1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Merge branch 'develop' into feature/hmc_generalise

This commit is contained in:
Guido Cossu 2017-05-01 12:13:56 +01:00
commit 3344788fa1
69 changed files with 3971 additions and 3179 deletions

View File

@ -7,7 +7,7 @@ cache:
matrix:
include:
- os: osx
osx_image: xcode7.3
osx_image: xcode8.3
compiler: clang
- compiler: gcc
sudo: required
@ -75,8 +75,6 @@ before_install:
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install openmpi; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]] && [[ "$CC" == "gcc" ]]; then brew install gcc5; fi
install:
- export CC=$CC$VERSION
@ -94,15 +92,14 @@ script:
- cd build
- ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=none
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- echo make clean
- ../configure --enable-precision=double --enable-simd=SSE4 --enable-comms=none
- make -j4
- ./benchmarks/Benchmark_dwf --threads 1
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
- echo make clean
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then export CXXFLAGS='-DMPI_UINT32_T=MPI_UNSIGNED -DMPI_UINT64_T=MPI_UNSIGNED_LONG'; fi
- ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=mpi-auto
- make -j4
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then ../configure --enable-precision=single --enable-simd=SSE4 --enable-comms=mpi-auto CXXFLAGS='-DMPI_UINT32_T=MPI_UNSIGNED -DMPI_UINT64_T=MPI_UNSIGNED_LONG'; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then make -j4; fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then mpirun.openmpi -n 2 ./benchmarks/Benchmark_dwf --threads 1 --mpi 2.1.1.1; fi

61
TODO
View File

@ -1,6 +1,26 @@
TODO:
---------------
Peter's work list:
2)- Precision conversion and sort out localConvert <--
3)- Remove DenseVector, DenseMatrix; Use Eigen instead. <-- started
4)- Binary I/O speed up & x-strips
-- Profile CG, BlockCG, etc... Flop count/rate -- PARTIAL, time but no flop/s yet
-- Physical propagator interface
-- Conserved currents
-- GaugeFix into central location
-- Multigrid Wilson and DWF, compare to other Multigrid implementations
-- HDCR resume
Recent DONE
-- Cut down the exterior overhead <-- DONE
-- Interior legs from SHM comms <-- DONE
-- Half-precision comms <-- DONE
-- Merge high precision reduction into develop
-- multiRHS DWF; benchmark on Cori/BNL for comms elimination
-- slice* linalg routines for multiRHS, BlockCG
-----
* Forces; the UdSdU term in gauge force term is half of what I think it should
be. This is a consequence of taking ONLY the first term in:
@ -21,16 +41,8 @@ TODO:
This means we must double the force in the Test_xxx_force routines, and is the origin of the factor of two.
This 2x is applied by hand in the fermion routines and in the Test_rect_force routine.
Policies:
* Link smearing/boundary conds; Policy class based implementation ; framework more in place
* Support different boundary conditions (finite temp, chem. potential ... )
* Support different fermion representations?
- contained entirely within the integrator presently
- Sign of force term.
- Reversibility test.
@ -41,11 +53,6 @@ Policies:
- Audit oIndex usage for cb behaviour
- Rectangle gauge actions.
Iwasaki,
Symanzik,
... etc...
- Prepare multigrid for HMC. - Alternate setup schemes.
- Support for ILDG --- ugly, not done
@ -55,9 +62,11 @@ Policies:
- FFTnD ?
- Gparity; hand opt use template specialisation elegance to enable the optimised paths ?
- Gparity force term; Gparity (R)HMC.
- Random number state save restore
- Mobius implementation clean up to rmove #if 0 stale code sequences
- CG -- profile carefully, kernel fusion, whole CG performance measurements.
================================================================
@ -90,6 +99,7 @@ Insert/Extract
Not sure of status of this -- reverify. Things are working nicely now though.
* Make the Tensor types and Complex etc... play more nicely.
- TensorRemove is a hack, come up with a long term rationalised approach to Complex vs. Scalar<Scalar<Scalar<Complex > > >
QDP forces use of "toDouble" to get back to non tensor scalar. This role is presently taken TensorRemove, but I
want to introduce a syntax that does not require this.
@ -112,6 +122,8 @@ Not sure of status of this -- reverify. Things are working nicely now though.
RECENT
---------------
- Support different fermion representations? -- DONE
- contained entirely within the integrator presently
- Clean up HMC -- DONE
- LorentzScalar<GaugeField> gets Gauge link type (cleaner). -- DONE
- Simplified the integrators a bit. -- DONE
@ -123,6 +135,26 @@ RECENT
- Parallel io improvements -- DONE
- Plaquette and link trace checks into nersc reader from the Grid_nersc_io.cc test. -- DONE
DONE:
- MultiArray -- MultiRHS done
- ConjugateGradientMultiShift -- DONE
- MCR -- DONE
- Remez -- Mike or Boost? -- DONE
- Proto (ET) -- DONE
- uBlas -- DONE ; Eigen
- Potentially Useful Boost libraries -- DONE ; Eigen
- Aligned allocator; memory pool -- DONE
- Multiprecision -- DONE
- Serialization -- DONE
- Regex -- Not needed
- Tokenize -- Why?
- Random number state save restore -- DONE
- Rectangle gauge actions. -- DONE
Iwasaki,
Symanzik,
... etc...
Done: Cayley, Partial , ContFrac force terms.
DONE
@ -207,6 +239,7 @@ Done
FUNCTIONALITY: it pleases me to keep track of things I have done (keeps me arguably sane)
======================================================================================================
* Link smearing/boundary conds; Policy class based implementation ; framework more in place -- DONE
* Command line args for geometry, simd, etc. layout. Is it necessary to have -- DONE
user pass these? Is this a QCD specific?

View File

@ -153,9 +153,6 @@ int main (int argc, char ** argv)
RealD NP = UGrid->_Nprocessors;
std::cout << GridLogMessage << "Creating action operator " << std::endl;
DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
@ -168,12 +165,15 @@ int main (int argc, char ** argv)
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
int ncall =1000;
if (1) {
FGrid->Barrier();
Dw.ZeroCounters();
Dw.Dhop(src,result,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
@ -206,27 +206,39 @@ int main (int argc, char ** argv)
assert (norm2(err)< 1.0e-4 );
Dw.Report();
}
if (1) { // Naive wilson dag implementation
refDag = zero;
for (int mu = 0; mu < Nd; mu++) {
// ref = src - Gamma(Gamma::GammaX)* src ; // 1+gamma_x
tmp = U[mu] * Cshift(src, mu + 1, 1);
for (int i = 0; i < refDag._odata.size(); i++) {
refDag._odata[i] += tmp._odata[i] + Gamma(Gmu[mu]) * tmp._odata[i];
}
tmp = adj(U[mu]) * src;
tmp = Cshift(tmp, mu + 1, -1);
for (int i = 0; i < refDag._odata.size(); i++) {
refDag._odata[i] += tmp._odata[i] - Gamma(Gmu[mu]) * tmp._odata[i];
}
}
refDag = -0.5 * refDag;
}
DomainWallFermionRL DwH(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
if (1) {
FGrid->Barrier();
DwH.ZeroCounters();
DwH.Dhop(src,result,0);
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
DwH.Dhop(src,result,0);
__SSC_STOP;
}
double t1=usecond();
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=1344*volume*ncall;
std::cout<<GridLogMessage << "Called half prec comms Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
assert (norm2(err)< 1.0e-3 );
DwH.Report();
}
if (1)
{
std::cout << GridLogMessage<< "*********************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking WilsonFermion5D<DomainWallVec5dImplR>::Dhop "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising fifth dimension by "<<vComplex::Nsimd()<<std::endl;

View File

@ -93,6 +93,18 @@ case ${ac_LAPACK} in
AC_DEFINE([USE_LAPACK],[1],[use LAPACK]);;
esac
############### FP16 conversions
AC_ARG_ENABLE([sfw-fp16],
[AC_HELP_STRING([--enable-sfw-fp16=yes|no], [enable software fp16 comms])],
[ac_SFW_FP16=${enable_sfw_fp16}], [ac_SFW_FP16=yes])
case ${ac_SFW_FP16} in
yes)
AC_DEFINE([SFW_FP16],[1],[software conversion to fp16]);;
no);;
*)
AC_MSG_ERROR(["SFW FP16 option not supported ${ac_SFW_FP16}"]);;
esac
############### MKL
AC_ARG_ENABLE([mkl],
[AC_HELP_STRING([--enable-mkl=yes|no|prefix], [enable Intel MKL for LAPACK & FFTW])],
@ -194,19 +206,26 @@ case ${ax_cv_cxx_compiler_vendor} in
case ${ac_SIMD} in
SSE4)
AC_DEFINE([SSE4],[1],[SSE4 intrinsics])
SIMD_FLAGS='-msse4.2';;
case ${ac_SFW_FP16} in
yes)
SIMD_FLAGS='-msse4.2';;
no)
SIMD_FLAGS='-msse4.2 -mf16c';;
*)
AC_MSG_ERROR(["SFW_FP16 must be either yes or no value ${ac_SFW_FP16} "]);;
esac;;
AVX)
AC_DEFINE([AVX1],[1],[AVX intrinsics])
SIMD_FLAGS='-mavx';;
SIMD_FLAGS='-mavx -mf16c';;
AVXFMA4)
AC_DEFINE([AVXFMA4],[1],[AVX intrinsics with FMA4])
SIMD_FLAGS='-mavx -mfma4';;
SIMD_FLAGS='-mavx -mfma4 -mf16c';;
AVXFMA)
AC_DEFINE([AVXFMA],[1],[AVX intrinsics with FMA3])
SIMD_FLAGS='-mavx -mfma';;
SIMD_FLAGS='-mavx -mfma -mf16c';;
AVX2)
AC_DEFINE([AVX2],[1],[AVX2 intrinsics])
SIMD_FLAGS='-mavx2 -mfma';;
SIMD_FLAGS='-mavx2 -mfma -mf16c';;
AVX512)
AC_DEFINE([AVX512],[1],[AVX512 intrinsics])
SIMD_FLAGS='-mavx512f -mavx512pf -mavx512er -mavx512cd';;
@ -431,7 +450,6 @@ git_commit=`cd $srcdir && ./scripts/configure.commit`
echo "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Summary of configuration for $PACKAGE v$VERSION
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
----- GIT VERSION -------------------------------------
$git_commit
@ -447,6 +465,7 @@ SIMD : ${ac_SIMD}${SIMD_GEN_WIDTH_MSG}
Threading : ${ac_openmp}
Communications type : ${comms_type}
Default precision : ${ac_PRECISION}
Software FP16 conversion : ${ac_SFW_FP16}
RNG choice : ${ac_RNG}
GMP : `if test "x$have_gmp" = xtrue; then echo yes; else echo no; fi`
LAPACK : ${ac_LAPACK}

View File

@ -46,7 +46,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
// Lanczos support
#include <Grid/algorithms/iterative/MatrixUtils.h>
//#include <Grid/algorithms/iterative/MatrixUtils.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/CoarsenedMatrix.h>
#include <Grid/algorithms/FFT.h>

View File

@ -0,0 +1,366 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/BlockConjugateGradient.h
Copyright (C) 2017
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_BLOCK_CONJUGATE_GRADIENT_H
#define GRID_BLOCK_CONJUGATE_GRADIENT_H
namespace Grid {
//////////////////////////////////////////////////////////////////////////
// Block conjugate gradient. Dimension zero should be the block direction
//////////////////////////////////////////////////////////////////////////
template <class Field>
class BlockConjugateGradient : public OperatorFunction<Field> {
public:
typedef typename Field::scalar_type scomplex;
const int blockDim = 0;
int Nblock;
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
BlockConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = 0; // First dimension is block dim
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.checkerboard = Src.checkerboard;
conformable(Psi, Src);
Field P(Src);
Field AP(Src);
Field R(Src);
Eigen::MatrixXcd m_pAp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_pAp_inv= Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_rr_inv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_alpha = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_beta = Eigen::MatrixXcd::Zero(Nblock,Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
sliceNorm(ssq,Src,Orthog);
RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
sliceNorm(residuals,Src,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
sliceNorm(residuals,Psi,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
// Initial search dir is guess
Linop.HermOp(Psi, AP);
/************************************************************************
* Block conjugate gradient (Stephen Pickles, thesis 1995, pp 71, O Leary 1980)
************************************************************************
* O'Leary : R = B - A X
* O'Leary : P = M R ; preconditioner M = 1
* O'Leary : alpha = PAP^{-1} RMR
* O'Leary : beta = RMR^{-1}_old RMR_new
* O'Leary : X=X+Palpha
* O'Leary : R_new=R_old-AP alpha
* O'Leary : P=MR_new+P beta
*/
R = Src - AP;
P = R;
sliceInnerProductMatrix(m_rr,R,R,Orthog);
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
RealD rrsum=0;
for(int b=0;b<Nblock;b++) rrsum+=real(m_rr(b,b));
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
MatrixTimer.Start();
Linop.HermOp(P, AP);
MatrixTimer.Stop();
// Alpha
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
m_pAp_inv = m_pAp.inverse();
m_alpha = m_pAp_inv * m_rr ;
// Psi, R update
sliceMaddTimer.Start();
sliceMaddMatrix(Psi,m_alpha, P,Psi,Orthog); // add alpha * P to psi
sliceMaddMatrix(R ,m_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
sliceMaddTimer.Stop();
// Beta
m_rr_inv = m_rr.inverse();
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_rr,R,R,Orthog);
sliceInnerTimer.Stop();
m_beta = m_rr_inv *m_rr;
// Search update
sliceMaddTimer.Start();
sliceMaddMatrix(AP,m_beta,P,R,Orthog);
sliceMaddTimer.Stop();
P= AP;
/*********************
* convergence monitor
*********************
*/
RealD max_resid=0;
for(int b=0;b<Nblock;b++){
RealD rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCG converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tblock "<<b<<" resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout << GridLogMessage <<"\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BlockConjugateGradient did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
//////////////////////////////////////////////////////////////////////////
// multiRHS conjugate gradient. Dimension zero should be the block direction
//////////////////////////////////////////////////////////////////////////
template <class Field>
class MultiRHSConjugateGradient : public OperatorFunction<Field> {
public:
typedef typename Field::scalar_type scomplex;
const int blockDim = 0;
int Nblock;
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
MultiRHSConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = 0; // First dimension is block dim
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.checkerboard = Src.checkerboard;
conformable(Psi, Src);
Field P(Src);
Field AP(Src);
Field R(Src);
std::vector<ComplexD> v_pAp(Nblock);
std::vector<RealD> v_rr (Nblock);
std::vector<RealD> v_rr_inv(Nblock);
std::vector<RealD> v_alpha(Nblock);
std::vector<RealD> v_beta(Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
sliceNorm(ssq,Src,Orthog);
RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
sliceNorm(residuals,Src,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
sliceNorm(residuals,Psi,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
// Initial search dir is guess
Linop.HermOp(Psi, AP);
R = Src - AP;
P = R;
sliceNorm(v_rr,R,Orthog);
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch sliceNormTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
RealD rrsum=0;
for(int b=0;b<Nblock;b++) rrsum+=real(v_rr[b]);
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
MatrixTimer.Start();
Linop.HermOp(P, AP);
MatrixTimer.Stop();
// Alpha
// sliceInnerProductVectorTest(v_pAp_test,P,AP,Orthog);
sliceInnerTimer.Start();
sliceInnerProductVector(v_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
for(int b=0;b<Nblock;b++){
// std::cout << " "<< v_pAp[b]<<" "<< v_pAp_test[b]<<std::endl;
v_alpha[b] = v_rr[b]/real(v_pAp[b]);
}
// Psi, R update
sliceMaddTimer.Start();
sliceMaddVector(Psi,v_alpha, P,Psi,Orthog); // add alpha * P to psi
sliceMaddVector(R ,v_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
sliceMaddTimer.Stop();
// Beta
for(int b=0;b<Nblock;b++){
v_rr_inv[b] = 1.0/v_rr[b];
}
sliceNormTimer.Start();
sliceNorm(v_rr,R,Orthog);
sliceNormTimer.Stop();
for(int b=0;b<Nblock;b++){
v_beta[b] = v_rr_inv[b] *v_rr[b];
}
// Search update
sliceMaddTimer.Start();
sliceMaddVector(P,v_beta,P,R,Orthog);
sliceMaddTimer.Stop();
/*********************
* convergence monitor
*********************
*/
RealD max_resid=0;
for(int b=0;b<Nblock;b++){
RealD rr = v_rr[b]/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"MultiRHS solver converged in " <<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tBlock "<<b<<" resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout <<GridLogMessage << "\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tNorm " << sliceNormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
}
#endif

View File

@ -78,18 +78,12 @@ class ConjugateGradient : public OperatorFunction<Field> {
cp = a;
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: p " << a << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: p " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
@ -99,8 +93,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
}
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq
<< std::endl;
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
@ -148,19 +141,20 @@ class ConjugateGradient : public OperatorFunction<Field> {
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage
<< "ConjugateGradient: Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "Computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual << " target "
<< Tolerance << std::endl;
std::cout << GridLogMessage << "Time elapsed: Iterations "
<< SolverTimer.Elapsed() << " Matrix "
<< MatrixTimer.Elapsed() << " Linalg "
<< LinalgTimer.Elapsed();
std::cout << std::endl;
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
return;
}
}

View File

@ -30,6 +30,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define GRID_IRL_H
#include <string.h> //memset
#ifdef USE_LAPACK
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
double *vl, double *vu, int *il, int *iu, double *abstol,
@ -37,8 +38,9 @@ void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
double *work, int *lwork, int *iwork, int *liwork,
int *info);
#endif
#include "DenseMatrix.h"
#include "EigenSort.h"
#include <Grid/algorithms/densematrix/DenseMatrix.h>
#include <Grid/algorithms/iterative/EigenSort.h>
namespace Grid {
@ -1088,8 +1090,6 @@ static void Lock(DenseMatrix<T> &H, // Hess mtx
int dfg,
bool herm)
{
//ForceTridiagonal(H);
int M = H.dim;
@ -1121,7 +1121,6 @@ static void Lock(DenseMatrix<T> &H, // Hess mtx
AH = Hermitian(QQ)*AH;
AH = AH*QQ;
for(int i=con;i<M;i++){
for(int j=con;j<M;j++){

View File

@ -1,453 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/Matrix.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef MATRIX_H
#define MATRIX_H
#include <cstdlib>
#include <string>
#include <cmath>
#include <vector>
#include <iostream>
#include <iomanip>
#include <complex>
#include <typeinfo>
#include <Grid/Grid.h>
/** Sign function **/
template <class T> T sign(T p){return ( p/abs(p) );}
/////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////// Hijack STL containers for our wicked means /////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class T> using Vector = Vector<T>;
template<class T> using Matrix = Vector<Vector<T> >;
template<class T> void Resize(Vector<T > & vec, int N) { vec.resize(N); }
template<class T> void Resize(Matrix<T > & mat, int N, int M) {
mat.resize(N);
for(int i=0;i<N;i++){
mat[i].resize(M);
}
}
template<class T> void Size(Vector<T> & vec, int &N)
{
N= vec.size();
}
template<class T> void Size(Matrix<T> & mat, int &N,int &M)
{
N= mat.size();
M= mat[0].size();
}
template<class T> void SizeSquare(Matrix<T> & mat, int &N)
{
int M; Size(mat,N,M);
assert(N==M);
}
template<class T> void SizeSame(Matrix<T> & mat1,Matrix<T> &mat2, int &N1,int &M1)
{
int N2,M2;
Size(mat1,N1,M1);
Size(mat2,N2,M2);
assert(N1==N2);
assert(M1==M2);
}
//*****************************************
//* (Complex) Vector operations *
//*****************************************
/**Conj of a Vector **/
template <class T> Vector<T> conj(Vector<T> p){
Vector<T> q(p.size());
for(int i=0;i<p.size();i++){q[i] = conj(p[i]);}
return q;
}
/** Norm of a Vector**/
template <class T> T norm(Vector<T> p){
T sum = 0;
for(int i=0;i<p.size();i++){sum = sum + p[i]*conj(p[i]);}
return abs(sqrt(sum));
}
/** Norm squared of a Vector **/
template <class T> T norm2(Vector<T> p){
T sum = 0;
for(int i=0;i<p.size();i++){sum = sum + p[i]*conj(p[i]);}
return abs((sum));
}
/** Sum elements of a Vector **/
template <class T> T trace(Vector<T> p){
T sum = 0;
for(int i=0;i<p.size();i++){sum = sum + p[i];}
return sum;
}
/** Fill a Vector with constant c **/
template <class T> void Fill(Vector<T> &p, T c){
for(int i=0;i<p.size();i++){p[i] = c;}
}
/** Normalize a Vector **/
template <class T> void normalize(Vector<T> &p){
T m = norm(p);
if( abs(m) > 0.0) for(int i=0;i<p.size();i++){p[i] /= m;}
}
/** Vector by scalar **/
template <class T, class U> Vector<T> times(Vector<T> p, U s){
for(int i=0;i<p.size();i++){p[i] *= s;}
return p;
}
template <class T, class U> Vector<T> times(U s, Vector<T> p){
for(int i=0;i<p.size();i++){p[i] *= s;}
return p;
}
/** inner product of a and b = conj(a) . b **/
template <class T> T inner(Vector<T> a, Vector<T> b){
T m = 0.;
for(int i=0;i<a.size();i++){m = m + conj(a[i])*b[i];}
return m;
}
/** sum of a and b = a + b **/
template <class T> Vector<T> add(Vector<T> a, Vector<T> b){
Vector<T> m(a.size());
for(int i=0;i<a.size();i++){m[i] = a[i] + b[i];}
return m;
}
/** sum of a and b = a - b **/
template <class T> Vector<T> sub(Vector<T> a, Vector<T> b){
Vector<T> m(a.size());
for(int i=0;i<a.size();i++){m[i] = a[i] - b[i];}
return m;
}
/**
*********************************
* Matrices *
*********************************
**/
template<class T> void Fill(Matrix<T> & mat, T&val) {
int N,M;
Size(mat,N,M);
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
mat[i][j] = val;
}}
}
/** Transpose of a matrix **/
Matrix<T> Transpose(Matrix<T> & mat){
int N,M;
Size(mat,N,M);
Matrix C; Resize(C,M,N);
for(int i=0;i<M;i++){
for(int j=0;j<N;j++){
C[i][j] = mat[j][i];
}}
return C;
}
/** Set Matrix to unit matrix **/
template<class T> void Unity(Matrix<T> &mat){
int N; SizeSquare(mat,N);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
if ( i==j ) A[i][j] = 1;
else A[i][j] = 0;
}
}
}
/** Add C * I to matrix **/
template<class T>
void PlusUnit(Matrix<T> & A,T c){
int dim; SizeSquare(A,dim);
for(int i=0;i<dim;i++){A[i][i] = A[i][i] + c;}
}
/** return the Hermitian conjugate of matrix **/
Matrix<T> HermitianConj(Matrix<T> &mat){
int dim; SizeSquare(mat,dim);
Matrix<T> C; Resize(C,dim,dim);
for(int i=0;i<dim;i++){
for(int j=0;j<dim;j++){
C[i][j] = conj(mat[j][i]);
}
}
return C;
}
/** return diagonal entries as a Vector **/
Vector<T> diag(Matrix<T> &A)
{
int dim; SizeSquare(A,dim);
Vector<T> d; Resize(d,dim);
for(int i=0;i<dim;i++){
d[i] = A[i][i];
}
return d;
}
/** Left multiply by a Vector **/
Vector<T> operator *(Vector<T> &B,Matrix<T> &A)
{
int K,M,N;
Size(B,K);
Size(A,M,N);
assert(K==M);
Vector<T> C; Resize(C,N);
for(int j=0;j<N;j++){
T sum = 0.0;
for(int i=0;i<M;i++){
sum += B[i] * A[i][j];
}
C[j] = sum;
}
return C;
}
/** return 1/diagonal entries as a Vector **/
Vector<T> inv_diag(Matrix<T> & A){
int dim; SizeSquare(A,dim);
Vector<T> d; Resize(d,dim);
for(int i=0;i<dim;i++){
d[i] = 1.0/A[i][i];
}
return d;
}
/** Matrix Addition **/
inline Matrix<T> operator + (Matrix<T> &A,Matrix<T> &B)
{
int N,M ; SizeSame(A,B,N,M);
Matrix C; Resize(C,N,M);
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
C[i][j] = A[i][j] + B[i][j];
}
}
return C;
}
/** Matrix Subtraction **/
inline Matrix<T> operator- (Matrix<T> & A,Matrix<T> &B){
int N,M ; SizeSame(A,B,N,M);
Matrix C; Resize(C,N,M);
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
C[i][j] = A[i][j] - B[i][j];
}}
return C;
}
/** Matrix scalar multiplication **/
inline Matrix<T> operator* (Matrix<T> & A,T c){
int N,M; Size(A,N,M);
Matrix C; Resize(C,N,M);
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
C[i][j] = A[i][j]*c;
}}
return C;
}
/** Matrix Matrix multiplication **/
inline Matrix<T> operator* (Matrix<T> &A,Matrix<T> &B){
int K,L,N,M;
Size(A,K,L);
Size(B,N,M); assert(L==N);
Matrix C; Resize(C,K,M);
for(int i=0;i<K;i++){
for(int j=0;j<M;j++){
T sum = 0.0;
for(int k=0;k<N;k++) sum += A[i][k]*B[k][j];
C[i][j] =sum;
}
}
return C;
}
/** Matrix Vector multiplication **/
inline Vector<T> operator* (Matrix<T> &A,Vector<T> &B){
int M,N,K;
Size(A,N,M);
Size(B,K); assert(K==M);
Vector<T> C; Resize(C,N);
for(int i=0;i<N;i++){
T sum = 0.0;
for(int j=0;j<M;j++) sum += A[i][j]*B[j];
C[i] = sum;
}
return C;
}
/** Some version of Matrix norm **/
/*
inline T Norm(){ // this is not a usual L2 norm
T norm = 0;
for(int i=0;i<dim;i++){
for(int j=0;j<dim;j++){
norm += abs(A[i][j]);
}}
return norm;
}
*/
/** Some version of Matrix norm **/
template<class T> T LargestDiag(Matrix<T> &A)
{
int dim ; SizeSquare(A,dim);
T ld = abs(A[0][0]);
for(int i=1;i<dim;i++){
T cf = abs(A[i][i]);
if(abs(cf) > abs(ld) ){ld = cf;}
}
return ld;
}
/** Look for entries on the leading subdiagonal that are smaller than 'small' **/
template <class T,class U> int Chop_subdiag(Matrix<T> &A,T norm, int offset, U small)
{
int dim; SizeSquare(A,dim);
for(int l = dim - 1 - offset; l >= 1; l--) {
if((U)abs(A[l][l - 1]) < (U)small) {
A[l][l-1]=(U)0.0;
return l;
}
}
return 0;
}
/** Look for entries on the leading subdiagonal that are smaller than 'small' **/
template <class T,class U> int Chop_symm_subdiag(Matrix<T> & A,T norm, int offset, U small)
{
int dim; SizeSquare(A,dim);
for(int l = dim - 1 - offset; l >= 1; l--) {
if((U)abs(A[l][l - 1]) < (U)small) {
A[l][l - 1] = (U)0.0;
A[l - 1][l] = (U)0.0;
return l;
}
}
return 0;
}
/**Assign a submatrix to a larger one**/
template<class T>
void AssignSubMtx(Matrix<T> & A,int row_st, int row_end, int col_st, int col_end, Matrix<T> &S)
{
for(int i = row_st; i<row_end; i++){
for(int j = col_st; j<col_end; j++){
A[i][j] = S[i - row_st][j - col_st];
}
}
}
/**Get a square submatrix**/
template <class T>
Matrix<T> GetSubMtx(Matrix<T> &A,int row_st, int row_end, int col_st, int col_end)
{
Matrix<T> H; Resize(row_end - row_st,col_end-col_st);
for(int i = row_st; i<row_end; i++){
for(int j = col_st; j<col_end; j++){
H[i-row_st][j-col_st]=A[i][j];
}}
return H;
}
/**Assign a submatrix to a larger one NB remember Vector Vectors are transposes of the matricies they represent**/
template<class T>
void AssignSubMtx(Matrix<T> & A,int row_st, int row_end, int col_st, int col_end, Matrix<T> &S)
{
for(int i = row_st; i<row_end; i++){
for(int j = col_st; j<col_end; j++){
A[i][j] = S[i - row_st][j - col_st];
}}
}
/** compute b_i A_ij b_j **/ // surprised no Conj
template<class T> T proj(Matrix<T> A, Vector<T> B){
int dim; SizeSquare(A,dim);
int dimB; Size(B,dimB);
assert(dimB==dim);
T C = 0;
for(int i=0;i<dim;i++){
T sum = 0.0;
for(int j=0;j<dim;j++){
sum += A[i][j]*B[j];
}
C += B[i]*sum; // No conj?
}
return C;
}
/*
*************************************************************
*
* Matrix Vector products
*
*************************************************************
*/
// Instead make a linop and call my CG;
/// q -> q Q
template <class T,class Fermion> void times(Vector<Fermion> &q, Matrix<T> &Q)
{
int M; SizeSquare(Q,M);
int N; Size(q,N);
assert(M==N);
times(q,Q,N);
}
/// q -> q Q
template <class T> void times(multi1d<LatticeFermion> &q, Matrix<T> &Q, int N)
{
GridBase *grid = q[0]._grid;
int M; SizeSquare(Q,M);
int K; Size(q,K);
assert(N<M);
assert(N<K);
Vector<Fermion> S(N,grid );
for(int j=0;j<N;j++){
S[j] = zero;
for(int k=0;k<N;k++){
S[j] = S[j] + q[k]* Q[k][j];
}
}
for(int j=0;j<q.size();j++){
q[j] = S[j];
}
}
#endif

View File

@ -1,75 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/MatrixUtils.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MATRIX_UTILS_H
#define GRID_MATRIX_UTILS_H
namespace Grid {
namespace MatrixUtils {
template<class T> inline void Size(Matrix<T>& A,int &N,int &M){
N=A.size(); assert(N>0);
M=A[0].size();
for(int i=0;i<N;i++){
assert(A[i].size()==M);
}
}
template<class T> inline void SizeSquare(Matrix<T>& A,int &N)
{
int M;
Size(A,N,M);
assert(N==M);
}
template<class T> inline void Fill(Matrix<T>& A,T & val)
{
int N,M;
Size(A,N,M);
for(int i=0;i<N;i++){
for(int j=0;j<M;j++){
A[i][j]=val;
}}
}
template<class T> inline void Diagonal(Matrix<T>& A,T & val)
{
int N;
SizeSquare(A,N);
for(int i=0;i<N;i++){
A[i][i]=val;
}
}
template<class T> inline void Identity(Matrix<T>& A)
{
Fill(A,0.0);
Diagonal(A,1.0);
}
};
}
#endif

View File

@ -1,15 +0,0 @@
- ConjugateGradientMultiShift
- MCR
- Potentially Useful Boost libraries
- MultiArray
- Aligned allocator; memory pool
- Remez -- Mike or Boost?
- Multiprecision
- quaternians
- Tokenize
- Serialization
- Regex
- Proto (ET)
- uBlas

View File

@ -1,122 +0,0 @@
#include <math.h>
#include <stdlib.h>
#include <vector>
struct Bisection {
static void get_eig2(int row_num,std::vector<RealD> &ALPHA,std::vector<RealD> &BETA, std::vector<RealD> & eig)
{
int i,j;
std::vector<RealD> evec1(row_num+3);
std::vector<RealD> evec2(row_num+3);
RealD eps2;
ALPHA[1]=0.;
BETHA[1]=0.;
for(i=0;i<row_num-1;i++) {
ALPHA[i+1] = A[i*(row_num+1)].real();
BETHA[i+2] = A[i*(row_num+1)+1].real();
}
ALPHA[row_num] = A[(row_num-1)*(row_num+1)].real();
bisec(ALPHA,BETHA,row_num,1,row_num,1e-10,1e-10,evec1,eps2);
bisec(ALPHA,BETHA,row_num,1,row_num,1e-16,1e-16,evec2,eps2);
// Do we really need to sort here?
int begin=1;
int end = row_num;
int swapped=1;
while(swapped) {
swapped=0;
for(i=begin;i<end;i++){
if(mag(evec2[i])>mag(evec2[i+1])) {
swap(evec2+i,evec2+i+1);
swapped=1;
}
}
end--;
for(i=end-1;i>=begin;i--){
if(mag(evec2[i])>mag(evec2[i+1])) {
swap(evec2+i,evec2+i+1);
swapped=1;
}
}
begin++;
}
for(i=0;i<row_num;i++){
for(j=0;j<row_num;j++) {
if(i==j) H[i*row_num+j]=evec2[i+1];
else H[i*row_num+j]=0.;
}
}
}
static void bisec(std::vector<RealD> &c,
std::vector<RealD> &b,
int n,
int m1,
int m2,
RealD eps1,
RealD relfeh,
std::vector<RealD> &x,
RealD &eps2)
{
std::vector<RealD> wu(n+2);
RealD h,q,x1,xu,x0,xmin,xmax;
int i,a,k;
b[1]=0.0;
xmin=c[n]-fabs(b[n]);
xmax=c[n]+fabs(b[n]);
for(i=1;i<n;i++){
h=fabs(b[i])+fabs(b[i+1]);
if(c[i]+h>xmax) xmax= c[i]+h;
if(c[i]-h<xmin) xmin= c[i]-h;
}
xmax *=2.;
eps2=relfeh*((xmin+xmax)>0.0 ? xmax : -xmin);
if(eps1<=0.0) eps1=eps2;
eps2=0.5*eps1+7.0*(eps2);
x0=xmax;
for(i=m1;i<=m2;i++){
x[i]=xmax;
wu[i]=xmin;
}
for(k=m2;k>=m1;k--){
xu=xmin;
i=k;
do{
if(xu<wu[i]){
xu=wu[i];
i=m1-1;
}
i--;
}while(i>=m1);
if(x0>x[k]) x0=x[k];
while((x0-xu)>2*relfeh*(fabs(xu)+fabs(x0))+eps1){
x1=(xu+x0)/2;
a=0;
q=1.0;
for(i=1;i<=n;i++){
q=c[i]-x1-((q!=0.0)? b[i]*b[i]/q:fabs(b[i])/relfeh);
if(q<0) a++;
}
// printf("x1=%e a=%d\n",x1,a);
if(a<k){
if(a<m1){
xu=x1;
wu[m1]=x1;
}else {
xu=x1;
wu[a+1]=x1;
if(x[a]>x1) x[a]=x1;
}
}else x0=x1;
}
x[k]=(x0+xu)/2;
}
}
}

View File

@ -1 +0,0 @@

View File

@ -30,21 +30,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
namespace Grid {
template<class vobj>
class SimpleCompressor {
public:
void Point(int) {};
vobj operator() (const vobj &arg) {
return arg;
}
};
///////////////////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split with compression
// Gather for when there is no need to SIMD split
///////////////////////////////////////////////////////////////////
template<class vobj,class cobj,class compressor> void
Gather_plane_simple (const Lattice<vobj> &rhs,commVector<cobj> &buffer,int dimension,int plane,int cbmask,compressor &compress, int off=0)
template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{
int rd = rhs._grid->_rdimensions[dimension];
@ -62,7 +52,7 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<cobj> &buffer,int dimen
for(int b=0;b<e2;b++){
int o = n*stride;
int bo = n*e2;
buffer[off+bo+b]=compress(rhs._odata[so+o+b]);
buffer[off+bo+b]=rhs._odata[so+o+b];
}
}
} else {
@ -78,17 +68,16 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<cobj> &buffer,int dimen
}
}
parallel_for(int i=0;i<table.size();i++){
buffer[off+table[i].first]=compress(rhs._odata[so+table[i].second]);
buffer[off+table[i].first]=rhs._odata[so+table[i].second];
}
}
}
///////////////////////////////////////////////////////////////////
// Gather for when there *is* need to SIMD split with compression
// Gather for when there *is* need to SIMD split
///////////////////////////////////////////////////////////////////
template<class cobj,class vobj,class compressor> void
Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename cobj::scalar_object *> pointers,int dimension,int plane,int cbmask,compressor &compress)
template<class vobj> void
Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask)
{
int rd = rhs._grid->_rdimensions[dimension];
@ -109,8 +98,8 @@ Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename cobj::scalar_
int o = n*n1;
int offset = b+n*e2;
cobj temp =compress(rhs._odata[so+o+b]);
extract<cobj>(temp,pointers,offset);
vobj temp =rhs._odata[so+o+b];
extract<vobj>(temp,pointers,offset);
}
}
@ -127,32 +116,14 @@ Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename cobj::scalar_
int offset = b+n*e2;
if ( ocb & cbmask ) {
cobj temp =compress(rhs._odata[so+o+b]);
extract<cobj>(temp,pointers,offset);
vobj temp =rhs._odata[so+o+b];
extract<vobj>(temp,pointers,offset);
}
}
}
}
}
//////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask)
{
SimpleCompressor<vobj> dontcompress;
Gather_plane_simple (rhs,buffer,dimension,plane,cbmask,dontcompress);
}
//////////////////////////////////////////////////////
// Gather for when there *is* need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Gather_plane_extract(const Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask)
{
SimpleCompressor<vobj> dontcompress;
Gather_plane_extract<vobj,vobj,decltype(dontcompress)>(rhs,pointers,dimension,plane,cbmask,dontcompress);
}
//////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split
//////////////////////////////////////////////////////
@ -200,7 +171,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
//////////////////////////////////////////////////////
// Scatter for when there *is* need to SIMD split
//////////////////////////////////////////////////////
template<class vobj,class cobj> void Scatter_plane_merge(Lattice<vobj> &rhs,std::vector<cobj *> pointers,int dimension,int plane,int cbmask)
template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,std::vector<typename vobj::scalar_object *> pointers,int dimension,int plane,int cbmask)
{
int rd = rhs._grid->_rdimensions[dimension];

View File

@ -154,13 +154,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
recv_from_rank,
bytes);
grid->Barrier();
/*
for(int i=0;i<send_buf.size();i++){
assert(recv_buf.size()==buffer_size);
assert(send_buf.size()==buffer_size);
std::cout << "SendRecv_Cshift_comms ["<<i<<" "<< dimension<<"] snd "<<send_buf[i]<<" rcv " << recv_buf[i] << " 0x" << cbmask<<std::endl;
}
*/
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
}
}
@ -246,13 +240,6 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
(void *)&recv_buf_extract[i][0],
recv_from_rank,
bytes);
/*
for(int w=0;w<recv_buf_extract[i].size();w++){
assert(recv_buf_extract[i].size()==buffer_size);
assert(send_buf_extract[i].size()==buffer_size);
std::cout << "SendRecv_Cshift_comms ["<<w<<" "<< dimension<<"] recv "<<recv_buf_extract[i][w]<<" send " << send_buf_extract[nbr_lane][w] << cbmask<<std::endl;
}
*/
grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0];
} else {

View File

@ -1,224 +1,521 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reduction.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_REDUCTION_H
#define GRID_LATTICE_REDUCTION_H
#include <Grid/Eigen/Dense>
namespace Grid {
#ifdef GRID_WARN_SUBOPTIMAL
#warning "Optimisation alert all these reduction loops are NOT threaded "
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// Deterministic Reduction operations
////////////////////////////////////////////////////////////////////////////////////////////////////
template <class vobj>
inline RealD norm2(const Lattice<vobj> &arg) {
ComplexD nrm = innerProduct(arg, arg);
return std::real(nrm);
template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
ComplexD nrm = innerProduct(arg,arg);
return std::real(nrm);
}
// Double inner product
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
{
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
scalar_type nrm;
GridBase *grid = left._grid;
std::vector<vector_type,alignedAllocator<vector_type> > sumarray(grid->SumArraySize());
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(left._grid->oSites(),thr,mywork,myoff);
decltype(innerProductD(left._odata[0],right._odata[0])) vnrm=zero; // private to thread; sub summation
for(int ss=myoff;ss<mywork+myoff; ss++){
vnrm = vnrm + innerProductD(left._odata[ss],right._odata[ss]);
}
sumarray[thr]=TensorRemove(vnrm) ;
}
template <class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,
const Lattice<vobj> &right) {
vector_type vvnrm; vvnrm=zero; // sum across threads
for(int i=0;i<grid->SumArraySize();i++){
vvnrm = vvnrm+sumarray[i];
}
nrm = Reduce(vvnrm);// sum across simd
right._grid->GlobalSum(nrm);
return nrm;
}
template<class Op,class T1>
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2>
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),eval(0,std::get<1>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2,class T3>
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))
))::scalar_object
{
return sum(closure(expr));
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{
GridBase *grid=arg._grid;
int Nsimd = grid->Nsimd();
std::vector<vobj,alignedAllocator<vobj> > sumarray(grid->SumArraySize());
for(int i=0;i<grid->SumArraySize();i++){
sumarray[i]=zero;
}
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(grid->oSites(),thr,mywork,myoff);
vobj vvsum=zero;
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg._odata[ss];
}
sumarray[thr]=vvsum;
}
vobj vsum=zero; // sum across threads
for(int i=0;i<grid->SumArraySize();i++){
vsum = vsum+sumarray[i];
}
typedef typename vobj::scalar_object sobj;
sobj ssum=zero;
std::vector<sobj> buf(Nsimd);
extract(vsum,buf);
for(int i=0;i<Nsimd;i++) ssum = ssum + buf[i];
arg._grid->GlobalSum(ssum);
return ssum;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
{
///////////////////////////////////////////////////////
// FIXME precision promoted summation
// may be important for correlation functions
// But easily avoided by using double precision fields
///////////////////////////////////////////////////////
typedef typename vobj::scalar_object sobj;
GridBase *grid = Data._grid;
assert(grid!=NULL);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
std::vector<vobj,alignedAllocator<vobj> > lvSum(rd); // will locally sum vectors first
std::vector<sobj> lsSum(ld,zero); // sum across these down to scalars
std::vector<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
// sum over reduced dimension planes, breaking out orthog dir
// Parallel over orthog direction
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
lvSum[r]=lvSum[r]+Data._odata[ss];
}
}
}
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
extract(lvSum[rt],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx];
}
}
// sum over nodes.
sobj gsum;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum=lsSum[lt];
} else {
gsum=zero;
}
grid->GlobalSum(gsum);
result[t]=gsum;
}
}
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
assert(grid!=NULL);
conformable(grid,rhs._grid);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first
std::vector<scalar_type > lsSum(ld,scalar_type(0.0)); // sum across these down to scalars
std::vector<iScalar<scalar_type> > extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
vector_type vv = TensorRemove(innerProduct(lhs._odata[ss],rhs._odata[ss]));
lvSum[r]=lvSum[r]+vv;
}
}
}
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
temp._internal = lvSum[rt];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx]._internal;
}
}
// sum over nodes.
scalar_type gsum;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum=lsSum[lt];
} else {
gsum=scalar_type(0.0);
}
grid->GlobalSum(gsum);
result[t]=gsum;
}
}
template<class vobj>
static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Orthog)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = rhs._grid->GlobalDimensions()[Orthog];
std::vector<ComplexD> ip(Nblock);
sn.resize(Nblock);
sliceInnerProductVector(ip,rhs,rhs,Orthog);
for(int ss=0;ss<Nblock;ss++){
sn[ss] = real(ip[ss]);
}
};
template<class vobj>
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
int orthogdim,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::tensor_reduced tensor_reduced;
GridBase *grid = X._grid;
int Nsimd =grid->Nsimd();
int Nblock =grid->GlobalDimensions()[orthogdim];
int fd =grid->_fdimensions[orthogdim];
int ld =grid->_ldimensions[orthogdim];
int rd =grid->_rdimensions[orthogdim];
int e1 =grid->_slice_nblock[orthogdim];
int e2 =grid->_slice_block [orthogdim];
int stride =grid->_slice_stride[orthogdim];
std::vector<int> icoor;
for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
vector_type av;
for(int l=0;l<Nsimd;l++){
grid->iCoorFromIindex(icoor,l);
int ldx =r+icoor[orthogdim]*rd;
scalar_type *as =(scalar_type *)&av;
as[l] = scalar_type(a[ldx])*scale;
}
tensor_reduced at; at=av;
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
R._odata[ss] = at*X._odata[ss]+Y._odata[ss];
}
}
}
};
/*
template<class vobj>
static void sliceMaddVectorSlow (Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
int Orthog,RealD scale=1.0)
{
// FIXME: Implementation is slow
// Best base the linear combination by constructing a
// set of vectors of size grid->_rdimensions[Orthog].
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
// If we based this on Cshift it would work for spread out
// but it would be even slower
for(int i=0;i<Nblock;i++){
ExtractSlice(Rslice,Y,i,Orthog);
ExtractSlice(Xslice,X,i,Orthog);
Rslice = Rslice + Xslice*(scale*a[i]);
InsertSlice(Rslice,R,i,Orthog);
}
};
template<class vobj>
static void sliceInnerProductVectorSlow( std::vector<ComplexD> & vec, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
// FIXME: Implementation is slow
// Look at localInnerProduct implementation,
// and do inside a site loop with block strided iterators
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
scalar_type nrm;
GridBase *grid = left._grid;
std::vector<vector_type, alignedAllocator<vector_type> > sumarray(grid->SumArraySize());
for (int i = 0; i < grid->SumArraySize(); i++) {
sumarray[i] = zero;
typedef typename vobj::tensor_reduced scalar;
typedef typename scalar::scalar_object scomplex;
int Nblock = lhs._grid->GlobalDimensions()[Orthog];
vec.resize(Nblock);
std::vector<scomplex> sip(Nblock);
Lattice<scalar> IP(lhs._grid);
IP=localInnerProduct(lhs,rhs);
sliceSum(IP,sip,Orthog);
for(int ss=0;ss<Nblock;ss++){
vec[ss] = TensorRemove(sip[ss]);
}
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(left._grid->oSites(), thr, mywork, myoff);
decltype(innerProduct(left._odata[0], right._odata[0])) vnrm=zero; // private to thread; sub summation
for(int ss = myoff; ss<mywork + myoff; ss++){
vnrm = vnrm + innerProduct(left._odata[ss],right._odata[ss]);
}
sumarray[thr]=TensorRemove(vnrm) ;
}
vector_type vvnrm;
vvnrm=zero; // sum across threads
for(int i=0; i < grid->SumArraySize(); i++){
vvnrm = vvnrm + sumarray[i];
}
nrm = Reduce(vvnrm);// sum across simd
right._grid->GlobalSum(nrm);
return nrm;
}
*/
//////////////////////////////////////////////////////////////////////////////////////////
// FIXME: Implementation is slow
// If we based this on Cshift it would work for spread out
// but it would be even slower
//
// Repeated extract slice is inefficient
//
// Best base the linear combination by constructing a
// set of vectors of size grid->_rdimensions[Orthog].
//////////////////////////////////////////////////////////////////////////////////////////
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
{
int NN = BlockSolverGrid->_ndimension;
int nsimd = BlockSolverGrid->Nsimd();
template <class Op, class T1>
inline auto sum(const LatticeUnaryExpression<Op, T1> &expr) ->
typename decltype(expr.first.func(eval(0, std::get<0>(expr.second))))::scalar_object {
return sum(closure(expr));
std::vector<int> latt_phys(0);
std::vector<int> simd_phys(0);
std::vector<int> mpi_phys(0);
for(int d=0;d<NN;d++){
if( d!=Orthog ) {
latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
mpi_phys.push_back(BlockSolverGrid->_processors[d]);
}
}
template<class Op,class T1,class T2>
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),eval(0,std::get<1>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2,class T3>
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))
))::scalar_object
{
return sum(closure(expr));
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg){
GridBase *grid=arg._grid;
int Nsimd = grid->Nsimd();
std::vector<vobj,alignedAllocator<vobj> > sumarray(grid->SumArraySize());
for(int i=0;i<grid->SumArraySize();i++){
sumarray[i]=zero;
}
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(grid->oSites(),thr,mywork,myoff);
vobj vvsum=zero;
for(int ss=myoff;ss<mywork+myoff; ss++){
vvsum = vvsum + arg._odata[ss];
}
sumarray[thr]=vvsum;
}
vobj vsum=zero; // sum across threads
for(int i=0;i<grid->SumArraySize();i++){
vsum = vsum+sumarray[i];
}
typedef typename vobj::scalar_object sobj;
sobj ssum=zero;
std::vector<sobj> buf(Nsimd);
extract(vsum,buf);
for(int i=0;i<Nsimd;i++) ssum = ssum + buf[i];
arg._grid->GlobalSum(ssum);
return ssum;
}
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
{
typedef typename vobj::scalar_object sobj;
GridBase *grid = Data._grid;
assert(grid!=NULL);
// FIXME
// std::cout<<GridLogMessage<<"WARNING ! SliceSum is unthreaded "<<grid->SumArraySize()<<" threads "<<std::endl;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
std::vector<vobj,alignedAllocator<vobj> > lvSum(rd); // will locally sum vectors first
std::vector<sobj> lsSum(ld,zero); // sum across these down to scalars
std::vector<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
std::vector<int> coor(Nd);
// sum over reduced dimension planes, breaking out orthog dir
for(int ss=0;ss<grid->oSites();ss++){
Lexicographic::CoorFromIndex(coor,ss,grid->_rdimensions);
int r = coor[orthogdim];
lvSum[r]=lvSum[r]+Data._odata[ss];
}
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
extract(lvSum[rt],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx];
}
}
// sum over nodes.
sobj gsum;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum=lsSum[lt];
} else {
gsum=zero;
}
grid->GlobalSum(gsum);
result[t]=gsum;
}
}
return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
}
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
for(int i=0;i<Nblock;i++){
ExtractSlice(Rslice,Y,i,Orthog);
for(int j=0;j<Nblock;j++){
ExtractSlice(Xslice,X,j,Orthog);
Rslice = Rslice + Xslice*(scale*aa(j,i));
}
InsertSlice(Rslice,R,i,Orthog);
}
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
// FIXME: Implementation is slow
// Not sure of best solution.. think about it
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
Lattice<vobj> Lslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
for(int i=0;i<Nblock;i++){
ExtractSlice(Lslice,lhs,i,Orthog);
for(int j=0;j<Nblock;j++){
ExtractSlice(Rslice,rhs,j,Orthog);
mat(i,j) = innerProduct(Lslice,Rslice);
}
}
#undef FORCE_DIAG
#ifdef FORCE_DIAG
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
if ( i != j ) mat(i,j)=0.0;
}
}
#endif
return;
}
} /*END NAMESPACE GRID*/
#endif

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -359,7 +359,7 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
template<class vobj>
void InsertSlice(Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
{
typedef typename vobj::scalar_object sobj;
@ -401,7 +401,7 @@ void InsertSlice(Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int
}
template<class vobj>
void ExtractSlice(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice, int orthog)
void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice, int orthog)
{
typedef typename vobj::scalar_object sobj;
@ -444,7 +444,7 @@ void ExtractSlice(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice, in
template<class vobj>
void InsertSliceLocal(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
typedef typename vobj::scalar_object sobj;

View File

@ -110,8 +110,8 @@ public:
friend std::ostream& operator<< (std::ostream& stream, Logger& log){
if ( log.active ) {
stream << log.background()<< std::setw(10) << std::left << log.topName << log.background()<< " : ";
stream << log.colour() << std::setw(14) << std::left << log.name << log.background() << " : ";
stream << log.background()<< std::setw(8) << std::left << log.topName << log.background()<< " : ";
stream << log.colour() << std::setw(10) << std::left << log.name << log.background() << " : ";
if ( log.timestamp ) {
StopWatch.Stop();
GridTime now = StopWatch.Elapsed();

View File

@ -237,6 +237,13 @@ void CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &
INSTANTIATE_DPERP(GparityWilsonImplD);
INSTANTIATE_DPERP(ZWilsonImplF);
INSTANTIATE_DPERP(ZWilsonImplD);
INSTANTIATE_DPERP(WilsonImplFH);
INSTANTIATE_DPERP(WilsonImplDF);
INSTANTIATE_DPERP(GparityWilsonImplFH);
INSTANTIATE_DPERP(GparityWilsonImplDF);
INSTANTIATE_DPERP(ZWilsonImplFH);
INSTANTIATE_DPERP(ZWilsonImplDF);
#endif
}}

View File

@ -137,6 +137,20 @@ template void CayleyFermion5D<WilsonImplF>::MooeeInternal(const FermionField &ps
template void CayleyFermion5D<WilsonImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZWilsonImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZWilsonImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
INSTANTIATE_DPERP(GparityWilsonImplFH);
INSTANTIATE_DPERP(GparityWilsonImplDF);
INSTANTIATE_DPERP(WilsonImplFH);
INSTANTIATE_DPERP(WilsonImplDF);
INSTANTIATE_DPERP(ZWilsonImplFH);
INSTANTIATE_DPERP(ZWilsonImplDF);
template void CayleyFermion5D<GparityWilsonImplFH>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<GparityWilsonImplDF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<WilsonImplFH>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<WilsonImplDF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZWilsonImplFH>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZWilsonImplDF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
#endif
}}

View File

@ -37,7 +37,6 @@ namespace Grid {
namespace QCD {
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
// Pminus fowards
// Pplus backwards
template<class Impl>
@ -152,6 +151,13 @@ void CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &
INSTANTIATE_DPERP(GparityWilsonImplD);
INSTANTIATE_DPERP(ZWilsonImplF);
INSTANTIATE_DPERP(ZWilsonImplD);
INSTANTIATE_DPERP(WilsonImplFH);
INSTANTIATE_DPERP(WilsonImplDF);
INSTANTIATE_DPERP(GparityWilsonImplFH);
INSTANTIATE_DPERP(GparityWilsonImplDF);
INSTANTIATE_DPERP(ZWilsonImplFH);
INSTANTIATE_DPERP(ZWilsonImplDF);
#endif
}

View File

@ -808,10 +808,21 @@ INSTANTIATE_DPERP(DomainWallVec5dImplF);
INSTANTIATE_DPERP(ZDomainWallVec5dImplD);
INSTANTIATE_DPERP(ZDomainWallVec5dImplF);
INSTANTIATE_DPERP(DomainWallVec5dImplDF);
INSTANTIATE_DPERP(DomainWallVec5dImplFH);
INSTANTIATE_DPERP(ZDomainWallVec5dImplDF);
INSTANTIATE_DPERP(ZDomainWallVec5dImplFH);
template void CayleyFermion5D<DomainWallVec5dImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<DomainWallVec5dImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<DomainWallVec5dImplFH>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<DomainWallVec5dImplDF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZDomainWallVec5dImplFH>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
template void CayleyFermion5D<ZDomainWallVec5dImplDF>::MooeeInternal(const FermionField &psi, FermionField &chi,int dag, int inv);
}}

View File

@ -58,6 +58,7 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
#include <Grid/qcd/action/fermion/MobiusFermion.h>
#include <Grid/qcd/action/fermion/ZMobiusFermion.h>
#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
#include <Grid/qcd/action/fermion/ScaledShamirFermion.h>
#include <Grid/qcd/action/fermion/MobiusZolotarevFermion.h>
#include <Grid/qcd/action/fermion/ShamirZolotarevFermion.h>
@ -88,6 +89,10 @@ typedef WilsonFermion<WilsonImplR> WilsonFermionR;
typedef WilsonFermion<WilsonImplF> WilsonFermionF;
typedef WilsonFermion<WilsonImplD> WilsonFermionD;
typedef WilsonFermion<WilsonImplRL> WilsonFermionRL;
typedef WilsonFermion<WilsonImplFH> WilsonFermionFH;
typedef WilsonFermion<WilsonImplDF> WilsonFermionDF;
typedef WilsonFermion<WilsonAdjImplR> WilsonAdjFermionR;
typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF;
typedef WilsonFermion<WilsonAdjImplD> WilsonAdjFermionD;
@ -104,27 +109,50 @@ typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
typedef DomainWallFermion<WilsonImplD> DomainWallFermionD;
typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL;
typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
typedef MobiusFermion<WilsonImplF> MobiusFermionF;
typedef MobiusFermion<WilsonImplD> MobiusFermionD;
typedef MobiusFermion<WilsonImplRL> MobiusFermionRL;
typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL;
typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
// Ls vectorised
typedef DomainWallFermion<DomainWallVec5dImplR> DomainWallFermionVec5dR;
typedef DomainWallFermion<DomainWallVec5dImplF> DomainWallFermionVec5dF;
typedef DomainWallFermion<DomainWallVec5dImplD> DomainWallFermionVec5dD;
typedef DomainWallFermion<DomainWallVec5dImplRL> DomainWallFermionVec5dRL;
typedef DomainWallFermion<DomainWallVec5dImplFH> DomainWallFermionVec5dFH;
typedef DomainWallFermion<DomainWallVec5dImplDF> DomainWallFermionVec5dDF;
typedef MobiusFermion<DomainWallVec5dImplR> MobiusFermionVec5dR;
typedef MobiusFermion<DomainWallVec5dImplF> MobiusFermionVec5dF;
typedef MobiusFermion<DomainWallVec5dImplD> MobiusFermionVec5dD;
typedef MobiusFermion<DomainWallVec5dImplRL> MobiusFermionVec5dRL;
typedef MobiusFermion<DomainWallVec5dImplFH> MobiusFermionVec5dFH;
typedef MobiusFermion<DomainWallVec5dImplDF> MobiusFermionVec5dDF;
typedef ZMobiusFermion<ZDomainWallVec5dImplR> ZMobiusFermionVec5dR;
typedef ZMobiusFermion<ZDomainWallVec5dImplF> ZMobiusFermionVec5dF;
typedef ZMobiusFermion<ZDomainWallVec5dImplD> ZMobiusFermionVec5dD;
typedef ZMobiusFermion<ZDomainWallVec5dImplRL> ZMobiusFermionVec5dRL;
typedef ZMobiusFermion<ZDomainWallVec5dImplFH> ZMobiusFermionVec5dFH;
typedef ZMobiusFermion<ZDomainWallVec5dImplDF> ZMobiusFermionVec5dDF;
typedef ScaledShamirFermion<WilsonImplR> ScaledShamirFermionR;
typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF;
@ -165,17 +193,35 @@ typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD> OverlapWilsonP
typedef WilsonFermion<GparityWilsonImplR> GparityWilsonFermionR;
typedef WilsonFermion<GparityWilsonImplF> GparityWilsonFermionF;
typedef WilsonFermion<GparityWilsonImplD> GparityWilsonFermionD;
typedef WilsonFermion<GparityWilsonImplRL> GparityWilsonFermionRL;
typedef WilsonFermion<GparityWilsonImplFH> GparityWilsonFermionFH;
typedef WilsonFermion<GparityWilsonImplDF> GparityWilsonFermionDF;
typedef DomainWallFermion<GparityWilsonImplR> GparityDomainWallFermionR;
typedef DomainWallFermion<GparityWilsonImplF> GparityDomainWallFermionF;
typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL;
typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR;
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
typedef WilsonTMFermion<GparityWilsonImplRL> GparityWilsonTMFermionRL;
typedef WilsonTMFermion<GparityWilsonImplFH> GparityWilsonTMFermionFH;
typedef WilsonTMFermion<GparityWilsonImplDF> GparityWilsonTMFermionDF;
typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionR;
typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF;
typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD;
typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL;
typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;

View File

@ -55,7 +55,14 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
template class A<ZWilsonImplF>; \
template class A<ZWilsonImplD>; \
template class A<GparityWilsonImplF>; \
template class A<GparityWilsonImplD>;
template class A<GparityWilsonImplD>; \
template class A<WilsonImplFH>; \
template class A<WilsonImplDF>; \
template class A<ZWilsonImplFH>; \
template class A<ZWilsonImplDF>; \
template class A<GparityWilsonImplFH>; \
template class A<GparityWilsonImplDF>;
#define AdjointFermOpTemplateInstantiate(A) \
template class A<WilsonAdjImplF>; \
@ -69,7 +76,11 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
template class A<DomainWallVec5dImplF>; \
template class A<DomainWallVec5dImplD>; \
template class A<ZDomainWallVec5dImplF>; \
template class A<ZDomainWallVec5dImplD>;
template class A<ZDomainWallVec5dImplD>; \
template class A<DomainWallVec5dImplFH>; \
template class A<DomainWallVec5dImplDF>; \
template class A<ZDomainWallVec5dImplFH>; \
template class A<ZDomainWallVec5dImplDF>;
#define FermOpTemplateInstantiate(A) \
FermOp4dVecTemplateInstantiate(A) \

View File

@ -35,7 +35,6 @@ directory
namespace Grid {
namespace QCD {
//////////////////////////////////////////////
// Template parameter class constructs to package
// externally control Fermion implementations
@ -89,7 +88,53 @@ namespace QCD {
//
// }
//////////////////////////////////////////////
template <class T> struct SamePrecisionMapper {
typedef T HigherPrecVector ;
typedef T LowerPrecVector ;
};
template <class T> struct LowerPrecisionMapper { };
template <> struct LowerPrecisionMapper<vRealF> {
typedef vRealF HigherPrecVector ;
typedef vRealH LowerPrecVector ;
};
template <> struct LowerPrecisionMapper<vRealD> {
typedef vRealD HigherPrecVector ;
typedef vRealF LowerPrecVector ;
};
template <> struct LowerPrecisionMapper<vComplexF> {
typedef vComplexF HigherPrecVector ;
typedef vComplexH LowerPrecVector ;
};
template <> struct LowerPrecisionMapper<vComplexD> {
typedef vComplexD HigherPrecVector ;
typedef vComplexF LowerPrecVector ;
};
struct CoeffReal {
public:
typedef RealD _Coeff_t;
static const int Nhcs = 2;
template<class Simd> using PrecisionMapper = SamePrecisionMapper<Simd>;
};
struct CoeffRealHalfComms {
public:
typedef RealD _Coeff_t;
static const int Nhcs = 1;
template<class Simd> using PrecisionMapper = LowerPrecisionMapper<Simd>;
};
struct CoeffComplex {
public:
typedef ComplexD _Coeff_t;
static const int Nhcs = 2;
template<class Simd> using PrecisionMapper = SamePrecisionMapper<Simd>;
};
struct CoeffComplexHalfComms {
public:
typedef ComplexD _Coeff_t;
static const int Nhcs = 1;
template<class Simd> using PrecisionMapper = LowerPrecisionMapper<Simd>;
};
////////////////////////////////////////////////////////////////////////
// Implementation dependent fermion types
@ -114,37 +159,40 @@ namespace QCD {
/////////////////////////////////////////////////////////////////////////////
// Single flavour four spinors with colour index
/////////////////////////////////////////////////////////////////////////////
template <class S, class Representation = FundamentalRepresentation,class _Coeff_t = RealD >
template <class S, class Representation = FundamentalRepresentation,class Options = CoeffReal >
class WilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public:
static const int Dimension = Representation::Dimension;
static const bool LsVectorised=false;
static const int Nhcs = Options::Nhcs;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl);
//Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
const bool LsVectorised=false;
typedef _Coeff_t Coeff_t;
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Options::_Coeff_t Coeff_t;
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Dimension>, Ns> >;
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Dimension>, Ns> >;
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhs> >;
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Dimension>, Nhcs> >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplHalfCommSpinor<SimdL> SiteHalfCommSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonImplParams ImplParams;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor> StencilImpl;
@ -209,31 +257,34 @@ namespace QCD {
////////////////////////////////////////////////////////////////////////////////////
// Single flavour four spinors with colour index, 5d redblack
////////////////////////////////////////////////////////////////////////////////////
template<class S,int Nrepresentation=Nc,class _Coeff_t = RealD>
template<class S,int Nrepresentation=Nc, class Options=CoeffReal>
class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepresentation> > {
public:
static const int Dimension = Nrepresentation;
const bool LsVectorised=true;
typedef _Coeff_t Coeff_t;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Nrepresentation> > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl);
static const int Dimension = Nrepresentation;
static const bool LsVectorised=true;
static const int Nhcs = Options::Nhcs;
typedef typename Options::_Coeff_t Coeff_t;
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
template <typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Ns> >;
template <typename vtype> using iImplPropagator = iScalar<iMatrix<iMatrix<vtype, Nrepresentation>, Ns> >;
template <typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Nhs> >;
template <typename vtype> using iImplHalfCommSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Nhcs> >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>;
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>;
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplHalfCommSpinor<SimdL> SiteHalfCommSpinor;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField;
/////////////////////////////////////////////////
// Make the doubled gauge field a *scalar*
@ -241,9 +292,9 @@ class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepres
typedef iImplDoubledGaugeField<typename Simd::scalar_type> SiteDoubledGaugeField; // This is a scalar
typedef iImplGaugeField<typename Simd::scalar_type> SiteScalarGaugeField; // scalar
typedef iImplGaugeLink<typename Simd::scalar_type> SiteScalarGaugeLink; // scalar
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonImplParams ImplParams;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor> StencilImpl;
@ -303,6 +354,11 @@ class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepres
}
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde, int mu) {
assert(0);
// Following lines to be revised after Peter's addition of half prec
// missing put lane...
/*
typedef decltype(traceIndex<SpinIndex>(outerProduct(Btilde[0], Atilde[0]))) result_type;
unsigned int LLs = Btilde._grid->_rdimensions[0];
conformable(Atilde._grid,Btilde._grid);
@ -342,41 +398,44 @@ class DomainWallVec5dImpl : public PeriodicGaugeImpl< GaugeImplTypes< S,Nrepres
}
}
PokeIndex<LorentzIndex>(mat, tmp, mu);
*/
}
};
////////////////////////////////////////////////////////////////////////////////////////
// Flavour doubled spinors; is Gparity the only? what about C*?
////////////////////////////////////////////////////////////////////////////////////////
template <class S, int Nrepresentation,class _Coeff_t = RealD>
template <class S, int Nrepresentation, class Options=CoeffReal>
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresentation> > {
public:
static const int Dimension = Nrepresentation;
static const int Nhcs = Options::Nhcs;
static const bool LsVectorised=false;
const bool LsVectorised=false;
typedef _Coeff_t Coeff_t;
typedef ConjugateGaugeImpl< GaugeImplTypes<S,Nrepresentation> > Gimpl;
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Options::_Coeff_t Coeff_t;
typedef typename Options::template PrecisionMapper<Simd>::LowerPrecVector SimdL;
template <typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Ns>, Ngp>;
template <typename vtype> using iImplPropagator = iVector<iMatrix<iMatrix<vtype, Nrepresentation>, Ns>, Ngp >;
template <typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhs>, Ngp>;
template <typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Ns>, Ngp>;
template <typename vtype> using iImplPropagator = iVector<iMatrix<iMatrix<vtype, Nrepresentation>, Ns>, Ngp>;
template <typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhs>, Ngp>;
template <typename vtype> using iImplHalfCommSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhcs>, Ngp>;
template <typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds>, Ngp>;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplPropagator<Simd> SitePropagator;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplHalfCommSpinor<SimdL> SiteHalfCommSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SitePropagator> PropagatorField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonCompressor<SiteHalfCommSpinor,SiteHalfSpinor, SiteSpinor> Compressor;
typedef WilsonStencil<SiteSpinor, SiteHalfSpinor> StencilImpl;
typedef GparityWilsonImplParams ImplParams;
@ -393,8 +452,8 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
const SiteHalfSpinor &chi, int mu, StencilEntry *SE,
StencilImpl &St) {
typedef SiteHalfSpinor vobj;
typedef typename SiteHalfSpinor::scalar_object sobj;
typedef SiteHalfSpinor vobj;
typedef typename SiteHalfSpinor::scalar_object sobj;
vobj vtmp;
sobj stmp;
@ -513,7 +572,6 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
}
}
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
// DhopDir provides U or Uconj depending on coor/flavour.
@ -546,23 +604,22 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
};
/////////////////////////////////////////////////////////////////////////////
// Single flavour one component spinors with colour index
/////////////////////////////////////////////////////////////////////////////
template <class S, class Representation = FundamentalRepresentation >
class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
/////////////////////////////////////////////////////////////////////////////
// Single flavour one component spinors with colour index
/////////////////////////////////////////////////////////////////////////////
template <class S, class Representation = FundamentalRepresentation >
class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public:
typedef RealD _Coeff_t ;
static const int Dimension = Representation::Dimension;
static const bool LsVectorised=false;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
//Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
const bool LsVectorised=false;
typedef _Coeff_t Coeff_t;
INHERIT_GIMPL_TYPES(Gimpl);
@ -679,8 +736,6 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
}
};
/////////////////////////////////////////////////////////////////////////////
// Single flavour one component spinors with colour index. 5d vec
/////////////////////////////////////////////////////////////////////////////
@ -689,16 +744,14 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
public:
typedef RealD _Coeff_t ;
static const int Dimension = Representation::Dimension;
static const bool LsVectorised=true;
typedef RealD Coeff_t ;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Dimension > > Gimpl;
//Necessary?
constexpr bool is_fundamental() const{return Dimension == Nc ? 1 : 0;}
const bool LsVectorised=true;
typedef _Coeff_t Coeff_t;
INHERIT_GIMPL_TYPES(Gimpl);
@ -861,43 +914,61 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
}
};
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffReal > WilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > WilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > WilsonImplD; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplRL; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplFH; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplDF; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation > WilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation > WilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation > WilsonImplD; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplex > ZWilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplex > ZWilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplex > ZWilsonImplD; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, ComplexD > ZWilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, ComplexD > ZWilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, ComplexD > ZWilsonImplD; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplRL; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplFH; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplDF; // Double
typedef WilsonImpl<vComplex, AdjointRepresentation > WilsonAdjImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, AdjointRepresentation > WilsonAdjImplF; // Float
typedef WilsonImpl<vComplexD, AdjointRepresentation > WilsonAdjImplD; // Double
typedef WilsonImpl<vComplex, AdjointRepresentation, CoeffReal > WilsonAdjImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, AdjointRepresentation, CoeffReal > WilsonAdjImplF; // Float
typedef WilsonImpl<vComplexD, AdjointRepresentation, CoeffReal > WilsonAdjImplD; // Double
typedef WilsonImpl<vComplex, TwoIndexSymmetricRepresentation > WilsonTwoIndexSymmetricImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, TwoIndexSymmetricRepresentation > WilsonTwoIndexSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, TwoIndexSymmetricRepresentation > WilsonTwoIndexSymmetricImplD; // Double
typedef WilsonImpl<vComplex, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplF; // Float
typedef WilsonImpl<vComplexD, TwoIndexSymmetricRepresentation, CoeffReal > WilsonTwoIndexSymmetricImplD; // Double
typedef DomainWallVec5dImpl<vComplex ,Nc> DomainWallVec5dImplR; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,Nc> DomainWallVec5dImplF; // Float
typedef DomainWallVec5dImpl<vComplexD,Nc> DomainWallVec5dImplD; // Double
typedef DomainWallVec5dImpl<vComplex ,Nc, CoeffReal> DomainWallVec5dImplR; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,Nc, CoeffReal> DomainWallVec5dImplF; // Float
typedef DomainWallVec5dImpl<vComplexD,Nc, CoeffReal> DomainWallVec5dImplD; // Double
typedef DomainWallVec5dImpl<vComplex ,Nc,ComplexD> ZDomainWallVec5dImplR; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,Nc,ComplexD> ZDomainWallVec5dImplF; // Float
typedef DomainWallVec5dImpl<vComplexD,Nc,ComplexD> ZDomainWallVec5dImplD; // Double
typedef DomainWallVec5dImpl<vComplex ,Nc, CoeffRealHalfComms> DomainWallVec5dImplRL; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,Nc, CoeffRealHalfComms> DomainWallVec5dImplFH; // Float
typedef DomainWallVec5dImpl<vComplexD,Nc, CoeffRealHalfComms> DomainWallVec5dImplDF; // Double
typedef GparityWilsonImpl<vComplex , Nc> GparityWilsonImplR; // Real.. whichever prec
typedef GparityWilsonImpl<vComplexF, Nc> GparityWilsonImplF; // Float
typedef GparityWilsonImpl<vComplexD, Nc> GparityWilsonImplD; // Double
typedef DomainWallVec5dImpl<vComplex ,Nc,CoeffComplex> ZDomainWallVec5dImplR; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,Nc,CoeffComplex> ZDomainWallVec5dImplF; // Float
typedef DomainWallVec5dImpl<vComplexD,Nc,CoeffComplex> ZDomainWallVec5dImplD; // Double
typedef DomainWallVec5dImpl<vComplex ,Nc,CoeffComplexHalfComms> ZDomainWallVec5dImplRL; // Real.. whichever prec
typedef DomainWallVec5dImpl<vComplexF,Nc,CoeffComplexHalfComms> ZDomainWallVec5dImplFH; // Float
typedef DomainWallVec5dImpl<vComplexD,Nc,CoeffComplexHalfComms> ZDomainWallVec5dImplDF; // Double
typedef GparityWilsonImpl<vComplex , Nc,CoeffReal> GparityWilsonImplR; // Real.. whichever prec
typedef GparityWilsonImpl<vComplexF, Nc,CoeffReal> GparityWilsonImplF; // Float
typedef GparityWilsonImpl<vComplexD, Nc,CoeffReal> GparityWilsonImplD; // Double
typedef GparityWilsonImpl<vComplex , Nc,CoeffRealHalfComms> GparityWilsonImplRL; // Real.. whichever prec
typedef GparityWilsonImpl<vComplexF, Nc,CoeffRealHalfComms> GparityWilsonImplFH; // Float
typedef GparityWilsonImpl<vComplexD, Nc,CoeffRealHalfComms> GparityWilsonImplDF; // Double
typedef StaggeredImpl<vComplex, FundamentalRepresentation > StaggeredImplR; // Real.. whichever prec
typedef StaggeredImpl<vComplexF, FundamentalRepresentation > StaggeredImplF; // Float
typedef StaggeredImpl<vComplexD, FundamentalRepresentation > StaggeredImplD; // Double
typedef StaggeredImpl<vComplex, FundamentalRepresentation > StaggeredImplR; // Real.. whichever prec
typedef StaggeredImpl<vComplexF, FundamentalRepresentation > StaggeredImplF; // Float
typedef StaggeredImpl<vComplexD, FundamentalRepresentation > StaggeredImplD; // Double
typedef StaggeredVec5dImpl<vComplex, FundamentalRepresentation > StaggeredVec5dImplR; // Real.. whichever prec
typedef StaggeredVec5dImpl<vComplexF, FundamentalRepresentation > StaggeredVec5dImplF; // Float
typedef StaggeredVec5dImpl<vComplexD, FundamentalRepresentation > StaggeredVec5dImplD; // Double
typedef StaggeredVec5dImpl<vComplex, FundamentalRepresentation > StaggeredVec5dImplR; // Real.. whichever prec
typedef StaggeredVec5dImpl<vComplexF, FundamentalRepresentation > StaggeredVec5dImplF; // Float
typedef StaggeredVec5dImpl<vComplexD, FundamentalRepresentation > StaggeredVec5dImplD; // Double
}}

View File

@ -160,8 +160,6 @@ void ImprovedStaggeredFermion<Impl>::ImportGauge(const GaugeField &_Uthin,const
PokeIndex<LorentzIndex>(UUUmu, U*(-0.5*c2/u0/u0/u0), mu+4);
}
std::cout << " Umu " << Umu._odata[0]<<std::endl;
std::cout << " UUUmu " << UUUmu._odata[0]<<std::endl;
pickCheckerboard(Even, UmuEven, Umu);
pickCheckerboard(Odd, UmuOdd , Umu);
pickCheckerboard(Even, UUUmuEven, UUUmu);

View File

@ -0,0 +1,102 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: SchurDiagTwoKappa.h
Copyright (C) 2017
Author: Christoph Lehner
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef _SCHUR_DIAG_TWO_KAPPA_H
#define _SCHUR_DIAG_TWO_KAPPA_H
namespace Grid {
// This is specific to (Z)mobius fermions
template<class Matrix, class Field>
class KappaSimilarityTransform {
public:
INHERIT_IMPL_TYPES(Matrix);
std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
KappaSimilarityTransform (Matrix &zmob) {
for (int i=0;i<(int)zmob.bs.size();i++) {
Coeff_t k = 1.0 / ( 2.0 * (zmob.bs[i] *(4 - zmob.M5) + 1.0) );
kappa.push_back( k );
kappaDag.push_back( conj(k) );
kappaInv.push_back( 1.0 / k );
kappaInvDag.push_back( 1.0 / conj(k) );
}
}
template<typename vobj>
void sscale(const Lattice<vobj>& in, Lattice<vobj>& out, Coeff_t* s) {
GridBase *grid=out._grid;
out.checkerboard = in.checkerboard;
assert(grid->_simd_layout[0] == 1); // should be fine for ZMobius for now
int Ls = grid->_rdimensions[0];
parallel_for(int ss=0;ss<grid->oSites();ss++){
vobj tmp = s[ss % Ls]*in._odata[ss];
vstream(out._odata[ss],tmp);
}
}
RealD sscale_norm(const Field& in, Field& out, Coeff_t* s) {
sscale(in,out,s);
return norm2(out);
}
virtual RealD M (const Field& in, Field& out) { return sscale_norm(in,out,&kappa[0]); }
virtual RealD MDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaDag[0]);}
virtual RealD MInv (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInv[0]);}
virtual RealD MInvDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInvDag[0]);}
};
template<class Matrix,class Field>
class SchurDiagTwoKappaOperator : public SchurOperatorBase<Field> {
public:
KappaSimilarityTransform<Matrix, Field> _S;
SchurDiagTwoOperator<Matrix, Field> _Mat;
SchurDiagTwoKappaOperator (Matrix &Mat): _S(Mat), _Mat(Mat) {};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_S.MInv(in,out);
_Mat.Mpc(out,tmp);
return _S.M(tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_S.MDag(in,out);
_Mat.MpcDag(out,tmp);
return _S.MInvDag(tmp,out);
}
};
}
#endif

View File

@ -33,228 +33,321 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
namespace Grid {
namespace QCD {
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonCompressor {
public:
int mu;
int dag;
/////////////////////////////////////////////////////////////////////////////////////////////
// optimised versions supporting half precision too
/////////////////////////////////////////////////////////////////////////////////////////////
WilsonCompressor(int _dag){
mu=0;
dag=_dag;
assert((dag==0)||(dag==1));
}
void Point(int p) {
mu=p;
};
template<class _HCspinor,class _Hspinor,class _Spinor, class projector,typename SFINAE = void >
class WilsonCompressorTemplate;
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
int mudag=mu;
if (!dag) {
mudag=(mu+Nd)%(2*Nd);
}
switch(mudag) {
case Xp:
spProjXp(ret,in);
break;
case Yp:
spProjYp(ret,in);
break;
case Zp:
spProjZp(ret,in);
break;
case Tp:
spProjTp(ret,in);
break;
case Xm:
spProjXm(ret,in);
break;
case Ym:
spProjYm(ret,in);
break;
case Zm:
spProjZm(ret,in);
break;
case Tm:
spProjTm(ret,in);
break;
default:
assert(0);
break;
}
return ret;
}
};
/////////////////////////
// optimised versions
/////////////////////////
template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector,
typename std::enable_if<std::is_same<_HCspinor,_Hspinor>::value>::type >
{
public:
int mu,dag;
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonXpCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjXp(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonYpCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjYp(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonZpCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjZp(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonTpCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjTp(ret,in);
return ret;
}
};
void Point(int p) { mu=p; };
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonXmCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjXm(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonYmCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjYm(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonZmCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjZm(ret,in);
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonTmCompressor {
public:
inline SiteHalfSpinor operator () (const SiteSpinor &in) {
SiteHalfSpinor ret;
spProjTm(ret,in);
return ret;
}
};
WilsonCompressorTemplate(int _dag=0){
dag = _dag;
}
// Fast comms buffer manipulation which should inline right through (avoid direction
// dependent logic that prevents inlining
template<class vobj,class cobj>
class WilsonStencil : public CartesianStencil<vobj,cobj> {
public:
typedef _Spinor SiteSpinor;
typedef _Hspinor SiteHalfSpinor;
typedef _HCspinor SiteHalfCommSpinor;
typedef typename SiteHalfCommSpinor::vector_type vComplexLow;
typedef typename SiteHalfSpinor::vector_type vComplexHigh;
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexHigh);
typedef CartesianCommunicator::CommsRequest_t CommsRequest_t;
inline int CommDatumSize(void) {
return sizeof(SiteHalfCommSpinor);
}
WilsonStencil(GridBase *grid,
/*****************************************************/
/* Compress includes precision change if mpi data is not same */
/*****************************************************/
inline void Compress(SiteHalfSpinor *buf,Integer o,const SiteSpinor &in) {
projector::Proj(buf[o],in,mu,dag);
}
/*****************************************************/
/* Exchange includes precision change if mpi data is not same */
/*****************************************************/
inline void Exchange(SiteHalfSpinor *mp,
SiteHalfSpinor *vp0,
SiteHalfSpinor *vp1,
Integer type,Integer o){
exchange(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type);
}
/*****************************************************/
/* Have a decompression step if mpi data is not same */
/*****************************************************/
inline void Decompress(SiteHalfSpinor *out,
SiteHalfSpinor *in, Integer o) {
assert(0);
}
/*****************************************************/
/* Compress Exchange */
/*****************************************************/
inline void CompressExchange(SiteHalfSpinor *out0,
SiteHalfSpinor *out1,
const SiteSpinor *in,
Integer j,Integer k, Integer m,Integer type){
SiteHalfSpinor temp1, temp2,temp3,temp4;
projector::Proj(temp1,in[k],mu,dag);
projector::Proj(temp2,in[m],mu,dag);
exchange(out0[j],out1[j],temp1,temp2,type);
}
/*****************************************************/
/* Pass the info to the stencil */
/*****************************************************/
inline bool DecompressionStep(void) { return false; }
};
template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector,
typename std::enable_if<!std::is_same<_HCspinor,_Hspinor>::value>::type >
{
public:
int mu,dag;
void Point(int p) { mu=p; };
WilsonCompressorTemplate(int _dag=0){
dag = _dag;
}
typedef _Spinor SiteSpinor;
typedef _Hspinor SiteHalfSpinor;
typedef _HCspinor SiteHalfCommSpinor;
typedef typename SiteHalfCommSpinor::vector_type vComplexLow;
typedef typename SiteHalfSpinor::vector_type vComplexHigh;
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexHigh);
inline int CommDatumSize(void) {
return sizeof(SiteHalfCommSpinor);
}
/*****************************************************/
/* Compress includes precision change if mpi data is not same */
/*****************************************************/
inline void Compress(SiteHalfSpinor *buf,Integer o,const SiteSpinor &in) {
SiteHalfSpinor hsp;
SiteHalfCommSpinor *hbuf = (SiteHalfCommSpinor *)buf;
projector::Proj(hsp,in,mu,dag);
precisionChange((vComplexLow *)&hbuf[o],(vComplexHigh *)&hsp,Nw);
}
/*****************************************************/
/* Exchange includes precision change if mpi data is not same */
/*****************************************************/
inline void Exchange(SiteHalfSpinor *mp,
SiteHalfSpinor *vp0,
SiteHalfSpinor *vp1,
Integer type,Integer o){
SiteHalfSpinor vt0,vt1;
SiteHalfCommSpinor *vpp0 = (SiteHalfCommSpinor *)vp0;
SiteHalfCommSpinor *vpp1 = (SiteHalfCommSpinor *)vp1;
precisionChange((vComplexHigh *)&vt0,(vComplexLow *)&vpp0[o],Nw);
precisionChange((vComplexHigh *)&vt1,(vComplexLow *)&vpp1[o],Nw);
exchange(mp[2*o],mp[2*o+1],vt0,vt1,type);
}
/*****************************************************/
/* Have a decompression step if mpi data is not same */
/*****************************************************/
inline void Decompress(SiteHalfSpinor *out,
SiteHalfSpinor *in, Integer o){
SiteHalfCommSpinor *hin=(SiteHalfCommSpinor *)in;
precisionChange((vComplexHigh *)&out[o],(vComplexLow *)&hin[o],Nw);
}
/*****************************************************/
/* Compress Exchange */
/*****************************************************/
inline void CompressExchange(SiteHalfSpinor *out0,
SiteHalfSpinor *out1,
const SiteSpinor *in,
Integer j,Integer k, Integer m,Integer type){
SiteHalfSpinor temp1, temp2,temp3,temp4;
SiteHalfCommSpinor *hout0 = (SiteHalfCommSpinor *)out0;
SiteHalfCommSpinor *hout1 = (SiteHalfCommSpinor *)out1;
projector::Proj(temp1,in[k],mu,dag);
projector::Proj(temp2,in[m],mu,dag);
exchange(temp3,temp4,temp1,temp2,type);
precisionChange((vComplexLow *)&hout0[j],(vComplexHigh *)&temp3,Nw);
precisionChange((vComplexLow *)&hout1[j],(vComplexHigh *)&temp4,Nw);
}
/*****************************************************/
/* Pass the info to the stencil */
/*****************************************************/
inline bool DecompressionStep(void) { return true; }
};
#define DECLARE_PROJ(Projector,Compressor,spProj) \
class Projector { \
public: \
template<class hsp,class fsp> \
static void Proj(hsp &result,const fsp &in,int mu,int dag){ \
spProj(result,in); \
} \
}; \
template<typename HCS,typename HS,typename S> using Compressor = WilsonCompressorTemplate<HCS,HS,S,Projector>;
DECLARE_PROJ(WilsonXpProjector,WilsonXpCompressor,spProjXp);
DECLARE_PROJ(WilsonYpProjector,WilsonYpCompressor,spProjYp);
DECLARE_PROJ(WilsonZpProjector,WilsonZpCompressor,spProjZp);
DECLARE_PROJ(WilsonTpProjector,WilsonTpCompressor,spProjTp);
DECLARE_PROJ(WilsonXmProjector,WilsonXmCompressor,spProjXm);
DECLARE_PROJ(WilsonYmProjector,WilsonYmCompressor,spProjYm);
DECLARE_PROJ(WilsonZmProjector,WilsonZmCompressor,spProjZm);
DECLARE_PROJ(WilsonTmProjector,WilsonTmCompressor,spProjTm);
class WilsonProjector {
public:
template<class hsp,class fsp>
static void Proj(hsp &result,const fsp &in,int mu,int dag){
int mudag=dag? mu : (mu+Nd)%(2*Nd);
switch(mudag) {
case Xp: spProjXp(result,in); break;
case Yp: spProjYp(result,in); break;
case Zp: spProjZp(result,in); break;
case Tp: spProjTp(result,in); break;
case Xm: spProjXm(result,in); break;
case Ym: spProjYm(result,in); break;
case Zm: spProjZm(result,in); break;
case Tm: spProjTm(result,in); break;
default: assert(0); break;
}
}
};
template<typename HCS,typename HS,typename S> using WilsonCompressor = WilsonCompressorTemplate<HCS,HS,S,WilsonProjector>;
// Fast comms buffer manipulation which should inline right through (avoid direction
// dependent logic that prevents inlining
template<class vobj,class cobj>
class WilsonStencil : public CartesianStencil<vobj,cobj> {
public:
typedef CartesianCommunicator::CommsRequest_t CommsRequest_t;
std::vector<int> same_node;
std::vector<int> surface_list;
WilsonStencil(GridBase *grid,
int npoints,
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances) : CartesianStencil<vobj,cobj> (grid,npoints,checkerboard,directions,distances)
{ };
template < class compressor>
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)
{
std::vector<std::vector<CommsRequest_t> > reqs;
HaloExchangeOptGather(source,compress);
this->CommunicateBegin(reqs);
this->calls++;
this->CommunicateComplete(reqs);
this->CommsMerge();
}
template < class compressor>
void HaloExchangeOptGather(const Lattice<vobj> &source,compressor &compress)
{
this->calls++;
this->Mergers.resize(0);
this->Packets.resize(0);
this->HaloGatherOpt(source,compress);
}
template < class compressor>
void HaloGatherOpt(const Lattice<vobj> &source,compressor &compress)
{
this->_grid->StencilBarrier();
// conformable(source._grid,_grid);
assert(source._grid==this->_grid);
this->halogtime-=usecond();
this->u_comm_offset=0;
int dag = compress.dag;
WilsonXpCompressor<cobj,vobj> XpCompress;
WilsonYpCompressor<cobj,vobj> YpCompress;
WilsonZpCompressor<cobj,vobj> ZpCompress;
WilsonTpCompressor<cobj,vobj> TpCompress;
WilsonXmCompressor<cobj,vobj> XmCompress;
WilsonYmCompressor<cobj,vobj> YmCompress;
WilsonZmCompressor<cobj,vobj> ZmCompress;
WilsonTmCompressor<cobj,vobj> TmCompress;
// Gather all comms buffers
// for(int point = 0 ; point < _npoints; point++) {
// compress.Point(point);
// HaloGatherDir(source,compress,point,face_idx);
// }
int face_idx=0;
if ( dag ) {
// std::cout << " Optimised Dagger compress " <<std::endl;
this->HaloGatherDir(source,XpCompress,Xp,face_idx);
this->HaloGatherDir(source,YpCompress,Yp,face_idx);
this->HaloGatherDir(source,ZpCompress,Zp,face_idx);
this->HaloGatherDir(source,TpCompress,Tp,face_idx);
this->HaloGatherDir(source,XmCompress,Xm,face_idx);
this->HaloGatherDir(source,YmCompress,Ym,face_idx);
this->HaloGatherDir(source,ZmCompress,Zm,face_idx);
this->HaloGatherDir(source,TmCompress,Tm,face_idx);
} else {
this->HaloGatherDir(source,XmCompress,Xp,face_idx);
this->HaloGatherDir(source,YmCompress,Yp,face_idx);
this->HaloGatherDir(source,ZmCompress,Zp,face_idx);
this->HaloGatherDir(source,TmCompress,Tp,face_idx);
this->HaloGatherDir(source,XpCompress,Xm,face_idx);
this->HaloGatherDir(source,YpCompress,Ym,face_idx);
this->HaloGatherDir(source,ZpCompress,Zm,face_idx);
this->HaloGatherDir(source,TpCompress,Tm,face_idx);
}
this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size);
this->halogtime+=usecond();
}
const std::vector<int> &distances)
: CartesianStencil<vobj,cobj> (grid,npoints,checkerboard,directions,distances) ,
same_node(npoints)
{
surface_list.resize(0);
};
void BuildSurfaceList(int Ls,int vol4){
// find same node for SHM
// Here we know the distance is 1 for WilsonStencil
for(int point=0;point<this->_npoints;point++){
same_node[point] = this->SameNode(point);
// std::cout << " dir " <<point<<" same_node " <<same_node[point]<<std::endl;
}
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
if( (!this->GetNodeLocal(site*Ls,point)) && (!same_node[point]) ){
local = 0;
}
}
if(local == 0) {
surface_list.push_back(site);
}
}
}
template < class compressor>
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)
{
std::vector<std::vector<CommsRequest_t> > reqs;
this->HaloExchangeOptGather(source,compress);
this->CommunicateBegin(reqs);
this->CommunicateComplete(reqs);
this->CommsMerge(compress);
this->CommsMergeSHM(compress);
}
template <class compressor>
void HaloExchangeOptGather(const Lattice<vobj> &source,compressor &compress)
{
this->Prepare();
this->HaloGatherOpt(source,compress);
}
template <class compressor>
void HaloGatherOpt(const Lattice<vobj> &source,compressor &compress)
{
// Strategy. Inherit types from Compressor.
// Use types to select the write direction by directon compressor
typedef typename compressor::SiteSpinor SiteSpinor;
typedef typename compressor::SiteHalfSpinor SiteHalfSpinor;
typedef typename compressor::SiteHalfCommSpinor SiteHalfCommSpinor;
this->_grid->StencilBarrier();
assert(source._grid==this->_grid);
this->halogtime-=usecond();
this->u_comm_offset=0;
WilsonXpCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> XpCompress;
WilsonYpCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> YpCompress;
WilsonZpCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> ZpCompress;
WilsonTpCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> TpCompress;
WilsonXmCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> XmCompress;
WilsonYmCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> YmCompress;
WilsonZmCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> ZmCompress;
WilsonTmCompressor<SiteHalfCommSpinor,SiteHalfSpinor,SiteSpinor> TmCompress;
int dag = compress.dag;
int face_idx=0;
if ( dag ) {
// std::cout << " Optimised Dagger compress " <<std::endl;
assert(same_node[Xp]==this->HaloGatherDir(source,XpCompress,Xp,face_idx));
assert(same_node[Yp]==this->HaloGatherDir(source,YpCompress,Yp,face_idx));
assert(same_node[Zp]==this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
assert(same_node[Tp]==this->HaloGatherDir(source,TpCompress,Tp,face_idx));
assert(same_node[Xm]==this->HaloGatherDir(source,XmCompress,Xm,face_idx));
assert(same_node[Ym]==this->HaloGatherDir(source,YmCompress,Ym,face_idx));
assert(same_node[Zm]==this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
assert(same_node[Tm]==this->HaloGatherDir(source,TmCompress,Tm,face_idx));
} else {
assert(same_node[Xp]==this->HaloGatherDir(source,XmCompress,Xp,face_idx));
assert(same_node[Yp]==this->HaloGatherDir(source,YmCompress,Yp,face_idx));
assert(same_node[Zp]==this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
assert(same_node[Tp]==this->HaloGatherDir(source,TmCompress,Tp,face_idx));
assert(same_node[Xm]==this->HaloGatherDir(source,XpCompress,Xm,face_idx));
assert(same_node[Ym]==this->HaloGatherDir(source,YpCompress,Ym,face_idx));
assert(same_node[Zm]==this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
assert(same_node[Tm]==this->HaloGatherDir(source,TpCompress,Tm,face_idx));
}
this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size);
this->halogtime+=usecond();
}
};
}} // namespace close
#endif

View File

@ -118,6 +118,18 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
// Allocate the required comms buffer
ImportGauge(_Umu);
// Build lists of exterior only nodes
int LLs = FiveDimGrid._rdimensions[0];
int vol4;
vol4=FourDimGrid.oSites();
Stencil.BuildSurfaceList(LLs,vol4);
vol4=FourDimRedBlackGrid.oSites();
StencilEven.BuildSurfaceList(LLs,vol4);
StencilOdd.BuildSurfaceList(LLs,vol4);
std::cout << GridLogMessage << " SurfaceLists "<< Stencil.surface_list.size()
<<" " << StencilEven.surface_list.size()<<std::endl;
}
template<class Impl>
@ -359,6 +371,7 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DhopTotalTime+=usecond();
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
@ -372,12 +385,21 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
int LLs = in._grid->_rdimensions[0];
int len = U._grid->oSites();
DhopFaceTime-=usecond();
st.HaloExchangeOptGather(in,compressor);
DhopFaceTime+=usecond();
std::vector<std::vector<CommsRequest_t> > reqs;
// Rely on async comms; start comms before merge of local data
DhopCommTime-=usecond();
st.CommunicateBegin(reqs);
DhopFaceTime-=usecond();
st.CommsMergeSHM(compressor);
DhopFaceTime+=usecond();
// Perhaps use omp task and region
#pragma omp parallel
{
int nthreads = omp_get_num_threads();
@ -388,8 +410,6 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
int sF = LLs * myoff;
if ( me == 0 ) {
DhopCommTime-=usecond();
st.CommunicateBegin(reqs);
st.CommunicateComplete(reqs);
DhopCommTime+=usecond();
} else {
@ -402,28 +422,37 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
}
DhopFaceTime-=usecond();
st.CommsMerge();
st.CommsMerge(compressor);
DhopFaceTime+=usecond();
#pragma omp parallel
{
int nthreads = omp_get_num_threads();
int me = omp_get_thread_num();
int myoff, mywork;
GridThread::GetWork(len,me,mywork,myoff,nthreads);
int sF = LLs * myoff;
// Exterior links in stencil
if ( me==0 ) DhopComputeTime2-=usecond();
if (dag == DaggerYes) Kernels::DhopSiteDag(st,lo,U,st.CommBuf(),sF,myoff,LLs,mywork,in,out,0,1);
else Kernels::DhopSite (st,lo,U,st.CommBuf(),sF,myoff,LLs,mywork,in,out,0,1);
if ( me==0 ) DhopComputeTime2+=usecond();
}// end parallel region
// Load imbalance alert. Should use dynamic schedule OMP for loop
// Perhaps create a list of only those sites with face work, and
// load balance process the list.
DhopComputeTime2-=usecond();
if (dag == DaggerYes) {
int sz=st.surface_list.size();
parallel_for (int ss = 0; ss < sz; ss++) {
int sU = st.surface_list[ss];
int sF = LLs * sU;
Kernels::DhopSiteDag(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,0,1);
}
} else {
int sz=st.surface_list.size();
parallel_for (int ss = 0; ss < sz; ss++) {
int sU = st.surface_list[ss];
int sF = LLs * sU;
Kernels::DhopSite(st,lo,U,st.CommBuf(),sF,sU,LLs,1,in,out,0,1);
}
}
DhopComputeTime2+=usecond();
#else
assert(0);
#endif
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
@ -642,7 +671,6 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
}
FermOpTemplateInstantiate(WilsonFermion5D);
GparityFermOpTemplateInstantiate(WilsonFermion5D);

View File

@ -33,52 +33,8 @@ directory
namespace Grid {
namespace QCD {
int WilsonKernelsStatic::Opt = WilsonKernelsStatic::OptGeneric;
int WilsonKernelsStatic::Comms = WilsonKernelsStatic::CommsAndCompute;
#ifdef QPX
#include <spi/include/kernel/location.h>
#include <spi/include/l1p/types.h>
#include <hwi/include/bqc/l1p_mmio.h>
#include <hwi/include/bqc/A2_inlines.h>
#endif
void bgq_l1p_optimisation(int mode)
{
#ifdef QPX
#undef L1P_CFG_PF_USR
#define L1P_CFG_PF_USR (0x3fde8000108ll) /* (64 bit reg, 23 bits wide, user/unpriv) */
uint64_t cfg_pf_usr;
if ( mode ) {
cfg_pf_usr =
L1P_CFG_PF_USR_ifetch_depth(0)
| L1P_CFG_PF_USR_ifetch_max_footprint(1)
| L1P_CFG_PF_USR_pf_stream_est_on_dcbt
| L1P_CFG_PF_USR_pf_stream_establish_enable
| L1P_CFG_PF_USR_pf_stream_optimistic
| L1P_CFG_PF_USR_pf_adaptive_throttle(0xF) ;
// if ( sizeof(Float) == sizeof(double) ) {
cfg_pf_usr |= L1P_CFG_PF_USR_dfetch_depth(2)| L1P_CFG_PF_USR_dfetch_max_footprint(3) ;
// } else {
// cfg_pf_usr |= L1P_CFG_PF_USR_dfetch_depth(1)| L1P_CFG_PF_USR_dfetch_max_footprint(2) ;
// }
} else {
cfg_pf_usr = L1P_CFG_PF_USR_dfetch_depth(1)
| L1P_CFG_PF_USR_dfetch_max_footprint(2)
| L1P_CFG_PF_USR_ifetch_depth(0)
| L1P_CFG_PF_USR_ifetch_max_footprint(1)
| L1P_CFG_PF_USR_pf_stream_est_on_dcbt
| L1P_CFG_PF_USR_pf_stream_establish_enable
| L1P_CFG_PF_USR_pf_stream_optimistic
| L1P_CFG_PF_USR_pf_stream_prefetch_enable;
}
*((uint64_t *)L1P_CFG_PF_USR) = cfg_pf_usr;
#endif
}
int WilsonKernelsStatic::Opt = WilsonKernelsStatic::OptGeneric;
int WilsonKernelsStatic::Comms = WilsonKernelsStatic::CommsAndCompute;
template <class Impl>
WilsonKernels<Impl>::WilsonKernels(const ImplParams &p) : Base(p){};
@ -86,12 +42,72 @@ WilsonKernels<Impl>::WilsonKernels(const ImplParams &p) : Base(p){};
////////////////////////////////////////////
// Generic implementation; move to different file?
////////////////////////////////////////////
#define GENERIC_STENCIL_LEG(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (SE->_is_local) { \
chi_p = &chi; \
if (SE->_permute) { \
spProj(tmp, in._odata[SE->_offset]); \
permute(chi, tmp, ptype); \
} else { \
spProj(chi, in._odata[SE->_offset]); \
} \
} else { \
chi_p = &buf[SE->_offset]; \
} \
Impl::multLink(Uchi, U._odata[sU], *chi_p, Dir, SE, st); \
Recon(result, Uchi);
#define GENERIC_STENCIL_LEG_INT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if (SE->_is_local) { \
chi_p = &chi; \
if (SE->_permute) { \
spProj(tmp, in._odata[SE->_offset]); \
permute(chi, tmp, ptype); \
} else { \
spProj(chi, in._odata[SE->_offset]); \
} \
} else if ( st.same_node[Dir] ) { \
chi_p = &buf[SE->_offset]; \
} \
if (SE->_is_local || st.same_node[Dir] ) { \
Impl::multLink(Uchi, U._odata[sU], *chi_p, Dir, SE, st); \
Recon(result, Uchi); \
}
#define GENERIC_STENCIL_LEG_EXT(Dir,spProj,Recon) \
SE = st.GetEntry(ptype, Dir, sF); \
if ((!SE->_is_local) && (!st.same_node[Dir]) ) { \
chi_p = &buf[SE->_offset]; \
Impl::multLink(Uchi, U._odata[sU], *chi_p, Dir, SE, st); \
Recon(result, Uchi); \
nmu++; \
}
#define GENERIC_DHOPDIR_LEG(Dir,spProj,Recon) \
if (gamma == Dir) { \
if (SE->_is_local && SE->_permute) { \
spProj(tmp, in._odata[SE->_offset]); \
permute(chi, tmp, ptype); \
} else if (SE->_is_local) { \
spProj(chi, in._odata[SE->_offset]); \
} else { \
chi = buf[SE->_offset]; \
} \
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st); \
Recon(result, Uchi); \
}
////////////////////////////////////////////////////////////////////
// All legs kernels ; comms then compute
////////////////////////////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out,
int interior,int exterior) {
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteHalfSpinor *chi_p;
@ -100,174 +116,22 @@ void WilsonKernels<Impl>::GenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo,
StencilEntry *SE;
int ptype;
///////////////////////////
// Xp
///////////////////////////
SE = st.GetEntry(ptype, Xp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjXp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjXp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xp, SE, st);
spReconXp(result, Uchi);
///////////////////////////
// Yp
///////////////////////////
SE = st.GetEntry(ptype, Yp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjYp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjYp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Yp, SE, st);
accumReconYp(result, Uchi);
///////////////////////////
// Zp
///////////////////////////
SE = st.GetEntry(ptype, Zp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjZp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjZp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Zp, SE, st);
accumReconZp(result, Uchi);
///////////////////////////
// Tp
///////////////////////////
SE = st.GetEntry(ptype, Tp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjTp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjTp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Tp, SE, st);
accumReconTp(result, Uchi);
///////////////////////////
// Xm
///////////////////////////
SE = st.GetEntry(ptype, Xm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjXm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjXm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xm, SE, st);
accumReconXm(result, Uchi);
///////////////////////////
// Ym
///////////////////////////
SE = st.GetEntry(ptype, Ym, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjYm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjYm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Ym, SE, st);
accumReconYm(result, Uchi);
///////////////////////////
// Zm
///////////////////////////
SE = st.GetEntry(ptype, Zm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjZm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjZm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Zm, SE, st);
accumReconZm(result, Uchi);
///////////////////////////
// Tm
///////////////////////////
SE = st.GetEntry(ptype, Tm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjTm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjTm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Tm, SE, st);
accumReconTm(result, Uchi);
GENERIC_STENCIL_LEG(Xp,spProjXp,spReconXp);
GENERIC_STENCIL_LEG(Yp,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG(Zp,spProjZp,accumReconZp);
GENERIC_STENCIL_LEG(Tp,spProjTp,accumReconTp);
GENERIC_STENCIL_LEG(Xm,spProjXm,accumReconXm);
GENERIC_STENCIL_LEG(Ym,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG(Zm,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG(Tm,spProjTm,accumReconTm);
vstream(out._odata[sF], result);
};
// Need controls to do interior, exterior, or both
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out,int interior,int exterior) {
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteHalfSpinor *chi_p;
@ -276,168 +140,123 @@ void WilsonKernels<Impl>::GenericDhopSite(StencilImpl &st, LebesgueOrder &lo, Do
StencilEntry *SE;
int ptype;
///////////////////////////
// Xp
///////////////////////////
SE = st.GetEntry(ptype, Xm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjXp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjXp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xm, SE, st);
spReconXp(result, Uchi);
///////////////////////////
// Yp
///////////////////////////
SE = st.GetEntry(ptype, Ym, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjYp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjYp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Ym, SE, st);
accumReconYp(result, Uchi);
///////////////////////////
// Zp
///////////////////////////
SE = st.GetEntry(ptype, Zm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjZp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjZp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Zm, SE, st);
accumReconZp(result, Uchi);
///////////////////////////
// Tp
///////////////////////////
SE = st.GetEntry(ptype, Tm, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjTp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjTp(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Tm, SE, st);
accumReconTp(result, Uchi);
///////////////////////////
// Xm
///////////////////////////
SE = st.GetEntry(ptype, Xp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjXm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjXm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xp, SE, st);
accumReconXm(result, Uchi);
///////////////////////////
// Ym
///////////////////////////
SE = st.GetEntry(ptype, Yp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjYm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjYm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Yp, SE, st);
accumReconYm(result, Uchi);
///////////////////////////
// Zm
///////////////////////////
SE = st.GetEntry(ptype, Zp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjZm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjZm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Zp, SE, st);
accumReconZm(result, Uchi);
///////////////////////////
// Tm
///////////////////////////
SE = st.GetEntry(ptype, Tp, sF);
if (SE->_is_local) {
chi_p = &chi;
if (SE->_permute) {
spProjTm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else {
spProjTm(chi, in._odata[SE->_offset]);
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Tp, SE, st);
accumReconTm(result, Uchi);
GENERIC_STENCIL_LEG(Xm,spProjXp,spReconXp);
GENERIC_STENCIL_LEG(Ym,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG(Zm,spProjZp,accumReconZp);
GENERIC_STENCIL_LEG(Tm,spProjTp,accumReconTp);
GENERIC_STENCIL_LEG(Xp,spProjXm,accumReconXm);
GENERIC_STENCIL_LEG(Yp,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG(Zp,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG(Tp,spProjTm,accumReconTm);
vstream(out._odata[sF], result);
};
////////////////////////////////////////////////////////////////////
// Interior kernels
////////////////////////////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteDagInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteHalfSpinor *chi_p;
SiteHalfSpinor Uchi;
SiteSpinor result;
StencilEntry *SE;
int ptype;
result=zero;
GENERIC_STENCIL_LEG_INT(Xp,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_INT(Yp,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG_INT(Zp,spProjZp,accumReconZp);
GENERIC_STENCIL_LEG_INT(Tp,spProjTp,accumReconTp);
GENERIC_STENCIL_LEG_INT(Xm,spProjXm,accumReconXm);
GENERIC_STENCIL_LEG_INT(Ym,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG_INT(Zm,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG_INT(Tm,spProjTm,accumReconTm);
vstream(out._odata[sF], result);
};
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteHalfSpinor *chi_p;
SiteHalfSpinor Uchi;
SiteSpinor result;
StencilEntry *SE;
int ptype;
result=zero;
GENERIC_STENCIL_LEG_INT(Xm,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_INT(Ym,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG_INT(Zm,spProjZp,accumReconZp);
GENERIC_STENCIL_LEG_INT(Tm,spProjTp,accumReconTp);
GENERIC_STENCIL_LEG_INT(Xp,spProjXm,accumReconXm);
GENERIC_STENCIL_LEG_INT(Yp,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG_INT(Zp,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG_INT(Tp,spProjTm,accumReconTm);
vstream(out._odata[sF], result);
};
////////////////////////////////////////////////////////////////////
// Exterior kernels
////////////////////////////////////////////////////////////////////
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteDagExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteHalfSpinor *chi_p;
SiteHalfSpinor Uchi;
SiteSpinor result;
StencilEntry *SE;
int ptype;
int nmu=0;
result=zero;
GENERIC_STENCIL_LEG_EXT(Xp,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_EXT(Yp,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG_EXT(Zp,spProjZp,accumReconZp);
GENERIC_STENCIL_LEG_EXT(Tp,spProjTp,accumReconTp);
GENERIC_STENCIL_LEG_EXT(Xm,spProjXm,accumReconXm);
GENERIC_STENCIL_LEG_EXT(Ym,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG_EXT(Zm,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG_EXT(Tm,spProjTm,accumReconTm);
if ( nmu ) {
out._odata[sF] = out._odata[sF] + result;
}
};
template <class Impl>
void WilsonKernels<Impl>::GenericDhopSiteExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteHalfSpinor *buf, int sF,
int sU, const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteHalfSpinor *chi_p;
SiteHalfSpinor Uchi;
SiteSpinor result;
StencilEntry *SE;
int ptype;
int nmu=0;
result=zero;
GENERIC_STENCIL_LEG_EXT(Xm,spProjXp,accumReconXp);
GENERIC_STENCIL_LEG_EXT(Ym,spProjYp,accumReconYp);
GENERIC_STENCIL_LEG_EXT(Zm,spProjZp,accumReconZp);
GENERIC_STENCIL_LEG_EXT(Tm,spProjTp,accumReconTp);
GENERIC_STENCIL_LEG_EXT(Xp,spProjXm,accumReconXm);
GENERIC_STENCIL_LEG_EXT(Yp,spProjYm,accumReconYm);
GENERIC_STENCIL_LEG_EXT(Zp,spProjZm,accumReconZm);
GENERIC_STENCIL_LEG_EXT(Tp,spProjTm,accumReconTm);
if ( nmu ) {
out._odata[sF] = out._odata[sF] + result;
}
};
template <class Impl>
void WilsonKernels<Impl>::DhopDir( StencilImpl &st, DoubledGaugeField &U,SiteHalfSpinor *buf, int sF,
@ -451,119 +270,14 @@ void WilsonKernels<Impl>::DhopDir( StencilImpl &st, DoubledGaugeField &U,SiteHal
int ptype;
SE = st.GetEntry(ptype, dir, sF);
// Xp
if (gamma == Xp) {
if (SE->_is_local && SE->_permute) {
spProjXp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjXp(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconXp(result, Uchi);
}
// Yp
if (gamma == Yp) {
if (SE->_is_local && SE->_permute) {
spProjYp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjYp(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconYp(result, Uchi);
}
// Zp
if (gamma == Zp) {
if (SE->_is_local && SE->_permute) {
spProjZp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjZp(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconZp(result, Uchi);
}
// Tp
if (gamma == Tp) {
if (SE->_is_local && SE->_permute) {
spProjTp(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjTp(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconTp(result, Uchi);
}
// Xm
if (gamma == Xm) {
if (SE->_is_local && SE->_permute) {
spProjXm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjXm(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconXm(result, Uchi);
}
// Ym
if (gamma == Ym) {
if (SE->_is_local && SE->_permute) {
spProjYm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjYm(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconYm(result, Uchi);
}
// Zm
if (gamma == Zm) {
if (SE->_is_local && SE->_permute) {
spProjZm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjZm(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconZm(result, Uchi);
}
// Tm
if (gamma == Tm) {
if (SE->_is_local && SE->_permute) {
spProjTm(tmp, in._odata[SE->_offset]);
permute(chi, tmp, ptype);
} else if (SE->_is_local) {
spProjTm(chi, in._odata[SE->_offset]);
} else {
chi = buf[SE->_offset];
}
Impl::multLink(Uchi, U._odata[sU], chi, dir, SE, st);
spReconTm(result, Uchi);
}
GENERIC_DHOPDIR_LEG(Xp,spProjXp,spReconXp);
GENERIC_DHOPDIR_LEG(Yp,spProjYp,spReconYp);
GENERIC_DHOPDIR_LEG(Zp,spProjZp,spReconZp);
GENERIC_DHOPDIR_LEG(Tp,spProjTp,spReconTp);
GENERIC_DHOPDIR_LEG(Xm,spProjXm,spReconXm);
GENERIC_DHOPDIR_LEG(Ym,spProjYm,spReconYm);
GENERIC_DHOPDIR_LEG(Zm,spProjZm,spReconZm);
GENERIC_DHOPDIR_LEG(Tm,spProjTm,spReconTm);
vstream(out._odata[sF], result);
}

View File

@ -34,8 +34,6 @@ directory
namespace Grid {
namespace QCD {
void bgq_l1p_optimisation(int mode);
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Helper routines that implement Wilson stencil for a single site.
// Common to both the WilsonFermion and WilsonFermion5D
@ -44,9 +42,8 @@ class WilsonKernelsStatic {
public:
enum { OptGeneric, OptHandUnroll, OptInlineAsm };
enum { CommsAndCompute, CommsThenCompute };
// S-direction is INNERMOST and takes no part in the parity.
static int Opt; // these are a temporary hack
static int Comms; // these are a temporary hack
static int Opt;
static int Comms;
};
template<class Impl> class WilsonKernels : public FermionOperator<Impl> , public WilsonKernelsStatic {
@ -66,7 +63,7 @@ public:
switch(Opt) {
#if defined(AVX512) || defined (QPX)
case OptInlineAsm:
if(interior&&exterior) WilsonKernels<Impl>::AsmDhopSite(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
if(interior&&exterior) WilsonKernels<Impl>::AsmDhopSite (st,lo,U,buf,sF,sU,Ls,Ns,in,out);
else if (interior) WilsonKernels<Impl>::AsmDhopSiteInt(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
else if (exterior) WilsonKernels<Impl>::AsmDhopSiteExt(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
else assert(0);
@ -75,7 +72,9 @@ public:
case OptHandUnroll:
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if( exterior) WilsonKernels<Impl>::HandDhopSite(st,lo,U,buf,sF,sU,in,out,interior,exterior);
if(interior&&exterior) WilsonKernels<Impl>::HandDhopSite(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::HandDhopSiteInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::HandDhopSiteExt(st,lo,U,buf,sF,sU,in,out);
sF++;
}
sU++;
@ -84,7 +83,10 @@ public:
case OptGeneric:
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if( exterior) WilsonKernels<Impl>::GenericDhopSite(st,lo,U,buf,sF,sU,in,out,interior,exterior);
if(interior&&exterior) WilsonKernels<Impl>::GenericDhopSite(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::GenericDhopSiteInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::GenericDhopSiteExt(st,lo,U,buf,sF,sU,in,out);
else assert(0);
sF++;
}
sU++;
@ -99,11 +101,14 @@ public:
template <bool EnableBool = true>
typename std::enable_if<(Impl::Dimension != 3 || (Impl::Dimension == 3 && Nc != 3)) && EnableBool, void>::type
DhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out,int interior=1,int exterior=1 ) {
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out,int interior=1,int exterior=1 ) {
// no kernel choice
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if( exterior) WilsonKernels<Impl>::GenericDhopSite(st, lo, U, buf, sF, sU, in, out,interior,exterior);
if(interior&&exterior) WilsonKernels<Impl>::GenericDhopSite(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::GenericDhopSiteInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::GenericDhopSiteExt(st,lo,U,buf,sF,sU,in,out);
else assert(0);
sF++;
}
sU++;
@ -113,13 +118,13 @@ public:
template <bool EnableBool = true>
typename std::enable_if<Impl::Dimension == 3 && Nc == 3 && EnableBool,void>::type
DhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out,int interior=1,int exterior=1) {
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out,int interior=1,int exterior=1)
{
bgq_l1p_optimisation(1);
switch(Opt) {
#if defined(AVX512) || defined (QPX)
case OptInlineAsm:
if(interior&&exterior) WilsonKernels<Impl>::AsmDhopSiteDag(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
if(interior&&exterior) WilsonKernels<Impl>::AsmDhopSiteDag (st,lo,U,buf,sF,sU,Ls,Ns,in,out);
else if (interior) WilsonKernels<Impl>::AsmDhopSiteDagInt(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
else if (exterior) WilsonKernels<Impl>::AsmDhopSiteDagExt(st,lo,U,buf,sF,sU,Ls,Ns,in,out);
else assert(0);
@ -128,7 +133,10 @@ public:
case OptHandUnroll:
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if( exterior) WilsonKernels<Impl>::HandDhopSiteDag(st,lo,U,buf,sF,sU,in,out,interior,exterior);
if(interior&&exterior) WilsonKernels<Impl>::HandDhopSiteDag(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::HandDhopSiteDagInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::HandDhopSiteDagExt(st,lo,U,buf,sF,sU,in,out);
else assert(0);
sF++;
}
sU++;
@ -137,7 +145,10 @@ public:
case OptGeneric:
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if( exterior) WilsonKernels<Impl>::GenericDhopSiteDag(st,lo,U,buf,sF,sU,in,out,interior,exterior);
if(interior&&exterior) WilsonKernels<Impl>::GenericDhopSiteDag(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::GenericDhopSiteDagInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::GenericDhopSiteDagExt(st,lo,U,buf,sF,sU,in,out);
else assert(0);
sF++;
}
sU++;
@ -156,7 +167,10 @@ public:
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if( exterior) WilsonKernels<Impl>::GenericDhopSiteDag(st,lo,U,buf,sF,sU,in,out,interior,exterior);
if(interior&&exterior) WilsonKernels<Impl>::GenericDhopSiteDag(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::GenericDhopSiteDagInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::GenericDhopSiteDagExt(st,lo,U,buf,sF,sU,in,out);
else assert(0);
sF++;
}
sU++;
@ -169,36 +183,60 @@ public:
private:
// Specialised variants
void GenericDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out,int interior,int exterior);
int sF, int sU, const FermionField &in, FermionField &out);
void GenericDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out,int interior,int exterior);
int sF, int sU, const FermionField &in, FermionField &out);
void GenericDhopSiteInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void GenericDhopSiteDagInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void GenericDhopSiteExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void GenericDhopSiteDagExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void AsmDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out);
int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out);
void AsmDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out);
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out);
void AsmDhopSiteInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out);
int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out);
void AsmDhopSiteDagInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out);
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out);
void AsmDhopSiteExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out);
int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out);
void AsmDhopSiteDagExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out);
int sF, int sU, int Ls, int Ns, const FermionField &in, FermionField &out);
void HandDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out,int interior,int exterior);
int sF, int sU, const FermionField &in, FermionField &out);
void HandDhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out,int interior,int exterior);
int sF, int sU, const FermionField &in, FermionField &out);
void HandDhopSiteInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void HandDhopSiteDagInt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void HandDhopSiteExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void HandDhopSiteDagExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
public:
WilsonKernels(const ImplParams &p = ImplParams());

View File

@ -112,5 +112,16 @@ INSTANTIATE_ASM(DomainWallVec5dImplD);
INSTANTIATE_ASM(ZDomainWallVec5dImplF);
INSTANTIATE_ASM(ZDomainWallVec5dImplD);
INSTANTIATE_ASM(WilsonImplFH);
INSTANTIATE_ASM(WilsonImplDF);
INSTANTIATE_ASM(ZWilsonImplFH);
INSTANTIATE_ASM(ZWilsonImplDF);
INSTANTIATE_ASM(GparityWilsonImplFH);
INSTANTIATE_ASM(GparityWilsonImplDF);
INSTANTIATE_ASM(DomainWallVec5dImplFH);
INSTANTIATE_ASM(DomainWallVec5dImplDF);
INSTANTIATE_ASM(ZDomainWallVec5dImplFH);
INSTANTIATE_ASM(ZDomainWallVec5dImplDF);
}}

View File

@ -71,6 +71,16 @@ WilsonKernels<ZWilsonImplF>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,Doub
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
@ -84,6 +94,16 @@ WilsonKernels<ZWilsonImplF>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,D
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
@ -97,6 +117,16 @@ template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
/////////////////////////////////////////////////////////////////
// XYZT vectorised, dag Kernel, single
@ -115,6 +145,16 @@ WilsonKernels<ZWilsonImplF>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,D
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
@ -128,6 +168,16 @@ WilsonKernels<ZWilsonImplF>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & l
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
@ -141,6 +191,16 @@ WilsonKernels<ZWilsonImplF>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & l
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef MAYBEPERM
#undef MULT_2SPIN
#define MAYBEPERM(A,B)
@ -162,6 +222,15 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSite(StencilImpl &st,LebesgueOrder
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplFH>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplFH>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
@ -174,6 +243,15 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrd
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplFH>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplFH>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
@ -189,6 +267,16 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrd
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplFH>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplFH>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
/////////////////////////////////////////////////////////////////
// Ls vectorised, dag Kernel, single
/////////////////////////////////////////////////////////////////
@ -205,6 +293,15 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrd
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplFH>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplFH>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
@ -217,6 +314,15 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteDagInt(StencilImpl &st,Lebesgue
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplFH>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplFH>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
@ -229,6 +335,15 @@ WilsonKernels<ZDomainWallVec5dImplF>::AsmDhopSiteDagExt(StencilImpl &st,Lebesgue
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplFH>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplFH>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef COMPLEX_SIGNS
#undef MAYBEPERM
#undef MULT_2SPIN
@ -269,6 +384,15 @@ WilsonKernels<ZWilsonImplD>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,Doub
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
@ -281,6 +405,15 @@ WilsonKernels<ZWilsonImplD>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,D
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
@ -293,6 +426,15 @@ WilsonKernels<ZWilsonImplD>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,D
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
/////////////////////////////////////////////////////////////////
// XYZT vectorised, dag Kernel, single
/////////////////////////////////////////////////////////////////
@ -309,6 +451,15 @@ WilsonKernels<ZWilsonImplD>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,D
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
@ -321,6 +472,15 @@ WilsonKernels<ZWilsonImplD>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & l
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
@ -333,6 +493,15 @@ WilsonKernels<ZWilsonImplD>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & l
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef MAYBEPERM
#undef MULT_2SPIN
#define MAYBEPERM(A,B)
@ -354,6 +523,15 @@ WilsonKernels<ZDomainWallVec5dImplD>::AsmDhopSite(StencilImpl &st,LebesgueOrder
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplDF>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplDF>::AsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
@ -366,6 +544,15 @@ WilsonKernels<ZDomainWallVec5dImplD>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrd
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplDF>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplDF>::AsmDhopSiteInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
@ -380,6 +567,15 @@ WilsonKernels<ZDomainWallVec5dImplD>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrd
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplDF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplDF>::AsmDhopSiteExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
/////////////////////////////////////////////////////////////////
// Ls vectorised, dag Kernel, single
/////////////////////////////////////////////////////////////////
@ -396,6 +592,15 @@ WilsonKernels<ZDomainWallVec5dImplD>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrd
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplDF>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplDF>::AsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
@ -408,6 +613,15 @@ WilsonKernels<ZDomainWallVec5dImplD>::AsmDhopSiteDagInt(StencilImpl &st,Lebesgue
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplDF>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplDF>::AsmDhopSiteDagInt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
@ -420,6 +634,15 @@ WilsonKernels<ZDomainWallVec5dImplD>::AsmDhopSiteDagExt(StencilImpl &st,Lebesgue
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<DomainWallVec5dImplDF>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
template<> void
WilsonKernels<ZDomainWallVec5dImplDF>::AsmDhopSiteDagExt(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#undef COMPLEX_SIGNS
#undef MAYBEPERM
#undef MULT_2SPIN

View File

@ -39,24 +39,26 @@
////////////////////////////////////////////////////////////////////////////////
#ifdef INTERIOR_AND_EXTERIOR
#define ZERO_NMU(A)
#define INTERIOR_BLOCK_XP(a,b,PERMUTE_DIR,PROJMEM,RECON) INTERIOR_BLOCK(a,b,PERMUTE_DIR,PROJMEM,RECON)
#define EXTERIOR_BLOCK_XP(a,b,RECON) EXTERIOR_BLOCK(a,b,RECON)
#define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
basep = st.GetPFInfo(nent,plocal); nent++; \
if ( local ) { \
LOAD64(%r10,isigns); \
PROJ(base); \
MAYBEPERM(PERMUTE_DIR,perm); \
} else { \
LOAD_CHI(base); \
} \
base = st.GetInfo(ptype,local,perm,NxtDir,ent,plocal); ent++; \
PREFETCH_CHIMU(base); \
MULT_2SPIN_DIR_PF(Dir,basep); \
LOAD64(%r10,isigns); \
RECON; \
#define INTERIOR_BLOCK(a,b,PERMUTE_DIR,PROJMEM,RECON) \
LOAD64(%r10,isigns); \
PROJMEM(base); \
MAYBEPERM(PERMUTE_DIR,perm);
#define EXTERIOR_BLOCK(a,b,RECON) \
LOAD_CHI(base);
#define COMMON_BLOCK(a,b,RECON) \
base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++; \
PREFETCH_CHIMU(base); \
MULT_2SPIN_DIR_PF(a,basep); \
LOAD64(%r10,isigns); \
RECON;
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
PF_GAUGE(Xp); \
PREFETCH1_CHIMU(base); \
ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON)
#define RESULT(base,basep) SAVE_RESULT(base,basep);
@ -67,62 +69,62 @@
////////////////////////////////////////////////////////////////////////////////
#ifdef INTERIOR
#define COMMON_BLOCK(a,b,RECON)
#define ZERO_NMU(A)
#define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
basep = st.GetPFInfo(nent,plocal); nent++; \
if ( local ) { \
LOAD64(%r10,isigns); \
PROJ(base); \
MAYBEPERM(PERMUTE_DIR,perm); \
}else if ( st.same_node[Dir] ) {LOAD_CHI(base);} \
if ( local || st.same_node[Dir] ) { \
MULT_2SPIN_DIR_PF(Dir,basep); \
LOAD64(%r10,isigns); \
RECON; \
} \
base = st.GetInfo(ptype,local,perm,NxtDir,ent,plocal); ent++; \
PREFETCH_CHIMU(base); \
// No accumulate for DIR0
#define EXTERIOR_BLOCK_XP(a,b,RECON) \
ZERO_PSI; \
base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++;
#define EXTERIOR_BLOCK(a,b,RECON) \
base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++;
#define INTERIOR_BLOCK_XP(a,b,PERMUTE_DIR,PROJMEM,RECON) INTERIOR_BLOCK(a,b,PERMUTE_DIR,PROJMEM,RECON)
#define INTERIOR_BLOCK(a,b,PERMUTE_DIR,PROJMEM,RECON) \
LOAD64(%r10,isigns); \
PROJMEM(base); \
MAYBEPERM(PERMUTE_DIR,perm); \
base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++; \
PREFETCH_CHIMU(base); \
MULT_2SPIN_DIR_PF(a,basep); \
LOAD64(%r10,isigns); \
RECON;
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
PF_GAUGE(Xp); \
PREFETCH1_CHIMU(base); \
{ ZERO_PSI; } \
ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON)
#define RESULT(base,basep) SAVE_RESULT(base,basep);
#endif
////////////////////////////////////////////////////////////////////////////////
// Post comms kernel
////////////////////////////////////////////////////////////////////////////////
#ifdef EXTERIOR
#define ZERO_NMU(A) nmu=0;
#define INTERIOR_BLOCK_XP(a,b,PERMUTE_DIR,PROJMEM,RECON) \
ZERO_PSI; base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++;
#define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
if((!local)&&(!st.same_node[Dir]) ) { \
LOAD_CHI(base); \
MULT_2SPIN_DIR_PF(Dir,base); \
LOAD64(%r10,isigns); \
RECON; \
nmu++; \
}
#define EXTERIOR_BLOCK_XP(a,b,RECON) EXTERIOR_BLOCK(a,b,RECON)
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
nmu=0; \
{ ZERO_PSI;} \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
if((!local)&&(!st.same_node[Dir]) ) { \
LOAD_CHI(base); \
MULT_2SPIN_DIR_PF(Dir,base); \
LOAD64(%r10,isigns); \
RECON; \
nmu++; \
}
#define INTERIOR_BLOCK(a,b,PERMUTE_DIR,PROJMEM,RECON) \
base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++;
#define EXTERIOR_BLOCK(a,b,RECON) \
nmu++; \
LOAD_CHI(base); \
MULT_2SPIN_DIR_PF(a,base); \
base = st.GetInfo(ptype,local,perm,b,ent,plocal); ent++; \
LOAD64(%r10,isigns); \
RECON;
#define COMMON_BLOCK(a,b,RECON)
#define RESULT(base,basep) if (nmu){ ADD_RESULT(base,base);}
#define RESULT(base,basep) if (nmu){ ADD_RESULT(base,base);}
#endif
{
int nmu;
int local,perm, ptype;
@ -134,11 +136,15 @@
MASK_REGS;
int nmax=U._grid->oSites();
for(int site=0;site<Ns;site++) {
#ifndef EXTERIOR
int sU =lo.Reorder(ssU);
int ssn=ssU+1; if(ssn>=nmax) ssn=0;
int sUn=lo.Reorder(ssn);
#ifndef EXTERIOR
LOCK_GAUGE(0);
#else
int sU =ssU;
int ssn=ssU+1; if(ssn>=nmax) ssn=0;
int sUn=ssn;
#endif
for(int s=0;s<Ls;s++) {
ss =sU*Ls+s;
@ -146,93 +152,20 @@
int ent=ss*8;// 2*Ndim
int nent=ssn*8;
ZERO_NMU(0);
base = st.GetInfo(ptype,local,perm,Xp,ent,plocal); ent++;
#ifndef EXTERIOR
PF_GAUGE(Xp);
PREFETCH1_CHIMU(base);
#endif
////////////////////////////////
// Xp
////////////////////////////////
basep = st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK_XP(Xp,Yp,PERMUTE_DIR3,DIR0_PROJMEM,DIR0_RECON);
} else {
EXTERIOR_BLOCK_XP(Xp,Yp,DIR0_RECON);
}
COMMON_BLOCK(Xp,Yp,DIR0_RECON);
////////////////////////////////
// Yp
////////////////////////////////
basep = st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Yp,Zp,PERMUTE_DIR2,DIR1_PROJMEM,DIR1_RECON);
} else {
EXTERIOR_BLOCK(Yp,Zp,DIR1_RECON);
}
COMMON_BLOCK(Yp,Zp,DIR1_RECON);
////////////////////////////////
// Zp
////////////////////////////////
basep = st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Zp,Tp,PERMUTE_DIR1,DIR2_PROJMEM,DIR2_RECON);
} else {
EXTERIOR_BLOCK(Zp,Tp,DIR2_RECON);
}
COMMON_BLOCK(Zp,Tp,DIR2_RECON);
////////////////////////////////
// Tp
////////////////////////////////
basep = st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Tp,Xm,PERMUTE_DIR0,DIR3_PROJMEM,DIR3_RECON);
} else {
EXTERIOR_BLOCK(Tp,Xm,DIR3_RECON);
}
COMMON_BLOCK(Tp,Xm,DIR3_RECON);
////////////////////////////////
// Xm
////////////////////////////////
// basep= st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Xm,Ym,PERMUTE_DIR3,DIR4_PROJMEM,DIR4_RECON);
} else {
EXTERIOR_BLOCK(Xm,Ym,DIR4_RECON);
}
COMMON_BLOCK(Xm,Ym,DIR4_RECON);
////////////////////////////////
// Ym
////////////////////////////////
basep= st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Ym,Zm,PERMUTE_DIR2,DIR5_PROJMEM,DIR5_RECON);
} else {
EXTERIOR_BLOCK(Ym,Zm,DIR5_RECON);
}
COMMON_BLOCK(Ym,Zm,DIR5_RECON);
////////////////////////////////
// Zm
////////////////////////////////
basep= st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Zm,Tm,PERMUTE_DIR1,DIR6_PROJMEM,DIR6_RECON);
} else {
EXTERIOR_BLOCK(Zm,Tm,DIR6_RECON);
}
COMMON_BLOCK(Zm,Tm,DIR6_RECON);
////////////////////////////////
// Tm
////////////////////////////////
basep= st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
INTERIOR_BLOCK(Tm,Xp,PERMUTE_DIR0,DIR7_PROJMEM,DIR7_RECON);
} else {
EXTERIOR_BLOCK(Tm,Xp,DIR7_RECON);
}
COMMON_BLOCK(Tm,Xp,DIR7_RECON);
ASM_LEG_XP(Xp,Yp,PERMUTE_DIR3,DIR0_PROJMEM,DIR0_RECON);
ASM_LEG(Yp,Zp,PERMUTE_DIR2,DIR1_PROJMEM,DIR1_RECON);
ASM_LEG(Zp,Tp,PERMUTE_DIR1,DIR2_PROJMEM,DIR2_RECON);
ASM_LEG(Tp,Xm,PERMUTE_DIR0,DIR3_PROJMEM,DIR3_RECON);
ASM_LEG(Xm,Ym,PERMUTE_DIR3,DIR4_PROJMEM,DIR4_RECON);
ASM_LEG(Ym,Zm,PERMUTE_DIR2,DIR5_PROJMEM,DIR5_RECON);
ASM_LEG(Zm,Tm,PERMUTE_DIR1,DIR6_PROJMEM,DIR6_RECON);
ASM_LEG(Tm,Xp,PERMUTE_DIR0,DIR7_PROJMEM,DIR7_RECON);
#ifdef EXTERIOR
if (nmu==0) break;
// if (nmu!=0) std::cout << "EXT "<<sU<<std::endl;
#endif
base = (uint64_t) &out._odata[ss];
basep= st.GetPFInfo(nent,plocal); nent++;
RESULT(base,basep);
@ -258,10 +191,6 @@
#undef DIR5_RECON
#undef DIR6_RECON
#undef DIR7_RECON
#undef EXTERIOR_BLOCK
#undef INTERIOR_BLOCK
#undef EXTERIOR_BLOCK_XP
#undef INTERIOR_BLOCK_XP
#undef COMMON_BLOCK
#undef ZERO_NMU
#undef ASM_LEG
#undef ASM_LEG_XP
#undef RESULT

View File

@ -31,7 +31,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define REGISTER
#define LOAD_CHIMU \
const SiteSpinor & ref (in._odata[offset]); \
{const SiteSpinor & ref (in._odata[offset]); \
Chimu_00=ref()(0)(0);\
Chimu_01=ref()(0)(1);\
Chimu_02=ref()(0)(2);\
@ -43,20 +43,20 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
Chimu_22=ref()(2)(2);\
Chimu_30=ref()(3)(0);\
Chimu_31=ref()(3)(1);\
Chimu_32=ref()(3)(2);
Chimu_32=ref()(3)(2);}
#define LOAD_CHI\
const SiteHalfSpinor &ref(buf[offset]); \
{const SiteHalfSpinor &ref(buf[offset]); \
Chi_00 = ref()(0)(0);\
Chi_01 = ref()(0)(1);\
Chi_02 = ref()(0)(2);\
Chi_10 = ref()(1)(0);\
Chi_11 = ref()(1)(1);\
Chi_12 = ref()(1)(2);
Chi_12 = ref()(1)(2);}
// To splat or not to splat depends on the implementation
#define MULT_2SPIN(A)\
auto & ref(U._odata[sU](A)); \
{auto & ref(U._odata[sU](A)); \
Impl::loadLinkElement(U_00,ref()(0,0)); \
Impl::loadLinkElement(U_10,ref()(1,0)); \
Impl::loadLinkElement(U_20,ref()(2,0)); \
@ -83,7 +83,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
UChi_01+= U_10*Chi_02;\
UChi_11+= U_10*Chi_12;\
UChi_02+= U_20*Chi_02;\
UChi_12+= U_20*Chi_12;
UChi_12+= U_20*Chi_12;}
#define PERMUTE_DIR(dir) \
@ -307,55 +307,132 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
result_31-= UChi_11; \
result_32-= UChi_12;
namespace Grid {
namespace QCD {
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
} \
MULT_2SPIN(DIR); \
RECON;
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else if ( st.same_node[DIR] ) { \
LOAD_CHI; \
} \
if (local || st.same_node[DIR] ) { \
MULT_2SPIN(DIR); \
RECON; \
}
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
LOAD_CHI; \
MULT_2SPIN(DIR); \
RECON; \
nmu++; \
}
#define HAND_RESULT(ss) \
{ \
SiteSpinor & ref (out._odata[ss]); \
vstream(ref()(0)(0),result_00); \
vstream(ref()(0)(1),result_01); \
vstream(ref()(0)(2),result_02); \
vstream(ref()(1)(0),result_10); \
vstream(ref()(1)(1),result_11); \
vstream(ref()(1)(2),result_12); \
vstream(ref()(2)(0),result_20); \
vstream(ref()(2)(1),result_21); \
vstream(ref()(2)(2),result_22); \
vstream(ref()(3)(0),result_30); \
vstream(ref()(3)(1),result_31); \
vstream(ref()(3)(2),result_32); \
}
#define HAND_RESULT_EXT(ss) \
if (nmu){ \
SiteSpinor & ref (out._odata[ss]); \
ref()(0)(0)+=result_00; \
ref()(0)(1)+=result_01; \
ref()(0)(2)+=result_02; \
ref()(1)(0)+=result_10; \
ref()(1)(1)+=result_11; \
ref()(1)(2)+=result_12; \
ref()(2)(0)+=result_20; \
ref()(2)(1)+=result_21; \
ref()(2)(2)+=result_22; \
ref()(3)(0)+=result_30; \
ref()(3)(1)+=result_31; \
ref()(3)(2)+=result_32; \
}
template<class Impl> void
WilsonKernels<Impl>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionField &in, FermionField &out,int interior,int exterior)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
#define HAND_DECLARATIONS(a) \
Simd result_00; \
Simd result_01; \
Simd result_02; \
Simd result_10; \
Simd result_11; \
Simd result_12; \
Simd result_20; \
Simd result_21; \
Simd result_22; \
Simd result_30; \
Simd result_31; \
Simd result_32; \
Simd Chi_00; \
Simd Chi_01; \
Simd Chi_02; \
Simd Chi_10; \
Simd Chi_11; \
Simd Chi_12; \
Simd UChi_00; \
Simd UChi_01; \
Simd UChi_02; \
Simd UChi_10; \
Simd UChi_11; \
Simd UChi_12; \
Simd U_00; \
Simd U_10; \
Simd U_20; \
Simd U_01; \
Simd U_11; \
Simd U_21;
REGISTER Simd result_00; // 12 regs on knc
REGISTER Simd result_01;
REGISTER Simd result_02;
REGISTER Simd result_10;
REGISTER Simd result_11;
REGISTER Simd result_12;
REGISTER Simd result_20;
REGISTER Simd result_21;
REGISTER Simd result_22;
REGISTER Simd result_30;
REGISTER Simd result_31;
REGISTER Simd result_32; // 20 left
REGISTER Simd Chi_00; // two spinor; 6 regs
REGISTER Simd Chi_01;
REGISTER Simd Chi_02;
REGISTER Simd Chi_10;
REGISTER Simd Chi_11;
REGISTER Simd Chi_12; // 14 left
REGISTER Simd UChi_00; // two spinor; 6 regs
REGISTER Simd UChi_01;
REGISTER Simd UChi_02;
REGISTER Simd UChi_10;
REGISTER Simd UChi_11;
REGISTER Simd UChi_12; // 8 left
REGISTER Simd U_00; // two rows of U matrix
REGISTER Simd U_10;
REGISTER Simd U_20;
REGISTER Simd U_01;
REGISTER Simd U_11;
REGISTER Simd U_21; // 2 reg left.
#define ZERO_RESULT \
result_00=zero; \
result_01=zero; \
result_02=zero; \
result_10=zero; \
result_11=zero; \
result_12=zero; \
result_20=zero; \
result_21=zero; \
result_22=zero; \
result_30=zero; \
result_31=zero; \
result_32=zero;
#define Chimu_00 Chi_00
#define Chimu_01 Chi_01
@ -370,475 +447,225 @@ WilsonKernels<Impl>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGauge
#define Chimu_31 UChi_11
#define Chimu_32 UChi_12
namespace Grid {
namespace QCD {
template<class Impl> void
WilsonKernels<Impl>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionField &in, FermionField &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
int offset,local,perm, ptype;
StencilEntry *SE;
// Xp
SE=st.GetEntry(ptype,Xp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
XM_PROJ;
if ( perm) {
PERMUTE_DIR(3); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Xp);
}
XM_RECON;
// Yp
SE=st.GetEntry(ptype,Yp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
YM_PROJ;
if ( perm) {
PERMUTE_DIR(2); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Yp);
}
YM_RECON_ACCUM;
// Zp
SE=st.GetEntry(ptype,Zp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
ZM_PROJ;
if ( perm) {
PERMUTE_DIR(1); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Zp);
}
ZM_RECON_ACCUM;
// Tp
SE=st.GetEntry(ptype,Tp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
TM_PROJ;
if ( perm) {
PERMUTE_DIR(0); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Tp);
}
TM_RECON_ACCUM;
// Xm
SE=st.GetEntry(ptype,Xm,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
XP_PROJ;
if ( perm) {
PERMUTE_DIR(3); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Xm);
}
XP_RECON_ACCUM;
// Ym
SE=st.GetEntry(ptype,Ym,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
YP_PROJ;
if ( perm) {
PERMUTE_DIR(2); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Ym);
}
YP_RECON_ACCUM;
// Zm
SE=st.GetEntry(ptype,Zm,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
ZP_PROJ;
if ( perm) {
PERMUTE_DIR(1); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Zm);
}
ZP_RECON_ACCUM;
// Tm
SE=st.GetEntry(ptype,Tm,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
TP_PROJ;
if ( perm) {
PERMUTE_DIR(0); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Tm);
}
TP_RECON_ACCUM;
{
SiteSpinor & ref (out._odata[ss]);
vstream(ref()(0)(0),result_00);
vstream(ref()(0)(1),result_01);
vstream(ref()(0)(2),result_02);
vstream(ref()(1)(0),result_10);
vstream(ref()(1)(1),result_11);
vstream(ref()(1)(2),result_12);
vstream(ref()(2)(0),result_20);
vstream(ref()(2)(1),result_21);
vstream(ref()(2)(2),result_22);
vstream(ref()(3)(0),result_30);
vstream(ref()(3)(1),result_31);
vstream(ref()(3)(2),result_32);
}
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT(ss);
}
template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionField &in, FermionField &out,int interior,int exterior)
int ss,int sU,const FermionField &in, FermionField &out)
{
// std::cout << "Hand op Dhop "<<std::endl;
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
REGISTER Simd result_00; // 12 regs on knc
REGISTER Simd result_01;
REGISTER Simd result_02;
REGISTER Simd result_10;
REGISTER Simd result_11;
REGISTER Simd result_12;
REGISTER Simd result_20;
REGISTER Simd result_21;
REGISTER Simd result_22;
REGISTER Simd result_30;
REGISTER Simd result_31;
REGISTER Simd result_32; // 20 left
REGISTER Simd Chi_00; // two spinor; 6 regs
REGISTER Simd Chi_01;
REGISTER Simd Chi_02;
REGISTER Simd Chi_10;
REGISTER Simd Chi_11;
REGISTER Simd Chi_12; // 14 left
REGISTER Simd UChi_00; // two spinor; 6 regs
REGISTER Simd UChi_01;
REGISTER Simd UChi_02;
REGISTER Simd UChi_10;
REGISTER Simd UChi_11;
REGISTER Simd UChi_12; // 8 left
REGISTER Simd U_00; // two rows of U matrix
REGISTER Simd U_10;
REGISTER Simd U_20;
REGISTER Simd U_01;
REGISTER Simd U_11;
REGISTER Simd U_21; // 2 reg left.
#define Chimu_00 Chi_00
#define Chimu_01 Chi_01
#define Chimu_02 Chi_02
#define Chimu_10 Chi_10
#define Chimu_11 Chi_11
#define Chimu_12 Chi_12
#define Chimu_20 UChi_00
#define Chimu_21 UChi_01
#define Chimu_22 UChi_02
#define Chimu_30 UChi_10
#define Chimu_31 UChi_11
#define Chimu_32 UChi_12
HAND_DECLARATIONS(ignore);
StencilEntry *SE;
int offset,local,perm, ptype;
// Xp
SE=st.GetEntry(ptype,Xp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
XP_PROJ;
if ( perm) {
PERMUTE_DIR(3); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON);
HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT(ss);
}
{
MULT_2SPIN(Xp);
}
XP_RECON;
template<class Impl> void
WilsonKernels<Impl>::HandDhopSiteInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionField &in, FermionField &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
// Yp
SE=st.GetEntry(ptype,Yp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
YP_PROJ;
if ( perm) {
PERMUTE_DIR(2); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Yp);
}
YP_RECON_ACCUM;
HAND_DECLARATIONS(ignore);
int offset,local,perm, ptype;
StencilEntry *SE;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT(ss);
}
// Zp
SE=st.GetEntry(ptype,Zp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
ZP_PROJ;
if ( perm) {
PERMUTE_DIR(1); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Zp);
}
ZP_RECON_ACCUM;
template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionField &in, FermionField &out)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
// Tp
SE=st.GetEntry(ptype,Tp,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
TP_PROJ;
if ( perm) {
PERMUTE_DIR(0); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Tp);
}
TP_RECON_ACCUM;
// Xm
SE=st.GetEntry(ptype,Xm,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
XM_PROJ;
if ( perm) {
PERMUTE_DIR(3); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Xm);
}
XM_RECON_ACCUM;
// Ym
SE=st.GetEntry(ptype,Ym,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHIMU;
YM_PROJ;
if ( perm) {
PERMUTE_DIR(2); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Ym);
}
YM_RECON_ACCUM;
HAND_DECLARATIONS(ignore);
// Zm
SE=st.GetEntry(ptype,Zm,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
StencilEntry *SE;
int offset,local,perm, ptype;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT(ss);
}
if ( local ) {
LOAD_CHIMU;
ZM_PROJ;
if ( perm) {
PERMUTE_DIR(1); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Zm);
}
ZM_RECON_ACCUM;
template<class Impl> void
WilsonKernels<Impl>::HandDhopSiteExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionField &in, FermionField &out)
{
// T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
// Tm
SE=st.GetEntry(ptype,Tm,ss);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
HAND_DECLARATIONS(ignore);
if ( local ) {
LOAD_CHIMU;
TM_PROJ;
if ( perm) {
PERMUTE_DIR(0); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI;
}
{
MULT_2SPIN(Tm);
}
TM_RECON_ACCUM;
int offset,local,perm, ptype;
StencilEntry *SE;
int nmu=0;
ZERO_RESULT;
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT_EXT(ss);
}
{
SiteSpinor & ref (out._odata[ss]);
vstream(ref()(0)(0),result_00);
vstream(ref()(0)(1),result_01);
vstream(ref()(0)(2),result_02);
vstream(ref()(1)(0),result_10);
vstream(ref()(1)(1),result_11);
vstream(ref()(1)(2),result_12);
vstream(ref()(2)(0),result_20);
vstream(ref()(2)(1),result_21);
vstream(ref()(2)(2),result_22);
vstream(ref()(3)(0),result_30);
vstream(ref()(3)(1),result_31);
vstream(ref()(3)(2),result_32);
}
template<class Impl>
void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int ss,int sU,const FermionField &in, FermionField &out)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
HAND_DECLARATIONS(ignore);
StencilEntry *SE;
int offset,local,perm, ptype;
int nmu=0;
ZERO_RESULT;
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT_EXT(ss);
}
////////////////////////////////////////////////
// Specialise Gparity to simple implementation
////////////////////////////////////////////////
template<> void
WilsonKernels<GparityWilsonImplF>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
SiteHalfSpinor *buf,
int sF,int sU,const FermionField &in, FermionField &out,int internal,int external)
{
assert(0);
}
template<> void
WilsonKernels<GparityWilsonImplF>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
SiteHalfSpinor *buf,
int sF,int sU,const FermionField &in, FermionField &out,int internal,int external)
{
assert(0);
}
template<> void
WilsonKernels<GparityWilsonImplD>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int sF,int sU,const FermionField &in, FermionField &out,int internal,int external)
{
assert(0);
}
template<> void
WilsonKernels<GparityWilsonImplD>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,
int sF,int sU,const FermionField &in, FermionField &out,int internal,int external)
{
assert(0);
}
#define HAND_SPECIALISE_EMPTY(IMPL) \
template<> void \
WilsonKernels<IMPL>::HandDhopSite(StencilImpl &st, \
LebesgueOrder &lo, \
DoubledGaugeField &U, \
SiteHalfSpinor *buf, \
int sF,int sU, \
const FermionField &in, \
FermionField &out){ assert(0); } \
template<> void \
WilsonKernels<IMPL>::HandDhopSiteDag(StencilImpl &st, \
LebesgueOrder &lo, \
DoubledGaugeField &U, \
SiteHalfSpinor *buf, \
int sF,int sU, \
const FermionField &in, \
FermionField &out){ assert(0); } \
template<> void \
WilsonKernels<IMPL>::HandDhopSiteInt(StencilImpl &st, \
LebesgueOrder &lo, \
DoubledGaugeField &U, \
SiteHalfSpinor *buf, \
int sF,int sU, \
const FermionField &in, \
FermionField &out){ assert(0); } \
template<> void \
WilsonKernels<IMPL>::HandDhopSiteExt(StencilImpl &st, \
LebesgueOrder &lo, \
DoubledGaugeField &U, \
SiteHalfSpinor *buf, \
int sF,int sU, \
const FermionField &in, \
FermionField &out){ assert(0); } \
template<> void \
WilsonKernels<IMPL>::HandDhopSiteDagInt(StencilImpl &st, \
LebesgueOrder &lo, \
DoubledGaugeField &U, \
SiteHalfSpinor *buf, \
int sF,int sU, \
const FermionField &in, \
FermionField &out){ assert(0); } \
template<> void \
WilsonKernels<IMPL>::HandDhopSiteDagExt(StencilImpl &st, \
LebesgueOrder &lo, \
DoubledGaugeField &U, \
SiteHalfSpinor *buf, \
int sF,int sU, \
const FermionField &in, \
FermionField &out){ assert(0); } \
HAND_SPECIALISE_EMPTY(GparityWilsonImplF);
HAND_SPECIALISE_EMPTY(GparityWilsonImplD);
HAND_SPECIALISE_EMPTY(GparityWilsonImplFH);
HAND_SPECIALISE_EMPTY(GparityWilsonImplDF);
////////////// Wilson ; uses this implementation /////////////////////
// Need Nc=3 though //
#define INSTANTIATE_THEM(A) \
template void WilsonKernels<A>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,\
int ss,int sU,const FermionField &in, FermionField &out,int interior,int exterior); \
template void WilsonKernels<A>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,\
int ss,int sU,const FermionField &in, FermionField &out,int interior,int exterior);
int ss,int sU,const FermionField &in, FermionField &out); \
template void WilsonKernels<A>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out);\
template void WilsonKernels<A>::HandDhopSiteInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,\
int ss,int sU,const FermionField &in, FermionField &out); \
template void WilsonKernels<A>::HandDhopSiteDagInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out); \
template void WilsonKernels<A>::HandDhopSiteExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf,\
int ss,int sU,const FermionField &in, FermionField &out); \
template void WilsonKernels<A>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out);
INSTANTIATE_THEM(WilsonImplF);
INSTANTIATE_THEM(WilsonImplD);
@ -850,5 +677,15 @@ INSTANTIATE_THEM(DomainWallVec5dImplF);
INSTANTIATE_THEM(DomainWallVec5dImplD);
INSTANTIATE_THEM(ZDomainWallVec5dImplF);
INSTANTIATE_THEM(ZDomainWallVec5dImplD);
INSTANTIATE_THEM(WilsonImplFH);
INSTANTIATE_THEM(WilsonImplDF);
INSTANTIATE_THEM(ZWilsonImplFH);
INSTANTIATE_THEM(ZWilsonImplDF);
INSTANTIATE_THEM(GparityWilsonImplFH);
INSTANTIATE_THEM(GparityWilsonImplDF);
INSTANTIATE_THEM(DomainWallVec5dImplFH);
INSTANTIATE_THEM(DomainWallVec5dImplDF);
INSTANTIATE_THEM(ZDomainWallVec5dImplFH);
INSTANTIATE_THEM(ZDomainWallVec5dImplDF);
}}

View File

View File

@ -54,7 +54,7 @@ THE SOFTWARE.
#define GRID_MACRO_EMPTY()
#define GRID_MACRO_EVAL(...) GRID_MACRO_EVAL1024(__VA_ARGS__)
#define GRID_MACRO_EVAL(...) GRID_MACRO_EVAL64(__VA_ARGS__)
#define GRID_MACRO_EVAL1024(...) GRID_MACRO_EVAL512(GRID_MACRO_EVAL512(__VA_ARGS__))
#define GRID_MACRO_EVAL512(...) GRID_MACRO_EVAL256(GRID_MACRO_EVAL256(__VA_ARGS__))
#define GRID_MACRO_EVAL256(...) GRID_MACRO_EVAL128(GRID_MACRO_EVAL128(__VA_ARGS__))

View File

@ -368,8 +368,8 @@ namespace Optimization {
b0 = _mm256_extractf128_si256(b,0);
a1 = _mm256_extractf128_si256(a,1);
b1 = _mm256_extractf128_si256(b,1);
a0 = _mm_mul_epi32(a0,b0);
a1 = _mm_mul_epi32(a1,b1);
a0 = _mm_mullo_epi32(a0,b0);
a1 = _mm_mullo_epi32(a1,b1);
return _mm256_set_m128i(a1,a0);
#endif
#if defined (AVX2)
@ -461,7 +461,52 @@ namespace Optimization {
return in;
};
};
#define USE_FP16
struct PrecisionChange {
static inline __m256i StoH (__m256 a,__m256 b) {
__m256i h;
#ifdef USE_FP16
__m128i ha = _mm256_cvtps_ph(a,0);
__m128i hb = _mm256_cvtps_ph(b,0);
h =(__m256i) _mm256_castps128_ps256((__m128)ha);
h =(__m256i) _mm256_insertf128_ps((__m256)h,(__m128)hb,1);
#else
assert(0);
#endif
return h;
}
static inline void HtoS (__m256i h,__m256 &sa,__m256 &sb) {
#ifdef USE_FP16
sa = _mm256_cvtph_ps((__m128i)_mm256_extractf128_ps((__m256)h,0));
sb = _mm256_cvtph_ps((__m128i)_mm256_extractf128_ps((__m256)h,1));
#else
assert(0);
#endif
}
static inline __m256 DtoS (__m256d a,__m256d b) {
__m128 sa = _mm256_cvtpd_ps(a);
__m128 sb = _mm256_cvtpd_ps(b);
__m256 s = _mm256_castps128_ps256(sa);
s = _mm256_insertf128_ps(s,sb,1);
return s;
}
static inline void StoD (__m256 s,__m256d &a,__m256d &b) {
a = _mm256_cvtps_pd(_mm256_extractf128_ps(s,0));
b = _mm256_cvtps_pd(_mm256_extractf128_ps(s,1));
}
static inline __m256i DtoH (__m256d a,__m256d b,__m256d c,__m256d d) {
__m256 sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static inline void HtoD (__m256i h,__m256d &a,__m256d &b,__m256d &c,__m256d &d) {
__m256 sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
};
struct Exchange{
// 3210 ordering
static inline void Exchange0(__m256 &out1,__m256 &out2,__m256 in1,__m256 in2){
@ -666,6 +711,7 @@ namespace Optimization {
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
typedef __m256i SIMD_Htype; // Single precision type
typedef __m256 SIMD_Ftype; // Single precision type
typedef __m256d SIMD_Dtype; // Double precision type
typedef __m256i SIMD_Itype; // Integer type

View File

@ -235,11 +235,9 @@ namespace Optimization {
inline void mac(__m512 &a, __m512 b, __m512 c){
a= _mm512_fmadd_ps( b, c, a);
}
inline void mac(__m512d &a, __m512d b, __m512d c){
a= _mm512_fmadd_pd( b, c, a);
}
// Real float
inline __m512 operator()(__m512 a, __m512 b){
return _mm512_mul_ps(a,b);
@ -342,7 +340,52 @@ namespace Optimization {
};
};
#define USE_FP16
struct PrecisionChange {
static inline __m512i StoH (__m512 a,__m512 b) {
__m512i h;
#ifdef USE_FP16
__m256i ha = _mm512_cvtps_ph(a,0);
__m256i hb = _mm512_cvtps_ph(b,0);
h =(__m512i) _mm512_castps256_ps512((__m256)ha);
h =(__m512i) _mm512_insertf64x4((__m512d)h,(__m256d)hb,1);
#else
assert(0);
#endif
return h;
}
static inline void HtoS (__m512i h,__m512 &sa,__m512 &sb) {
#ifdef USE_FP16
sa = _mm512_cvtph_ps((__m256i)_mm512_extractf64x4_pd((__m512d)h,0));
sb = _mm512_cvtph_ps((__m256i)_mm512_extractf64x4_pd((__m512d)h,1));
#else
assert(0);
#endif
}
static inline __m512 DtoS (__m512d a,__m512d b) {
__m256 sa = _mm512_cvtpd_ps(a);
__m256 sb = _mm512_cvtpd_ps(b);
__m512 s = _mm512_castps256_ps512(sa);
s =(__m512) _mm512_insertf64x4((__m512d)s,(__m256d)sb,1);
return s;
}
static inline void StoD (__m512 s,__m512d &a,__m512d &b) {
a = _mm512_cvtps_pd((__m256)_mm512_extractf64x4_pd((__m512d)s,0));
b = _mm512_cvtps_pd((__m256)_mm512_extractf64x4_pd((__m512d)s,1));
}
static inline __m512i DtoH (__m512d a,__m512d b,__m512d c,__m512d d) {
__m512 sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static inline void HtoD (__m512i h,__m512d &a,__m512d &b,__m512d &c,__m512d &d) {
__m512 sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
};
// On extracting face: Ah Al , Bh Bl -> Ah Bh, Al Bl
// On merging buffers: Ah,Bh , Al Bl -> Ah Al, Bh, Bl
// The operation is its own inverse
@ -539,7 +582,9 @@ namespace Optimization {
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
typedef __m512 SIMD_Ftype; // Single precision type
typedef __m512i SIMD_Htype; // Single precision type
typedef __m512 SIMD_Ftype; // Single precision type
typedef __m512d SIMD_Dtype; // Double precision type
typedef __m512i SIMD_Itype; // Integer type

View File

@ -279,6 +279,101 @@ namespace Optimization {
#undef timesi
struct PrecisionChange {
static inline vech StoH (const vecf &a,const vecf &b) {
#ifdef USE_FP16
vech ret;
vech *ha = (vech *)&a;
vech *hb = (vech *)&b;
const int nf = W<float>::r;
// VECTOR_FOR(i, nf,1){ ret.v[i] = ( (uint16_t *) &a.v[i])[1] ; }
// VECTOR_FOR(i, nf,1){ ret.v[i+nf] = ( (uint16_t *) &b.v[i])[1] ; }
VECTOR_FOR(i, nf,1){ ret.v[i] = ha->v[2*i+1]; }
VECTOR_FOR(i, nf,1){ ret.v[i+nf] = hb->v[2*i+1]; }
#else
assert(0);
#endif
return ret;
}
static inline void HtoS (vech h,vecf &sa,vecf &sb) {
#ifdef USE_FP16
const int nf = W<float>::r;
const int nh = W<uint16_t>::r;
vech *ha = (vech *)&sa;
vech *hb = (vech *)&sb;
VECTOR_FOR(i, nf, 1){ sb.v[i]= sa.v[i] = 0; }
// VECTOR_FOR(i, nf, 1){ ( (uint16_t *) (&sa.v[i]))[1] = h.v[i];}
// VECTOR_FOR(i, nf, 1){ ( (uint16_t *) (&sb.v[i]))[1] = h.v[i+nf];}
VECTOR_FOR(i, nf, 1){ ha->v[2*i+1]=h.v[i]; }
VECTOR_FOR(i, nf, 1){ hb->v[2*i+1]=h.v[i+nf]; }
#else
assert(0);
#endif
}
static inline vecf DtoS (vecd a,vecd b) {
const int nd = W<double>::r;
const int nf = W<float>::r;
vecf ret;
VECTOR_FOR(i, nd,1){ ret.v[i] = a.v[i] ; }
VECTOR_FOR(i, nd,1){ ret.v[i+nd] = b.v[i] ; }
return ret;
}
static inline void StoD (vecf s,vecd &a,vecd &b) {
const int nd = W<double>::r;
VECTOR_FOR(i, nd,1){ a.v[i] = s.v[i] ; }
VECTOR_FOR(i, nd,1){ b.v[i] = s.v[i+nd] ; }
}
static inline vech DtoH (vecd a,vecd b,vecd c,vecd d) {
vecf sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static inline void HtoD (vech h,vecd &a,vecd &b,vecd &c,vecd &d) {
vecf sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
};
//////////////////////////////////////////////
// Exchange support
struct Exchange{
template <typename T,int n>
static inline void ExchangeN(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
const int w = W<T>::r;
unsigned int mask = w >> (n + 1);
// std::cout << " Exchange "<<n<<" nsimd "<<w<<" mask 0x" <<std::hex<<mask<<std::dec<<std::endl;
VECTOR_FOR(i, w, 1) {
int j1 = i&(~mask);
if ( (i&mask) == 0 ) { out1.v[i]=in1.v[j1];}
else { out1.v[i]=in2.v[j1];}
int j2 = i|mask;
if ( (i&mask) == 0 ) { out2.v[i]=in1.v[j2];}
else { out2.v[i]=in2.v[j2];}
}
}
template <typename T>
static inline void Exchange0(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
ExchangeN<T,0>(out1,out2,in1,in2);
};
template <typename T>
static inline void Exchange1(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
ExchangeN<T,1>(out1,out2,in1,in2);
};
template <typename T>
static inline void Exchange2(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
ExchangeN<T,2>(out1,out2,in1,in2);
};
template <typename T>
static inline void Exchange3(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
ExchangeN<T,3>(out1,out2,in1,in2);
};
};
//////////////////////////////////////////////
// Some Template specialization
#define perm(a, b, n, w)\
@ -403,6 +498,7 @@ namespace Optimization {
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
typedef Optimization::vech SIMD_Htype; // Reduced precision type
typedef Optimization::vecf SIMD_Ftype; // Single precision type
typedef Optimization::vecd SIMD_Dtype; // Double precision type
typedef Optimization::veci SIMD_Itype; // Integer type

View File

@ -66,6 +66,10 @@ namespace Optimization {
template <> struct W<Integer> {
constexpr static unsigned int r = GEN_SIMD_WIDTH/4u;
};
template <> struct W<uint16_t> {
constexpr static unsigned int c = GEN_SIMD_WIDTH/4u;
constexpr static unsigned int r = GEN_SIMD_WIDTH/2u;
};
// SIMD vector types
template <typename T>
@ -73,8 +77,9 @@ namespace Optimization {
alignas(GEN_SIMD_WIDTH) T v[W<T>::r];
};
typedef vec<float> vecf;
typedef vec<double> vecd;
typedef vec<Integer> veci;
typedef vec<float> vecf;
typedef vec<double> vecd;
typedef vec<uint16_t> vech; // half precision comms
typedef vec<Integer> veci;
}}

View File

@ -33,6 +33,14 @@
#include "Grid_generic_types.h" // Definitions for simulated integer SIMD.
namespace Grid {
#ifdef QPX
#include <spi/include/kernel/location.h>
#include <spi/include/l1p/types.h>
#include <hwi/include/bqc/l1p_mmio.h>
#include <hwi/include/bqc/A2_inlines.h>
#endif
namespace Optimization {
typedef struct
{
@ -125,7 +133,6 @@ namespace Optimization {
f[2] = a.v2;
f[3] = a.v3;
}
//Double
inline void operator()(double *d, vector4double a){
vec_st(a, 0, d);

View File

@ -328,6 +328,140 @@ namespace Optimization {
};
};
#define _my_alignr_epi32(a,b,n) _mm_alignr_epi8(a,b,(n*4)%16)
#define _my_alignr_epi64(a,b,n) _mm_alignr_epi8(a,b,(n*8)%16)
#ifdef SFW_FP16
struct Grid_half {
Grid_half(){}
Grid_half(uint16_t raw) : x(raw) {}
uint16_t x;
};
union FP32 {
unsigned int u;
float f;
};
// PAB - Lifted and adapted from Eigen, which is GPL V2
inline float sfw_half_to_float(Grid_half h) {
const FP32 magic = { 113 << 23 };
const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift
FP32 o;
o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits
unsigned int exp = shifted_exp & o.u; // just the exponent
o.u += (127 - 15) << 23; // exponent adjust
// handle exponent special cases
if (exp == shifted_exp) { // Inf/NaN?
o.u += (128 - 16) << 23; // extra exp adjust
} else if (exp == 0) { // Zero/Denormal?
o.u += 1 << 23; // extra exp adjust
o.f -= magic.f; // renormalize
}
o.u |= (h.x & 0x8000) << 16; // sign bit
return o.f;
}
inline Grid_half sfw_float_to_half(float ff) {
FP32 f; f.f = ff;
const FP32 f32infty = { 255 << 23 };
const FP32 f16max = { (127 + 16) << 23 };
const FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 };
unsigned int sign_mask = 0x80000000u;
Grid_half o;
o.x = static_cast<unsigned short>(0x0u);
unsigned int sign = f.u & sign_mask;
f.u ^= sign;
// NOTE all the integer compares in this function can be safely
// compiled into signed compares since all operands are below
// 0x80000000. Important if you want fast straight SSE2 code
// (since there's no unsigned PCMPGTD).
if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set)
o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
} else { // (De)normalized number or zero
if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero
// use a magic value to align our 10 mantissa bits at the bottom of
// the float. as long as FP addition is round-to-nearest-even this
// just works.
f.f += denorm_magic.f;
// and one integer subtract of the bias later, we have our final float!
o.x = static_cast<unsigned short>(f.u - denorm_magic.u);
} else {
unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
// update exponent, rounding bias part 1
f.u += ((unsigned int)(15 - 127) << 23) + 0xfff;
// rounding bias part 2
f.u += mant_odd;
// take the bits!
o.x = static_cast<unsigned short>(f.u >> 13);
}
}
o.x |= static_cast<unsigned short>(sign >> 16);
return o;
}
static inline __m128i Grid_mm_cvtps_ph(__m128 f,int discard) {
__m128i ret=(__m128i)_mm_setzero_ps();
float *fp = (float *)&f;
Grid_half *hp = (Grid_half *)&ret;
hp[0] = sfw_float_to_half(fp[0]);
hp[1] = sfw_float_to_half(fp[1]);
hp[2] = sfw_float_to_half(fp[2]);
hp[3] = sfw_float_to_half(fp[3]);
return ret;
}
static inline __m128 Grid_mm_cvtph_ps(__m128i h,int discard) {
__m128 ret=_mm_setzero_ps();
float *fp = (float *)&ret;
Grid_half *hp = (Grid_half *)&h;
fp[0] = sfw_half_to_float(hp[0]);
fp[1] = sfw_half_to_float(hp[1]);
fp[2] = sfw_half_to_float(hp[2]);
fp[3] = sfw_half_to_float(hp[3]);
return ret;
}
#else
#define Grid_mm_cvtps_ph _mm_cvtps_ph
#define Grid_mm_cvtph_ps _mm_cvtph_ps
#endif
struct PrecisionChange {
static inline __m128i StoH (__m128 a,__m128 b) {
__m128i ha = Grid_mm_cvtps_ph(a,0);
__m128i hb = Grid_mm_cvtps_ph(b,0);
__m128i h =(__m128i) _mm_shuffle_ps((__m128)ha,(__m128)hb,_MM_SELECT_FOUR_FOUR(1,0,1,0));
return h;
}
static inline void HtoS (__m128i h,__m128 &sa,__m128 &sb) {
sa = Grid_mm_cvtph_ps(h,0);
h = (__m128i)_my_alignr_epi32((__m128i)h,(__m128i)h,2);
sb = Grid_mm_cvtph_ps(h,0);
}
static inline __m128 DtoS (__m128d a,__m128d b) {
__m128 sa = _mm_cvtpd_ps(a);
__m128 sb = _mm_cvtpd_ps(b);
__m128 s = _mm_shuffle_ps(sa,sb,_MM_SELECT_FOUR_FOUR(1,0,1,0));
return s;
}
static inline void StoD (__m128 s,__m128d &a,__m128d &b) {
a = _mm_cvtps_pd(s);
s = (__m128)_my_alignr_epi32((__m128i)s,(__m128i)s,2);
b = _mm_cvtps_pd(s);
}
static inline __m128i DtoH (__m128d a,__m128d b,__m128d c,__m128d d) {
__m128 sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static inline void HtoD (__m128i h,__m128d &a,__m128d &b,__m128d &c,__m128d &d) {
__m128 sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
};
struct Exchange{
// 3210 ordering
static inline void Exchange0(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){
@ -335,8 +469,10 @@ namespace Optimization {
out2= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,2,3,2));
};
static inline void Exchange1(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){
out1= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(2,0,2,0));
out2= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,1,3,1));
out1= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(2,0,2,0)); /*ACEG*/
out2= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,1,3,1)); /*BDFH*/
out1= _mm_shuffle_ps(out1,out1,_MM_SELECT_FOUR_FOUR(3,1,2,0)); /*AECG*/
out2= _mm_shuffle_ps(out2,out2,_MM_SELECT_FOUR_FOUR(3,1,2,0)); /*AECG*/
};
static inline void Exchange2(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){
assert(0);
@ -383,14 +519,9 @@ namespace Optimization {
default: assert(0);
}
}
#ifndef _mm_alignr_epi64
#define _mm_alignr_epi32(a,b,n) _mm_alignr_epi8(a,b,(n*4)%16)
#define _mm_alignr_epi64(a,b,n) _mm_alignr_epi8(a,b,(n*8)%16)
#endif
template<int n> static inline __m128 tRotate(__m128 in){ return (__m128)_mm_alignr_epi32((__m128i)in,(__m128i)in,n); };
template<int n> static inline __m128d tRotate(__m128d in){ return (__m128d)_mm_alignr_epi64((__m128i)in,(__m128i)in,n); };
template<int n> static inline __m128 tRotate(__m128 in){ return (__m128)_my_alignr_epi32((__m128i)in,(__m128i)in,n); };
template<int n> static inline __m128d tRotate(__m128d in){ return (__m128d)_my_alignr_epi64((__m128i)in,(__m128i)in,n); };
};
//////////////////////////////////////////////
@ -450,7 +581,8 @@ namespace Optimization {
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
typedef __m128 SIMD_Ftype; // Single precision type
typedef __m128i SIMD_Htype; // Single precision type
typedef __m128 SIMD_Ftype; // Single precision type
typedef __m128d SIMD_Dtype; // Double precision type
typedef __m128i SIMD_Itype; // Integer type

View File

@ -2,7 +2,7 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/Grid_vector_types.h
Source file: ./lib/simd/Grid_vector_type.h
Copyright (C) 2015
@ -53,12 +53,14 @@ directory
#if defined IMCI
#include "Grid_imci.h"
#endif
#if defined QPX
#include "Grid_qpx.h"
#endif
#ifdef NEONv8
#include "Grid_neon.h"
#endif
#if defined QPX
#include "Grid_qpx.h"
#endif
#include "l1p.h"
namespace Grid {
@ -74,12 +76,14 @@ struct RealPart<std::complex<T> > {
typedef T type;
};
#include <type_traits>
//////////////////////////////////////
// demote a vector to real type
//////////////////////////////////////
// type alias used to simplify the syntax of std::enable_if
template <typename T> using Invoke = typename T::type;
template <typename Condition, typename ReturnType> using EnableIf = Invoke<std::enable_if<Condition::value, ReturnType> >;
template <typename Condition, typename ReturnType> using EnableIf = Invoke<std::enable_if<Condition::value, ReturnType> >;
template <typename Condition, typename ReturnType> using NotEnableIf = Invoke<std::enable_if<!Condition::value, ReturnType> >;
////////////////////////////////////////////////////////
@ -88,13 +92,15 @@ template <typename T> struct is_complex : public std::false_type {};
template <> struct is_complex<std::complex<double> > : public std::true_type {};
template <> struct is_complex<std::complex<float> > : public std::true_type {};
template <typename T> using IfReal = Invoke<std::enable_if<std::is_floating_point<T>::value, int> >;
template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >;
template <typename T> using IfInteger = Invoke<std::enable_if<std::is_integral<T>::value, int> >;
template <typename T> using IfReal = Invoke<std::enable_if<std::is_floating_point<T>::value, int> >;
template <typename T> using IfComplex = Invoke<std::enable_if<is_complex<T>::value, int> >;
template <typename T> using IfInteger = Invoke<std::enable_if<std::is_integral<T>::value, int> >;
template <typename T1,typename T2> using IfSame = Invoke<std::enable_if<std::is_same<T1,T2>::value, int> >;
template <typename T> using IfNotReal = Invoke<std::enable_if<!std::is_floating_point<T>::value, int> >;
template <typename T> using IfNotComplex = Invoke<std::enable_if<!is_complex<T>::value, int> >;
template <typename T> using IfNotInteger = Invoke<std::enable_if<!std::is_integral<T>::value, int> >;
template <typename T> using IfNotReal = Invoke<std::enable_if<!std::is_floating_point<T>::value, int> >;
template <typename T> using IfNotComplex = Invoke<std::enable_if<!is_complex<T>::value, int> >;
template <typename T> using IfNotInteger = Invoke<std::enable_if<!std::is_integral<T>::value, int> >;
template <typename T1,typename T2> using IfNotSame = Invoke<std::enable_if<!std::is_same<T1,T2>::value, int> >;
////////////////////////////////////////////////////////
// Define the operation templates functors
@ -358,16 +364,12 @@ class Grid_simd {
{
if (n==3) {
Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v);
// std::cout << " Exchange3 "<< out1<<" "<< out2<<" <- " << in1 << " "<<in2<<std::endl;
} else if(n==2) {
Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v);
// std::cout << " Exchange2 "<< out1<<" "<< out2<<" <- " << in1 << " "<<in2<<std::endl;
} else if(n==1) {
Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v);
// std::cout << " Exchange1 "<< out1<<" "<< out2<<" <- " << in1 << " "<<in2<<std::endl;
} else if(n==0) {
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
// std::cout << " Exchange0 "<< out1<<" "<< out2<<" <- " << in1 << " "<<in2<<std::endl;
}
}
@ -428,7 +430,6 @@ template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
nrot = nrot % Grid_simd<S, V>::Nsimd();
Grid_simd<S, V> ret;
// std::cout << "Rotate Real by "<<nrot<<std::endl;
ret.v = Optimization::Rotate::rotate(b.v, nrot);
return ret;
}
@ -436,7 +437,6 @@ template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
nrot = nrot % Grid_simd<S, V>::Nsimd();
Grid_simd<S, V> ret;
// std::cout << "Rotate Complex by "<<nrot<<std::endl;
ret.v = Optimization::Rotate::rotate(b.v, 2 * nrot);
return ret;
}
@ -444,14 +444,12 @@ template <class S, class V, IfNotComplex<S> =0>
inline void rotate( Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
{
nrot = nrot % Grid_simd<S,V>::Nsimd();
// std::cout << "Rotate Real by "<<nrot<<std::endl;
ret.v = Optimization::Rotate::rotate(b.v,nrot);
}
template <class S, class V, IfComplex<S> =0>
inline void rotate(Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
{
nrot = nrot % Grid_simd<S,V>::Nsimd();
// std::cout << "Rotate Complex by "<<nrot<<std::endl;
ret.v = Optimization::Rotate::rotate(b.v,2*nrot);
}
@ -711,7 +709,6 @@ inline Grid_simd<S, V> innerProduct(const Grid_simd<S, V> &l,
const Grid_simd<S, V> &r) {
return conjugate(l) * r;
}
template <class S, class V>
inline Grid_simd<S, V> outerProduct(const Grid_simd<S, V> &l,
const Grid_simd<S, V> &r) {
@ -771,6 +768,67 @@ typedef Grid_simd<std::complex<float>, SIMD_Ftype> vComplexF;
typedef Grid_simd<std::complex<double>, SIMD_Dtype> vComplexD;
typedef Grid_simd<Integer, SIMD_Itype> vInteger;
// Half precision; no arithmetic support
typedef Grid_simd<uint16_t, SIMD_Htype> vRealH;
typedef Grid_simd<std::complex<uint16_t>, SIMD_Htype> vComplexH;
inline void precisionChange(vRealF *out,vRealD *in,int nvec)
{
assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){
int n=m*2;
out[m].v=Optimization::PrecisionChange::DtoS(in[n].v,in[n+1].v);
}
}
inline void precisionChange(vRealH *out,vRealD *in,int nvec)
{
assert((nvec&0x3)==0);
for(int m=0;m*4<nvec;m++){
int n=m*4;
out[m].v=Optimization::PrecisionChange::DtoH(in[n].v,in[n+1].v,in[n+2].v,in[n+3].v);
}
}
inline void precisionChange(vRealH *out,vRealF *in,int nvec)
{
assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){
int n=m*2;
out[m].v=Optimization::PrecisionChange::StoH(in[n].v,in[n+1].v);
}
}
inline void precisionChange(vRealD *out,vRealF *in,int nvec)
{
assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){
int n=m*2;
Optimization::PrecisionChange::StoD(in[m].v,out[n].v,out[n+1].v);
}
}
inline void precisionChange(vRealD *out,vRealH *in,int nvec)
{
assert((nvec&0x3)==0);
for(int m=0;m*4<nvec;m++){
int n=m*4;
Optimization::PrecisionChange::HtoD(in[m].v,out[n].v,out[n+1].v,out[n+2].v,out[n+3].v);
}
}
inline void precisionChange(vRealF *out,vRealH *in,int nvec)
{
assert((nvec&0x1)==0);
for(int m=0;m*2<nvec;m++){
int n=m*2;
Optimization::PrecisionChange::HtoS(in[m].v,out[n].v,out[n+1].v);
}
}
inline void precisionChange(vComplexF *out,vComplexD *in,int nvec){ precisionChange((vRealF *)out,(vRealD *)in,nvec);}
inline void precisionChange(vComplexH *out,vComplexD *in,int nvec){ precisionChange((vRealH *)out,(vRealD *)in,nvec);}
inline void precisionChange(vComplexH *out,vComplexF *in,int nvec){ precisionChange((vRealH *)out,(vRealF *)in,nvec);}
inline void precisionChange(vComplexD *out,vComplexF *in,int nvec){ precisionChange((vRealD *)out,(vRealF *)in,nvec);}
inline void precisionChange(vComplexD *out,vComplexH *in,int nvec){ precisionChange((vRealD *)out,(vRealH *)in,nvec);}
inline void precisionChange(vComplexF *out,vComplexH *in,int nvec){ precisionChange((vRealF *)out,(vRealH *)in,nvec);}
// Check our vector types are of an appropriate size.
#if defined QPX
static_assert(2*sizeof(SIMD_Ftype) == sizeof(SIMD_Dtype), "SIMD vector lengths incorrect");

37
lib/simd/l1p.h Normal file
View File

@ -0,0 +1,37 @@
#pragma once
namespace Grid {
// L1p optimisation
inline void bgq_l1p_optimisation(int mode)
{
#ifdef QPX
#undef L1P_CFG_PF_USR
#define L1P_CFG_PF_USR (0x3fde8000108ll) /* (64 bit reg, 23 bits wide, user/unpriv) */
uint64_t cfg_pf_usr;
if ( mode ) {
cfg_pf_usr =
L1P_CFG_PF_USR_ifetch_depth(0)
| L1P_CFG_PF_USR_ifetch_max_footprint(1)
| L1P_CFG_PF_USR_pf_stream_est_on_dcbt
| L1P_CFG_PF_USR_pf_stream_establish_enable
| L1P_CFG_PF_USR_pf_stream_optimistic
| L1P_CFG_PF_USR_pf_adaptive_throttle(0xF) ;
// if ( sizeof(Float) == sizeof(double) ) {
cfg_pf_usr |= L1P_CFG_PF_USR_dfetch_depth(2)| L1P_CFG_PF_USR_dfetch_max_footprint(3) ;
// } else {
// cfg_pf_usr |= L1P_CFG_PF_USR_dfetch_depth(1)| L1P_CFG_PF_USR_dfetch_max_footprint(2) ;
// }
} else {
cfg_pf_usr = L1P_CFG_PF_USR_dfetch_depth(1)
| L1P_CFG_PF_USR_dfetch_max_footprint(2)
| L1P_CFG_PF_USR_ifetch_depth(0)
| L1P_CFG_PF_USR_ifetch_max_footprint(1)
| L1P_CFG_PF_USR_pf_stream_est_on_dcbt
| L1P_CFG_PF_USR_pf_stream_establish_enable
| L1P_CFG_PF_USR_pf_stream_optimistic
| L1P_CFG_PF_USR_pf_stream_prefetch_enable;
}
*((uint64_t *)L1P_CFG_PF_USR) = cfg_pf_usr;
#endif
}
}

View File

View File

@ -0,0 +1,29 @@
#ifndef _STENCIL_SIMPLE_COMPRESSOR_H_
#define _STENCIL_SIMPLE_COMPRESSOR_H_
namespace Grid {
template<class vobj>
class SimpleCompressor {
public:
void Point(int) {};
inline int CommDatumSize(void) { return sizeof(vobj); }
inline bool DecompressionStep(void) { return false; }
inline void Compress(vobj *buf,int o,const vobj &in) { buf[o]=in; }
inline void Exchange(vobj *mp,vobj *vp0,vobj *vp1,Integer type,Integer o){
exchange(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type);
}
inline void Decompress(vobj *out,vobj *in, int o){ assert(0); }
inline void CompressExchange(vobj *out0,vobj *out1,const vobj *in,
int j,int k, int m,int type){
exchange(out0[j],out1[j],in[k],in[m],type);
}
// For cshift. Cshift should drop compressor coupling altogether
// because I had to decouple the code from the Stencil anyway
inline vobj operator() (const vobj &arg) {
return arg;
}
};
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/tensors/Tensor_class.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
@ -13,16 +10,13 @@ This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
@ -56,18 +50,18 @@ class iScalar {
typedef vtype element;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iScalar<recurse_scalar_object> scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iScalar<typename GridTypeMapper<vtype>::Complexified> Complexified;
typedef iScalar<typename GridTypeMapper<vtype>::Realified> Realified;
// get double precision version
typedef iScalar<typename GridTypeMapper<vtype>::DoublePrecision> DoublePrecision;
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
// Scalar no action
@ -80,29 +74,18 @@ class iScalar {
iScalar<vtype> & operator= (const iScalar<vtype> &copyme) = default;
iScalar<vtype> & operator= (iScalar<vtype> &&copyme) = default;
*/
iScalar(scalar_type s)
: _internal(s){}; // recurse down and hit the constructor for vector_type
// template<int N=0>
// iScalar(EnableIf<isSIMDvectorized<vector_type>, vector_type> s) : _internal(s){}; // recurse down and hit the constructor for vector_type
iScalar(scalar_type s) : _internal(s){}; // recurse down and hit the constructor for vector_type
iScalar(const Zero &z) { *this = zero; };
iScalar<vtype> &operator=(const Zero &hero) {
zeroit(*this);
return *this;
}
// managing the internal vector structure
strong_inline scalar_object getlane(int lane){
scalar_object ret;
ret._internal = _internal.getlane(lane);
return ret;
}
strong_inline void putlane(scalar_object &s, int lane){
_internal.putlane(s._internal,lane);
}
friend strong_inline void vstream(iScalar<vtype> &out,
const iScalar<vtype> &in) {
vstream(out._internal, in._internal);
@ -152,42 +135,38 @@ class iScalar {
strong_inline const vtype &operator()(void) const { return _internal; }
// Type casts meta programmed, must be pure scalar to match TensorRemove
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0,
IfNotSimd<U> = 0>
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0, IfNotSimd<U> = 0>
operator ComplexF() const {
return (TensorRemove(_internal));
};
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0,
IfNotSimd<U> = 0>
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0, IfNotSimd<U> = 0>
operator ComplexD() const {
return (TensorRemove(_internal));
};
// template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> =
// 0> operator RealD () const { return(real(TensorRemove(_internal))); }
template <class U = vtype, class V = scalar_type, IfReal<V> = 0,
IfNotSimd<U> = 0>
template <class U = vtype, class V = scalar_type, IfReal<V> = 0,IfNotSimd<U> = 0>
operator RealD() const {
return TensorRemove(_internal);
}
template <class U = vtype, class V = scalar_type, IfInteger<V> = 0,
IfNotSimd<U> = 0>
template <class U = vtype, class V = scalar_type, IfInteger<V> = 0, IfNotSimd<U> = 0>
operator Integer() const {
return Integer(TensorRemove(_internal));
}
// convert from a something to a scalar via constructor of something arg
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
* = nullptr>
strong_inline iScalar<vtype> operator=(T arg) {
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type * = nullptr>
strong_inline iScalar<vtype> operator=(T arg) {
_internal = arg;
return *this;
}
friend std::ostream &operator<<(std::ostream &stream,
const iScalar<vtype> &o) {
friend std::ostream &operator<<(std::ostream &stream,const iScalar<vtype> &o) {
stream << "S {" << o._internal << "}";
return stream;
};
};
///////////////////////////////////////////////////////////
// Allows to turn scalar<scalar<scalar<double>>>> back to double.
@ -211,6 +190,7 @@ class iVector {
typedef vtype element;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
typedef iScalar<tensor_reduced_v> tensor_reduced;
@ -222,8 +202,7 @@ class iVector {
// get double precision version
typedef iVector<typename GridTypeMapper<vtype>::DoublePrecision, N> DoublePrecision;
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
* = nullptr>
strong_inline auto operator=(T arg) -> iVector<vtype, N> {
@ -246,20 +225,6 @@ class iVector {
zeroit(*this);
return *this;
}
strong_inline scalar_object getlane(int lane){
scalar_object ret;
for (int i = 0; i < N; i++) ret._internal[i] = _internal[i].getlane(lane);
return ret;
}
strong_inline void putlane(scalar_object &s, int lane){
for (int i = 0; i < N; i++) _internal[i].putlane(s._internal[i],lane);
}
friend strong_inline void zeroit(iVector<vtype, N> &that) {
for (int i = 0; i < N; i++) {
zeroit(that._internal[i]);
@ -341,6 +306,7 @@ class iMatrix {
typedef vtype element;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
@ -350,8 +316,7 @@ class iMatrix {
// get double precision version
typedef iMatrix<typename GridTypeMapper<vtype>::DoublePrecision, N> DoublePrecision;
// Tensor removal
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iMatrix<recurse_scalar_object, N> scalar_object;
@ -390,25 +355,6 @@ class iMatrix {
return *this;
}
strong_inline scalar_object getlane(int lane){
scalar_object ret;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
ret._internal[i][j] = _internal[i][j].getlane(lane);
}
}
return ret;
}
strong_inline void putlane(scalar_object &s, int lane){
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) _internal[i][j].putlane(s._internal[i][j],lane);
}
friend strong_inline void zeroit(iMatrix<vtype,N> &that){
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
@ -527,3 +473,6 @@ void vprefetch(const iMatrix<v, N> &vv) {
}
}
#endif

View File

@ -29,51 +29,109 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_MATH_INNER_H
#define GRID_MATH_INNER_H
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////
// innerProduct Scalar x Scalar -> Scalar
// innerProduct Vector x Vector -> Scalar
// innerProduct Matrix x Matrix -> Scalar
///////////////////////////////////////////////////////////////////////////////////////
template<class sobj> inline RealD norm2(const sobj &arg){
typedef typename sobj::scalar_type scalar;
decltype(innerProduct(arg,arg)) nrm;
nrm = innerProduct(arg,arg);
RealD ret = real(nrm);
return ret;
}
///////////////////////////////////////////////////////////////////////////////////////
// innerProduct Scalar x Scalar -> Scalar
// innerProduct Vector x Vector -> Scalar
// innerProduct Matrix x Matrix -> Scalar
///////////////////////////////////////////////////////////////////////////////////////
template<class sobj> inline RealD norm2(const sobj &arg){
auto nrm = innerProductD(arg,arg);
RealD ret = real(nrm);
return ret;
}
//////////////////////////////////////
// If single promote to double and sum 2x
//////////////////////////////////////
template<class l,class r,int N> inline
auto innerProduct (const iVector<l,N>& lhs,const iVector<r,N>& rhs) -> iScalar<decltype(innerProduct(lhs._internal[0],rhs._internal[0]))>
{
typedef decltype(innerProduct(lhs._internal[0],rhs._internal[0])) ret_t;
iScalar<ret_t> ret;
ret=zero;
for(int c1=0;c1<N;c1++){
ret._internal += innerProduct(lhs._internal[c1],rhs._internal[c1]);
}
return ret;
inline ComplexD innerProductD(const ComplexF &l,const ComplexF &r){ return innerProduct(l,r); }
inline ComplexD innerProductD(const ComplexD &l,const ComplexD &r){ return innerProduct(l,r); }
inline RealD innerProductD(const RealD &l,const RealD &r){ return innerProduct(l,r); }
inline RealD innerProductD(const RealF &l,const RealF &r){ return innerProduct(l,r); }
inline vComplexD innerProductD(const vComplexD &l,const vComplexD &r){ return innerProduct(l,r); }
inline vRealD innerProductD(const vRealD &l,const vRealD &r){ return innerProduct(l,r); }
inline vComplexD innerProductD(const vComplexF &l,const vComplexF &r){
vComplexD la,lb;
vComplexD ra,rb;
Optimization::PrecisionChange::StoD(l.v,la.v,lb.v);
Optimization::PrecisionChange::StoD(r.v,ra.v,rb.v);
return innerProduct(la,ra) + innerProduct(lb,rb);
}
inline vRealD innerProductD(const vRealF &l,const vRealF &r){
vRealD la,lb;
vRealD ra,rb;
Optimization::PrecisionChange::StoD(l.v,la.v,lb.v);
Optimization::PrecisionChange::StoD(r.v,ra.v,rb.v);
return innerProduct(la,ra) + innerProduct(lb,rb);
}
template<class l,class r,int N> inline
auto innerProductD (const iVector<l,N>& lhs,const iVector<r,N>& rhs) -> iScalar<decltype(innerProductD(lhs._internal[0],rhs._internal[0]))>
{
typedef decltype(innerProductD(lhs._internal[0],rhs._internal[0])) ret_t;
iScalar<ret_t> ret;
ret=zero;
for(int c1=0;c1<N;c1++){
ret._internal += innerProductD(lhs._internal[c1],rhs._internal[c1]);
}
template<class l,class r,int N> inline
auto innerProduct (const iMatrix<l,N>& lhs,const iMatrix<r,N>& rhs) -> iScalar<decltype(innerProduct(lhs._internal[0][0],rhs._internal[0][0]))>
{
typedef decltype(innerProduct(lhs._internal[0][0],rhs._internal[0][0])) ret_t;
iScalar<ret_t> ret;
iScalar<ret_t> tmp;
ret=zero;
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal+=innerProduct(lhs._internal[c1][c2],rhs._internal[c1][c2]);
}}
return ret;
}
template<class l,class r> inline
auto innerProduct (const iScalar<l>& lhs,const iScalar<r>& rhs) -> iScalar<decltype(innerProduct(lhs._internal,rhs._internal))>
{
typedef decltype(innerProduct(lhs._internal,rhs._internal)) ret_t;
iScalar<ret_t> ret;
ret._internal = innerProduct(lhs._internal,rhs._internal);
return ret;
return ret;
}
template<class l,class r,int N> inline
auto innerProductD (const iMatrix<l,N>& lhs,const iMatrix<r,N>& rhs) -> iScalar<decltype(innerProductD(lhs._internal[0][0],rhs._internal[0][0]))>
{
typedef decltype(innerProductD(lhs._internal[0][0],rhs._internal[0][0])) ret_t;
iScalar<ret_t> ret;
iScalar<ret_t> tmp;
ret=zero;
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal+=innerProductD(lhs._internal[c1][c2],rhs._internal[c1][c2]);
}}
return ret;
}
template<class l,class r> inline
auto innerProductD (const iScalar<l>& lhs,const iScalar<r>& rhs) -> iScalar<decltype(innerProductD(lhs._internal,rhs._internal))>
{
typedef decltype(innerProductD(lhs._internal,rhs._internal)) ret_t;
iScalar<ret_t> ret;
ret._internal = innerProductD(lhs._internal,rhs._internal);
return ret;
}
//////////////////////
// Keep same precison
//////////////////////
template<class l,class r,int N> inline
auto innerProduct (const iVector<l,N>& lhs,const iVector<r,N>& rhs) -> iScalar<decltype(innerProduct(lhs._internal[0],rhs._internal[0]))>
{
typedef decltype(innerProduct(lhs._internal[0],rhs._internal[0])) ret_t;
iScalar<ret_t> ret;
ret=zero;
for(int c1=0;c1<N;c1++){
ret._internal += innerProduct(lhs._internal[c1],rhs._internal[c1]);
}
return ret;
}
template<class l,class r,int N> inline
auto innerProduct (const iMatrix<l,N>& lhs,const iMatrix<r,N>& rhs) -> iScalar<decltype(innerProduct(lhs._internal[0][0],rhs._internal[0][0]))>
{
typedef decltype(innerProduct(lhs._internal[0][0],rhs._internal[0][0])) ret_t;
iScalar<ret_t> ret;
iScalar<ret_t> tmp;
ret=zero;
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal+=innerProduct(lhs._internal[c1][c2],rhs._internal[c1][c2]);
}}
return ret;
}
template<class l,class r> inline
auto innerProduct (const iScalar<l>& lhs,const iScalar<r>& rhs) -> iScalar<decltype(innerProduct(lhs._internal,rhs._internal))>
{
typedef decltype(innerProduct(lhs._internal,rhs._internal)) ret_t;
iScalar<ret_t> ret;
ret._internal = innerProduct(lhs._internal,rhs._internal);
return ret;
}
}
#endif

View File

@ -1,29 +1,21 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/tensors/Tensor_traits.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
@ -53,6 +45,7 @@ namespace Grid {
public:
typedef typename T::scalar_type scalar_type;
typedef typename T::vector_type vector_type;
typedef typename T::vector_typeD vector_typeD;
typedef typename T::tensor_reduced tensor_reduced;
typedef typename T::scalar_object scalar_object;
typedef typename T::Complexified Complexified;
@ -68,6 +61,7 @@ namespace Grid {
public:
typedef RealF scalar_type;
typedef RealF vector_type;
typedef RealD vector_typeD;
typedef RealF tensor_reduced ;
typedef RealF scalar_object;
typedef ComplexF Complexified;
@ -79,6 +73,7 @@ namespace Grid {
public:
typedef RealD scalar_type;
typedef RealD vector_type;
typedef RealD vector_typeD;
typedef RealD tensor_reduced;
typedef RealD scalar_object;
typedef ComplexD Complexified;
@ -90,6 +85,7 @@ namespace Grid {
public:
typedef ComplexF scalar_type;
typedef ComplexF vector_type;
typedef ComplexD vector_typeD;
typedef ComplexF tensor_reduced;
typedef ComplexF scalar_object;
typedef ComplexF Complexified;
@ -101,6 +97,7 @@ namespace Grid {
public:
typedef ComplexD scalar_type;
typedef ComplexD vector_type;
typedef ComplexD vector_typeD;
typedef ComplexD tensor_reduced;
typedef ComplexD scalar_object;
typedef ComplexD Complexified;
@ -112,6 +109,7 @@ namespace Grid {
public:
typedef Integer scalar_type;
typedef Integer vector_type;
typedef Integer vector_typeD;
typedef Integer tensor_reduced;
typedef Integer scalar_object;
typedef void Complexified;
@ -124,6 +122,7 @@ namespace Grid {
public:
typedef RealF scalar_type;
typedef vRealF vector_type;
typedef vRealD vector_typeD;
typedef vRealF tensor_reduced;
typedef RealF scalar_object;
typedef vComplexF Complexified;
@ -135,6 +134,7 @@ namespace Grid {
public:
typedef RealD scalar_type;
typedef vRealD vector_type;
typedef vRealD vector_typeD;
typedef vRealD tensor_reduced;
typedef RealD scalar_object;
typedef vComplexD Complexified;
@ -142,10 +142,23 @@ namespace Grid {
typedef vRealD DoublePrecision;
enum { TensorLevel = 0 };
};
template<> class GridTypeMapper<vComplexH> {
public:
typedef ComplexF scalar_type;
typedef vComplexH vector_type;
typedef vComplexD vector_typeD;
typedef vComplexH tensor_reduced;
typedef ComplexF scalar_object;
typedef vComplexH Complexified;
typedef vRealH Realified;
typedef vComplexD DoublePrecision;
enum { TensorLevel = 0 };
};
template<> class GridTypeMapper<vComplexF> {
public:
typedef ComplexF scalar_type;
typedef vComplexF vector_type;
typedef vComplexD vector_typeD;
typedef vComplexF tensor_reduced;
typedef ComplexF scalar_object;
typedef vComplexF Complexified;
@ -157,6 +170,7 @@ namespace Grid {
public:
typedef ComplexD scalar_type;
typedef vComplexD vector_type;
typedef vComplexD vector_typeD;
typedef vComplexD tensor_reduced;
typedef ComplexD scalar_object;
typedef vComplexD Complexified;
@ -168,6 +182,7 @@ namespace Grid {
public:
typedef Integer scalar_type;
typedef vInteger vector_type;
typedef vInteger vector_typeD;
typedef vInteger tensor_reduced;
typedef Integer scalar_object;
typedef void Complexified;
@ -252,7 +267,8 @@ namespace Grid {
template<typename T>
class isSIMDvectorized{
template<typename U>
static typename std::enable_if< !std::is_same< typename GridTypeMapper<typename getVectorType<U>::type>::scalar_type, typename GridTypeMapper<typename getVectorType<U>::type>::vector_type>::value, char>::type test(void *);
static typename std::enable_if< !std::is_same< typename GridTypeMapper<typename getVectorType<U>::type>::scalar_type,
typename GridTypeMapper<typename getVectorType<U>::type>::vector_type>::value, char>::type test(void *);
template<typename U>
static double test(...);
@ -264,13 +280,15 @@ namespace Grid {
//Get the precision of a Lattice, tensor or scalar type in units of sizeof(float)
template<typename T>
class getPrecision{
public:
typedef typename getVectorType<T>::type vector_obj; //get the vector_obj (i.e. a grid Tensor) if its a Lattice<vobj>, do nothing otherwise (i.e. if fundamental or grid Tensor)
typedef typename GridTypeMapper<vector_obj>::scalar_type scalar_type; //get the associated scalar type. Works on fundamental and tensor types
public:
typedef typename GridTypeMapper<scalar_type>::Realified real_scalar_type; //remove any std::complex wrapper, should get us to the fundamental type
enum { value = sizeof(real_scalar_type)/sizeof(float) };
};
}
#endif

View File

@ -311,8 +311,8 @@ void Grid_init(int *argc,char ***argv)
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<"Performance:"<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<" --comms-isend : Asynchronous MPI calls; several dirs at a time "<<std::endl;
std::cout<<GridLogMessage<<" --comms-sendrecv: Synchronous MPI calls; one dirs at a time "<<std::endl;
std::cout<<GridLogMessage<<" --comms-concurrent : Asynchronous MPI calls; several dirs at a time "<<std::endl;
std::cout<<GridLogMessage<<" --comms-sequential : Synchronous MPI calls; one dirs at a time "<<std::endl;
std::cout<<GridLogMessage<<" --comms-overlap : Overlap comms with compute "<<std::endl;
std::cout<<GridLogMessage<<std::endl;
std::cout<<GridLogMessage<<" --dslash-generic: Wilson kernel for generic Nc"<<std::endl;
@ -464,5 +464,6 @@ void Grid_debug_handler_init(void)
sigaction(SIGFPE,&sa,NULL);
sigaction(SIGKILL,&sa,NULL);
sigaction(SIGILL,&sa,NULL);
}
}

6
scripts/grep-global Executable file
View File

@ -0,0 +1,6 @@
#!/bin/bash
export LANG=C
find . -name "*.cc" -exec grep -H $@ {} \;
find . -name "*.h" -exec grep -H $@ {} \;

View File

@ -308,18 +308,23 @@ public:
int n;
funcExchange(int _n) { n=_n;};
template<class vec> void operator()(vec &r1,vec &r2,vec &i1,vec &i2) const { exchange(r1,r2,i1,i2,n);}
template<class scal> void apply(std::vector<scal> &r1,std::vector<scal> &r2,std::vector<scal> &in1,std::vector<scal> &in2) const {
template<class scal> void apply(std::vector<scal> &r1,
std::vector<scal> &r2,
std::vector<scal> &in1,
std::vector<scal> &in2) const
{
int sz=in1.size();
int msk = sz>>(n+1);
int j1=0;
int j2=0;
for(int i=0;i<sz;i++) if ( (i&msk) == 0 ) r1[j1++] = in1[ i ];
for(int i=0;i<sz;i++) if ( (i&msk) == 0 ) r1[j1++] = in2[ i ];
for(int i=0;i<sz;i++) if ( (i&msk) ) r2[j2++] = in1[ i ];
for(int i=0;i<sz;i++) if ( (i&msk) ) r2[j2++] = in2[ i ];
for(int i=0;i<sz;i++) {
int j1 = i&(~msk);
int j2 = i|msk;
if ( (i&msk) == 0 ) { r1[i]=in1[j1];}
else { r1[i]=in2[j1];}
if ( (i&msk) == 0 ) { r2[i]=in1[j2];}
else { r2[i]=in2[j2];}
}
}
std::string name(void) const { return std::string("Exchange"); }
};
@ -454,8 +459,8 @@ void ExchangeTester(const functor &func)
std::cout<<GridLogMessage << " " << func.name() << " " <<func.n <<std::endl;
// for(int i=0;i<Nsimd;i++) std::cout << " i "<<i<<" "<<reference1[i]<<" "<<result1[i]<<std::endl;
// for(int i=0;i<Nsimd;i++) std::cout << " i "<<i<<" "<<reference2[i]<<" "<<result2[i]<<std::endl;
//for(int i=0;i<Nsimd;i++) std::cout << " i "<<i<<" ref "<<reference1[i]<<" res "<<result1[i]<<std::endl;
//for(int i=0;i<Nsimd;i++) std::cout << " i "<<i<<" ref "<<reference2[i]<<" res "<<result2[i]<<std::endl;
for(int i=0;i<Nsimd;i++){
int found=0;
@ -465,7 +470,7 @@ void ExchangeTester(const functor &func)
// std::cout << " i "<<i<<" j "<<j<<" "<<reference1[j]<<" "<<result1[i]<<std::endl;
}
}
assert(found==1);
// assert(found==1);
}
for(int i=0;i<Nsimd;i++){
int found=0;
@ -475,15 +480,24 @@ void ExchangeTester(const functor &func)
// std::cout << " i "<<i<<" j "<<j<<" "<<reference2[j]<<" "<<result2[i]<<std::endl;
}
}
assert(found==1);
// assert(found==1);
}
/*
for(int i=0;i<Nsimd;i++){
std::cout << " i "<< i
<<" result1 "<<result1[i]
<<" result2 "<<result2[i]
<<" test1 "<<test1[i]
<<" test2 "<<test2[i]
<<" input1 "<<input1[i]
<<" input2 "<<input2[i]<<std::endl;
}
*/
for(int i=0;i<Nsimd;i++){
assert(test1[i]==input1[i]);
assert(test2[i]==input2[i]);
}// std::cout << " i "<< i<<" test1"<<test1[i]<<" "<<input1[i]<<std::endl;
// std::cout << " i "<< i<<" test2"<<test2[i]<<" "<<input2[i]<<std::endl;
// }
}
}
@ -678,5 +692,69 @@ int main (int argc, char ** argv)
IntTester(funcMinus());
IntTester(funcTimes());
std::cout<<GridLogMessage << "==================================="<< std::endl;
std::cout<<GridLogMessage << "Testing precisionChange "<< std::endl;
std::cout<<GridLogMessage << "==================================="<< std::endl;
{
GridSerialRNG sRNG;
sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
const int Ndp = 16;
const int Nsp = Ndp/2;
const int Nhp = Ndp/4;
std::vector<vRealH,alignedAllocator<vRealH> > H (Nhp);
std::vector<vRealF,alignedAllocator<vRealF> > F (Nsp);
std::vector<vRealF,alignedAllocator<vRealF> > FF(Nsp);
std::vector<vRealD,alignedAllocator<vRealD> > D (Ndp);
std::vector<vRealD,alignedAllocator<vRealD> > DD(Ndp);
for(int i=0;i<16;i++){
random(sRNG,D[i]);
}
// Double to Single
precisionChange(&F[0],&D[0],Ndp);
precisionChange(&DD[0],&F[0],Ndp);
std::cout << GridLogMessage<<"Double to single";
for(int i=0;i<Ndp;i++){
// std::cout << "DD["<<i<<"] = "<< DD[i]<<" "<<D[i]<<" "<<DD[i]-D[i] <<std::endl;
DD[i] = DD[i] - D[i];
decltype(innerProduct(DD[0],DD[0])) nrm;
nrm = innerProduct(DD[i],DD[i]);
auto tmp = Reduce(nrm);
// std::cout << tmp << std::endl;
assert( tmp < 1.0e-14 );
}
std::cout <<" OK ! "<<std::endl;
// Double to Half
#ifdef USE_FP16
std::cout << GridLogMessage<< "Double to half" ;
precisionChange(&H[0],&D[0],Ndp);
precisionChange(&DD[0],&H[0],Ndp);
for(int i=0;i<Ndp;i++){
// std::cout << "DD["<<i<<"] = "<< DD[i]<<" "<<D[i]<<" "<<DD[i]-D[i]<<std::endl;
DD[i] = DD[i] - D[i];
decltype(innerProduct(DD[0],DD[0])) nrm;
nrm = innerProduct(DD[i],DD[i]);
auto tmp = Reduce(nrm);
// std::cout << tmp << std::endl;
assert( tmp < 1.0e-3 );
}
std::cout <<" OK ! "<<std::endl;
std::cout << GridLogMessage<< "Single to half";
// Single to Half
precisionChange(&H[0] ,&F[0],Nsp);
precisionChange(&FF[0],&H[0],Nsp);
for(int i=0;i<Nsp;i++){
// std::cout << "FF["<<i<<"] = "<< FF[i]<<" "<<F[i]<<" "<<FF[i]-F[i]<<std::endl;
FF[i] = FF[i] - F[i];
decltype(innerProduct(FF[0],FF[0])) nrm;
nrm = innerProduct(FF[i],FF[i]);
auto tmp = Reduce(nrm);
// std::cout << tmp << std::endl;
assert( tmp < 1.0e-3 );
}
std::cout <<" OK ! "<<std::endl;
#endif
}
Grid_finalize();
}

View File

@ -148,11 +148,13 @@ class FourierAcceleratedGaugeFixer : public Gimpl {
Complex psqMax(16.0);
Fp = psqMax*one/psq;
/*
static int once;
if ( once == 0 ) {
std::cout << " Fp " << Fp <<std::endl;
once ++;
}
}*/
pokeSite(TComplex(1.0),Fp,coor);
dmuAmu_p = dmuAmu_p * Fp;

View File

@ -2,11 +2,10 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_wilson_even_odd.cc
Source file: ./tests/Test_wilson_tm_even_odd.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
@ -89,8 +88,8 @@ int main (int argc, char ** argv)
}
RealD mass=0.1;
RealD mu = 0.1;
WilsonTMFermionR Dw(Umu,Grid,RBGrid,mass,mu);
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
LatticeFermion src_e (&RBGrid);
LatticeFermion src_o (&RBGrid);
@ -207,7 +206,7 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<WilsonTMFermionR,LatticeFermion> HermOpEO(Dw);
SchurDiagMooeeOperator<WilsonFermionR,LatticeFermion> HermOpEO(Dw);
HermOpEO.MpcDagMpc(chi_e,dchi_e,t1,t2);
HermOpEO.MpcDagMpc(chi_o,dchi_o,t1,t2);

View File

@ -2,10 +2,11 @@
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_wilson_tm_even_odd.cc
Source file: ./tests/Test_wilson_even_odd.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
@ -88,8 +89,8 @@ int main (int argc, char ** argv)
}
RealD mass=0.1;
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
RealD mu = 0.1;
WilsonTMFermionR Dw(Umu,Grid,RBGrid,mass,mu);
LatticeFermion src_e (&RBGrid);
LatticeFermion src_o (&RBGrid);
@ -206,7 +207,7 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<WilsonFermionR,LatticeFermion> HermOpEO(Dw);
SchurDiagMooeeOperator<WilsonTMFermionR,LatticeFermion> HermOpEO(Dw);
HermOpEO.MpcDagMpc(chi_e,dchi_e,t1,t2);
HermOpEO.MpcDagMpc(chi_o,dchi_o,t1,t2);

View File

@ -115,8 +115,8 @@ int main (int argc, char ** argv)
RNG.SeedFixedIntegers(seeds);
RealD alpha = 1.0;
RealD beta = 0.03;
RealD alpha = 1.2;
RealD beta = 0.1;
RealD mu = 0.0;
int order = 11;
ChebyshevLanczos<LatticeComplex> Cheby(alpha,beta,mu,order);
@ -131,10 +131,9 @@ int main (int argc, char ** argv)
const int Nit= 10000;
int Nconv;
RealD eresid = 1.0e-8;
RealD eresid = 1.0e-6;
ImplicitlyRestartedLanczos<LatticeComplex> IRL(HermOp,X,Nk,Nm,eresid,Nit);
ImplicitlyRestartedLanczos<LatticeComplex> ChebyIRL(HermOp,Cheby,Nk,Nm,eresid,Nit);
LatticeComplex src(grid); gaussian(RNG,src);
@ -145,9 +144,9 @@ int main (int argc, char ** argv)
}
{
// std::vector<RealD> eval(Nm);
// std::vector<LatticeComplex> evec(Nm,grid);
// ChebyIRL.calc(eval,evec,src, Nconv);
std::vector<RealD> eval(Nm);
std::vector<LatticeComplex> evec(Nm,grid);
ChebyIRL.calc(eval,evec,src, Nconv);
}
Grid_finalize();

View File

@ -89,7 +89,7 @@ int main(int argc, char** argv) {
GridStopWatch CGTimer;
SchurDiagMooeeOperator<DomainWallFermionR, LatticeFermion> HermOpEO(Ddwf);
ConjugateGradient<LatticeFermion> CG(1.0e-8, 10000, 0);// switch off the assert
ConjugateGradient<LatticeFermion> CG(1.0e-5, 10000, 0);// switch off the assert
CGTimer.Start();
CG(HermOpEO, src_o, result_o);

View File

@ -73,7 +73,7 @@ int main (int argc, char ** argv)
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
ConjugateGradient<LatticeFermion> CG(1.0e-6,10000);
CG(HermOp,src,result);
Grid_finalize();

View File

@ -0,0 +1,119 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_wilson_cg_unprec.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
typedef typename ImprovedStaggeredFermion5DR::FermionField FermionField;
typedef typename ImprovedStaggeredFermion5DR::ComplexField ComplexField;
typename ImprovedStaggeredFermion5DR::ImplParams params;
const int Ls=4;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(UGrid ); pRNG.SeedFixedIntegers(seeds);
GridParallelRNG pRNG5(FGrid); pRNG5.SeedFixedIntegers(seeds);
FermionField src(FGrid); random(pRNG5,src);
FermionField result(FGrid); result=zero;
RealD nrm = norm2(src);
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(pRNG,Umu);
RealD mass=0.01;
ImprovedStaggeredFermion5DR Ds(Umu,Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass);
MdagMLinearOperator<ImprovedStaggeredFermion5DR,FermionField> HermOp(Ds);
ConjugateGradient<FermionField> CG(1.0e-8,10000);
BlockConjugateGradient<FermionField> BCG(1.0e-8,10000);
MultiRHSConjugateGradient<FermionField> mCG(1.0e-8,10000);
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling 4d CG "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
ImprovedStaggeredFermionR Ds4d(Umu,Umu,*UGrid,*UrbGrid,mass);
MdagMLinearOperator<ImprovedStaggeredFermionR,FermionField> HermOp4d(Ds4d);
FermionField src4d(UGrid); random(pRNG,src4d);
FermionField result4d(UGrid); result4d=zero;
CG(HermOp4d,src4d,result4d);
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling 5d CG for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
result=zero;
CG(HermOp,src,result);
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling multiRHS CG for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
result=zero;
mCG(HermOp,src,result);
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling Block CG for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
result=zero;
BCG(HermOp,src,result);
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,82 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_wilson_cg_unprec.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
typedef typename ImprovedStaggeredFermionR::ComplexField ComplexField;
typename ImprovedStaggeredFermionR::ImplParams params;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
FermionField src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
FermionField result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.1;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass);
MdagMLinearOperator<ImprovedStaggeredFermionR,FermionField> HermOp(Ds);
CG(HermOp,src,result);
Grid_finalize();
}