1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Merge branch 'develop' into hisq_fat_links

This commit is contained in:
david clarke 2023-05-24 15:37:25 -06:00
commit 3825329f8e
6 changed files with 960 additions and 26 deletions

View File

@ -27,7 +27,7 @@ Author: Christoph Lehner <christoph@lhnr.de>
*************************************************************************************/
/* END LEGAL */
#define header "SharedMemoryMpi: "
#define Mheader "SharedMemoryMpi: "
#include <Grid/GridCore.h>
#include <pwd.h>
@ -174,8 +174,8 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
if ( WorldRank == 0) {
std::cout << header " World communicator of size " <<WorldSize << std::endl;
std::cout << header " Node communicator of size " <<WorldShmSize << std::endl;
std::cout << Mheader " World communicator of size " <<WorldSize << std::endl;
std::cout << Mheader " Node communicator of size " <<WorldShmSize << std::endl;
}
// WorldShmComm, WorldShmSize, WorldShmRank
@ -452,7 +452,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
#ifdef GRID_MPI3_SHMGET
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
@ -537,7 +537,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
exit(EXIT_FAILURE);
}
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
SharedMemoryZero(ShmCommBuf,bytes);
@ -580,7 +580,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
@ -744,7 +744,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef GRID_MPI3_SHMMMAP
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -781,7 +781,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
assert(((uint64_t)ptr&0x3F)==0);
close(fd);
WorldShmCommBufs[r] =ptr;
// std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
// std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
}
_ShmAlloc=1;
_ShmAllocBytes = bytes;
@ -791,7 +791,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#ifdef GRID_MPI3_SHM_NONE
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -838,7 +838,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
////////////////////////////////////////////////////////////////////////////////////////////
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
MPI_Barrier(WorldShmComm);

View File

@ -7,26 +7,40 @@
NAMESPACE_BEGIN(Grid);
//trivial class for no smearing
template< class Impl >
class NoSmearing
class ConfigurationBase
{
public:
INHERIT_FIELD_TYPES(Impl);
Field* ThinField;
ConfigurationBase() {}
virtual ~ConfigurationBase() {}
virtual void set_Field(Field& U) =0;
virtual void smeared_force(Field&) const = 0;
virtual Field& get_SmearedU() =0;
virtual Field &get_U(bool smeared = false) = 0;
};
NoSmearing(): ThinField(NULL) {}
//trivial class for no smearing
template< class Impl >
class NoSmearing : public ConfigurationBase<Impl>
{
public:
INHERIT_FIELD_TYPES(Impl);
void set_Field(Field& U) { ThinField = &U; }
Field* ThinLinks;
NoSmearing(): ThinLinks(NULL) {}
void set_Field(Field& U) { ThinLinks = &U; }
void smeared_force(Field&) const {}
Field& get_SmearedU() { return *ThinField; }
Field& get_SmearedU() { return *ThinLinks; }
Field &get_U(bool smeared = false)
{
return *ThinField;
return *ThinLinks;
}
};
@ -42,19 +56,24 @@ public:
It stores a list of smeared configurations.
*/
template <class Gimpl>
class SmearedConfiguration
class SmearedConfiguration : public ConfigurationBase<Gimpl>
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
private:
protected:
const unsigned int smearingLevels;
Smear_Stout<Gimpl> *StoutSmearing;
std::vector<GaugeField> SmearedSet;
public:
GaugeField* ThinLinks; /* Pointer to the thin links configuration */ // move to base???
protected:
// Member functions
//====================================================================
void fill_smearedSet(GaugeField &U)
// Overridden in masked version
virtual void fill_smearedSet(GaugeField &U)
{
ThinLinks = &U; // attach the smearing routine to the field U
@ -82,9 +101,10 @@ private:
}
}
}
//====================================================================
GaugeField AnalyticSmearedForce(const GaugeField& SigmaKPrime,
const GaugeField& GaugeK) const
//overridden in masked verson
virtual GaugeField AnalyticSmearedForce(const GaugeField& SigmaKPrime,
const GaugeField& GaugeK) const
{
GridBase* grid = GaugeK.Grid();
GaugeField C(grid), SigmaK(grid), iLambda(grid);
@ -213,8 +233,6 @@ private:
//====================================================================
public:
GaugeField*
ThinLinks; /* Pointer to the thin links configuration */
/* Standard constructor */
SmearedConfiguration(GridCartesian* UGrid, unsigned int Nsmear,

View File

@ -0,0 +1,884 @@
/*!
@file GaugeConfiguration.h
@brief Declares the GaugeConfiguration class
*/
#pragma once
NAMESPACE_BEGIN(Grid);
/*!
@brief Smeared configuration masked container
Modified for a multi-subset smearing (aka Luscher Flowed HMC)
*/
template <class Gimpl>
class SmearedConfigurationMasked : public SmearedConfiguration<Gimpl>
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
private:
// These live in base class
// const unsigned int smearingLevels;
// Smear_Stout<Gimpl> *StoutSmearing;
// std::vector<GaugeField> SmearedSet;
std::vector<LatticeLorentzComplex> masks;
typedef typename SU3Adjoint::AMatrix AdjMatrix;
typedef typename SU3Adjoint::LatticeAdjMatrix AdjMatrixField;
typedef typename SU3Adjoint::LatticeAdjVector AdjVectorField;
// Adjoint vector to GaugeField force
void InsertForce(GaugeField &Fdet,AdjVectorField &Fdet_nu,int nu)
{
Complex ci(0,1);
GaugeLinkField Fdet_pol(Fdet.Grid());
Fdet_pol=Zero();
for(int e=0;e<8;e++){
ColourMatrix te;
SU3::generator(e, te);
auto tmp=peekColour(Fdet_nu,e);
Fdet_pol=Fdet_pol + ci*tmp*te; // but norm of te is different.. why?
}
pokeLorentz(Fdet, Fdet_pol, nu);
}
void Compute_MpInvJx_dNxxdSy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR, AdjMatrixField MpInvJx,AdjVectorField &Fdet2 )
{
GaugeLinkField UtaU(PlaqL.Grid());
GaugeLinkField D(PlaqL.Grid());
AdjMatrixField Dbc(PlaqL.Grid());
LatticeComplex tmp(PlaqL.Grid());
const int Ngen = SU3Adjoint::Dimension;
Complex ci(0,1);
ColourMatrix ta,tb,tc;
for(int a=0;a<Ngen;a++) {
SU3::generator(a, ta);
// Qlat Tb = 2i Tb^Grid
UtaU= 2.0*ci*adj(PlaqL)*ta*PlaqR;
for(int c=0;c<Ngen;c++) {
SU3::generator(c, tc);
D = Ta( (2.0)*ci*tc *UtaU);
for(int b=0;b<Ngen;b++){
SU3::generator(b, tb);
tmp =-trace(ci*tb*D);
PokeIndex<ColourIndex>(Dbc,tmp,b,c); // Adjoint rep
}
}
tmp = trace(MpInvJx * Dbc);
PokeIndex<ColourIndex>(Fdet2,tmp,a);
}
}
void ComputeNxy(const GaugeLinkField &PlaqL,const GaugeLinkField &PlaqR,AdjMatrixField &NxAd)
{
GaugeLinkField Nx(PlaqL.Grid());
const int Ngen = SU3Adjoint::Dimension;
Complex ci(0,1);
ColourMatrix tb;
ColourMatrix tc;
for(int b=0;b<Ngen;b++) {
SU3::generator(b, tb);
Nx = (2.0)*Ta( adj(PlaqL)*ci*tb * PlaqR );
for(int c=0;c<Ngen;c++) {
SU3::generator(c, tc);
auto tmp =closure( -trace(ci*tc*Nx));
PokeIndex<ColourIndex>(NxAd,tmp,c,b);
}
}
}
void ApplyMask(GaugeField &U,int smr)
{
LatticeComplex tmp(U.Grid());
GaugeLinkField Umu(U.Grid());
for(int mu=0;mu<Nd;mu++){
Umu=PeekIndex<LorentzIndex>(U,mu);
tmp=PeekIndex<LorentzIndex>(masks[smr],mu);
Umu=Umu*tmp;
PokeIndex<LorentzIndex>(U, Umu, mu);
}
}
public:
void logDetJacobianForceLevel(const GaugeField &U, GaugeField &force ,int smr)
{
GridBase* grid = U.Grid();
ColourMatrix tb;
ColourMatrix tc;
ColourMatrix ta;
GaugeField C(grid);
GaugeField Umsk(grid);
std::vector<GaugeLinkField> Umu(Nd,grid);
GaugeLinkField Cmu(grid); // U and staple; C contains factor of epsilon
GaugeLinkField Zx(grid); // U times Staple, contains factor of epsilon
GaugeLinkField Nxx(grid); // Nxx fundamental space
GaugeLinkField Utmp(grid);
GaugeLinkField PlaqL(grid);
GaugeLinkField PlaqR(grid);
const int Ngen = SU3Adjoint::Dimension;
AdjMatrix TRb;
ColourMatrix Ident;
LatticeComplex cplx(grid);
AdjVectorField dJdXe_nMpInv(grid);
AdjVectorField dJdXe_nMpInv_y(grid);
AdjMatrixField MpAd(grid); // Mprime luchang's notes
AdjMatrixField MpAdInv(grid); // Mprime inverse
AdjMatrixField NxxAd(grid); // Nxx in adjoint space
AdjMatrixField JxAd(grid);
AdjMatrixField ZxAd(grid);
AdjMatrixField mZxAd(grid);
AdjMatrixField X(grid);
Complex ci(0,1);
Ident = ComplexD(1.0);
for(int d=0;d<Nd;d++){
Umu[d] = peekLorentz(U, d);
}
int mu= (smr/2) %Nd;
////////////////////////////////////////////////////////////////////////////////
// Mask the gauge field
////////////////////////////////////////////////////////////////////////////////
auto mask=PeekIndex<LorentzIndex>(masks[smr],mu); // the cb mask
Umsk = U;
ApplyMask(Umsk,smr);
Utmp = peekLorentz(Umsk,mu);
////////////////////////////////////////////////////////////////////////////////
// Retrieve the eps/rho parameter(s) -- could allow all different but not so far
////////////////////////////////////////////////////////////////////////////////
double rho=this->StoutSmearing->SmearRho[1];
int idx=0;
for(int mu=0;mu<4;mu++){
for(int nu=0;nu<4;nu++){
if ( mu!=nu) assert(this->StoutSmearing->SmearRho[idx]==rho);
else assert(this->StoutSmearing->SmearRho[idx]==0.0);
idx++;
}}
//////////////////////////////////////////////////////////////////
// Assemble the N matrix
//////////////////////////////////////////////////////////////////
// Computes ALL the staples -- could compute one only and do it here
this->StoutSmearing->BaseSmear(C, U);
Cmu = peekLorentz(C, mu);
//////////////////////////////////////////////////////////////////
// Assemble Luscher exp diff map J matrix
//////////////////////////////////////////////////////////////////
// Ta so Z lives in Lie algabra
Zx = Ta(Cmu * adj(Umu[mu]));
// Move Z to the Adjoint Rep == make_adjoint_representation
ZxAd = Zero();
for(int b=0;b<8;b++) {
// Adj group sets traceless antihermitian T's -- Guido, really????
SU3::generator(b, tb); // Fund group sets traceless hermitian T's
SU3Adjoint::generator(b,TRb);
TRb=-TRb;
cplx = 2.0*trace(ci*tb*Zx); // my convention 1/2 delta ba
ZxAd = ZxAd + cplx * TRb; // is this right? YES - Guido used Anti herm Ta's and with bloody wrong sign.
}
//////////////////////////////////////
// J(x) = 1 + Sum_k=1..N (-Zac)^k/(k+1)!
//////////////////////////////////////
X=1.0;
JxAd = X;
mZxAd = (-1.0)*ZxAd;
RealD kpfac = 1;
for(int k=1;k<12;k++){
X=X*mZxAd;
kpfac = kpfac /(k+1);
JxAd = JxAd + X * kpfac;
}
//////////////////////////////////////
// dJ(x)/dxe
//////////////////////////////////////
std::vector<AdjMatrixField> dJdX; dJdX.resize(8,grid);
AdjMatrixField tbXn(grid);
AdjMatrixField sumXtbX(grid);
AdjMatrixField t2(grid);
AdjMatrixField dt2(grid);
AdjMatrixField t3(grid);
AdjMatrixField dt3(grid);
AdjMatrixField aunit(grid);
for(int b=0;b<8;b++){
aunit = ComplexD(1.0);
SU3Adjoint::generator(b, TRb); //dt2
X = (-1.0)*ZxAd;
t2 = X;
dt2 = TRb;
for (int j = 20; j > 1; --j) {
t3 = t2*(1.0 / (j + 1)) + aunit;
dt3 = dt2*(1.0 / (j + 1));
t2 = X * t3;
dt2 = TRb * t3 + X * dt3;
}
dJdX[b] = -dt2;
}
/////////////////////////////////////////////////////////////////
// Mask Umu for this link
/////////////////////////////////////////////////////////////////
PlaqL = Ident;
PlaqR = Utmp*adj(Cmu);
ComputeNxy(PlaqL,PlaqR,NxxAd);
////////////////////////////
// Mab
////////////////////////////
MpAd = Complex(1.0,0.0);
MpAd = MpAd - JxAd * NxxAd;
/////////////////////////
// invert the 8x8
/////////////////////////
MpAdInv = Inverse(MpAd);
/////////////////////////////////////////////////////////////////
// Nxx Mp^-1
/////////////////////////////////////////////////////////////////
AdjVectorField FdetV(grid);
AdjVectorField Fdet1_nu(grid);
AdjVectorField Fdet2_nu(grid);
AdjVectorField Fdet2_mu(grid);
AdjVectorField Fdet1_mu(grid);
AdjMatrixField nMpInv(grid);
nMpInv= NxxAd *MpAdInv;
AdjMatrixField MpInvJx(grid);
AdjMatrixField MpInvJx_nu(grid);
MpInvJx = (-1.0)*MpAdInv * JxAd;// rho is on the plaq factor
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV);
Fdet2_mu=FdetV;
Fdet1_mu=Zero();
for(int e =0 ; e<8 ; e++){
LatticeComplexD tr(grid);
ColourMatrix te;
SU3::generator(e, te);
tr = trace(dJdX[e] * nMpInv);
pokeColour(dJdXe_nMpInv,tr,e);
}
///////////////////////////////
// Mask it off
///////////////////////////////
auto tmp=PeekIndex<LorentzIndex>(masks[smr],mu);
dJdXe_nMpInv = dJdXe_nMpInv*tmp;
// dJdXe_nMpInv needs to multiply:
// Nxx_mu (site local) (1)
// Nxy_mu one site forward in each nu direction (3)
// Nxy_mu one site backward in each nu direction (3)
// Nxy_nu 0,0 ; +mu,0; 0,-nu; +mu-nu [ 3x4 = 12]
// 19 terms.
AdjMatrixField Nxy(grid);
GaugeField Fdet1(grid);
GaugeField Fdet2(grid);
GaugeLinkField Fdet_pol(grid); // one polarisation
for(int nu=0;nu<Nd;nu++){
if (nu!=mu) {
///////////////// +ve nu /////////////////
// __
// | |
// x== // nu polarisation -- clockwise
PlaqL=Ident;
PlaqR=(-rho)*Gimpl::CovShiftForward(Umu[nu], nu,
Gimpl::CovShiftForward(Umu[mu], mu,
Gimpl::CovShiftBackward(Umu[nu], nu,
Gimpl::CovShiftIdentityBackward(Utmp, mu))));
dJdXe_nMpInv_y = dJdXe_nMpInv;
ComputeNxy(PlaqL,PlaqR,Nxy);
Fdet1_nu = transpose(Nxy)*dJdXe_nMpInv_y;
PlaqR=(-1.0)*PlaqR;
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx,FdetV);
Fdet2_nu = FdetV;
// x==
// | |
// .__| // nu polarisation -- anticlockwise
PlaqR=(rho)*Gimpl::CovShiftForward(Umu[nu], nu,
Gimpl::CovShiftBackward(Umu[mu], mu,
Gimpl::CovShiftIdentityBackward(Umu[nu], nu)));
PlaqL=Gimpl::CovShiftIdentityBackward(Utmp, mu);
dJdXe_nMpInv_y = Cshift(dJdXe_nMpInv,mu,-1);
ComputeNxy(PlaqL, PlaqR,Nxy);
Fdet1_nu = Fdet1_nu+transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,mu,-1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV;
///////////////// -ve nu /////////////////
// __
// | |
// x== // nu polarisation -- clockwise
PlaqL=(rho)* Gimpl::CovShiftForward(Umu[mu], mu,
Gimpl::CovShiftForward(Umu[nu], nu,
Gimpl::CovShiftIdentityBackward(Utmp, mu)));
PlaqR = Gimpl::CovShiftIdentityForward(Umu[nu], nu);
dJdXe_nMpInv_y = Cshift(dJdXe_nMpInv,nu,1);
ComputeNxy(PlaqL,PlaqR,Nxy);
Fdet1_nu = Fdet1_nu + transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV;
// x==
// | |
// |__| // nu polarisation
PlaqL=(-rho)*Gimpl::CovShiftForward(Umu[nu], nu,
Gimpl::CovShiftIdentityBackward(Utmp, mu));
PlaqR=Gimpl::CovShiftBackward(Umu[mu], mu,
Gimpl::CovShiftIdentityForward(Umu[nu], nu));
dJdXe_nMpInv_y = Cshift(dJdXe_nMpInv,mu,-1);
dJdXe_nMpInv_y = Cshift(dJdXe_nMpInv_y,nu,1);
ComputeNxy(PlaqL,PlaqR,Nxy);
Fdet1_nu = Fdet1_nu + transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,mu,-1);
MpInvJx_nu = Cshift(MpInvJx_nu,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_nu = Fdet2_nu+FdetV;
/////////////////////////////////////////////////////////////////////
// Set up the determinant force contribution in 3x3 algebra basis
/////////////////////////////////////////////////////////////////////
InsertForce(Fdet1,Fdet1_nu,nu);
InsertForce(Fdet2,Fdet2_nu,nu);
//////////////////////////////////////////////////
// Parallel direction terms
//////////////////////////////////////////////////
// __
// | "
// |__"x // mu polarisation
PlaqL=(-rho)*Gimpl::CovShiftForward(Umu[mu], mu,
Gimpl::CovShiftBackward(Umu[nu], nu,
Gimpl::CovShiftIdentityBackward(Utmp, mu)));
PlaqR=Gimpl::CovShiftIdentityBackward(Umu[nu], nu);
dJdXe_nMpInv_y = Cshift(dJdXe_nMpInv,nu,-1);
ComputeNxy(PlaqL,PlaqR,Nxy);
Fdet1_mu = Fdet1_mu + transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,nu,-1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_mu = Fdet2_mu+FdetV;
// __
// " |
// x__| // mu polarisation
PlaqL=(-rho)*Gimpl::CovShiftForward(Umu[mu], mu,
Gimpl::CovShiftForward(Umu[nu], nu,
Gimpl::CovShiftIdentityBackward(Utmp, mu)));
PlaqR=Gimpl::CovShiftIdentityForward(Umu[nu], nu);
dJdXe_nMpInv_y = Cshift(dJdXe_nMpInv,nu,1);
ComputeNxy(PlaqL,PlaqR,Nxy);
Fdet1_mu = Fdet1_mu + transpose(Nxy)*dJdXe_nMpInv_y;
MpInvJx_nu = Cshift(MpInvJx,nu,1);
Compute_MpInvJx_dNxxdSy(PlaqL,PlaqR,MpInvJx_nu,FdetV);
Fdet2_mu = Fdet2_mu+FdetV;
}
}
Fdet1_mu = Fdet1_mu + transpose(NxxAd)*dJdXe_nMpInv;
InsertForce(Fdet1,Fdet1_mu,mu);
InsertForce(Fdet2,Fdet2_mu,mu);
force = Fdet1 + Fdet2;
}
RealD logDetJacobianLevel(const GaugeField &U,int smr)
{
GridBase* grid = U.Grid();
GaugeField C(grid);
GaugeLinkField Nb(grid);
GaugeLinkField Z(grid);
GaugeLinkField Umu(grid), Cmu(grid);
ColourMatrix Tb;
ColourMatrix Tc;
typedef typename SU3Adjoint::AMatrix AdjMatrix;
typedef typename SU3Adjoint::LatticeAdjMatrix AdjMatrixField;
typedef typename SU3Adjoint::LatticeAdjVector AdjVectorField;
const int Ngen = SU3Adjoint::Dimension;
AdjMatrix TRb;
LatticeComplex cplx(grid);
AdjVectorField AlgV(grid);
AdjMatrixField Mab(grid);
AdjMatrixField Ncb(grid);
AdjMatrixField Jac(grid);
AdjMatrixField Zac(grid);
AdjMatrixField mZac(grid);
AdjMatrixField X(grid);
int mu= (smr/2) %Nd;
auto mask=PeekIndex<LorentzIndex>(masks[smr],mu); // the cb mask
//////////////////////////////////////////////////////////////////
// Assemble the N matrix
//////////////////////////////////////////////////////////////////
// Computes ALL the staples -- could compute one only here
this->StoutSmearing->BaseSmear(C, U);
Cmu = peekLorentz(C, mu);
Umu = peekLorentz(U, mu);
Complex ci(0,1);
for(int b=0;b<Ngen;b++) {
SU3::generator(b, Tb);
// Qlat Tb = 2i Tb^Grid
Nb = (2.0)*Ta( ci*Tb * Umu * adj(Cmu));
for(int c=0;c<Ngen;c++) {
SU3::generator(c, Tc);
auto tmp = -trace(ci*Tc*Nb); // Luchang's norm: (2Tc) (2Td) N^db = -2 delta cd N^db // - was important
PokeIndex<ColourIndex>(Ncb,tmp,c,b);
}
}
//////////////////////////////////////////////////////////////////
// Assemble Luscher exp diff map J matrix
//////////////////////////////////////////////////////////////////
// Ta so Z lives in Lie algabra
Z = Ta(Cmu * adj(Umu));
// Move Z to the Adjoint Rep == make_adjoint_representation
Zac = Zero();
for(int b=0;b<8;b++) {
// Adj group sets traceless antihermitian T's -- Guido, really????
// Is the mapping of these the same? Same structure constants
// Might never have been checked.
SU3::generator(b, Tb); // Fund group sets traceless hermitian T's
SU3Adjoint::generator(b,TRb);
TRb=-TRb;
cplx = 2.0*trace(ci*Tb*Z); // my convention 1/2 delta ba
Zac = Zac + cplx * TRb; // is this right? YES - Guido used Anti herm Ta's and with bloody wrong sign.
}
//////////////////////////////////////
// J(x) = 1 + Sum_k=1..N (-Zac)^k/(k+1)!
//////////////////////////////////////
X=1.0;
Jac = X;
mZac = (-1.0)*Zac;
RealD kpfac = 1;
for(int k=1;k<12;k++){
X=X*mZac;
kpfac = kpfac /(k+1);
Jac = Jac + X * kpfac;
}
////////////////////////////
// Mab
////////////////////////////
Mab = Complex(1.0,0.0);
Mab = Mab - Jac * Ncb;
////////////////////////////
// det
////////////////////////////
LatticeComplex det(grid);
det = Determinant(Mab);
////////////////////////////
// ln det
////////////////////////////
LatticeComplex ln_det(grid);
ln_det = log(det);
////////////////////////////
// Masked sum
////////////////////////////
ln_det = ln_det * mask;
Complex result = sum(ln_det);
return result.real();
}
public:
RealD logDetJacobian(void)
{
RealD ln_det = 0;
if (this->smearingLevels > 0)
{
for (int ismr = this->smearingLevels - 1; ismr > 0; --ismr) {
ln_det+= logDetJacobianLevel(this->get_smeared_conf(ismr-1),ismr);
}
ln_det +=logDetJacobianLevel(*(this->ThinLinks),0);
}
return ln_det;
}
void logDetJacobianForce(GaugeField &force)
{
RealD ln_det = 0;
if (this->smearingLevels > 0)
{
for (int ismr = this->smearingLevels - 1; ismr > 0; --ismr) {
ln_det+= logDetJacobianForceLevel(this->get_smeared_conf(ismr-1),force,ismr);
}
ln_det +=logDetJacobianForeceLevel(*(this->ThinLinks),force,0);
}
}
private:
// Member functions
//====================================================================
// Override base clas here to mask it
virtual void fill_smearedSet(GaugeField &U)
{
this->ThinLinks = &U; // attach the smearing routine to the field U
// check the pointer is not null
if (this->ThinLinks == NULL)
std::cout << GridLogError << "[SmearedConfigurationMasked] Error in ThinLinks pointer\n";
if (this->smearingLevels > 0)
{
std::cout << GridLogMessage << "[SmearedConfigurationMasked] Filling SmearedSet\n";
GaugeField previous_u(this->ThinLinks->Grid());
GaugeField smeared_A(this->ThinLinks->Grid());
GaugeField smeared_B(this->ThinLinks->Grid());
previous_u = *this->ThinLinks;
for (int smearLvl = 0; smearLvl < this->smearingLevels; ++smearLvl)
{
this->StoutSmearing->smear(smeared_A, previous_u);
ApplyMask(smeared_A,smearLvl);
smeared_B = previous_u;
ApplyMask(smeared_B,smearLvl);
// Replace only the masked portion
this->SmearedSet[smearLvl] = previous_u-smeared_B + smeared_A;
previous_u = this->SmearedSet[smearLvl];
// For debug purposes
RealD impl_plaq = WilsonLoops<Gimpl>::avgPlaquette(previous_u);
std::cout << GridLogMessage << "[SmearedConfigurationMasked] Plaq: " << impl_plaq << std::endl;
}
}
}
//====================================================================
// Override base to add masking
virtual GaugeField AnalyticSmearedForce(const GaugeField& SigmaKPrime,
const GaugeField& GaugeK,int level)
{
GridBase* grid = GaugeK.Grid();
GaugeField C(grid), SigmaK(grid), iLambda(grid);
GaugeField SigmaKPrimeA(grid);
GaugeField SigmaKPrimeB(grid);
GaugeLinkField iLambda_mu(grid);
GaugeLinkField iQ(grid), e_iQ(grid);
GaugeLinkField SigmaKPrime_mu(grid);
GaugeLinkField GaugeKmu(grid), Cmu(grid);
this->StoutSmearing->BaseSmear(C, GaugeK);
SigmaK = Zero();
iLambda = Zero();
SigmaK = Zero();
SigmaKPrimeA = SigmaKPrime;
ApplyMask(SigmaKPrimeA,level);
SigmaKPrimeB = SigmaKPrime - SigmaKPrimeA;
// Could get away with computing only one polarisation here
// int mu= (smr/2) %Nd;
// SigmaKprime_A has only one component
for (int mu = 0; mu < Nd; mu++)
{
Cmu = peekLorentz(C, mu);
GaugeKmu = peekLorentz(GaugeK, mu);
SigmaKPrime_mu = peekLorentz(SigmaKPrimeA, mu);
iQ = Ta(Cmu * adj(GaugeKmu));
this->set_iLambda(iLambda_mu, e_iQ, iQ, SigmaKPrime_mu, GaugeKmu);
pokeLorentz(SigmaK, SigmaKPrime_mu * e_iQ + adj(Cmu) * iLambda_mu, mu);
pokeLorentz(iLambda, iLambda_mu, mu);
}
this->StoutSmearing->derivative(SigmaK, iLambda,GaugeK); // derivative of SmearBase
////////////////////////////////////////////////////////////////////////////////////
// propagate the rest of the force as identity map, just add back
////////////////////////////////////////////////////////////////////////////////////
SigmaK = SigmaK+SigmaKPrimeB;
return SigmaK;
}
////////////////////////////////////////
// INHERIT THESE
////////////////////////////////////////
/*! @brief Returns smeared configuration at level 'Level' */
/*
const GaugeField &get_smeared_conf(int Level) const
{
return SmearedSet[Level];
}
*/
// Duplicates code that is in GaugeConfiguration.h
// Should inherit or share.
//====================================================================
/*
void set_iLambda(GaugeLinkField& iLambda, GaugeLinkField& e_iQ,
const GaugeLinkField& iQ, const GaugeLinkField& Sigmap,
const GaugeLinkField& GaugeK) const
{
GridBase* grid = iQ.Grid();
GaugeLinkField iQ2(grid), iQ3(grid), B1(grid), B2(grid), USigmap(grid);
GaugeLinkField unity(grid);
unity = 1.0;
LatticeComplex u(grid), w(grid);
LatticeComplex f0(grid), f1(grid), f2(grid);
LatticeComplex xi0(grid), xi1(grid), tmp(grid);
LatticeComplex u2(grid), w2(grid), cosw(grid);
LatticeComplex emiu(grid), e2iu(grid), qt(grid), fden(grid);
LatticeComplex r01(grid), r11(grid), r21(grid), r02(grid), r12(grid);
LatticeComplex r22(grid), tr1(grid), tr2(grid);
LatticeComplex b10(grid), b11(grid), b12(grid), b20(grid), b21(grid),
b22(grid);
LatticeComplex LatticeUnitComplex(grid);
LatticeUnitComplex = 1.0;
// Exponential
iQ2 = iQ * iQ;
iQ3 = iQ * iQ2;
StoutSmearing->set_uw(u, w, iQ2, iQ3);
StoutSmearing->set_fj(f0, f1, f2, u, w);
e_iQ = f0 * unity + timesMinusI(f1) * iQ - f2 * iQ2;
// Getting B1, B2, Gamma and Lambda
// simplify this part, reduntant calculations in set_fj
xi0 = StoutSmearing->func_xi0(w);
xi1 = StoutSmearing->func_xi1(w);
u2 = u * u;
w2 = w * w;
cosw = cos(w);
emiu = cos(u) - timesI(sin(u));
e2iu = cos(2.0 * u) + timesI(sin(2.0 * u));
r01 = (2.0 * u + timesI(2.0 * (u2 - w2))) * e2iu +
emiu * ((16.0 * u * cosw + 2.0 * u * (3.0 * u2 + w2) * xi0) +
timesI(-8.0 * u2 * cosw + 2.0 * (9.0 * u2 + w2) * xi0));
r11 = (2.0 * LatticeUnitComplex + timesI(4.0 * u)) * e2iu +
emiu * ((-2.0 * cosw + (3.0 * u2 - w2) * xi0) +
timesI((2.0 * u * cosw + 6.0 * u * xi0)));
r21 =
2.0 * timesI(e2iu) + emiu * (-3.0 * u * xi0 + timesI(cosw - 3.0 * xi0));
r02 = -2.0 * e2iu +
emiu * (-8.0 * u2 * xi0 +
timesI(2.0 * u * (cosw + xi0 + 3.0 * u2 * xi1)));
r12 = emiu * (2.0 * u * xi0 + timesI(-cosw - xi0 + 3.0 * u2 * xi1));
r22 = emiu * (xi0 - timesI(3.0 * u * xi1));
fden = LatticeUnitComplex / (2.0 * (9.0 * u2 - w2) * (9.0 * u2 - w2));
b10 = 2.0 * u * r01 + (3.0 * u2 - w2) * r02 - (30.0 * u2 + 2.0 * w2) * f0;
b11 = 2.0 * u * r11 + (3.0 * u2 - w2) * r12 - (30.0 * u2 + 2.0 * w2) * f1;
b12 = 2.0 * u * r21 + (3.0 * u2 - w2) * r22 - (30.0 * u2 + 2.0 * w2) * f2;
b20 = r01 - (3.0 * u) * r02 - (24.0 * u) * f0;
b21 = r11 - (3.0 * u) * r12 - (24.0 * u) * f1;
b22 = r21 - (3.0 * u) * r22 - (24.0 * u) * f2;
b10 *= fden;
b11 *= fden;
b12 *= fden;
b20 *= fden;
b21 *= fden;
b22 *= fden;
B1 = b10 * unity + timesMinusI(b11) * iQ - b12 * iQ2;
B2 = b20 * unity + timesMinusI(b21) * iQ - b22 * iQ2;
USigmap = GaugeK * Sigmap;
tr1 = trace(USigmap * B1);
tr2 = trace(USigmap * B2);
GaugeLinkField QUS = iQ * USigmap;
GaugeLinkField USQ = USigmap * iQ;
GaugeLinkField iGamma = tr1 * iQ - timesI(tr2) * iQ2 +
timesI(f1) * USigmap + f2 * QUS + f2 * USQ;
iLambda = Ta(iGamma);
}
*/
//====================================================================
public:
// GaugeField* ThinLinks; /* Pointer to the thin links configuration -- base class*/
////////////////////////
// Derived class
////////////////////////
/* Standard constructor */
SmearedConfigurationMasked(GridCartesian* _UGrid, unsigned int Nsmear, Smear_Stout<Gimpl>& Stout,bool domask=false)
: SmearedConfiguration<Gimpl>(_UGrid, Nsmear,Stout)
{
if(domask) assert(Nsmear%(2*Nd)==0); // Or multiply by 8??
GridRedBlackCartesian * UrbGrid;
UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(_UGrid);
LatticeComplex one(_UGrid); one = ComplexD(1.0,0.0);
LatticeComplex tmp(_UGrid);
for (unsigned int i = 0; i < this->smearingLevels; ++i) {
this->SmearedSet.push_back(*(new GaugeField(_UGrid)));
masks.push_back(*(new LatticeLorentzComplex(_UGrid)));
if (domask) {
int mu= (i/2) %Nd;
int cb= (i%2);
LatticeComplex tmpcb(UrbGrid);
masks[i]=Zero();
////////////////////
// Setup the mask
////////////////////
tmp = Zero();
pickCheckerboard(cb,tmpcb,one);
setCheckerboard(tmp,tmpcb);
PokeIndex<LorentzIndex>(masks[i],tmp, mu);
} else {
for(int mu=0;mu<Nd;mu++){
PokeIndex<LorentzIndex>(masks[i],one, mu);
}
}
}
delete UrbGrid;
}
//////////////////////////////////////////////////////////////
//Base functionality:
//////////////////////////////////////////////////////////////
/*! For just thin links */
// SmearedConfigurationMasked()
// : smearingLevels(0), StoutSmearing(nullptr), SmearedSet(), ThinLinks(NULL), UGrid(NULL), UrbGrid(NULL), masks() {}
// attach the smeared routines to the thin links U and fill the smeared set
/*
void set_Field(GaugeField &U)
{
double start = usecond();
fill_smearedSet(U);
double end = usecond();
double time = (end - start)/ 1e3;
std::cout << GridLogMessage << "Smearing in " << time << " ms" << std::endl;
}
*/
//====================================================================
/*
void smeared_force(GaugeField &SigmaTilde)
{
if (smearingLevels > 0)
{
double start = usecond();
GaugeField force = SigmaTilde; // actually = U*SigmaTilde
GaugeLinkField tmp_mu(SigmaTilde.Grid());
for (int mu = 0; mu < Nd; mu++)
{
// to get just SigmaTilde
tmp_mu = adj(peekLorentz(SmearedSet[smearingLevels - 1], mu)) * peekLorentz(force, mu);
pokeLorentz(force, tmp_mu, mu);
}
for (int ismr = smearingLevels - 1; ismr > 0; --ismr) {
force = AnalyticSmearedForce(force, get_smeared_conf(ismr - 1),ismr);
}
force = AnalyticSmearedForce(force, *ThinLinks,0);
for (int mu = 0; mu < Nd; mu++)
{
tmp_mu = peekLorentz(*ThinLinks, mu) * peekLorentz(force, mu);
pokeLorentz(SigmaTilde, tmp_mu, mu);
}
double end = usecond();
double time = (end - start)/ 1e3;
std::cout << GridLogMessage << "Smearing force in " << time << " ms" << std::endl;
} // if smearingLevels = 0 do nothing
}
*/
//====================================================================
// GaugeField& get_SmearedU() { return SmearedSet[smearingLevels - 1]; }
// GaugeField& get_SmearedU(int n) { return this->SmearedSet[n]; }
/*
GaugeField &get_U(bool smeared = false)
{
// get the config, thin links by default
if (smeared)
{
if (smearingLevels)
{
RealD impl_plaq =
WilsonLoops<Gimpl>::avgPlaquette(SmearedSet[smearingLevels - 1]);
std::cout << GridLogDebug << "getting Usmr Plaq: " << impl_plaq
<< std::endl;
return get_SmearedU();
}
else
{
RealD impl_plaq = WilsonLoops<Gimpl>::avgPlaquette(*ThinLinks);
std::cout << GridLogDebug << "getting Thin Plaq: " << impl_plaq
<< std::endl;
return *ThinLinks;
}
}
else
{
RealD impl_plaq = WilsonLoops<Gimpl>::avgPlaquette(*ThinLinks);
std::cout << GridLogDebug << "getting Thin Plaq: " << impl_plaq
<< std::endl;
return *ThinLinks;
}
}
*/
};
NAMESPACE_END(Grid);

View File

@ -40,7 +40,9 @@ template <class Gimpl>
class Smear_Stout : public Smear<Gimpl> {
private:
int OrthogDim = -1;
public:
const std::vector<double> SmearRho;
private:
// Smear<Gimpl>* ownership semantics:
// Smear<Gimpl>* passed in to constructor are owned by caller, so we don't delete them here
// Smear<Gimpl>* created within constructor need to be deleted as part of the destructor

View File

@ -823,6 +823,35 @@ LatticeComplexD Determinant(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N>
return ret;
}
template<int N>
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
EigenU(i,j) = Us()()(i,j);
}}
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
Ui()()(i,j) = EigenUinv(i,j);
}}
pokeLocalSite(Ui,ret_v,lcoor);
});
return ret;
}
template<int N>
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
{
Umu = ProjectOnGroup(Umu);

View File

@ -51,6 +51,7 @@ public:
typedef Lattice<iVector<iScalar<iMatrix<vComplexF, Dimension> >, Nd> > LatticeAdjFieldF;
typedef Lattice<iVector<iScalar<iMatrix<vComplexD, Dimension> >, Nd> > LatticeAdjFieldD;
typedef Lattice<iScalar<iScalar<iVector<vComplex, Dimension> > > > LatticeAdjVector;
template <class cplx>
static void generator(int Index, iSUnAdjointMatrix<cplx> &iAdjTa) {