1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-07 04:35:56 +01:00

Reversed Felix's interim A2Autils.h changes ... these were finished and went into develop via a separate branch

This commit is contained in:
Michael Marshall 2019-10-30 15:50:04 +00:00
parent 2a926b3dc6
commit 3b3680c64e

View File

@ -40,21 +40,12 @@ public:
const std::vector<ComplexField > &mom,
int orthogdim);
static void NucleonFieldMom(Eigen::Tensor<ComplexD,6> &mat,
const std::vector<FermionField> &one,
const std::vector<FermionField> &two,
const std::vector<FermionField> &three,
const std::vector<ComplexField > &mom,
int parity,
int orthogdim);
static void PionFieldXX(Eigen::Tensor<ComplexD,3> &mat,
const FermionField *wi,
const FermionField *vj,
int orthogdim,
int g5);
static void PionFieldWV(Eigen::Tensor<ComplexD,3> &mat,
const FermionField *wi,
const FermionField *vj,
@ -127,404 +118,6 @@ private:
const int Ns, const int ss);
};
template<class FImpl>
void A2Autils<FImpl>::NucleonFieldMom(Eigen::Tensor<ComplexD,6> &mat,
const std::vector<FermionField> &one,
const std::vector<FermionField> &two,
const std::vector<FermionField> &three,
const std::vector<ComplexField > &mom,
int parity,
int orthogdim)
{
assert(parity == 1 || parity == -1);
typedef typename FImpl::SiteSpinor vobj;
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinVector<vector_type> SpinVector_v;
typedef iSpinVector<scalar_type> SpinVector_s;
int oneBlock = mat.dimension(2);
int twoBlock = mat.dimension(3);
int threeBlock = mat.dimension(4);
GridBase *grid = one[0].Grid();
const int nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Nmom = mom.size();
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*oneBlock*twoBlock*threeBlock*Nmom;
int MFlvol = ld*oneBlock*twoBlock*threeBlock*Nmom;
Vector<SpinVector_v > lvSum(MFrvol);
accelerator_for (r, MFrvol, Nsimd, {
lvSum[r] = 0;
} );
Vector<SpinVector_s > lsSum(MFlvol);
accelerator_for (r, MFlvol, Nsimd, {
lsSum[r] = scalar_type(0.0);
} );
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
accelerator_for(r, rd, Nsimd, {
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<oneBlock;i++){
auto v1 = one[i]._odata[ss];
auto gv1 = Gamma(Gamma::Algebra::GammaT)*v1;
auto pv1 = 0.5*(v1 + (double)parity*gv1);
for(int j=0;j<twoBlock;j++){
//auto v2 = conjugate(two[j]._odata[ss]);
auto v2 = two[j]._odata[ss];
// C = i gamma_2 gamma_4 => C gamma_5 = - i gamma_1 gamma_3
//auto v2g = v2*Gamma(Gamma::Algebra::SigmaXZ);
//auto v2g=v2;
for(int k=0;k<threeBlock;k++){
auto v3 = three[k]._odata[ss];
auto gv3 = Gamma(Gamma::Algebra::SigmaXZ)*v3;
SpinVector_v vv;
for(int s1=0;s1<Ns;s1++){
vv()(s1)() = 0;
for(int s2=0;s2<Ns;s2++){
/* vv()(s1)() = pv1()(s1)(0) * v2g()(s2)(1) * v3()(s2)(2) //Cross product
- pv1()(s1)(0) * v2g()(s2)(2) * v3()(s2)(1)
+ pv1()(s1)(1) * v2g()(s2)(2) * v3()(s2)(0)
- pv1()(s1)(1) * v2g()(s2)(0) * v3()(s2)(2)
+ pv1()(s1)(2) * v2g()(s2)(0) * v3()(s2)(1)
- pv1()(s1)(2) * v2g()(s2)(1) * v3()(s2)(0); */
vv()(s1)() += pv1()(s1)(0) * v2()(s2)(1) * gv3()(s2)(2) //Cross product
- pv1()(s1)(0) * v2()(s2)(2) * gv3()(s2)(1)
+ pv1()(s1)(1) * v2()(s2)(2) * gv3()(s2)(0)
- pv1()(s1)(1) * v2()(s2)(0) * gv3()(s2)(2)
+ pv1()(s1)(2) * v2()(s2)(0) * gv3()(s2)(1)
- pv1()(s1)(2) * v2()(s2)(1) * gv3()(s2)(0);
}}
/*if (i+j+k == 0) {
Serializable::WriteMember(std::cout, pv1);
Serializable::WriteMember(std::cout, v2);
Serializable::WriteMember(std::cout, gv3);
Serializable::WriteMember(std::cout, vv);
}*/
// After getting the sitewise product do the mom phase loop
int base = Nmom*i+Nmom*oneBlock*j+Nmom*oneBlock*twoBlock*k+Nmom*oneBlock*twoBlock*threeBlock*r;
for ( int m=0;m<Nmom;m++){
int idx = m+base;
auto phase = mom[m]._odata[ss];
for(int is=0;is<Ns;is++){
mac(&lvSum[idx]()(is)(),&vv()(is)(),&phase()()());
}
}
}
}
}
}
}
} );
// Sum across simd lanes in the plane, breaking out orthog dir.
accelerator_for(rt, rd, Nsimd, {
Coordinate icoor(nd);
std::vector<SpinVector_s> extracted(Nsimd);
for(int i=0;i<oneBlock;i++){
for(int j=0;j<twoBlock;j++){
for(int k=0;k<threeBlock;k++){
for(int m=0;m<Nmom;m++){
int ij_rdx = m+Nmom*i + Nmom*oneBlock * j + Nmom*oneBlock * twoBlock * k + Nmom*oneBlock * twoBlock *threeBlock * rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = m+Nmom*i + Nmom*oneBlock * j + Nmom*oneBlock * twoBlock * k + Nmom*oneBlock * twoBlock *threeBlock * ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}}}}
} );
assert(mat.dimension(0) == Nmom);
assert(mat.dimension(1) == Nt);
int pd = grid->_processors[orthogdim];
int pc = grid->_processor_coor[orthogdim];
accelerator_for(lt, ld, Nsimd,
{
for(int pt=0;pt<pd;pt++){
int t = lt + pt*ld;
if (pt == pc){
for(int i=0;i<oneBlock;i++){
for(int j=0;j<twoBlock;j++){
for(int k=0;k<threeBlock;k++){
for(int m=0;m<Nmom;m++){
int ij_dx = m+Nmom*i + Nmom*oneBlock * j + Nmom*oneBlock * twoBlock * k + Nmom*oneBlock * twoBlock *threeBlock * lt;
for(int is=0;is<4;is++){
mat(m,t,i,j,k,is) = lsSum[ij_dx]()(is)();
}
}
}
}
}
} else {
const scalar_type zz(0.0);
for(int i=0;i<oneBlock;i++){
for(int j=0;j<twoBlock;j++){
for(int k=0;k<threeBlock;k++){
for(int m=0;m<Nmom;m++){
for(int is=0;is<4;is++){
mat(m,t,i,j,k,is) =zz;
}
}
}
}
}
}
}
} );
grid->GlobalSumVector(&mat(0,0,0,0,0,0),Nmom*Nt*oneBlock*twoBlock*threeBlock*4);
}
/*
template <class FImpl>
template <typename TensorType>
void A2Autils<FImpl>::BaryonField(TensorType &mat,
const FermionField *one,
const FermionField *two,
const FermionField *three,
std::vector<Gamma::Algebra> gammaA,
std::vector<Gamma::Algebra> gammaB,
const std::vector<ComplexField > &mom,
int orthogdim, double *t_kernel, double *t_gsum)
{
typedef typename FImpl::SiteSpinor vobj;
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
typedef iSpinColourMatrix<vector_type> SpinColourMatrix_v;
int oneBlock = mat.dimension(3);
int twoBlock = mat.dimension(4);
int threeBlock = mat.dimension(5);
GridBase *grid = one[0].Grid();
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammaA.size();
assert (Ngamma = gammaB.size()); // Only combinatin of two gammas gives correct operator!
int Nmom = mom.size();
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*twoBlock*threeBlock*Nmom;
int MFlvol = ld*twoBlock*threeBlock*Nmom;
Vector<Vector<SpinMatrix_v >> lvSum(3);
for (int ic=0;ic<3;ic++){
lvSum[ic].resize(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++){
lvSum[ic][r] = zero;
}
}
Vector<Vector<SpinMatrix_s >> lsSum(3);
for (int ic=0;ic<3;ic++){
lsSum[ic].resize(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[ic][r] = scalar_type(0.0);
}
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
// potentially wasting cores here if local time extent too small
if (t_kernel) *t_kernel = -usecond();
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
// first, the diquark two*gammaB*three
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int j=0;j<twoBlock;j++){
auto two_j = two[j]._odata[ss];
for(int k=0;k<threeBlock;k++){
auto three_k = three[j]._odata[ss];
Vector<SpinMatrix_v > vv(3);
for(int s1=0;s1<Ns;s1++){
for(int s2=0;s2<Ns;s2++){
vv[0]()(s1,s2)() = two_j()(s2)(1) * three_k()(s1)(2) //ideal would be SpinMatrix but ColourVector...
- two_j()(s2)(2) * three_k()(s1)(1); //this is the cross product (two x three)^i
vv[1]()(s1,s2)() = two_j()(s2)(2) * three_k()(s1)(0)
- two_j()(s2)(0) * three_k()(s1)(2);
vv[2]()(s1,s2)() = two_j()(s2)(0) * three_k()(s1)(1)
- two_j()(s2)(1) * three_k()(s1)(0);
}}
// After getting the sitewise product do the mom phase loop
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
for ( int m=0;m<Nmom;m++){
for ( int ic=0;ic<3;ic++){
int idx = m+base;
auto phase = mom[m]._odata[ss];
mac(&lvSum[ic][idx],&vv,&phase);
}
}
}
}
}
}
}
for ( int ic=0;ic<3;ic++){
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt=0;rt<rd;rt++){
std::vector<int> icoor(Nd);
std::vector<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<twoBlock;i++){
for(int j=0;j<threeBlock;j++){
for(int m=0;m<Nmom;m++){
int ij_rdx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*rt;
extract(lvSum[ic][ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*ldx;
lsSum[ic][ij_ldx]=lsSum[ic][ij_ldx]+extracted[idx];
}
}}}
}
if (t_kernel) *t_kernel += usecond();
assert(mat.dimension(0) == Nmom);
assert(mat.dimension(1) == Ngamma);
assert(mat.dimension(2) == Nt);
TensorType diquark; // Need this instead of mat!!!
// ld loop and local only??
int pd = grid->_processors[orthogdim];
int pc = grid->_processor_coor[orthogdim];
parallel_for_nest2(int lt=0;lt<ld;lt++)
{
for(int pt=0;pt<pd;pt++){
int t = lt + pt*ld;
if (pt == pc){
for(int i=0;i<twoBlock;i++){
for(int j=0;j<threeBlock;j++){
for(int m=0;m<Nmom;m++){
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
for(int mu=0;mu<Ngamma;mu++){
// this is a bit slow
mat(m,mu,t,i,j) = trace(lsSum[ic][ij_dx]*Gamma(gammaB[mu]));
}
}
}
}
} else {
const scalar_type zz(0.0);
for(int i=0;i<twoBlock;i++){
for(int j=0;j<threeBlock;j++){
for(int mu=0;mu<Ngamma;mu++){
for(int m=0;m<Nmom;m++){
mat(m,mu,t,i,j) =zz;
}
}
}
}
}
}
}
}
////////////////////////////////////////////////////////////////////
// This global sum is taking as much as 50% of time on 16 nodes
// Vector size is 7 x 16 x 32 x 16 x 16 x sizeof(complex) = 2MB - 60MB depending on volume
// Healthy size that should suffice
////////////////////////////////////////////////////////////////////
if (t_gsum) *t_gsum = -usecond();
grid->GlobalSumVector(&mat(0,0,0,0,0),Nmom*Ngamma*Nt*Lblock*Rblock);
if (t_gsum) *t_gsum += usecond();
}
*/
template <class FImpl>
template <typename TensorType>
void A2Autils<FImpl>::MesonField(TensorType &mat,
@ -667,7 +260,7 @@ void A2Autils<FImpl>::MesonField(TensorType &mat,
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
for(int mu=0;mu<Ngamma;mu++){
// this is a bit slow
mat(m,mu,t,i,j) = (trace(lsSum[ij_dx]*Gamma(gammas[mu])))()()();
mat(m,mu,t,i,j) = trace(lsSum[ij_dx]*Gamma(gammas[mu]))()()();
}
}
}