_size / _blocks;
|
||||
_cf_o_block_size = _cf_size / _o_blocks;
|
||||
|
||||
std::cout << GridLogMessage << "BlockedGrid:" << std::endl;
|
||||
std::cout << GridLogMessage << " _l = " << _l << std::endl;
|
||||
std::cout << GridLogMessage << " _l_cb = " << _l_cb << std::endl;
|
||||
std::cout << GridLogMessage << " _l_cb_o = " << _l_cb_o << std::endl;
|
||||
std::cout << GridLogMessage << " _bs = " << _bs << std::endl;
|
||||
std::cout << GridLogMessage << " _bs_cb = " << _bs_cb << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << " _nb = " << _nb << std::endl;
|
||||
std::cout << GridLogMessage << " _nb_o = " << _nb_o << std::endl;
|
||||
std::cout << GridLogMessage << " _blocks = " << _blocks << std::endl;
|
||||
std::cout << GridLogMessage << " _o_blocks = " << _o_blocks << std::endl;
|
||||
std::cout << GridLogMessage << " sizeof(vCoeff_t) = " << sizeof(vCoeff_t) << std::endl;
|
||||
std::cout << GridLogMessage << " _cf_size = " << _cf_size << std::endl;
|
||||
std::cout << GridLogMessage << " _cf_block_size = " << _cf_block_size << std::endl;
|
||||
std::cout << GridLogMessage << " _block_sites = " << _block_sites << std::endl;
|
||||
std::cout << GridLogMessage << " _grid->oSites() = " << _grid->oSites() << std::endl;
|
||||
|
||||
// _grid->Barrier();
|
||||
//abort();
|
||||
}
|
||||
|
||||
void block_to_coor(int b, std::vector<int>& x0) {
|
||||
|
||||
std::vector<int> bcoor;
|
||||
bcoor.resize(_nd);
|
||||
x0.resize(_nd);
|
||||
assert(b < _o_blocks);
|
||||
Lexicographic::CoorFromIndex(bcoor,b,_nb_o);
|
||||
int i;
|
||||
|
||||
for (i=0;i<_nd;i++) {
|
||||
x0[i] = bcoor[i]*_bs_cb[i];
|
||||
}
|
||||
|
||||
//std::cout << GridLogMessage << "Map block b -> " << x0 << std::endl;
|
||||
|
||||
}
|
||||
|
||||
void block_site_to_o_coor(const std::vector<int>& x0, std::vector<int>& coor, int i) {
|
||||
Lexicographic::CoorFromIndex(coor,i,_bs_cb);
|
||||
for (int j=0;j<_nd;j++)
|
||||
coor[j] += x0[j];
|
||||
}
|
||||
|
||||
int block_site_to_o_site(const std::vector<int>& x0, int i) {
|
||||
std::vector<int> coor; coor.resize(_nd);
|
||||
block_site_to_o_coor(x0,coor,i);
|
||||
Lexicographic::IndexFromCoor(coor,i,_l_cb_o);
|
||||
return i;
|
||||
}
|
||||
|
||||
vCoeff_t block_sp(int b, const Field& x, const Field& y) {
|
||||
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
vCoeff_t ret = 0.0;
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
ret += TensorRemove(innerProduct(x._odata[ss],y._odata[ss]));
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
vCoeff_t block_sp(int b, const Field& x, const std::vector< ComplexD >& y) {
|
||||
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
constexpr int nsimd = sizeof(vCoeff_t) / sizeof(Coeff_t);
|
||||
int lsize = _cf_o_block_size / _block_sites;
|
||||
|
||||
std::vector< ComplexD > ret(nsimd);
|
||||
for (int i=0;i<nsimd;i++)
|
||||
ret[i] = 0.0;
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
|
||||
int n = lsize / nsimd;
|
||||
for (int l=0;l<n;l++) {
|
||||
for (int j=0;j<nsimd;j++) {
|
||||
int t = lsize * i + l*nsimd + j;
|
||||
|
||||
ret[j] += conjugate(((Coeff_t*)&x._odata[ss]._internal)[l*nsimd + j]) * y[t];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
vCoeff_t vret;
|
||||
for (int i=0;i<nsimd;i++)
|
||||
((Coeff_t*)&vret)[i] = (Coeff_t)ret[i];
|
||||
|
||||
return vret;
|
||||
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void vcaxpy(iScalar<T>& r,const vCoeff_t& a,const iScalar<T>& x,const iScalar<T>& y) {
|
||||
vcaxpy(r._internal,a,x._internal,y._internal);
|
||||
}
|
||||
|
||||
template<class T,int N>
|
||||
void vcaxpy(iVector<T,N>& r,const vCoeff_t& a,const iVector<T,N>& x,const iVector<T,N>& y) {
|
||||
for (int i=0;i<N;i++)
|
||||
vcaxpy(r._internal[i],a,x._internal[i],y._internal[i]);
|
||||
}
|
||||
|
||||
void vcaxpy(vCoeff_t& r,const vCoeff_t& a,const vCoeff_t& x,const vCoeff_t& y) {
|
||||
r = a*x + y;
|
||||
}
|
||||
|
||||
void block_caxpy(int b, Field& ret, const vCoeff_t& a, const Field& x, const Field& y) {
|
||||
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
vcaxpy(ret._odata[ss],a,x._odata[ss],y._odata[ss]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void block_caxpy(int b, std::vector< ComplexD >& ret, const vCoeff_t& a, const Field& x, const std::vector< ComplexD >& y) {
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
constexpr int nsimd = sizeof(vCoeff_t) / sizeof(Coeff_t);
|
||||
int lsize = _cf_o_block_size / _block_sites;
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
|
||||
int n = lsize / nsimd;
|
||||
for (int l=0;l<n;l++) {
|
||||
vCoeff_t r = a* ((vCoeff_t*)&x._odata[ss]._internal)[l];
|
||||
|
||||
for (int j=0;j<nsimd;j++) {
|
||||
int t = lsize * i + l*nsimd + j;
|
||||
ret[t] = y[t] + ((Coeff_t*)&r)[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void block_set(int b, Field& ret, const std::vector< ComplexD >& x) {
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
int lsize = _cf_o_block_size / _block_sites;
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
|
||||
for (int l=0;l<lsize;l++)
|
||||
((Coeff_t*)&ret._odata[ss]._internal)[l] = (Coeff_t)x[lsize * i + l]; // convert precision
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void block_get(int b, const Field& ret, std::vector< ComplexD >& x) {
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
int lsize = _cf_o_block_size / _block_sites;
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
|
||||
for (int l=0;l<lsize;l++)
|
||||
x[lsize * i + l] = (ComplexD)((Coeff_t*)&ret._odata[ss]._internal)[l];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void vcscale(iScalar<T>& r,const vCoeff_t& a,const iScalar<T>& x) {
|
||||
vcscale(r._internal,a,x._internal);
|
||||
}
|
||||
|
||||
template<class T,int N>
|
||||
void vcscale(iVector<T,N>& r,const vCoeff_t& a,const iVector<T,N>& x) {
|
||||
for (int i=0;i<N;i++)
|
||||
vcscale(r._internal[i],a,x._internal[i]);
|
||||
}
|
||||
|
||||
void vcscale(vCoeff_t& r,const vCoeff_t& a,const vCoeff_t& x) {
|
||||
r = a*x;
|
||||
}
|
||||
|
||||
void block_cscale(int b, const vCoeff_t& a, Field& ret) {
|
||||
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
vcscale(ret._odata[ss],a,ret._odata[ss]);
|
||||
}
|
||||
}
|
||||
|
||||
void getCanonicalBlockOffset(int cb, std::vector<int>& x0) {
|
||||
const int ndim = 5;
|
||||
assert(_nb.size() == ndim);
|
||||
std::vector<int> _nbc = { _nb[1], _nb[2], _nb[3], _nb[4], _nb[0] };
|
||||
std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
|
||||
x0.resize(ndim);
|
||||
|
||||
assert(cb >= 0);
|
||||
assert(cb < _nbc[0]*_nbc[1]*_nbc[2]*_nbc[3]*_nbc[4]);
|
||||
|
||||
Lexicographic::CoorFromIndex(x0,cb,_nbc);
|
||||
int i;
|
||||
|
||||
for (i=0;i<ndim;i++) {
|
||||
x0[i] *= _bsc[i];
|
||||
}
|
||||
|
||||
//if (cb < 2)
|
||||
// std::cout << GridLogMessage << "Map: " << cb << " To: " << x0 << std::endl;
|
||||
}
|
||||
|
||||
void pokeBlockOfVectorCanonical(int cb,Field& v,const std::vector<float>& buf) {
|
||||
std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
|
||||
std::vector<int> ldim = v._grid->LocalDimensions();
|
||||
std::vector<int> cldim = { ldim[1], ldim[2], ldim[3], ldim[4], ldim[0] };
|
||||
const int _nbsc = _bs_cb[0]*_bs_cb[1]*_bs_cb[2]*_bs_cb[3]*_bs_cb[4];
|
||||
// take canonical block cb of v and put it in canonical ordering in buf
|
||||
std::vector<int> cx0;
|
||||
getCanonicalBlockOffset(cb,cx0);
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
std::vector<int> co0,cl0;
|
||||
co0=cx0; cl0=cx0;
|
||||
|
||||
#pragma omp for
|
||||
for (int i=0;i<_nbsc;i++) {
|
||||
Lexicographic::CoorFromIndex(co0,2*i,_bsc); // 2* for eo
|
||||
for (int j=0;j<(int)_bsc.size();j++)
|
||||
cl0[j] = cx0[j] + co0[j];
|
||||
|
||||
std::vector<int> l0 = { cl0[4], cl0[0], cl0[1], cl0[2], cl0[3] };
|
||||
int oi = v._grid->oIndex(l0);
|
||||
int ii = v._grid->iIndex(l0);
|
||||
int lti = i;
|
||||
|
||||
//if (cb < 2 && i<2)
|
||||
// std::cout << GridLogMessage << "Map: " << cb << ", " << i << " To: " << cl0 << ", " << cx0 << ", " << oi << ", " << ii << std::endl;
|
||||
|
||||
for (int s=0;s<4;s++)
|
||||
for (int c=0;c<3;c++) {
|
||||
Coeff_t& ld = ((Coeff_t*)&v._odata[oi]._internal._internal[s]._internal[c])[ii];
|
||||
int ti = 12*lti + 3*s + c;
|
||||
ld = Coeff_t(buf[2*ti+0], buf[2*ti+1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void peekBlockOfVectorCanonical(int cb,const Field& v,std::vector<float>& buf) {
|
||||
std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
|
||||
std::vector<int> ldim = v._grid->LocalDimensions();
|
||||
std::vector<int> cldim = { ldim[1], ldim[2], ldim[3], ldim[4], ldim[0] };
|
||||
const int _nbsc = _bs_cb[0]*_bs_cb[1]*_bs_cb[2]*_bs_cb[3]*_bs_cb[4];
|
||||
// take canonical block cb of v and put it in canonical ordering in buf
|
||||
std::vector<int> cx0;
|
||||
getCanonicalBlockOffset(cb,cx0);
|
||||
|
||||
buf.resize(_cf_block_size * 2);
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
std::vector<int> co0,cl0;
|
||||
co0=cx0; cl0=cx0;
|
||||
|
||||
#pragma omp for
|
||||
for (int i=0;i<_nbsc;i++) {
|
||||
Lexicographic::CoorFromIndex(co0,2*i,_bsc); // 2* for eo
|
||||
for (int j=0;j<(int)_bsc.size();j++)
|
||||
cl0[j] = cx0[j] + co0[j];
|
||||
|
||||
std::vector<int> l0 = { cl0[4], cl0[0], cl0[1], cl0[2], cl0[3] };
|
||||
int oi = v._grid->oIndex(l0);
|
||||
int ii = v._grid->iIndex(l0);
|
||||
int lti = i;
|
||||
|
||||
//if (cb < 2 && i<2)
|
||||
// std::cout << GridLogMessage << "Map: " << cb << ", " << i << " To: " << cl0 << ", " << cx0 << ", " << oi << ", " << ii << std::endl;
|
||||
|
||||
for (int s=0;s<4;s++)
|
||||
for (int c=0;c<3;c++) {
|
||||
Coeff_t& ld = ((Coeff_t*)&v._odata[oi]._internal._internal[s]._internal[c])[ii];
|
||||
int ti = 12*lti + 3*s + c;
|
||||
buf[2*ti+0] = ld.real();
|
||||
buf[2*ti+1] = ld.imag();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int globalToLocalCanonicalBlock(int slot,const std::vector<int>& src_nodes,int nb) {
|
||||
// processor coordinate
|
||||
int _nd = (int)src_nodes.size();
|
||||
std::vector<int> _src_nodes = src_nodes;
|
||||
std::vector<int> pco(_nd);
|
||||
Lexicographic::CoorFromIndex(pco,slot,_src_nodes);
|
||||
std::vector<int> cpco = { pco[1], pco[2], pco[3], pco[4], pco[0] };
|
||||
|
||||
// get local block
|
||||
std::vector<int> _nbc = { _nb[1], _nb[2], _nb[3], _nb[4], _nb[0] };
|
||||
assert(_nd == 5);
|
||||
std::vector<int> c_src_local_blocks(_nd);
|
||||
for (int i=0;i<_nd;i++) {
|
||||
assert(_grid->_fdimensions[i] % (src_nodes[i] * _bs[i]) == 0);
|
||||
c_src_local_blocks[(i+4) % 5] = _grid->_fdimensions[i] / src_nodes[i] / _bs[i];
|
||||
}
|
||||
std::vector<int> cbcoor(_nd); // coordinate of block in slot in canonical form
|
||||
Lexicographic::CoorFromIndex(cbcoor,nb,c_src_local_blocks);
|
||||
|
||||
// cpco, cbcoor
|
||||
std::vector<int> clbcoor(_nd);
|
||||
for (int i=0;i<_nd;i++) {
|
||||
int cgcoor = cpco[i] * c_src_local_blocks[i] + cbcoor[i]; // global block coordinate
|
||||
int pcoor = cgcoor / _nbc[i]; // processor coordinate in my Grid
|
||||
int tpcoor = _grid->_processor_coor[(i+1)%5];
|
||||
if (pcoor != tpcoor)
|
||||
return -1;
|
||||
clbcoor[i] = cgcoor - tpcoor * _nbc[i]; // canonical local block coordinate for canonical dimension i
|
||||
}
|
||||
|
||||
int lnb;
|
||||
Lexicographic::IndexFromCoor(clbcoor,lnb,_nbc);
|
||||
//std::cout << "Mapped slot = " << slot << " nb = " << nb << " to " << lnb << std::endl;
|
||||
return lnb;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
@ -1,162 +0,0 @@
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class BasisFieldVector {
|
||||
public:
|
||||
int _Nm;
|
||||
|
||||
typedef typename Field::scalar_type Coeff_t;
|
||||
typedef typename Field::vector_type vCoeff_t;
|
||||
typedef typename Field::vector_object vobj;
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
std::vector<Field> _v; // _Nfull vectors
|
||||
|
||||
void report(int n,GridBase* value) {
|
||||
|
||||
std::cout << GridLogMessage << "BasisFieldVector allocated:\n";
|
||||
std::cout << GridLogMessage << " Delta N = " << n << "\n";
|
||||
std::cout << GridLogMessage << " Size of full vectors (size) = " <<
|
||||
((double)n*sizeof(vobj)*value->oSites() / 1024./1024./1024.) << " GB\n";
|
||||
std::cout << GridLogMessage << " Size = " << _v.size() << " Capacity = " << _v.capacity() << std::endl;
|
||||
|
||||
value->Barrier();
|
||||
|
||||
if (value->IsBoss()) {
|
||||
system("cat /proc/meminfo");
|
||||
}
|
||||
|
||||
value->Barrier();
|
||||
|
||||
}
|
||||
|
||||
BasisFieldVector(int Nm,GridBase* value) : _Nm(Nm), _v(Nm,value) {
|
||||
report(Nm,value);
|
||||
}
|
||||
|
||||
~BasisFieldVector() {
|
||||
}
|
||||
|
||||
Field& operator[](int i) {
|
||||
return _v[i];
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, int k) {
|
||||
for(int j=0; j<k; ++j){
|
||||
Coeff_t ip = (Coeff_t)innerProduct(_v[j],w);
|
||||
w = w - ip*_v[j];
|
||||
}
|
||||
}
|
||||
|
||||
void rotate(Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm) {
|
||||
|
||||
GridBase* grid = _v[0]._grid;
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
std::vector < vobj > B(Nm);
|
||||
|
||||
#pragma omp for
|
||||
for(int ss=0;ss < grid->oSites();ss++){
|
||||
for(int j=j0; j<j1; ++j) B[j]=0.;
|
||||
|
||||
for(int j=j0; j<j1; ++j){
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B[j] +=Qt(j,k) * _v[k]._odata[ss];
|
||||
}
|
||||
}
|
||||
for(int j=j0; j<j1; ++j){
|
||||
_v[j]._odata[ss] = B[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return _Nm;
|
||||
}
|
||||
|
||||
void resize(int n) {
|
||||
if (n > _Nm)
|
||||
_v.reserve(n);
|
||||
|
||||
_v.resize(n,_v[0]._grid);
|
||||
|
||||
if (n < _Nm)
|
||||
_v.shrink_to_fit();
|
||||
|
||||
report(n - _Nm,_v[0]._grid);
|
||||
|
||||
_Nm = n;
|
||||
}
|
||||
|
||||
std::vector<int> getIndex(std::vector<RealD>& sort_vals) {
|
||||
|
||||
std::vector<int> idx(sort_vals.size());
|
||||
iota(idx.begin(), idx.end(), 0);
|
||||
|
||||
// sort indexes based on comparing values in v
|
||||
sort(idx.begin(), idx.end(),
|
||||
[&sort_vals](int i1, int i2) {return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);});
|
||||
|
||||
return idx;
|
||||
}
|
||||
|
||||
void reorderInPlace(std::vector<RealD>& sort_vals, std::vector<int>& idx) {
|
||||
GridStopWatch gsw;
|
||||
gsw.Start();
|
||||
|
||||
int nswaps = 0;
|
||||
for (size_t i=0;i<idx.size();i++) {
|
||||
if (idx[i] != i) {
|
||||
|
||||
// find proper place (this could be done in logarithmic time, don't bother for now)
|
||||
size_t j;
|
||||
for (j=i;j<idx.size();j++)
|
||||
if (idx[j]==i)
|
||||
break;
|
||||
assert(j!=idx.size());
|
||||
|
||||
Field _t(_v[0]._grid);
|
||||
_t = _v[idx[j]];
|
||||
_v[idx[j]] = _v[idx[i]];
|
||||
_v[idx[i]] = _t;
|
||||
|
||||
RealD _td = sort_vals[idx[j]];
|
||||
sort_vals[idx[j]] = sort_vals[idx[i]];
|
||||
sort_vals[idx[i]] = _td;
|
||||
|
||||
int _tt = idx[i];
|
||||
idx[i] = idx[j];
|
||||
idx[j] = _tt;
|
||||
|
||||
nswaps++;
|
||||
}
|
||||
}
|
||||
|
||||
// sort values
|
||||
gsw.Stop();
|
||||
std::cout << GridLogMessage << "Sorted eigenspace in place in " << gsw.Elapsed() << " using " << nswaps << " swaps" << std::endl;
|
||||
}
|
||||
|
||||
void sortInPlace(std::vector<RealD>& sort_vals, bool reverse) {
|
||||
|
||||
std::vector<int> idx = getIndex(sort_vals);
|
||||
if (reverse)
|
||||
std::reverse(idx.begin(), idx.end());
|
||||
|
||||
reorderInPlace(sort_vals,idx);
|
||||
|
||||
}
|
||||
|
||||
void deflate(const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
|
||||
result = zero;
|
||||
int N = (int)_v.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
Field& tmp = _v[i];
|
||||
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
}
|
Loading…
Reference in New Issue
Block a user