mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-04 05:54:32 +00:00 
			
		
		
		
	Merge branch 'develop' into feature/hmc_generalise
This commit is contained in:
		@@ -46,7 +46,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
 | 
			
		||||
 | 
			
		||||
// Lanczos support
 | 
			
		||||
#include <Grid/algorithms/iterative/MatrixUtils.h>
 | 
			
		||||
//#include <Grid/algorithms/iterative/MatrixUtils.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
 | 
			
		||||
#include <Grid/algorithms/CoarsenedMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/FFT.h>
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										366
									
								
								lib/algorithms/iterative/BlockConjugateGradient.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										366
									
								
								lib/algorithms/iterative/BlockConjugateGradient.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,366 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid
 | 
			
		||||
 | 
			
		||||
Source file: ./lib/algorithms/iterative/BlockConjugateGradient.h
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2017
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution
 | 
			
		||||
directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_BLOCK_CONJUGATE_GRADIENT_H
 | 
			
		||||
#define GRID_BLOCK_CONJUGATE_GRADIENT_H
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// Block conjugate gradient. Dimension zero should be the block direction
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class Field>
 | 
			
		||||
class BlockConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
 | 
			
		||||
  const int blockDim = 0;
 | 
			
		||||
 | 
			
		||||
  int Nblock;
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
                           // Defaults true.
 | 
			
		||||
  RealD Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  
 | 
			
		||||
  BlockConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
			
		||||
    : Tolerance(tol),
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    ErrorOnNoConverge(err_on_no_conv){};
 | 
			
		||||
 | 
			
		||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi) 
 | 
			
		||||
{
 | 
			
		||||
  int Orthog = 0; // First dimension is block dim
 | 
			
		||||
  Nblock = Src._grid->_fdimensions[Orthog];
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
 | 
			
		||||
 | 
			
		||||
  Psi.checkerboard = Src.checkerboard;
 | 
			
		||||
  conformable(Psi, Src);
 | 
			
		||||
 | 
			
		||||
  Field P(Src);
 | 
			
		||||
  Field AP(Src);
 | 
			
		||||
  Field R(Src);
 | 
			
		||||
  
 | 
			
		||||
  Eigen::MatrixXcd m_pAp    = Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_pAp_inv= Eigen::MatrixXcd::Identity(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_rr     = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_rr_inv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  Eigen::MatrixXcd m_alpha      = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
  Eigen::MatrixXcd m_beta   = Eigen::MatrixXcd::Zero(Nblock,Nblock);
 | 
			
		||||
 | 
			
		||||
  // Initial residual computation & set up
 | 
			
		||||
  std::vector<RealD> residuals(Nblock);
 | 
			
		||||
  std::vector<RealD> ssq(Nblock);
 | 
			
		||||
 | 
			
		||||
  sliceNorm(ssq,Src,Orthog);
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,Src,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,Psi,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  // Initial search dir is guess
 | 
			
		||||
  Linop.HermOp(Psi, AP);
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  /************************************************************************
 | 
			
		||||
   * Block conjugate gradient (Stephen Pickles, thesis 1995, pp 71, O Leary 1980)
 | 
			
		||||
   ************************************************************************
 | 
			
		||||
   * O'Leary : R = B - A X
 | 
			
		||||
   * O'Leary : P = M R ; preconditioner M = 1
 | 
			
		||||
   * O'Leary : alpha = PAP^{-1} RMR
 | 
			
		||||
   * O'Leary : beta  = RMR^{-1}_old RMR_new
 | 
			
		||||
   * O'Leary : X=X+Palpha
 | 
			
		||||
   * O'Leary : R_new=R_old-AP alpha
 | 
			
		||||
   * O'Leary : P=MR_new+P beta
 | 
			
		||||
   */
 | 
			
		||||
 | 
			
		||||
  R = Src - AP;  
 | 
			
		||||
  P = R;
 | 
			
		||||
  sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
			
		||||
 | 
			
		||||
  GridStopWatch sliceInnerTimer;
 | 
			
		||||
  GridStopWatch sliceMaddTimer;
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
 | 
			
		||||
  int k;
 | 
			
		||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
    RealD rrsum=0;
 | 
			
		||||
    for(int b=0;b<Nblock;b++) rrsum+=real(m_rr(b,b));
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
 | 
			
		||||
	      <<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    Linop.HermOp(P, AP);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Alpha
 | 
			
		||||
    sliceInnerTimer.Start();
 | 
			
		||||
    sliceInnerProductMatrix(m_pAp,P,AP,Orthog);
 | 
			
		||||
    sliceInnerTimer.Stop();
 | 
			
		||||
    m_pAp_inv = m_pAp.inverse();
 | 
			
		||||
    m_alpha   = m_pAp_inv * m_rr ;
 | 
			
		||||
 | 
			
		||||
    // Psi, R update
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddMatrix(Psi,m_alpha, P,Psi,Orthog);     // add alpha *  P to psi
 | 
			
		||||
    sliceMaddMatrix(R  ,m_alpha,AP,  R,Orthog,-1.0);// sub alpha * AP to resid
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Beta
 | 
			
		||||
    m_rr_inv = m_rr.inverse();
 | 
			
		||||
    sliceInnerTimer.Start();
 | 
			
		||||
    sliceInnerProductMatrix(m_rr,R,R,Orthog);
 | 
			
		||||
    sliceInnerTimer.Stop();
 | 
			
		||||
    m_beta = m_rr_inv *m_rr;
 | 
			
		||||
 | 
			
		||||
    // Search update
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddMatrix(AP,m_beta,P,R,Orthog);
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
    P= AP;
 | 
			
		||||
 | 
			
		||||
    /*********************
 | 
			
		||||
     * convergence monitor
 | 
			
		||||
     *********************
 | 
			
		||||
     */
 | 
			
		||||
    RealD max_resid=0;
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      RealD rr = real(m_rr(b,b))/ssq[b];
 | 
			
		||||
      if ( rr > max_resid ) max_resid = rr;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    if ( max_resid < Tolerance*Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
      SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage<<"BlockCG converged in "<<k<<" iterations"<<std::endl;
 | 
			
		||||
      for(int b=0;b<Nblock;b++){
 | 
			
		||||
	std::cout << GridLogMessage<< "\t\tblock "<<b<<" resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(Psi, AP);
 | 
			
		||||
      AP = AP-Src;
 | 
			
		||||
      std::cout << GridLogMessage <<"\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tInnerProd  " << sliceInnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed()  <<std::endl;
 | 
			
		||||
	    
 | 
			
		||||
      IterationsToComplete = k;
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "BlockConjugateGradient did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
// multiRHS conjugate gradient. Dimension zero should be the block direction
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template <class Field>
 | 
			
		||||
class MultiRHSConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
 public:
 | 
			
		||||
 | 
			
		||||
  typedef typename Field::scalar_type scomplex;
 | 
			
		||||
 | 
			
		||||
  const int blockDim = 0;
 | 
			
		||||
 | 
			
		||||
  int Nblock;
 | 
			
		||||
  bool ErrorOnNoConverge;  // throw an assert when the CG fails to converge.
 | 
			
		||||
                           // Defaults true.
 | 
			
		||||
  RealD Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  
 | 
			
		||||
   MultiRHSConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
 | 
			
		||||
    : Tolerance(tol),
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    ErrorOnNoConverge(err_on_no_conv){};
 | 
			
		||||
 | 
			
		||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi) 
 | 
			
		||||
{
 | 
			
		||||
  int Orthog = 0; // First dimension is block dim
 | 
			
		||||
  Nblock = Src._grid->_fdimensions[Orthog];
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
 | 
			
		||||
 | 
			
		||||
  Psi.checkerboard = Src.checkerboard;
 | 
			
		||||
  conformable(Psi, Src);
 | 
			
		||||
 | 
			
		||||
  Field P(Src);
 | 
			
		||||
  Field AP(Src);
 | 
			
		||||
  Field R(Src);
 | 
			
		||||
  
 | 
			
		||||
  std::vector<ComplexD> v_pAp(Nblock);
 | 
			
		||||
  std::vector<RealD> v_rr (Nblock);
 | 
			
		||||
  std::vector<RealD> v_rr_inv(Nblock);
 | 
			
		||||
  std::vector<RealD> v_alpha(Nblock);
 | 
			
		||||
  std::vector<RealD> v_beta(Nblock);
 | 
			
		||||
 | 
			
		||||
  // Initial residual computation & set up
 | 
			
		||||
  std::vector<RealD> residuals(Nblock);
 | 
			
		||||
  std::vector<RealD> ssq(Nblock);
 | 
			
		||||
 | 
			
		||||
  sliceNorm(ssq,Src,Orthog);
 | 
			
		||||
  RealD sssum=0;
 | 
			
		||||
  for(int b=0;b<Nblock;b++) sssum+=ssq[b];
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,Src,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  sliceNorm(residuals,Psi,Orthog);
 | 
			
		||||
  for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
 | 
			
		||||
 | 
			
		||||
  // Initial search dir is guess
 | 
			
		||||
  Linop.HermOp(Psi, AP);
 | 
			
		||||
 | 
			
		||||
  R = Src - AP;  
 | 
			
		||||
  P = R;
 | 
			
		||||
  sliceNorm(v_rr,R,Orthog);
 | 
			
		||||
 | 
			
		||||
  GridStopWatch sliceInnerTimer;
 | 
			
		||||
  GridStopWatch sliceMaddTimer;
 | 
			
		||||
  GridStopWatch sliceNormTimer;
 | 
			
		||||
  GridStopWatch MatrixTimer;
 | 
			
		||||
  GridStopWatch SolverTimer;
 | 
			
		||||
 | 
			
		||||
  SolverTimer.Start();
 | 
			
		||||
  int k;
 | 
			
		||||
  for (k = 1; k <= MaxIterations; k++) {
 | 
			
		||||
 | 
			
		||||
    RealD rrsum=0;
 | 
			
		||||
    for(int b=0;b<Nblock;b++) rrsum+=real(v_rr[b]);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
 | 
			
		||||
	      <<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
 | 
			
		||||
 | 
			
		||||
    MatrixTimer.Start();
 | 
			
		||||
    Linop.HermOp(P, AP);
 | 
			
		||||
    MatrixTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Alpha
 | 
			
		||||
    //    sliceInnerProductVectorTest(v_pAp_test,P,AP,Orthog);
 | 
			
		||||
    sliceInnerTimer.Start();
 | 
			
		||||
    sliceInnerProductVector(v_pAp,P,AP,Orthog);
 | 
			
		||||
    sliceInnerTimer.Stop();
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      //      std::cout << " "<< v_pAp[b]<<" "<< v_pAp_test[b]<<std::endl;
 | 
			
		||||
      v_alpha[b] = v_rr[b]/real(v_pAp[b]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Psi, R update
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddVector(Psi,v_alpha, P,Psi,Orthog);     // add alpha *  P to psi
 | 
			
		||||
    sliceMaddVector(R  ,v_alpha,AP,  R,Orthog,-1.0);// sub alpha * AP to resid
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    // Beta
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      v_rr_inv[b] = 1.0/v_rr[b];
 | 
			
		||||
    }
 | 
			
		||||
    sliceNormTimer.Start();
 | 
			
		||||
    sliceNorm(v_rr,R,Orthog);
 | 
			
		||||
    sliceNormTimer.Stop();
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      v_beta[b] = v_rr_inv[b] *v_rr[b];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Search update
 | 
			
		||||
    sliceMaddTimer.Start();
 | 
			
		||||
    sliceMaddVector(P,v_beta,P,R,Orthog);
 | 
			
		||||
    sliceMaddTimer.Stop();
 | 
			
		||||
 | 
			
		||||
    /*********************
 | 
			
		||||
     * convergence monitor
 | 
			
		||||
     *********************
 | 
			
		||||
     */
 | 
			
		||||
    RealD max_resid=0;
 | 
			
		||||
    for(int b=0;b<Nblock;b++){
 | 
			
		||||
      RealD rr = v_rr[b]/ssq[b];
 | 
			
		||||
      if ( rr > max_resid ) max_resid = rr;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    if ( max_resid < Tolerance*Tolerance ) { 
 | 
			
		||||
 | 
			
		||||
      SolverTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage<<"MultiRHS solver converged in " <<k<<" iterations"<<std::endl;
 | 
			
		||||
      for(int b=0;b<Nblock;b++){
 | 
			
		||||
	std::cout << GridLogMessage<< "\t\tBlock "<<b<<" resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
 | 
			
		||||
      }
 | 
			
		||||
      std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
 | 
			
		||||
 | 
			
		||||
      Linop.HermOp(Psi, AP);
 | 
			
		||||
      AP = AP-Src;
 | 
			
		||||
      std::cout <<GridLogMessage << "\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tInnerProd  " << sliceInnerTimer.Elapsed() <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tNorm       " << sliceNormTimer.Elapsed() <<std::endl;
 | 
			
		||||
      std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed()  <<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
      IterationsToComplete = k;
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << "MultiRHSConjugateGradient did NOT converge" << std::endl;
 | 
			
		||||
 | 
			
		||||
  if (ErrorOnNoConverge) assert(0);
 | 
			
		||||
  IterationsToComplete = k;
 | 
			
		||||
}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -78,18 +78,12 @@ class ConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
    cp = a;
 | 
			
		||||
    ssq = norm2(src);
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4)
 | 
			
		||||
              << "ConjugateGradient: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4)
 | 
			
		||||
              << "ConjugateGradient:   src " << ssq << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4)
 | 
			
		||||
              << "ConjugateGradient:    mp " << d << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4)
 | 
			
		||||
              << "ConjugateGradient:   mmp " << b << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4)
 | 
			
		||||
              << "ConjugateGradient:  cp,r " << cp << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4)
 | 
			
		||||
              << "ConjugateGradient:     p " << a << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: guess " << guess << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient:   src " << ssq << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient:    mp " << d << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient:   mmp " << b << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient:  cp,r " << cp << std::endl;
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient:     p " << a << std::endl;
 | 
			
		||||
 | 
			
		||||
    RealD rsq = Tolerance * Tolerance * ssq;
 | 
			
		||||
 | 
			
		||||
@@ -99,8 +93,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << std::setprecision(4)
 | 
			
		||||
              << "ConjugateGradient: k=0 residual " << cp << " target " << rsq
 | 
			
		||||
              << std::endl;
 | 
			
		||||
              << "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
 | 
			
		||||
 | 
			
		||||
    GridStopWatch LinalgTimer;
 | 
			
		||||
    GridStopWatch MatrixTimer;
 | 
			
		||||
@@ -148,19 +141,20 @@ class ConjugateGradient : public OperatorFunction<Field> {
 | 
			
		||||
        RealD resnorm = sqrt(norm2(p));
 | 
			
		||||
        RealD true_residual = resnorm / srcnorm;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage
 | 
			
		||||
                  << "ConjugateGradient: Converged on iteration " << k << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "Computed residual " << sqrt(cp / ssq)
 | 
			
		||||
                  << " true residual " << true_residual << " target "
 | 
			
		||||
                  << Tolerance << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "Time elapsed: Iterations "
 | 
			
		||||
                  << SolverTimer.Elapsed() << " Matrix  "
 | 
			
		||||
                  << MatrixTimer.Elapsed() << " Linalg "
 | 
			
		||||
                  << LinalgTimer.Elapsed();
 | 
			
		||||
        std::cout << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k << std::endl;
 | 
			
		||||
        std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
 | 
			
		||||
 | 
			
		||||
        std::cout << GridLogMessage << "Time breakdown "<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tElapsed    " << SolverTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tMatrix     " << MatrixTimer.Elapsed() <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tLinalg     " << LinalgTimer.Elapsed() <<std::endl;
 | 
			
		||||
 | 
			
		||||
        if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 
 | 
			
		||||
@@ -30,6 +30,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#define GRID_IRL_H
 | 
			
		||||
 | 
			
		||||
#include <string.h> //memset
 | 
			
		||||
 | 
			
		||||
#ifdef USE_LAPACK
 | 
			
		||||
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
 | 
			
		||||
                   double *vl, double *vu, int *il, int *iu, double *abstol,
 | 
			
		||||
@@ -37,8 +38,9 @@ void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
 | 
			
		||||
                   double *work, int *lwork, int *iwork, int *liwork,
 | 
			
		||||
                   int *info);
 | 
			
		||||
#endif
 | 
			
		||||
#include "DenseMatrix.h"
 | 
			
		||||
#include "EigenSort.h"
 | 
			
		||||
 | 
			
		||||
#include <Grid/algorithms/densematrix/DenseMatrix.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/EigenSort.h>
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
@@ -1088,8 +1090,6 @@ static void Lock(DenseMatrix<T> &H, 	// Hess mtx
 | 
			
		||||
		 int dfg,
 | 
			
		||||
		 bool herm)
 | 
			
		||||
{	
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //ForceTridiagonal(H);
 | 
			
		||||
 | 
			
		||||
  int M = H.dim;
 | 
			
		||||
@@ -1121,7 +1121,6 @@ static void Lock(DenseMatrix<T> &H, 	// Hess mtx
 | 
			
		||||
 | 
			
		||||
  AH = Hermitian(QQ)*AH;
 | 
			
		||||
  AH = AH*QQ;
 | 
			
		||||
	
 | 
			
		||||
 | 
			
		||||
  for(int i=con;i<M;i++){
 | 
			
		||||
    for(int j=con;j<M;j++){
 | 
			
		||||
 
 | 
			
		||||
@@ -1,453 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/Matrix.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef MATRIX_H
 | 
			
		||||
#define MATRIX_H
 | 
			
		||||
 | 
			
		||||
#include <cstdlib>
 | 
			
		||||
#include <string>
 | 
			
		||||
#include <cmath>
 | 
			
		||||
#include <vector>
 | 
			
		||||
#include <iostream>
 | 
			
		||||
#include <iomanip>
 | 
			
		||||
#include <complex>
 | 
			
		||||
#include <typeinfo>
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/** Sign function **/
 | 
			
		||||
template <class T> T sign(T p){return ( p/abs(p) );}
 | 
			
		||||
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
///////////////////// Hijack STL containers for our wicked means /////////////////////////////////////////
 | 
			
		||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
template<class T> using Vector = Vector<T>;
 | 
			
		||||
template<class T> using Matrix = Vector<Vector<T> >;
 | 
			
		||||
 | 
			
		||||
template<class T> void Resize(Vector<T > & vec, int N) { vec.resize(N); }
 | 
			
		||||
 | 
			
		||||
template<class T> void Resize(Matrix<T > & mat, int N, int M) { 
 | 
			
		||||
  mat.resize(N);
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    mat[i].resize(M);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
template<class T> void Size(Vector<T> & vec, int &N) 
 | 
			
		||||
{ 
 | 
			
		||||
  N= vec.size();
 | 
			
		||||
}
 | 
			
		||||
template<class T> void Size(Matrix<T> & mat, int &N,int &M) 
 | 
			
		||||
{ 
 | 
			
		||||
  N= mat.size();
 | 
			
		||||
  M= mat[0].size();
 | 
			
		||||
}
 | 
			
		||||
template<class T> void SizeSquare(Matrix<T> & mat, int &N) 
 | 
			
		||||
{ 
 | 
			
		||||
  int M; Size(mat,N,M);
 | 
			
		||||
  assert(N==M);
 | 
			
		||||
}
 | 
			
		||||
template<class T> void SizeSame(Matrix<T> & mat1,Matrix<T> &mat2, int &N1,int &M1) 
 | 
			
		||||
{ 
 | 
			
		||||
  int N2,M2;
 | 
			
		||||
  Size(mat1,N1,M1);
 | 
			
		||||
  Size(mat2,N2,M2);
 | 
			
		||||
  assert(N1==N2);
 | 
			
		||||
  assert(M1==M2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//*****************************************
 | 
			
		||||
//*	(Complex) Vector operations	*
 | 
			
		||||
//*****************************************
 | 
			
		||||
 | 
			
		||||
/**Conj of a Vector **/
 | 
			
		||||
template <class T> Vector<T> conj(Vector<T> p){
 | 
			
		||||
	Vector<T> q(p.size());
 | 
			
		||||
	for(int i=0;i<p.size();i++){q[i] = conj(p[i]);}
 | 
			
		||||
	return q;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** Norm of a Vector**/
 | 
			
		||||
template <class T> T norm(Vector<T> p){
 | 
			
		||||
	T sum = 0;
 | 
			
		||||
	for(int i=0;i<p.size();i++){sum = sum + p[i]*conj(p[i]);}
 | 
			
		||||
	return abs(sqrt(sum));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** Norm squared of a Vector **/
 | 
			
		||||
template <class T> T norm2(Vector<T> p){
 | 
			
		||||
	T sum = 0;
 | 
			
		||||
	for(int i=0;i<p.size();i++){sum = sum + p[i]*conj(p[i]);}
 | 
			
		||||
	return abs((sum));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** Sum elements of a Vector **/
 | 
			
		||||
template <class T> T trace(Vector<T> p){
 | 
			
		||||
	T sum = 0;
 | 
			
		||||
	for(int i=0;i<p.size();i++){sum = sum + p[i];}
 | 
			
		||||
	return sum;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** Fill a Vector with constant c **/
 | 
			
		||||
template <class T> void Fill(Vector<T> &p, T c){
 | 
			
		||||
	for(int i=0;i<p.size();i++){p[i] = c;}
 | 
			
		||||
}
 | 
			
		||||
/** Normalize a Vector **/
 | 
			
		||||
template <class T> void normalize(Vector<T> &p){
 | 
			
		||||
	T m = norm(p);
 | 
			
		||||
	if( abs(m) > 0.0) for(int i=0;i<p.size();i++){p[i] /= m;}
 | 
			
		||||
}
 | 
			
		||||
/** Vector by scalar **/
 | 
			
		||||
template <class T, class U> Vector<T> times(Vector<T> p, U s){
 | 
			
		||||
	for(int i=0;i<p.size();i++){p[i] *= s;}
 | 
			
		||||
	return p;
 | 
			
		||||
}
 | 
			
		||||
template <class T, class U> Vector<T> times(U s, Vector<T> p){
 | 
			
		||||
	for(int i=0;i<p.size();i++){p[i] *= s;}
 | 
			
		||||
	return p;
 | 
			
		||||
}
 | 
			
		||||
/** inner product of a and b = conj(a) . b **/
 | 
			
		||||
template <class T> T inner(Vector<T> a, Vector<T> b){
 | 
			
		||||
	T m = 0.;
 | 
			
		||||
	for(int i=0;i<a.size();i++){m = m + conj(a[i])*b[i];}
 | 
			
		||||
	return m;
 | 
			
		||||
}
 | 
			
		||||
/** sum of a and b = a + b **/
 | 
			
		||||
template <class T> Vector<T> add(Vector<T> a, Vector<T> b){
 | 
			
		||||
	Vector<T> m(a.size());
 | 
			
		||||
	for(int i=0;i<a.size();i++){m[i] = a[i] + b[i];}
 | 
			
		||||
	return m;
 | 
			
		||||
}
 | 
			
		||||
/** sum of a and b = a - b **/
 | 
			
		||||
template <class T> Vector<T> sub(Vector<T> a, Vector<T> b){
 | 
			
		||||
	Vector<T> m(a.size());
 | 
			
		||||
	for(int i=0;i<a.size();i++){m[i] = a[i] - b[i];}
 | 
			
		||||
	return m;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** 
 | 
			
		||||
 *********************************
 | 
			
		||||
 *	Matrices	         *
 | 
			
		||||
 *********************************
 | 
			
		||||
 **/
 | 
			
		||||
 | 
			
		||||
template<class T> void Fill(Matrix<T> & mat, T&val) { 
 | 
			
		||||
  int N,M;
 | 
			
		||||
  Size(mat,N,M);
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
  for(int j=0;j<M;j++){
 | 
			
		||||
    mat[i][j] = val;
 | 
			
		||||
  }}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** Transpose of a matrix **/
 | 
			
		||||
Matrix<T> Transpose(Matrix<T> & mat){
 | 
			
		||||
  int N,M;
 | 
			
		||||
  Size(mat,N,M);
 | 
			
		||||
  Matrix C; Resize(C,M,N);
 | 
			
		||||
  for(int i=0;i<M;i++){
 | 
			
		||||
  for(int j=0;j<N;j++){
 | 
			
		||||
    C[i][j] = mat[j][i];
 | 
			
		||||
  }} 
 | 
			
		||||
  return C;
 | 
			
		||||
}
 | 
			
		||||
/** Set Matrix to unit matrix **/
 | 
			
		||||
template<class T> void Unity(Matrix<T> &mat){
 | 
			
		||||
  int N;  SizeSquare(mat,N);
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    for(int j=0;j<N;j++){
 | 
			
		||||
      if ( i==j ) A[i][j] = 1;
 | 
			
		||||
      else        A[i][j] = 0;
 | 
			
		||||
    } 
 | 
			
		||||
  } 
 | 
			
		||||
}
 | 
			
		||||
/** Add C * I to matrix **/
 | 
			
		||||
template<class T>
 | 
			
		||||
void PlusUnit(Matrix<T> & A,T c){
 | 
			
		||||
  int dim;  SizeSquare(A,dim);
 | 
			
		||||
  for(int i=0;i<dim;i++){A[i][i] = A[i][i] + c;} 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** return the Hermitian conjugate of matrix **/
 | 
			
		||||
Matrix<T> HermitianConj(Matrix<T> &mat){
 | 
			
		||||
 | 
			
		||||
  int dim; SizeSquare(mat,dim);
 | 
			
		||||
 | 
			
		||||
  Matrix<T> C; Resize(C,dim,dim);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<dim;i++){
 | 
			
		||||
    for(int j=0;j<dim;j++){
 | 
			
		||||
      C[i][j] = conj(mat[j][i]);
 | 
			
		||||
    } 
 | 
			
		||||
  } 
 | 
			
		||||
  return C;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** return diagonal entries as a Vector **/
 | 
			
		||||
Vector<T> diag(Matrix<T> &A)
 | 
			
		||||
{
 | 
			
		||||
  int dim; SizeSquare(A,dim);
 | 
			
		||||
  Vector<T> d; Resize(d,dim);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<dim;i++){
 | 
			
		||||
    d[i] = A[i][i];
 | 
			
		||||
  }
 | 
			
		||||
  return d;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** Left multiply by a Vector **/
 | 
			
		||||
Vector<T> operator *(Vector<T> &B,Matrix<T> &A)
 | 
			
		||||
{
 | 
			
		||||
  int K,M,N; 
 | 
			
		||||
  Size(B,K);
 | 
			
		||||
  Size(A,M,N);
 | 
			
		||||
  assert(K==M);
 | 
			
		||||
  
 | 
			
		||||
  Vector<T> C; Resize(C,N);
 | 
			
		||||
 | 
			
		||||
  for(int j=0;j<N;j++){
 | 
			
		||||
    T sum = 0.0;
 | 
			
		||||
    for(int i=0;i<M;i++){
 | 
			
		||||
      sum += B[i] * A[i][j];
 | 
			
		||||
    }
 | 
			
		||||
    C[j] =  sum;
 | 
			
		||||
  }
 | 
			
		||||
  return C; 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** return 1/diagonal entries as a Vector **/
 | 
			
		||||
Vector<T> inv_diag(Matrix<T> & A){
 | 
			
		||||
  int dim; SizeSquare(A,dim);
 | 
			
		||||
  Vector<T> d; Resize(d,dim);
 | 
			
		||||
  for(int i=0;i<dim;i++){
 | 
			
		||||
    d[i] = 1.0/A[i][i];
 | 
			
		||||
  }
 | 
			
		||||
  return d;
 | 
			
		||||
}
 | 
			
		||||
/** Matrix Addition **/
 | 
			
		||||
inline Matrix<T> operator + (Matrix<T> &A,Matrix<T> &B)
 | 
			
		||||
{
 | 
			
		||||
  int N,M  ; SizeSame(A,B,N,M);
 | 
			
		||||
  Matrix C; Resize(C,N,M);
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    for(int j=0;j<M;j++){
 | 
			
		||||
      C[i][j] = A[i][j] +  B[i][j];
 | 
			
		||||
    } 
 | 
			
		||||
  } 
 | 
			
		||||
  return C;
 | 
			
		||||
} 
 | 
			
		||||
/** Matrix Subtraction **/
 | 
			
		||||
inline Matrix<T> operator- (Matrix<T> & A,Matrix<T> &B){
 | 
			
		||||
  int N,M  ; SizeSame(A,B,N,M);
 | 
			
		||||
  Matrix C; Resize(C,N,M);
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
  for(int j=0;j<M;j++){
 | 
			
		||||
    C[i][j] = A[i][j] -  B[i][j];
 | 
			
		||||
  }}
 | 
			
		||||
  return C;
 | 
			
		||||
} 
 | 
			
		||||
 | 
			
		||||
/** Matrix scalar multiplication **/
 | 
			
		||||
inline Matrix<T> operator* (Matrix<T> & A,T c){
 | 
			
		||||
  int N,M; Size(A,N,M);
 | 
			
		||||
  Matrix C; Resize(C,N,M);
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
  for(int j=0;j<M;j++){
 | 
			
		||||
    C[i][j] = A[i][j]*c;
 | 
			
		||||
  }} 
 | 
			
		||||
  return C;
 | 
			
		||||
} 
 | 
			
		||||
/** Matrix Matrix multiplication **/
 | 
			
		||||
inline Matrix<T> operator* (Matrix<T> &A,Matrix<T> &B){
 | 
			
		||||
  int K,L,N,M;
 | 
			
		||||
  Size(A,K,L);
 | 
			
		||||
  Size(B,N,M); assert(L==N);
 | 
			
		||||
  Matrix C; Resize(C,K,M);
 | 
			
		||||
 | 
			
		||||
  for(int i=0;i<K;i++){
 | 
			
		||||
    for(int j=0;j<M;j++){
 | 
			
		||||
      T sum = 0.0;
 | 
			
		||||
      for(int k=0;k<N;k++) sum += A[i][k]*B[k][j];
 | 
			
		||||
      C[i][j] =sum;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return C; 
 | 
			
		||||
} 
 | 
			
		||||
/** Matrix Vector multiplication **/
 | 
			
		||||
inline Vector<T> operator* (Matrix<T> &A,Vector<T> &B){
 | 
			
		||||
  int M,N,K;
 | 
			
		||||
  Size(A,N,M);
 | 
			
		||||
  Size(B,K); assert(K==M);
 | 
			
		||||
  Vector<T> C; Resize(C,N);
 | 
			
		||||
  for(int i=0;i<N;i++){
 | 
			
		||||
    T sum = 0.0;
 | 
			
		||||
    for(int j=0;j<M;j++) sum += A[i][j]*B[j];
 | 
			
		||||
    C[i] =  sum;
 | 
			
		||||
  }
 | 
			
		||||
  return C; 
 | 
			
		||||
} 
 | 
			
		||||
 | 
			
		||||
/** Some version of Matrix norm **/
 | 
			
		||||
/*
 | 
			
		||||
inline T Norm(){ // this is not a usual L2 norm
 | 
			
		||||
    T norm = 0;
 | 
			
		||||
    for(int i=0;i<dim;i++){
 | 
			
		||||
      for(int j=0;j<dim;j++){
 | 
			
		||||
	norm += abs(A[i][j]);
 | 
			
		||||
    }}
 | 
			
		||||
    return norm;
 | 
			
		||||
  }
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
/** Some version of Matrix norm **/
 | 
			
		||||
template<class T> T LargestDiag(Matrix<T> &A)
 | 
			
		||||
{
 | 
			
		||||
  int dim ; SizeSquare(A,dim); 
 | 
			
		||||
 | 
			
		||||
  T ld = abs(A[0][0]);
 | 
			
		||||
  for(int i=1;i<dim;i++){
 | 
			
		||||
    T cf = abs(A[i][i]);
 | 
			
		||||
    if(abs(cf) > abs(ld) ){ld = cf;}
 | 
			
		||||
  }
 | 
			
		||||
  return ld;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** Look for entries on the leading subdiagonal that are smaller than 'small' **/
 | 
			
		||||
template <class T,class U> int Chop_subdiag(Matrix<T> &A,T norm, int offset, U small)
 | 
			
		||||
{
 | 
			
		||||
  int dim; SizeSquare(A,dim);
 | 
			
		||||
  for(int l = dim - 1 - offset; l >= 1; l--) {             		
 | 
			
		||||
    if((U)abs(A[l][l - 1]) < (U)small) {
 | 
			
		||||
      A[l][l-1]=(U)0.0;
 | 
			
		||||
      return l;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/** Look for entries on the leading subdiagonal that are smaller than 'small' **/
 | 
			
		||||
template <class T,class U> int Chop_symm_subdiag(Matrix<T> & A,T norm, int offset, U small) 
 | 
			
		||||
{
 | 
			
		||||
  int dim; SizeSquare(A,dim);
 | 
			
		||||
  for(int l = dim - 1 - offset; l >= 1; l--) {
 | 
			
		||||
    if((U)abs(A[l][l - 1]) < (U)small) {
 | 
			
		||||
      A[l][l - 1] = (U)0.0;
 | 
			
		||||
      A[l - 1][l] = (U)0.0;
 | 
			
		||||
      return l;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
/**Assign a submatrix to a larger one**/
 | 
			
		||||
template<class T>
 | 
			
		||||
void AssignSubMtx(Matrix<T> & A,int row_st, int row_end, int col_st, int col_end, Matrix<T> &S)
 | 
			
		||||
{
 | 
			
		||||
  for(int i = row_st; i<row_end; i++){
 | 
			
		||||
    for(int j = col_st; j<col_end; j++){
 | 
			
		||||
      A[i][j] = S[i - row_st][j - col_st];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**Get a square submatrix**/
 | 
			
		||||
template <class T>
 | 
			
		||||
Matrix<T> GetSubMtx(Matrix<T> &A,int row_st, int row_end, int col_st, int col_end)
 | 
			
		||||
{
 | 
			
		||||
  Matrix<T> H; Resize(row_end - row_st,col_end-col_st);
 | 
			
		||||
 | 
			
		||||
  for(int i = row_st; i<row_end; i++){
 | 
			
		||||
  for(int j = col_st; j<col_end; j++){
 | 
			
		||||
    H[i-row_st][j-col_st]=A[i][j];
 | 
			
		||||
  }}
 | 
			
		||||
  return H;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
 /**Assign a submatrix to a larger one NB remember Vector Vectors are transposes of the matricies they represent**/
 | 
			
		||||
template<class T>
 | 
			
		||||
void AssignSubMtx(Matrix<T> & A,int row_st, int row_end, int col_st, int col_end, Matrix<T> &S)
 | 
			
		||||
{
 | 
			
		||||
  for(int i = row_st; i<row_end; i++){
 | 
			
		||||
  for(int j = col_st; j<col_end; j++){
 | 
			
		||||
    A[i][j] = S[i - row_st][j - col_st];
 | 
			
		||||
  }}
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
/** compute b_i A_ij b_j **/ // surprised no Conj
 | 
			
		||||
template<class T> T proj(Matrix<T> A, Vector<T> B){
 | 
			
		||||
  int dim; SizeSquare(A,dim);
 | 
			
		||||
  int dimB; Size(B,dimB);
 | 
			
		||||
  assert(dimB==dim);
 | 
			
		||||
  T C = 0;
 | 
			
		||||
  for(int i=0;i<dim;i++){
 | 
			
		||||
    T sum = 0.0;
 | 
			
		||||
    for(int j=0;j<dim;j++){
 | 
			
		||||
      sum += A[i][j]*B[j];
 | 
			
		||||
    }
 | 
			
		||||
    C +=  B[i]*sum; // No conj?
 | 
			
		||||
  }
 | 
			
		||||
  return C; 
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 *************************************************************
 | 
			
		||||
 *
 | 
			
		||||
 * Matrix Vector products
 | 
			
		||||
 *
 | 
			
		||||
 *************************************************************
 | 
			
		||||
 */
 | 
			
		||||
// Instead make a linop and call my CG;
 | 
			
		||||
 | 
			
		||||
/// q -> q Q
 | 
			
		||||
template <class T,class Fermion> void times(Vector<Fermion> &q, Matrix<T> &Q)
 | 
			
		||||
{
 | 
			
		||||
  int M; SizeSquare(Q,M);
 | 
			
		||||
  int N; Size(q,N); 
 | 
			
		||||
  assert(M==N);
 | 
			
		||||
 | 
			
		||||
  times(q,Q,N);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// q -> q Q
 | 
			
		||||
template <class T> void times(multi1d<LatticeFermion> &q, Matrix<T> &Q, int N)
 | 
			
		||||
{
 | 
			
		||||
  GridBase *grid = q[0]._grid;
 | 
			
		||||
  int M; SizeSquare(Q,M);
 | 
			
		||||
  int K; Size(q,K); 
 | 
			
		||||
  assert(N<M);
 | 
			
		||||
  assert(N<K);
 | 
			
		||||
  Vector<Fermion> S(N,grid );
 | 
			
		||||
  for(int j=0;j<N;j++){
 | 
			
		||||
    S[j] = zero;
 | 
			
		||||
    for(int k=0;k<N;k++){
 | 
			
		||||
      S[j] = S[j] +  q[k]* Q[k][j]; 
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(int j=0;j<q.size();j++){
 | 
			
		||||
    q[j] = S[j];
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,75 +0,0 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/MatrixUtils.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#ifndef GRID_MATRIX_UTILS_H
 | 
			
		||||
#define GRID_MATRIX_UTILS_H
 | 
			
		||||
 | 
			
		||||
namespace Grid {
 | 
			
		||||
 | 
			
		||||
  namespace MatrixUtils { 
 | 
			
		||||
 | 
			
		||||
    template<class T> inline void Size(Matrix<T>& A,int &N,int &M){
 | 
			
		||||
      N=A.size(); assert(N>0);
 | 
			
		||||
      M=A[0].size();
 | 
			
		||||
      for(int i=0;i<N;i++){
 | 
			
		||||
	assert(A[i].size()==M);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class T> inline void SizeSquare(Matrix<T>& A,int &N)
 | 
			
		||||
    {
 | 
			
		||||
      int M;
 | 
			
		||||
      Size(A,N,M);
 | 
			
		||||
      assert(N==M);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    template<class T> inline void Fill(Matrix<T>& A,T & val)
 | 
			
		||||
    { 
 | 
			
		||||
      int N,M;
 | 
			
		||||
      Size(A,N,M);
 | 
			
		||||
      for(int i=0;i<N;i++){
 | 
			
		||||
      for(int j=0;j<M;j++){
 | 
			
		||||
	A[i][j]=val;
 | 
			
		||||
      }}
 | 
			
		||||
    }
 | 
			
		||||
    template<class T> inline void Diagonal(Matrix<T>& A,T & val)
 | 
			
		||||
    { 
 | 
			
		||||
      int N;
 | 
			
		||||
      SizeSquare(A,N);
 | 
			
		||||
      for(int i=0;i<N;i++){
 | 
			
		||||
	A[i][i]=val;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    template<class T> inline void Identity(Matrix<T>& A)
 | 
			
		||||
    {
 | 
			
		||||
      Fill(A,0.0);
 | 
			
		||||
      Diagonal(A,1.0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  };
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
@@ -1,15 +0,0 @@
 | 
			
		||||
- ConjugateGradientMultiShift
 | 
			
		||||
- MCR
 | 
			
		||||
 | 
			
		||||
- Potentially Useful Boost libraries
 | 
			
		||||
 | 
			
		||||
- MultiArray
 | 
			
		||||
- Aligned allocator; memory pool
 | 
			
		||||
- Remez -- Mike or Boost?
 | 
			
		||||
- Multiprecision
 | 
			
		||||
- quaternians
 | 
			
		||||
- Tokenize
 | 
			
		||||
- Serialization
 | 
			
		||||
- Regex
 | 
			
		||||
- Proto (ET)
 | 
			
		||||
- uBlas
 | 
			
		||||
@@ -1,122 +0,0 @@
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
struct Bisection {
 | 
			
		||||
 | 
			
		||||
static void get_eig2(int row_num,std::vector<RealD> &ALPHA,std::vector<RealD> &BETA, std::vector<RealD> & eig)
 | 
			
		||||
{
 | 
			
		||||
  int i,j;
 | 
			
		||||
  std::vector<RealD> evec1(row_num+3);
 | 
			
		||||
  std::vector<RealD> evec2(row_num+3);
 | 
			
		||||
  RealD eps2;
 | 
			
		||||
  ALPHA[1]=0.;
 | 
			
		||||
  BETHA[1]=0.;
 | 
			
		||||
  for(i=0;i<row_num-1;i++) {
 | 
			
		||||
    ALPHA[i+1] = A[i*(row_num+1)].real();
 | 
			
		||||
    BETHA[i+2] = A[i*(row_num+1)+1].real();
 | 
			
		||||
  }
 | 
			
		||||
  ALPHA[row_num] = A[(row_num-1)*(row_num+1)].real();
 | 
			
		||||
  bisec(ALPHA,BETHA,row_num,1,row_num,1e-10,1e-10,evec1,eps2);
 | 
			
		||||
  bisec(ALPHA,BETHA,row_num,1,row_num,1e-16,1e-16,evec2,eps2);
 | 
			
		||||
 | 
			
		||||
  // Do we really need to sort here?
 | 
			
		||||
  int begin=1;
 | 
			
		||||
  int end = row_num;
 | 
			
		||||
  int swapped=1;
 | 
			
		||||
  while(swapped) {
 | 
			
		||||
    swapped=0;
 | 
			
		||||
    for(i=begin;i<end;i++){
 | 
			
		||||
      if(mag(evec2[i])>mag(evec2[i+1]))	{
 | 
			
		||||
	swap(evec2+i,evec2+i+1);
 | 
			
		||||
	swapped=1;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    end--;
 | 
			
		||||
    for(i=end-1;i>=begin;i--){
 | 
			
		||||
      if(mag(evec2[i])>mag(evec2[i+1]))	{
 | 
			
		||||
	swap(evec2+i,evec2+i+1);
 | 
			
		||||
	swapped=1;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    begin++;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for(i=0;i<row_num;i++){
 | 
			
		||||
    for(j=0;j<row_num;j++) {
 | 
			
		||||
      if(i==j) H[i*row_num+j]=evec2[i+1];
 | 
			
		||||
      else H[i*row_num+j]=0.;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void bisec(std::vector<RealD> &c,   
 | 
			
		||||
		  std::vector<RealD> &b,
 | 
			
		||||
		  int n,
 | 
			
		||||
		  int m1,
 | 
			
		||||
		  int m2,
 | 
			
		||||
		  RealD eps1,
 | 
			
		||||
		  RealD relfeh,
 | 
			
		||||
		  std::vector<RealD> &x,
 | 
			
		||||
		  RealD &eps2)
 | 
			
		||||
{
 | 
			
		||||
  std::vector<RealD> wu(n+2);
 | 
			
		||||
 | 
			
		||||
  RealD h,q,x1,xu,x0,xmin,xmax; 
 | 
			
		||||
  int i,a,k;
 | 
			
		||||
 | 
			
		||||
  b[1]=0.0;
 | 
			
		||||
  xmin=c[n]-fabs(b[n]);
 | 
			
		||||
  xmax=c[n]+fabs(b[n]);
 | 
			
		||||
  for(i=1;i<n;i++){
 | 
			
		||||
    h=fabs(b[i])+fabs(b[i+1]);
 | 
			
		||||
    if(c[i]+h>xmax) xmax= c[i]+h;
 | 
			
		||||
    if(c[i]-h<xmin) xmin= c[i]-h;
 | 
			
		||||
  }
 | 
			
		||||
  xmax *=2.;
 | 
			
		||||
 | 
			
		||||
  eps2=relfeh*((xmin+xmax)>0.0 ? xmax : -xmin);
 | 
			
		||||
  if(eps1<=0.0) eps1=eps2;
 | 
			
		||||
  eps2=0.5*eps1+7.0*(eps2);
 | 
			
		||||
  x0=xmax;
 | 
			
		||||
  for(i=m1;i<=m2;i++){
 | 
			
		||||
    x[i]=xmax;
 | 
			
		||||
    wu[i]=xmin;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for(k=m2;k>=m1;k--){
 | 
			
		||||
    xu=xmin;
 | 
			
		||||
    i=k;
 | 
			
		||||
    do{
 | 
			
		||||
      if(xu<wu[i]){
 | 
			
		||||
	xu=wu[i];
 | 
			
		||||
	i=m1-1;
 | 
			
		||||
      }
 | 
			
		||||
      i--;
 | 
			
		||||
    }while(i>=m1);
 | 
			
		||||
    if(x0>x[k]) x0=x[k];
 | 
			
		||||
    while((x0-xu)>2*relfeh*(fabs(xu)+fabs(x0))+eps1){
 | 
			
		||||
      x1=(xu+x0)/2;
 | 
			
		||||
 | 
			
		||||
      a=0;
 | 
			
		||||
      q=1.0;
 | 
			
		||||
      for(i=1;i<=n;i++){
 | 
			
		||||
	q=c[i]-x1-((q!=0.0)? b[i]*b[i]/q:fabs(b[i])/relfeh);
 | 
			
		||||
	if(q<0) a++;
 | 
			
		||||
      }
 | 
			
		||||
      //			printf("x1=%e a=%d\n",x1,a);
 | 
			
		||||
      if(a<k){
 | 
			
		||||
	if(a<m1){
 | 
			
		||||
	  xu=x1;
 | 
			
		||||
	  wu[m1]=x1;
 | 
			
		||||
	}else {
 | 
			
		||||
	  xu=x1;
 | 
			
		||||
	  wu[a+1]=x1;
 | 
			
		||||
	  if(x[a]>x1) x[a]=x1;
 | 
			
		||||
	}
 | 
			
		||||
      }else x0=x1;
 | 
			
		||||
    }
 | 
			
		||||
    x[k]=(x0+xu)/2;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
@@ -1 +0,0 @@
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user