1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-13 01:05:36 +00:00
This commit is contained in:
Peter Boyle 2015-06-14 01:27:07 +01:00
commit 3f7a66328a
33 changed files with 922 additions and 512 deletions

10
TODO
View File

@ -1,11 +1,15 @@
================================================================ ================================================================
*** Hacks and bug fixes to clean up and Audits *** Hacks and bug fixes to clean up and Audits
================================================================ ================================================================
* Base class to share common code between vRealF, VComplexF etc... done
- Performance check on Guido's reimplementation strategy - (GUIDO) tested and no difference was found, merged * Extract/merge/set cleanup ; too many variants; rationalise and call simpler ones
* Used #define repetitive sequences to minimise code.
* Rewrite core tensor arithmetic support to be more systematic
* Ensure we ET as much as possible; move unop functions into ET framework.
- tests with expression args to all functions
* FIXME audit * FIXME audit
* const audit * const audit
Insert/Extract Insert/Extract

View File

@ -33,7 +33,7 @@ public:
~alignedAllocator() throw() { } ~alignedAllocator() throw() { }
pointer address(reference __x) const { return &__x; } pointer address(reference __x) const { return &__x; }
const_pointer address(const_reference __x) const { return &__x; } // const_pointer address(const_reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); } size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }

View File

@ -14,5 +14,6 @@
#include <tensors/Tensor_reality.h> #include <tensors/Tensor_reality.h>
#include <tensors/Tensor_unary.h> #include <tensors/Tensor_unary.h>
#include <tensors/Tensor_extract_merge.h> #include <tensors/Tensor_extract_merge.h>
#include <tensors/Tensor_logical.h>
#endif #endif

View File

@ -183,7 +183,7 @@ namespace Grid {
int dir = geom.directions[p]; int dir = geom.directions[p];
int disp = geom.displacements[p]; int disp = geom.displacements[p];
int block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]); Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
LatticeCoordinate(coor,dir); LatticeCoordinate(coor,dir);
@ -204,8 +204,8 @@ namespace Grid {
oblock = where(mod(coor,block)==(block-1),Mphi,zz); oblock = where(mod(coor,block)==(block-1),Mphi,zz);
iblock = where(mod(coor,block)!=(block-1),Mphi,zz); iblock = where(mod(coor,block)!=(block-1),Mphi,zz);
} else if ( disp==-1 ) { } else if ( disp==-1 ) {
oblock = where(mod(coor,block)==0,Mphi,zz); oblock = where(mod(coor,block)==(Integer)0,Mphi,zz);
iblock = where(mod(coor,block)!=0,Mphi,zz); iblock = where(mod(coor,block)!=(Integer)0,Mphi,zz);
} else { } else {
assert(0); assert(0);
} }

View File

@ -9,6 +9,37 @@
namespace Grid { namespace Grid {
////////////////////////////////////////////////////
// Predicated where support
////////////////////////////////////////////////////
template<class iobj,class vobj,class robj>
inline vobj predicatedWhere(const iobj &predicate,const vobj &iftrue,const robj &iffalse) {
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
const int words = sizeof(vobj)/sizeof(vector_type);
std::vector<Integer> mask(Nsimd);
std::vector<scalar_object> truevals (Nsimd);
std::vector<scalar_object> falsevals(Nsimd);
extract(iftrue ,truevals);
extract(iffalse ,falsevals);
extract<vInteger,Integer>(TensorRemove(predicate),mask);
for(int s=0;s<Nsimd;s++){
if (mask[s]) falsevals[s]=truevals[s];
}
merge(ret,falsevals);
return ret;
}
//////////////////////////////////////////// ////////////////////////////////////////////
// recursive evaluation of expressions; Could // recursive evaluation of expressions; Could
// switch to generic approach with variadics, a la // switch to generic approach with variadics, a la
@ -142,10 +173,23 @@ template <class arg> struct name\
}; };
GridUnopClass(UnarySub,-a); GridUnopClass(UnarySub,-a);
GridUnopClass(UnaryNot,Not(a));
GridUnopClass(UnaryAdj,adj(a)); GridUnopClass(UnaryAdj,adj(a));
GridUnopClass(UnaryConj,conjugate(a)); GridUnopClass(UnaryConj,conjugate(a));
GridUnopClass(UnaryTrace,trace(a)); GridUnopClass(UnaryTrace,trace(a));
GridUnopClass(UnaryTranspose,transpose(a)); GridUnopClass(UnaryTranspose,transpose(a));
GridUnopClass(UnaryTa,Ta(a));
GridUnopClass(UnaryReal,real(a));
GridUnopClass(UnaryImag,imag(a));
GridUnopClass(UnaryToReal,toReal(a));
GridUnopClass(UnaryToComplex,toComplex(a));
GridUnopClass(UnaryAbs,abs(a));
GridUnopClass(UnarySqrt,sqrt(a));
GridUnopClass(UnaryRsqrt,rsqrt(a));
GridUnopClass(UnarySin,sin(a));
GridUnopClass(UnaryCos,cos(a));
GridUnopClass(UnaryLog,log(a));
GridUnopClass(UnaryExp,exp(a));
//////////////////////////////////////////// ////////////////////////////////////////////
// Binary operators // Binary operators
@ -163,6 +207,28 @@ GridBinOpClass(BinaryAdd,lhs+rhs);
GridBinOpClass(BinarySub,lhs-rhs); GridBinOpClass(BinarySub,lhs-rhs);
GridBinOpClass(BinaryMul,lhs*rhs); GridBinOpClass(BinaryMul,lhs*rhs);
GridBinOpClass(BinaryAnd ,lhs&rhs);
GridBinOpClass(BinaryOr ,lhs|rhs);
GridBinOpClass(BinaryAndAnd,lhs&&rhs);
GridBinOpClass(BinaryOrOr ,lhs||rhs);
////////////////////////////////////////////////////
// Trinary conditional op
////////////////////////////////////////////////////
#define GridTrinOpClass(name,combination)\
template <class predicate,class left, class right> \
struct name\
{\
static auto inline func(const predicate &pred,const left &lhs,const right &rhs)-> decltype(combination) const \
{\
return combination;\
}\
}
GridTrinOpClass(TrinaryWhere,(predicatedWhere<predicate, \
typename std::remove_reference<left>::type, \
typename std::remove_reference<right>::type> (pred,lhs,rhs)));
//////////////////////////////////////////// ////////////////////////////////////////////
// Operator syntactical glue // Operator syntactical glue
//////////////////////////////////////////// ////////////////////////////////////////////
@ -218,15 +284,67 @@ template <typename T1,typename T2,typename T3> inline auto op(const T1 &pred,con
//////////////////////// ////////////////////////
GRID_DEF_UNOP(operator -,UnarySub); GRID_DEF_UNOP(operator -,UnarySub);
GRID_DEF_UNOP(Not,UnaryNot);
GRID_DEF_UNOP(operator !,UnaryNot);
GRID_DEF_UNOP(adj,UnaryAdj); GRID_DEF_UNOP(adj,UnaryAdj);
GRID_DEF_UNOP(conjugate,UnaryConj); GRID_DEF_UNOP(conjugate,UnaryConj);
GRID_DEF_UNOP(trace,UnaryTrace); GRID_DEF_UNOP(trace,UnaryTrace);
GRID_DEF_UNOP(transpose,UnaryTranspose); GRID_DEF_UNOP(transpose,UnaryTranspose);
GRID_DEF_UNOP(Ta,UnaryTa);
GRID_DEF_UNOP(real,UnaryReal);
GRID_DEF_UNOP(imag,UnaryImag);
GRID_DEF_UNOP(toReal,UnaryToReal);
GRID_DEF_UNOP(toComplex,UnaryToComplex);
GRID_DEF_UNOP(abs ,UnaryAbs); //abs overloaded in cmath C++98; DON'T do the abs-fabs-dabs-labs thing
GRID_DEF_UNOP(sqrt ,UnarySqrt);
GRID_DEF_UNOP(rsqrt,UnarySqrt);
GRID_DEF_UNOP(sin ,UnarySin);
GRID_DEF_UNOP(cos ,UnaryCos);
GRID_DEF_UNOP(log ,UnaryLog);
GRID_DEF_UNOP(exp ,UnaryExp);
GRID_DEF_BINOP(operator+,BinaryAdd); GRID_DEF_BINOP(operator+,BinaryAdd);
GRID_DEF_BINOP(operator-,BinarySub); GRID_DEF_BINOP(operator-,BinarySub);
GRID_DEF_BINOP(operator*,BinaryMul); GRID_DEF_BINOP(operator*,BinaryMul);
GRID_DEF_BINOP(operator&,BinaryAnd);
GRID_DEF_BINOP(operator|,BinaryOr);
GRID_DEF_BINOP(operator&&,BinaryAndAnd);
GRID_DEF_BINOP(operator||,BinaryOrOr);
GRID_DEF_TRINOP(where,TrinaryWhere);
/////////////////////////////////////////////////////////////
// Closure convenience to force expression to evaluate
/////////////////////////////////////////////////////////////
template<class Op,class T1>
auto closure(const LatticeUnaryExpression<Op,T1> & expr)
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second))))>
{
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second))))> ret(expr);
return ret;
}
template<class Op,class T1, class T2>
auto closure(const LatticeBinaryExpression<Op,T1,T2> & expr)
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second))))>
{
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second))))> ret(expr);
return ret;
}
template<class Op,class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))))>
{
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))))> ret(expr);
return ret;
}
#undef GRID_UNOP #undef GRID_UNOP
#undef GRID_BINOP #undef GRID_BINOP
#undef GRID_TRINOP #undef GRID_TRINOP

View File

@ -93,7 +93,7 @@ PARALLEL_FOR_LOOP
} }
return *this; return *this;
} }
template <typename Op, typename T1,typename T2> strong_inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr) template <typename Op, typename T1,typename T2> strong_inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
{ {
GridBase *egrid(nullptr); GridBase *egrid(nullptr);
GridFromExpression(egrid,expr); GridFromExpression(egrid,expr);
@ -131,8 +131,8 @@ PARALLEL_FOR_LOOP
PARALLEL_FOR_LOOP PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){ for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES #ifdef STREAMING_STORES
vobj tmp = eval(ss,expr); //vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp); vstream(_odata[ss] ,eval(ss,expr));
#else #else
_odata[ss] = eval(ss,expr); _odata[ss] = eval(ss,expr);
#endif #endif
@ -196,12 +196,7 @@ PARALLEL_FOR_LOOP
_odata.resize(_grid->oSites()); _odata.resize(_grid->oSites());
PARALLEL_FOR_LOOP PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){ for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr); _odata[ss]=eval(ss,expr);
#endif
} }
}; };
@ -254,7 +249,7 @@ PARALLEL_FOR_LOOP
Lattice<vobj> ret(lhs._grid); Lattice<vobj> ret(lhs._grid);
PARALLEL_FOR_LOOP PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){ for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = lhs._odata[ss]/rhs._odata[ss]; ret._odata[ss] = lhs._odata[ss]*pow(rhs._odata[ss],-1.0);
} }
return ret; return ret;
}; };

View File

@ -11,7 +11,11 @@ namespace Grid {
//Query supporting bitwise &, |, ^, ! //Query supporting bitwise &, |, ^, !
//Query supporting logical &&, ||, //Query supporting logical &&, ||,
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
//////////////////////////////////////////////////////////////////////////
// compare lattice to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs) inline Lattice<vInteger> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
{ {
Lattice<vInteger> ret(rhs._grid); Lattice<vInteger> ret(rhs._grid);
@ -21,6 +25,9 @@ PARALLEL_FOR_LOOP
} }
return ret; return ret;
} }
//////////////////////////////////////////////////////////////////////////
// compare lattice to scalar
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj> template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs) inline Lattice<vInteger> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
{ {
@ -31,6 +38,9 @@ PARALLEL_FOR_LOOP
} }
return ret; return ret;
} }
//////////////////////////////////////////////////////////////////////////
// compare scalar to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj> template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs) inline Lattice<vInteger> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
{ {
@ -42,6 +52,9 @@ PARALLEL_FOR_LOOP
return ret; return ret;
} }
//////////////////////////////////////////////////////////////////////////
// Map to functors
//////////////////////////////////////////////////////////////////////////
// Less than // Less than
template<class lobj,class robj> template<class lobj,class robj>
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
@ -99,7 +112,6 @@ PARALLEL_FOR_LOOP
return SLComparison(vge<lobj,robj>(),lhs,rhs); return SLComparison(vge<lobj,robj>(),lhs,rhs);
} }
// equal // equal
template<class lobj,class robj> template<class lobj,class robj>
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) { inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {

View File

@ -5,140 +5,197 @@ namespace Grid {
///////////////////////////////////////// /////////////////////////////////////////
// This implementation is a bit poor. // This implementation is a bit poor.
// Only support logical operations (== etc) //
// on scalar objects. Strip any tensor structures. // Only support relational logical operations (<, > etc)
// on scalar objects. Therefore can strip any tensor structures.
//
// Should guard this with isGridTensor<> enable if? // Should guard this with isGridTensor<> enable if?
///////////////////////////////////////// /////////////////////////////////////////
// Generic list of functors //
template<class lobj,class robj> class veq { // Generic list of functors
//
template<class lobj,class robj> class veq {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class vne {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class vlt {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class vle {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class vgt {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class vge {
public: public:
vInteger operator()(const lobj &lhs, const robj &rhs) vInteger operator()(const lobj &lhs, const robj &rhs)
{ {
return TensorRemove(lhs) == TensorRemove(rhs); return (lhs) >= (rhs);
} }
}; };
template<class lobj,class robj> class vne {
public: // Generic list of functors
vInteger operator()(const lobj &lhs, const robj &rhs) template<class lobj,class robj> class seq {
{ public:
return TensorRemove(lhs) != TensorRemove(rhs); Integer operator()(const lobj &lhs, const robj &rhs)
} {
}; return (lhs) == (rhs);
template<class lobj,class robj> class vlt { }
public: };
vInteger operator()(const lobj &lhs, const robj &rhs) template<class lobj,class robj> class sne {
{ public:
return TensorRemove(lhs) < TensorRemove(rhs); Integer operator()(const lobj &lhs, const robj &rhs)
} {
}; return (lhs) != (rhs);
template<class lobj,class robj> class vle { }
public: };
vInteger operator()(const lobj &lhs, const robj &rhs) template<class lobj,class robj> class slt {
{ public:
return TensorRemove(lhs) <= TensorRemove(rhs); Integer operator()(const lobj &lhs, const robj &rhs)
} {
}; return (lhs) < (rhs);
template<class lobj,class robj> class vgt { }
public: };
vInteger operator()(const lobj &lhs, const robj &rhs) template<class lobj,class robj> class sle {
{ public:
return TensorRemove(lhs) > TensorRemove(rhs); Integer operator()(const lobj &lhs, const robj &rhs)
} {
}; return (lhs) <= (rhs);
template<class lobj,class robj> class vge { }
public: };
vInteger operator()(const lobj &lhs, const robj &rhs) template<class lobj,class robj> class sgt {
{ public:
return TensorRemove(lhs) >= TensorRemove(rhs); Integer operator()(const lobj &lhs, const robj &rhs)
} {
}; return (lhs) > (rhs);
}
};
template<class lobj,class robj> class sge {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
};
// Generic list of functors //////////////////////////////////////////////////////////////////////////////////////////////////////
template<class lobj,class robj> class seq { // Integer and real get extra relational functions.
public: //////////////////////////////////////////////////////////////////////////////////////////////////////
Integer operator()(const lobj &lhs, const robj &rhs) template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
{ inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs)
return TensorRemove(lhs) == TensorRemove(rhs);
}
};
template<class lobj,class robj> class sne {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) != TensorRemove(rhs);
}
};
template<class lobj,class robj> class slt {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) < TensorRemove(rhs);
}
};
template<class lobj,class robj> class sle {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) <= TensorRemove(rhs);
}
};
template<class lobj,class robj> class sgt {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) > TensorRemove(rhs);
}
};
template<class lobj,class robj> class sge {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) >= TensorRemove(rhs);
}
};
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Integer gets extra relational functions. Could also implement these for RealF, RealD etc..
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class sfunctor>
inline vInteger Comparison(sfunctor sop,const vInteger & lhs, const vInteger & rhs)
{ {
std::vector<Integer> vlhs(vInteger::Nsimd()); // Use functors to reduce this to single implementation typedef typename vsimd::scalar_type scalar;
std::vector<Integer> vrhs(vInteger::Nsimd()); std::vector<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<scalar> vrhs(vsimd::Nsimd());
std::vector<Integer> vpred(vsimd::Nsimd());
vInteger ret; vInteger ret;
extract<vInteger,Integer>(lhs,vlhs); extract<vsimd,scalar>(lhs,vlhs);
extract<vInteger,Integer>(rhs,vrhs); extract<vsimd,scalar>(rhs,vrhs);
for(int s=0;s<vInteger::Nsimd();s++){ for(int s=0;s<vsimd::Nsimd();s++){
vlhs[s] = sop(vlhs[s],vrhs[s]); vpred[s] = sop(vlhs[s],vrhs[s]);
} }
merge<vInteger,Integer>(ret,vlhs); merge<vInteger,Integer>(ret,vpred);
return ret; return ret;
} }
inline vInteger operator < (const vInteger & lhs, const vInteger & rhs)
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs)
{ {
return Comparison(slt<Integer,Integer>(),lhs,rhs); typedef typename vsimd::scalar_type scalar;
std::vector<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(lhs,vlhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(vlhs[s],rhs);
}
merge<vInteger,Integer>(ret,vpred);
return ret;
} }
inline vInteger operator <= (const vInteger & lhs, const vInteger & rhs)
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs)
{ {
return Comparison(sle<Integer,Integer>(),lhs,rhs); typedef typename vsimd::scalar_type scalar;
} std::vector<scalar> vrhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
inline vInteger operator > (const vInteger & lhs, const vInteger & rhs) std::vector<Integer> vpred(vsimd::Nsimd());
{ vInteger ret;
return Comparison(sgt<Integer,Integer>(),lhs,rhs); extract<vsimd,scalar>(rhs,vrhs);
} for(int s=0;s<vsimd::Nsimd();s++){
inline vInteger operator >= (const vInteger & lhs, const vInteger & rhs) vpred[s] = sop(lhs,vrhs[s]);
{ }
return Comparison(sge<Integer,Integer>(),lhs,rhs); merge<vInteger,Integer>(ret,vpred);
} return ret;
inline vInteger operator == (const vInteger & lhs, const vInteger & rhs)
{
return Comparison(seq<Integer,Integer>(),lhs,rhs);
}
inline vInteger operator != (const vInteger & lhs, const vInteger & rhs)
{
return Comparison(sne<Integer,Integer>(),lhs,rhs);
} }
#define DECLARE_RELATIONAL(op,functor) \
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd>\
inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\
{ \
return lhs._internal op rhs._internal; \
} \
template<class vsimd>\
inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \
{ \
return lhs._internal op rhs; \
} \
template<class vsimd>\
inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \
{ \
return lhs op rhs._internal; \
}
DECLARE_RELATIONAL(<,slt);
DECLARE_RELATIONAL(<=,sle);
DECLARE_RELATIONAL(>,sgt);
DECLARE_RELATIONAL(>=,sge);
DECLARE_RELATIONAL(==,seq);
DECLARE_RELATIONAL(!=,sne);
#undef DECLARE_RELATIONAL
} }

View File

@ -117,7 +117,9 @@ PARALLEL_FOR_LOOP
int Nsimd = grid->Nsimd(); int Nsimd = grid->Nsimd();
assert( l.checkerboard == l._grid->CheckerBoard(site)); assert( l.checkerboard == l._grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
// FIXME
// assert( sizeof(sobj)*Nsimd == sizeof(vobj));
int rank,odx,idx; int rank,odx,idx;
grid->GlobalCoorToRankIndex(rank,odx,idx,site); grid->GlobalCoorToRankIndex(rank,odx,idx,site);
@ -132,6 +134,7 @@ PARALLEL_FOR_LOOP
return; return;
}; };
////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array // Peek a scalar object from the SIMD array
////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////

View File

@ -27,37 +27,6 @@ PARALLEL_FOR_LOOP
return ret; return ret;
}; };
template<class vobj> inline auto real(const Lattice<vobj> &z) -> Lattice<vobj>
{
Lattice<vobj> ret(z._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<z._grid->oSites();ss++){
ret._odata[ss] = real(z._odata[ss]);
}
return ret;
}
template<class vobj> inline auto imag(const Lattice<vobj> &z) -> Lattice<vobj>
{
Lattice<vobj> ret(z._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<z._grid->oSites();ss++){
ret._odata[ss] = imag(z._odata[ss]);
}
return ret;
}
template<class vobj> inline auto Ta(const Lattice<vobj> &z) -> Lattice<decltype(Ta(z._odata[0]))>
{
Lattice<decltype(Ta(z._odata[0]))> ret(z._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<z._grid->oSites();ss++){
ret._odata[ss] = Ta(z._odata[ss]);
}
return ret;
}
} }
#endif #endif

View File

@ -51,6 +51,31 @@ PARALLEL_FOR_LOOP
return nrm; return nrm;
} }
template<class Op,class T1>
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2>
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),eval(0,std::get<1>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2,class T3>
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))
))::scalar_object
{
return sum(closure(expr));
}
template<class vobj> template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg){ inline typename vobj::scalar_object sum(const Lattice<vobj> &arg){

View File

@ -24,8 +24,7 @@ PARALLEL_FOR_LOOP
// Index level dependent transpose // Index level dependent transpose
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj> template<int Index,class vobj>
inline auto transposeIndex(const Lattice<vobj> &lhs) inline auto transposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))>
-> Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))>
{ {
Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))> ret(lhs._grid); Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))> ret(lhs._grid);
PARALLEL_FOR_LOOP PARALLEL_FOR_LOOP

View File

@ -3,51 +3,6 @@
namespace Grid { namespace Grid {
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj> Lattice<obj> sqrt(const Lattice<obj> &rhs){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=sqrt(rhs._odata[ss]);
}
return ret;
}
template<class obj> Lattice<obj> rsqrt(const Lattice<obj> &rhs){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=rsqrt(rhs._odata[ss]);
}
return ret;
}
template<class obj> Lattice<obj> sin(const Lattice<obj> &rhs){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=sin(rhs._odata[ss]);
}
return ret;
}
template<class obj> Lattice<obj> cos(const Lattice<obj> &rhs){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=cos(rhs._odata[ss]);
}
return ret;
}
template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs,RealD y){ template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs,RealD y){
Lattice<obj> ret(rhs._grid); Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard; ret.checkerboard = rhs.checkerboard;

View File

@ -8,13 +8,14 @@ namespace Grid {
// and blow away the tensor structures. // and blow away the tensor structures.
// //
template<class vobj,class iobj> template<class vobj,class iobj>
inline void where(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse) inline void whereWolf(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse)
{ {
conformable(iftrue,iffalse); conformable(iftrue,iffalse);
conformable(iftrue,predicate); conformable(iftrue,predicate);
conformable(iftrue,ret); conformable(iftrue,ret);
GridBase *grid=iftrue._grid; GridBase *grid=iftrue._grid;
typedef typename vobj::scalar_object scalar_object; typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type; typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type; typedef typename vobj::vector_type vector_type;
@ -43,7 +44,7 @@ PARALLEL_FOR_LOOP
} }
template<class vobj,class iobj> template<class vobj,class iobj>
inline Lattice<vobj> where(const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse) inline Lattice<vobj> whereWolf(const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse)
{ {
conformable(iftrue,iffalse); conformable(iftrue,iffalse);
conformable(iftrue,predicate); conformable(iftrue,predicate);

View File

@ -250,6 +250,7 @@ namespace QCD {
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
// Peek and Poke named after physics attributes // Peek and Poke named after physics attributes
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
//spin //spin
template<class vobj> auto peekSpin(const vobj &rhs,int i) -> decltype(peekIndex<SpinIndex>(rhs,0)) template<class vobj> auto peekSpin(const vobj &rhs,int i) -> decltype(peekIndex<SpinIndex>(rhs,0))
{ {
@ -289,20 +290,117 @@ namespace QCD {
{ {
return peekIndex<LorentzIndex>(rhs,i); return peekIndex<LorentzIndex>(rhs,i);
} }
template<class vobj> auto peekLorentz(const vobj &rhs,int i,int j) -> decltype(peekIndex<LorentzIndex>(rhs,0,0))
{
return peekIndex<LorentzIndex>(rhs,i,j);
}
template<class vobj> auto peekLorentz(const Lattice<vobj> &rhs,int i) -> decltype(peekIndex<LorentzIndex>(rhs,0)) template<class vobj> auto peekLorentz(const Lattice<vobj> &rhs,int i) -> decltype(peekIndex<LorentzIndex>(rhs,0))
{ {
return peekIndex<LorentzIndex>(rhs,i); return peekIndex<LorentzIndex>(rhs,i);
} }
template<class vobj> auto peekLorentz(const Lattice<vobj> &rhs,int i,int j) -> decltype(peekIndex<LorentzIndex>(rhs,0,0))
//////////////////////////////////////////////
// Poke lattice
//////////////////////////////////////////////
template<class vobj>
void pokeColour(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<ColourIndex>(lhs._odata[0],0))> & rhs,
int i)
{ {
return peekIndex<LorentzIndex>(rhs,i,j); pokeIndex<ColourIndex>(lhs,rhs,i);
}
template<class vobj>
void pokeColour(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<ColourIndex>(lhs._odata[0],0,0))> & rhs,
int i,int j)
{
pokeIndex<ColourIndex>(lhs,rhs,i,j);
}
template<class vobj>
void pokeSpin(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<SpinIndex>(lhs._odata[0],0))> & rhs,
int i)
{
pokeIndex<SpinIndex>(lhs,rhs,i);
}
template<class vobj>
void pokeSpin(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<SpinIndex>(lhs._odata[0],0,0))> & rhs,
int i,int j)
{
pokeIndex<SpinIndex>(lhs,rhs,i,j);
}
template<class vobj>
void pokeLorentz(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<LorentzIndex>(lhs._odata[0],0))> & rhs,
int i)
{
pokeIndex<LorentzIndex>(lhs,rhs,i);
} }
// FIXME transpose Colour, transpose Spin, traceColour traceSpin //////////////////////////////////////////////
// Poke scalars
//////////////////////////////////////////////
template<class vobj> void pokeSpin(vobj &lhs,const decltype(peekIndex<SpinIndex>(lhs,0)) & rhs,int i)
{
pokeIndex<SpinIndex>(lhs,rhs,i);
}
template<class vobj> void pokeSpin(vobj &lhs,const decltype(peekIndex<SpinIndex>(lhs,0,0)) & rhs,int i,int j)
{
pokeIndex<SpinIndex>(lhs,rhs,i,j);
}
template<class vobj> void pokeColour(vobj &lhs,const decltype(peekIndex<ColourIndex>(lhs,0)) & rhs,int i)
{
pokeIndex<ColourIndex>(lhs,rhs,i);
}
template<class vobj> void pokeColour(vobj &lhs,const decltype(peekIndex<ColourIndex>(lhs,0,0)) & rhs,int i,int j)
{
pokeIndex<ColourIndex>(lhs,rhs,i,j);
}
template<class vobj> void pokeLorentz(vobj &lhs,const decltype(peekIndex<LorentzIndex>(lhs,0)) & rhs,int i)
{
pokeIndex<LorentzIndex>(lhs,rhs,i);
}
//////////////////////////////////////////////
// transpose array and scalar
//////////////////////////////////////////////
template<int Index,class vobj> inline Lattice<vobj> transposeSpin(const Lattice<vobj> &lhs){
return transposeIndex<SpinIndex>(lhs);
}
template<int Index,class vobj> inline Lattice<vobj> transposeColour(const Lattice<vobj> &lhs){
return transposeIndex<ColourIndex>(lhs);
}
template<int Index,class vobj> inline vobj transposeSpin(const vobj &lhs){
return transposeIndex<SpinIndex>(lhs);
}
template<int Index,class vobj> inline vobj transposeColour(const vobj &lhs){
return transposeIndex<ColourIndex>(lhs);
}
//////////////////////////////////////////
// Trace lattice and non-lattice
//////////////////////////////////////////
template<int Index,class vobj>
inline auto traceSpin(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(lhs._odata[0]))>
{
return traceIndex<SpinIndex>(lhs);
}
template<int Index,class vobj>
inline auto traceColour(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(lhs._odata[0]))>
{
return traceIndex<ColourIndex>(lhs);
}
template<int Index,class vobj>
inline auto traceSpin(const vobj &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(lhs))>
{
return traceIndex<SpinIndex>(lhs);
}
template<int Index,class vobj>
inline auto traceColour(const vobj &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(lhs))>
{
return traceIndex<ColourIndex>(lhs);
}
} //namespace QCD } //namespace QCD
} // Grid } // Grid

View File

@ -70,7 +70,7 @@ public:
////////////////////////////////////////////////// //////////////////////////////////////////////////
// the sum over all staples on each site // the sum over all staples on each site
////////////////////////////////////////////////// //////////////////////////////////////////////////
static void Staple(GaugeMat &staple,GaugeLorentz &Umu,int mu){ static void Staple(GaugeMat &staple,const GaugeLorentz &Umu,int mu){
std::vector<GaugeMat> U(4,Umu._grid); std::vector<GaugeMat> U(4,Umu._grid);
for(int d=0;d<Nd;d++){ for(int d=0;d<Nd;d++){
@ -123,12 +123,10 @@ void siteRectangle(GaugeMat &plaq,const std::vector<GaugeMat> &U, const int mu,
typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> ColourWilsonLoops; typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> ColourWilsonLoops;
typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> U1WilsonLoops;
typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> SU2WilsonLoops;
typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> SU3WilsonLoops;
}} }}
#endif #endif

View File

@ -28,13 +28,19 @@
namespace Grid { namespace Grid {
//////////////////////////////////////
// To take the floating point type of real/complex type // To take the floating point type of real/complex type
//////////////////////////////////////
template <typename T> struct RealPart { template <typename T> struct RealPart {
typedef T type; typedef T type;
}; };
template <typename T> struct RealPart< std::complex<T> >{ template <typename T> struct RealPart< std::complex<T> >{
typedef T type; typedef T type;
}; };
//////////////////////////////////////
// demote a vector to real type
//////////////////////////////////////
// type alias used to simplify the syntax of std::enable_if // type alias used to simplify the syntax of std::enable_if
template <typename T> using Invoke = typename T::type; template <typename T> using Invoke = typename T::type;
@ -90,7 +96,7 @@ namespace Grid {
Vector_type v; Vector_type v;
Scalar_type s[sizeof(Vector_type)/sizeof(Scalar_type)]; Scalar_type s[sizeof(Vector_type)/sizeof(Scalar_type)];
conv_t_union(){}; conv_t_union(){};
} conv_t; } conv_t;
Vector_type v; Vector_type v;
@ -205,7 +211,6 @@ namespace Grid {
return *this; return *this;
} }
/////////////////////////////////////// ///////////////////////////////////////
// Not all functions are supported // Not all functions are supported
// through SIMD and must breakout to // through SIMD and must breakout to
@ -214,7 +219,6 @@ namespace Grid {
/////////////////////////////////////// ///////////////////////////////////////
template<class functor> friend inline Grid_simd SimdApply (const functor &func,const Grid_simd &v) { template<class functor> friend inline Grid_simd SimdApply (const functor &func,const Grid_simd &v) {
Grid_simd ret; Grid_simd ret;
Grid_simd::conv_t conv; Grid_simd::conv_t conv;
@ -225,6 +229,19 @@ namespace Grid {
ret.v = conv.v; ret.v = conv.v;
return ret; return ret;
} }
template<class functor> friend inline Grid_simd SimdApplyBinop (const functor &func,const Grid_simd &x,const Grid_simd &y) {
Grid_simd ret;
Grid_simd::conv_t cx;
Grid_simd::conv_t cy;
cx.v = x.v;
cy.v = y.v;
for(int i=0;i<Nsimd();i++){
cx.s[i]=func(cx.s[i],cy.s[i]);
}
ret.v = cx.v;
return ret;
}
//////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////
// General permute; assumes vector length is same across // General permute; assumes vector length is same across
@ -235,6 +252,7 @@ namespace Grid {
{ {
Gpermute<Grid_simd>(y,b,perm); Gpermute<Grid_simd>(y,b,perm);
} }
};// end of Grid_simd class definition };// end of Grid_simd class definition
@ -383,7 +401,6 @@ namespace Grid {
return in; return in;
} }
///////////////////// /////////////////////
// Inner, outer // Inner, outer
///////////////////// /////////////////////
@ -405,6 +422,46 @@ namespace Grid {
return arg; return arg;
} }
////////////////////////////////////////////////////////////
// copy/splat complex real parts into real;
// insert real into complex and zero imag;
////////////////////////////////////////////////////////////
//real = toReal( complex )
template<class S,class V,IfReal<S> = 0>
inline Grid_simd<S,V> toReal(const Grid_simd<std::complex<S>,V> &in)
{
typedef Grid_simd<S,V> simd;
simd ret;
typename simd::conv_t conv;
conv.v = in.v;
for(int i=0;i<simd::Nsimd();i+=2){
conv.s[i+1]=conv.s[i]; // duplicate (r,r);(r,r);(r,r); etc...
}
ret.v = conv.v;
return ret;
}
//complex = toComplex( real )
template<class R,class V,IfReal<R> = 0 > // must be a real arg
inline Grid_simd<std::complex<R>,V> toComplex (const Grid_simd<R,V> &in)
{
typedef Grid_simd<R,V> Rsimd;
typedef Grid_simd<std::complex<R>,V> Csimd;
typename Rsimd::conv_t conv;// address as real
conv.v = in.v;
for(int i=0;i<Rsimd::Nsimd();i+=2){
assert(conv.s[i+1]==conv.s[i]); // trap any cases where real was not duplicated
// indicating the SIMD grids of real and imag assignment did not correctly match
conv.s[i+1]=0.0; // zero imaginary parts
}
Csimd ret;
ret.v = conv.v;
return ret;
}
/////////////////////////////// ///////////////////////////////
// Define available types // Define available types
/////////////////////////////// ///////////////////////////////
@ -413,6 +470,20 @@ namespace Grid {
typedef Grid_simd< std::complex< float > , SIMD_Ftype > vComplexF; typedef Grid_simd< std::complex< float > , SIMD_Ftype > vComplexF;
typedef Grid_simd< std::complex< double >, SIMD_Dtype > vComplexD; typedef Grid_simd< std::complex< double >, SIMD_Dtype > vComplexD;
typedef Grid_simd< Integer , SIMD_Itype > vInteger; typedef Grid_simd< Integer , SIMD_Itype > vInteger;
/////////////////////////////////////////
// Some traits to recognise the types
/////////////////////////////////////////
template <typename T> struct is_simd : public std::false_type{};
template <> struct is_simd<vRealF> : public std::true_type {};
template <> struct is_simd<vRealD> : public std::true_type {};
template <> struct is_simd<vComplexF>: public std::true_type {};
template <> struct is_simd<vComplexD>: public std::true_type {};
template <> struct is_simd<vInteger> : public std::true_type {};
template <typename T> using IfSimd = Invoke<std::enable_if< is_simd<T>::value,int> > ;
template <typename T> using IfNotSimd = Invoke<std::enable_if<!is_simd<T>::value,unsigned> > ;
} }
#endif #endif

View File

@ -1,6 +1,8 @@
#ifndef GRID_VECTOR_UNOPS #ifndef GRID_VECTOR_UNOPS
#define GRID_VECTOR_UNOPS #define GRID_VECTOR_UNOPS
#include <cmath>
namespace Grid { namespace Grid {
template<class scalar> struct SqrtRealFunctor { template<class scalar> struct SqrtRealFunctor {
@ -27,6 +29,28 @@ namespace Grid {
} }
}; };
template<class scalar> struct LogRealFunctor {
scalar operator()(const scalar &a) const {
return log(real(a));
}
};
template<class scalar> struct ExpRealFunctor {
scalar operator()(const scalar &a) const {
return exp(real(a));
}
};
template<class scalar> struct NotFunctor {
scalar operator()(const scalar &a) const {
return (!a);
}
};
template<class scalar> struct AbsRealFunctor {
scalar operator()(const scalar &a) const {
return std::abs(real(a));
}
};
template<class scalar> struct PowRealFunctor { template<class scalar> struct PowRealFunctor {
double y; double y;
PowRealFunctor(double _y) : y(_y) {}; PowRealFunctor(double _y) : y(_y) {};
@ -43,6 +67,25 @@ namespace Grid {
} }
}; };
template<class scalar> struct RealFunctor {
scalar operator()(const scalar &a) const {
return real(a);
}
};
template<class scalar> struct ImagFunctor {
scalar operator()(const scalar &a) const {
return imag(a);
}
};
template < class S, class V >
inline Grid_simd<S,V> real(const Grid_simd<S,V> &r) {
return SimdApply(RealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> imag(const Grid_simd<S,V> &r) {
return SimdApply(ImagFunctor<S>(),r);
}
template < class S, class V > template < class S, class V >
inline Grid_simd<S,V> sqrt(const Grid_simd<S,V> &r) { inline Grid_simd<S,V> sqrt(const Grid_simd<S,V> &r) {
return SimdApply(SqrtRealFunctor<S>(),r); return SimdApply(SqrtRealFunctor<S>(),r);
@ -60,6 +103,22 @@ namespace Grid {
return SimdApply(CosRealFunctor<S>(),r); return SimdApply(CosRealFunctor<S>(),r);
} }
template < class S, class V > template < class S, class V >
inline Grid_simd<S,V> log(const Grid_simd<S,V> &r) {
return SimdApply(LogRealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> abs(const Grid_simd<S,V> &r) {
return SimdApply(AbsRealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> exp(const Grid_simd<S,V> &r) {
return SimdApply(ExpRealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> Not(const Grid_simd<S,V> &r) {
return SimdApply(NotFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> pow(const Grid_simd<S,V> &r,double y) { inline Grid_simd<S,V> pow(const Grid_simd<S,V> &r,double y) {
return SimdApply(PowRealFunctor<S>(y),r); return SimdApply(PowRealFunctor<S>(y),r);
} }
@ -67,6 +126,55 @@ namespace Grid {
inline Grid_simd<S,V> mod(const Grid_simd<S,V> &r,Integer y) { inline Grid_simd<S,V> mod(const Grid_simd<S,V> &r,Integer y) {
return SimdApply(ModIntFunctor<S>(y),r); return SimdApply(ModIntFunctor<S>(y),r);
} }
////////////////////////////////////////////////////////////////////////////
// Allows us to assign into **conformable** real vectors from complex
////////////////////////////////////////////////////////////////////////////
// template < class S, class V >
// inline auto ComplexRemove(const Grid_simd<S,V> &c) -> Grid_simd<Grid_simd<S,V>::Real,V> {
// Grid_simd<Grid_simd<S,V>::Real,V> ret;
// ret.v = c.v;
// return ret;
// }
template<class scalar> struct AndFunctor {
scalar operator()(const scalar &x, const scalar &y) const {
return x & y;
}
};
template<class scalar> struct OrFunctor {
scalar operator()(const scalar &x, const scalar &y) const {
return x | y;
}
};
template<class scalar> struct AndAndFunctor {
scalar operator()(const scalar &x, const scalar &y) const {
return x && y;
}
};
template<class scalar> struct OrOrFunctor {
scalar operator()(const scalar &x, const scalar &y) const {
return x || y;
}
};
////////////////////////////////
// Calls to simd binop functors
////////////////////////////////
template < class S, class V >
inline Grid_simd<S,V> operator &(const Grid_simd<S,V> &x,const Grid_simd<S,V> &y) {
return SimdApplyBinop(AndFunctor<S>(),x,y);
}
template < class S, class V >
inline Grid_simd<S,V> operator &&(const Grid_simd<S,V> &x,const Grid_simd<S,V> &y) {
return SimdApplyBinop(AndAndFunctor<S>(),x,y);
}
template < class S, class V >
inline Grid_simd<S,V> operator |(const Grid_simd<S,V> &x,const Grid_simd<S,V> &y) {
return SimdApplyBinop(OrFunctor<S>(),x,y);
}
template < class S, class V >
inline Grid_simd<S,V> operator ||(const Grid_simd<S,V> &x,const Grid_simd<S,V> &y) {
return SimdApplyBinop(OrOrFunctor<S>(),x,y);
}
} }
#endif #endif

View File

@ -9,12 +9,12 @@ namespace Grid {
////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////
// multiplication by fundamental scalar type // multiplication by fundamental scalar type
template<class l,int N> strong_inline iScalar<l> operator * (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs) template<class l> strong_inline iScalar<l> operator * (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
{ {
typename iScalar<l>::tensor_reduced srhs; srhs=rhs; typename iScalar<l>::tensor_reduced srhs; srhs=rhs;
return lhs*srhs; return lhs*srhs;
} }
template<class l,int N> strong_inline iScalar<l> operator * (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) { return rhs*lhs; } template<class l> strong_inline iScalar<l> operator * (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) { return rhs*lhs; }
template<class l,int N> strong_inline iVector<l,N> operator * (const iVector<l,N>& lhs,const typename iScalar<l>::scalar_type rhs) template<class l,int N> strong_inline iVector<l,N> operator * (const iVector<l,N>& lhs,const typename iScalar<l>::scalar_type rhs)
{ {
@ -118,12 +118,12 @@ template<class l,int N> strong_inline iMatrix<l,N> operator * (Integer lhs,const
/////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////
// addition by fundamental scalar type applies to matrix(down diag) and scalar // addition by fundamental scalar type applies to matrix(down diag) and scalar
/////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////
template<class l,int N> strong_inline iScalar<l> operator + (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs) template<class l> strong_inline iScalar<l> operator + (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
{ {
typename iScalar<l>::tensor_reduced srhs; srhs=rhs; typename iScalar<l>::tensor_reduced srhs; srhs=rhs;
return lhs+srhs; return lhs+srhs;
} }
template<class l,int N> strong_inline iScalar<l> operator + (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) { return rhs+lhs; } template<class l> strong_inline iScalar<l> operator + (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) { return rhs+lhs; }
template<class l,int N> strong_inline iMatrix<l,N> operator + (const iMatrix<l,N>& lhs,const typename iScalar<l>::scalar_type rhs) template<class l,int N> strong_inline iMatrix<l,N> operator + (const iMatrix<l,N>& lhs,const typename iScalar<l>::scalar_type rhs)
{ {
@ -176,12 +176,12 @@ template<class l,int N> strong_inline iMatrix<l,N> operator + (Integer lhs,const
/////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////
// subtraction of fundamental scalar type applies to matrix(down diag) and scalar // subtraction of fundamental scalar type applies to matrix(down diag) and scalar
/////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////
template<class l,int N> strong_inline iScalar<l> operator - (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs) template<class l> strong_inline iScalar<l> operator - (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
{ {
typename iScalar<l>::tensor_reduced srhs; srhs=rhs; typename iScalar<l>::tensor_reduced srhs; srhs=rhs;
return lhs-srhs; return lhs-srhs;
} }
template<class l,int N> strong_inline iScalar<l> operator - (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) template<class l> strong_inline iScalar<l> operator - (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs)
{ {
typename iScalar<l>::tensor_reduced slhs;slhs=lhs; typename iScalar<l>::tensor_reduced slhs;slhs=lhs;
return slhs-rhs; return slhs-rhs;

View File

@ -23,13 +23,17 @@ template<class vtype> class iScalar
public: public:
vtype _internal; vtype _internal;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type; typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
typedef typename GridTypeMapper<vtype>::vector_type vector_type; typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v; typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef iScalar<tensor_reduced_v> tensor_reduced; typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object; typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
typedef iScalar<recurse_scalar_object> scalar_object; typedef iScalar<recurse_scalar_object> scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iScalar<typename GridTypeMapper<vtype>::Complexified > Complexified;
typedef iScalar<typename GridTypeMapper<vtype>::Realified > Realified;
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1}; enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1};
// Scalar no action // Scalar no action
@ -86,9 +90,19 @@ public:
strong_inline const vtype & operator ()(void) const { strong_inline const vtype & operator ()(void) const {
return _internal; return _internal;
} }
operator ComplexD () const { return(TensorRemove(_internal)); }; // Type casts meta programmed
operator RealD () const { return(real(TensorRemove(_internal))); } template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0>
operator ComplexF () const { return(TensorRemove(_internal)); };
template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0>
operator ComplexD () const { return(TensorRemove(_internal)); };
template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0>
operator RealD () const { return(real(TensorRemove(_internal))); }
template<class U=vtype,class V=scalar_type,IfReal<V> = 0,IfNotSimd<U> = 0>
operator RealD () const { return TensorRemove(_internal); }
template<class U=vtype,class V=scalar_type,IfInteger<V> = 0,IfNotSimd<U> = 0>
operator Integer () const { return Integer(TensorRemove(_internal)); }
// convert from a something to a scalar via constructor of something arg // convert from a something to a scalar via constructor of something arg
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline iScalar<vtype> operator = (T arg) template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline iScalar<vtype> operator = (T arg)
@ -123,6 +137,10 @@ public:
typedef iScalar<tensor_reduced_v> tensor_reduced; typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iVector<recurse_scalar_object,N> scalar_object; typedef iVector<recurse_scalar_object,N> scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iVector<typename GridTypeMapper<vtype>::Complexified,N > Complexified;
typedef iVector<typename GridTypeMapper<vtype>::Realified,N > Realified;
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline auto operator = (T arg) -> iVector<vtype,N> template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline auto operator = (T arg) -> iVector<vtype,N>
{ {
zeroit(*this); zeroit(*this);
@ -211,6 +229,12 @@ public:
typedef typename GridTypeMapper<vtype>::vector_type vector_type; typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v; typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object; typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iMatrix<typename GridTypeMapper<vtype>::Complexified,N > Complexified;
typedef iMatrix<typename GridTypeMapper<vtype>::Realified,N > Realified;
// Tensure removal
typedef iScalar<tensor_reduced_v> tensor_reduced; typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iMatrix<recurse_scalar_object,N> scalar_object; typedef iMatrix<recurse_scalar_object,N> scalar_object;

View File

@ -31,18 +31,17 @@ inline void merge(typename std::enable_if<!isGridTensor<vsimd>::value, vsimd >::
std::vector<scalar *> &extracted,int offset){ std::vector<scalar *> &extracted,int offset){
int Nextr=extracted.size(); int Nextr=extracted.size();
int Nsimd=vsimd::Nsimd(); int Nsimd=vsimd::Nsimd();
int s=Nsimd/Nextr; int s=Nsimd/Nextr; // can have sparse occupation of simd vector if simd_layout does not fill it
// replicate n-fold. Use to allow Integer masks to
// predicate floating point of various width assignments and maintain conformable.
scalar *buf =(scalar *) y; scalar *buf =(scalar *) y;
for(int i=0;i<Nextr;i++){ for(int i=0;i<Nextr;i++){
for(int ii=0;ii<s;ii++){ for(int ii=0;ii<s;ii++){
buf[i*s+ii]=extracted[i][offset]; buf[i*s+ii]=extracted[i][offset];
} }
} }
}; };
//////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////
// Extract a fundamental vector type to scalar array // Extract a fundamental vector type to scalar array
//////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////
@ -55,8 +54,17 @@ inline void extract(typename std::enable_if<!isGridTensor<vsimd>::value, const v
scalar *buf = (scalar *)&y; scalar *buf = (scalar *)&y;
for(int i=0;i<Nextr;i++){ for(int i=0;i<Nextr;i++){
for(int ii=0;ii<s;ii++){ extracted[i]=buf[i*s];
extracted[i]=buf[i*s+ii]; for(int ii=1;ii<s;ii++){
if ( buf[i*s]!=buf[i*s+ii] ){
std::cout << " SIMD extract failure splat="<<s<<" ii "<<ii<<" " <<Nextr<<" "<< Nsimd<<" "<<std::endl;
for(int vv=0;vv<Nsimd;vv++) {
std::cout<< buf[vv]<<" ";
}
std::cout<<std::endl;
assert(0);
}
assert(buf[i*s]==buf[i*s+ii]);
} }
} }
@ -74,21 +82,7 @@ inline void merge(typename std::enable_if<!isGridTensor<vsimd>::value, vsimd >::
for(int i=0;i<Nextr;i++){ for(int i=0;i<Nextr;i++){
for(int ii=0;ii<s;ii++){ for(int ii=0;ii<s;ii++){
buf[i*s+ii]=extracted[i]; buf[i*s+ii]=extracted[i]; // replicates value
}
}
};
template<class vsimd,class scalar>
inline void AmergeA(typename std::enable_if<!isGridTensor<vsimd>::value, vsimd >::type &y,std::vector<scalar> &extracted){
int Nextr=extracted.size();
int Nsimd=vsimd::Nsimd();
int s=Nsimd/Nextr;
scalar *buf = (scalar *)&y;
for(int i=0;i<Nextr;i++){
for(int ii=0;ii<s;ii++){
buf[i*s+ii]=extracted[i];
} }
} }
}; };
@ -102,12 +96,12 @@ template<class vobj> inline void extract(const vobj &vec,std::vector<typename vo
typedef typename vobj::vector_type vector_type ; typedef typename vobj::vector_type vector_type ;
const int Nsimd=vobj::vector_type::Nsimd(); const int Nsimd=vobj::vector_type::Nsimd();
int Nextr=extracted.size();
const int words=sizeof(vobj)/sizeof(vector_type); const int words=sizeof(vobj)/sizeof(vector_type);
int s=Nsimd/Nextr;
extracted.resize(Nsimd); std::vector<scalar_type *> pointers(Nextr);
for(int i=0;i<Nextr;i++)
std::vector<scalar_type *> pointers(Nsimd);
for(int i=0;i<Nsimd;i++)
pointers[i] =(scalar_type *)& extracted[i]; pointers[i] =(scalar_type *)& extracted[i];
vector_type *vp = (vector_type *)&vec; vector_type *vp = (vector_type *)&vec;
@ -127,11 +121,11 @@ void extract(const vobj &vec,std::vector<typename vobj::scalar_object *> &extrac
const int words=sizeof(vobj)/sizeof(vector_type); const int words=sizeof(vobj)/sizeof(vector_type);
const int Nsimd=vobj::vector_type::Nsimd(); const int Nsimd=vobj::vector_type::Nsimd();
int Nextr=extracted.size();
assert(extracted.size()==Nsimd); int s = Nsimd/Nextr;
std::vector<scalar_type *> pointers(Nsimd); std::vector<scalar_type *> pointers(Nsimd);
for(int i=0;i<Nsimd;i++) { for(int i=0;i<Nextr;i++) {
pointers[i] =(scalar_type *)& extracted[i][offset]; pointers[i] =(scalar_type *)& extracted[i][offset];
} }
@ -153,10 +147,11 @@ void merge(vobj &vec,std::vector<typename vobj::scalar_object> &extracted)
const int Nsimd=vobj::vector_type::Nsimd(); const int Nsimd=vobj::vector_type::Nsimd();
const int words=sizeof(vobj)/sizeof(vector_type); const int words=sizeof(vobj)/sizeof(vector_type);
assert(extracted.size()==Nsimd); int Nextr = extracted.size();
int splat=Nsimd/Nextr;
std::vector<scalar_type *> pointers(Nsimd); std::vector<scalar_type *> pointers(Nextr);
for(int i=0;i<Nsimd;i++) for(int i=0;i<Nextr;i++)
pointers[i] =(scalar_type *)& extracted[i]; pointers[i] =(scalar_type *)& extracted[i];
vector_type *vp = (vector_type *)&vec; vector_type *vp = (vector_type *)&vec;
@ -177,14 +172,14 @@ void merge(vobj &vec,std::vector<typename vobj::scalar_object *> &extracted,int
const int Nsimd=vobj::vector_type::Nsimd(); const int Nsimd=vobj::vector_type::Nsimd();
const int words=sizeof(vobj)/sizeof(vector_type); const int words=sizeof(vobj)/sizeof(vector_type);
assert(extracted.size()==Nsimd); int Nextr=extracted.size();
std::vector<scalar_type *> pointers(Nsimd); std::vector<scalar_type *> pointers(Nextr);
for(int i=0;i<Nsimd;i++) for(int i=0;i<Nextr;i++)
pointers[i] =(scalar_type *)& extracted[i][offset]; pointers[i] =(scalar_type *)& extracted[i][offset];
vector_type *vp = (vector_type *)&vec; vector_type *vp = (vector_type *)&vec;
assert((void *)vp!=NULL);
for(int w=0;w<words;w++){ for(int w=0;w<words;w++){
merge<vector_type,scalar_type>(&vp[w],pointers,w); merge<vector_type,scalar_type>(&vp[w],pointers,w);
} }

View File

@ -10,7 +10,8 @@ namespace Grid {
typedef typename sobj::scalar_type scalar; typedef typename sobj::scalar_type scalar;
decltype(innerProduct(arg,arg)) nrm; decltype(innerProduct(arg,arg)) nrm;
nrm = innerProduct(arg,arg); nrm = innerProduct(arg,arg);
return real(nrm); RealD ret = real(nrm);
return ret;
} }
template<class l,class r,int N> inline template<class l,class r,int N> inline

View File

@ -0,0 +1,32 @@
#ifndef GRID_TENSOR_LOGICAL_H
#define GRID_TENSOR_LOGICAL_H
namespace Grid {
#define LOGICAL_BINOP(Op)\
template<class v> strong_inline iScalar<v> operator Op (const iScalar<v>& lhs,const iScalar<v>& rhs) \
{\
iScalar<v> ret;\
ret._internal = lhs._internal Op rhs._internal ;\
return ret;\
}\
template<class l> strong_inline iScalar<l> operator Op (const iScalar<l>& lhs,Integer rhs) \
{\
typename iScalar<l>::scalar_type t; t=rhs;\
typename iScalar<l>::tensor_reduced srhs; srhs=t;\
return lhs Op srhs;\
}\
template<class l> strong_inline iScalar<l> operator Op (Integer lhs,const iScalar<l>& rhs) \
{\
typename iScalar<l>::scalar_type t;t=lhs;\
typename iScalar<l>::tensor_reduced slhs;slhs=t;\
return slhs Op rhs;\
}
LOGICAL_BINOP(|);
LOGICAL_BINOP(&);
LOGICAL_BINOP(||);
LOGICAL_BINOP(&&);
}
#endif

View File

@ -26,6 +26,8 @@ namespace Grid {
typedef typename T::vector_type vector_type; typedef typename T::vector_type vector_type;
typedef typename T::tensor_reduced tensor_reduced; typedef typename T::tensor_reduced tensor_reduced;
typedef typename T::scalar_object scalar_object; typedef typename T::scalar_object scalar_object;
typedef typename T::Complexified Complexified;
typedef typename T::Realified Realified;
enum { TensorLevel = T::TensorLevel }; enum { TensorLevel = T::TensorLevel };
}; };
@ -38,6 +40,8 @@ namespace Grid {
typedef RealF vector_type; typedef RealF vector_type;
typedef RealF tensor_reduced ; typedef RealF tensor_reduced ;
typedef RealF scalar_object; typedef RealF scalar_object;
typedef ComplexF Complexified;
typedef RealF Realified;
enum { TensorLevel = 0 }; enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<RealD> { template<> class GridTypeMapper<RealD> {
@ -46,6 +50,8 @@ namespace Grid {
typedef RealD vector_type; typedef RealD vector_type;
typedef RealD tensor_reduced; typedef RealD tensor_reduced;
typedef RealD scalar_object; typedef RealD scalar_object;
typedef ComplexD Complexified;
typedef RealD Realified;
enum { TensorLevel = 0 }; enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<ComplexF> { template<> class GridTypeMapper<ComplexF> {
@ -54,6 +60,8 @@ namespace Grid {
typedef ComplexF vector_type; typedef ComplexF vector_type;
typedef ComplexF tensor_reduced; typedef ComplexF tensor_reduced;
typedef ComplexF scalar_object; typedef ComplexF scalar_object;
typedef ComplexF Complexified;
typedef RealF Realified;
enum { TensorLevel = 0 }; enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<ComplexD> { template<> class GridTypeMapper<ComplexD> {
@ -62,6 +70,8 @@ namespace Grid {
typedef ComplexD vector_type; typedef ComplexD vector_type;
typedef ComplexD tensor_reduced; typedef ComplexD tensor_reduced;
typedef ComplexD scalar_object; typedef ComplexD scalar_object;
typedef ComplexD Complexified;
typedef RealD Realified;
enum { TensorLevel = 0 }; enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<Integer> { template<> class GridTypeMapper<Integer> {
@ -70,6 +80,8 @@ namespace Grid {
typedef Integer vector_type; typedef Integer vector_type;
typedef Integer tensor_reduced; typedef Integer tensor_reduced;
typedef Integer scalar_object; typedef Integer scalar_object;
typedef void Complexified;
typedef void Realified;
enum { TensorLevel = 0 }; enum { TensorLevel = 0 };
}; };
@ -79,6 +91,8 @@ namespace Grid {
typedef vRealF vector_type; typedef vRealF vector_type;
typedef vRealF tensor_reduced; typedef vRealF tensor_reduced;
typedef RealF scalar_object; typedef RealF scalar_object;
typedef vComplexF Complexified;
typedef vRealF Realified;
enum { TensorLevel = 0 }; enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<vRealD> { template<> class GridTypeMapper<vRealD> {
@ -87,6 +101,8 @@ namespace Grid {
typedef vRealD vector_type; typedef vRealD vector_type;
typedef vRealD tensor_reduced; typedef vRealD tensor_reduced;
typedef RealD scalar_object; typedef RealD scalar_object;
typedef vComplexD Complexified;
typedef vRealD Realified;
enum { TensorLevel = 0 }; enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<vComplexF> { template<> class GridTypeMapper<vComplexF> {
@ -95,6 +111,8 @@ namespace Grid {
typedef vComplexF vector_type; typedef vComplexF vector_type;
typedef vComplexF tensor_reduced; typedef vComplexF tensor_reduced;
typedef ComplexF scalar_object; typedef ComplexF scalar_object;
typedef vComplexF Complexified;
typedef vRealF Realified;
enum { TensorLevel = 0 }; enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<vComplexD> { template<> class GridTypeMapper<vComplexD> {
@ -103,6 +121,8 @@ namespace Grid {
typedef vComplexD vector_type; typedef vComplexD vector_type;
typedef vComplexD tensor_reduced; typedef vComplexD tensor_reduced;
typedef ComplexD scalar_object; typedef ComplexD scalar_object;
typedef vComplexD Complexified;
typedef vRealD Realified;
enum { TensorLevel = 0 }; enum { TensorLevel = 0 };
}; };
template<> class GridTypeMapper<vInteger> { template<> class GridTypeMapper<vInteger> {
@ -111,6 +131,8 @@ namespace Grid {
typedef vInteger vector_type; typedef vInteger vector_type;
typedef vInteger tensor_reduced; typedef vInteger tensor_reduced;
typedef Integer scalar_object; typedef Integer scalar_object;
typedef void Complexified;
typedef void Realified;
enum { TensorLevel = 0 }; enum { TensorLevel = 0 };
}; };

View File

@ -2,7 +2,7 @@
#define GRID_TENSOR_UNARY_H #define GRID_TENSOR_UNARY_H
namespace Grid { namespace Grid {
#define UNARY_REAL(func)\ #define UNARY(func)\
template<class obj> inline auto func(const iScalar<obj> &z) -> iScalar<obj>\ template<class obj> inline auto func(const iScalar<obj> &z) -> iScalar<obj>\
{\ {\
iScalar<obj> ret;\ iScalar<obj> ret;\
@ -53,14 +53,71 @@ template<class obj> inline iScalar<obj> func(const iScalar<obj> &z,scal y) \
return ret;\ return ret;\
} }
UNARY_REAL(sqrt); UNARY(sqrt);
UNARY_REAL(rsqrt); UNARY(rsqrt);
UNARY_REAL(sin); UNARY(sin);
UNARY_REAL(cos); UNARY(cos);
UNARY(log);
UNARY(exp);
UNARY(abs);
UNARY(Not);
template<class obj> inline auto toReal(const iScalar<obj> &z) -> typename iScalar<obj>::Realified
{
typename iScalar<obj>::Realified ret;
ret._internal = toReal(z._internal);
return ret;
}
template<class obj,int N> inline auto toReal(const iVector<obj,N> &z) -> typename iVector<obj,N>::Realified
{
typename iVector<obj,N>::Realified ret;
for(int c1=0;c1<N;c1++){
ret._internal[c1] = toReal(z._internal[c1]);
}
return ret;
}
template<class obj,int N> inline auto toReal(const iMatrix<obj,N> &z) -> typename iMatrix<obj,N>::Realified
{
typename iMatrix<obj,N>::Realified ret;
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal[c1][c2] = toReal(z._internal[c1][c2]);
}}
return ret;
}
template<class obj> inline auto toComplex(const iScalar<obj> &z) -> typename iScalar<obj>::Complexified
{
typename iScalar<obj>::Complexified ret;
ret._internal = toComplex(z._internal);
return ret;
}
template<class obj,int N> inline auto toComplex(const iVector<obj,N> &z) -> typename iVector<obj,N>::Complexified
{
typename iVector<obj,N>::Complexified ret;
for(int c1=0;c1<N;c1++){
ret._internal[c1] = toComplex(z._internal[c1]);
}
return ret;
}
template<class obj,int N> inline auto toComplex(const iMatrix<obj,N> &z) -> typename iMatrix<obj,N>::Complexified
{
typename iMatrix<obj,N>::Complexified ret;
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal[c1][c2] = toComplex(z._internal[c1][c2]);
}}
return ret;
}
BINARY_RSCALAR(mod,Integer); BINARY_RSCALAR(mod,Integer);
BINARY_RSCALAR(pow,RealD); BINARY_RSCALAR(pow,RealD);
#undef UNARY
#undef BINARY_RSCALAR
} }
#endif #endif

View File

@ -1,11 +1,15 @@
bin_PROGRAMS = Test_GaugeAction Test_cayley_cg Test_cayley_coarsen_support Test_cayley_even_odd Test_cayley_ldop_cg Test_cayley_ldop_cr Test_cayley_ldop_cr_chebyshev Test_cf_coarsen_support Test_cf_cr_unprec Test_contfrac_cg Test_contfrac_even_odd Test_cshift Test_cshift_red_black Test_dwf_cg_prec Test_dwf_cg_schur Test_dwf_cg_unprec Test_dwf_cr_unprec Test_dwf_even_odd Test_gamma Test_lie_generators Test_main Test_multishift_sqrt Test_nersc_io Test_remez Test_rng Test_rng_fixed Test_simd Test_stencil Test_wilson_cg_prec Test_wilson_cg_schur Test_wilson_cg_unprec Test_wilson_cr_unprec Test_wilson_even_odd bin_PROGRAMS = Test_GaugeAction Test_Metropolis Test_cayley_cg Test_cayley_coarsen_support Test_cayley_even_odd Test_cayley_ldop_cg Test_cayley_ldop_cr Test_cf_coarsen_support Test_cf_cr_unprec Test_contfrac_cg Test_contfrac_even_odd Test_cshift Test_cshift_red_black Test_dwf_cg_prec Test_dwf_cg_schur Test_dwf_cg_unprec Test_dwf_cr_unprec Test_dwf_even_odd Test_gamma Test_lie_generators Test_main Test_multishift_sqrt Test_nersc_io Test_remez Test_rng Test_rng_fixed Test_simd Test_stencil Test_wilson_cg_prec Test_wilson_cg_schur Test_wilson_cg_unprec Test_wilson_cr_unprec Test_wilson_even_odd
Test_GaugeAction_SOURCES=Test_GaugeAction.cc Test_GaugeAction_SOURCES=Test_GaugeAction.cc
Test_GaugeAction_LDADD=-lGrid Test_GaugeAction_LDADD=-lGrid
Test_Metropolis_SOURCES=Test_Metropolis.cc
Test_Metropolis_LDADD=-lGrid
Test_cayley_cg_SOURCES=Test_cayley_cg.cc Test_cayley_cg_SOURCES=Test_cayley_cg.cc
Test_cayley_cg_LDADD=-lGrid Test_cayley_cg_LDADD=-lGrid
@ -26,10 +30,6 @@ Test_cayley_ldop_cr_SOURCES=Test_cayley_ldop_cr.cc
Test_cayley_ldop_cr_LDADD=-lGrid Test_cayley_ldop_cr_LDADD=-lGrid
Test_cayley_ldop_cr_chebyshev_SOURCES=Test_cayley_ldop_cr_chebyshev.cc
Test_cayley_ldop_cr_chebyshev_LDADD=-lGrid
Test_cf_coarsen_support_SOURCES=Test_cf_coarsen_support.cc Test_cf_coarsen_support_SOURCES=Test_cf_coarsen_support.cc
Test_cf_coarsen_support_LDADD=-lGrid Test_cf_coarsen_support_LDADD=-lGrid

View File

@ -27,6 +27,7 @@ public:
} }
}; };
int main (int argc, char ** argv) int main (int argc, char ** argv)
{ {
Grid_init(&argc,&argv); Grid_init(&argc,&argv);

View File

@ -102,16 +102,11 @@ int main (int argc, char ** argv)
CoarseVector c_res (Coarse5d); CoarseVector c_res (Coarse5d);
CoarseVector c_proj(Coarse5d); CoarseVector c_proj(Coarse5d);
// TODO
// -- promote from subspace, check we get the vector we wanted
// -- apply ldop; check we get the same as inner product of M times big vec
// -- pick blocks one by one. Evaluate matrix elements.
Complex one(1.0); Complex one(1.0);
c_src = one; // 1 in every element for vector 1. c_src = one; // 1 in every element for vector 1.
blockPromote(c_src,err,subspace); blockPromote(c_src,err,subspace);
prom=zero; prom=zero;
for(int b=0;b<nbasis;b++){ for(int b=0;b<nbasis;b++){
prom=prom+subspace[b]; prom=prom+subspace[b];

View File

@ -66,7 +66,8 @@ int main (int argc, char ** argv)
nrm = abs(scm-cm()()()); nrm = abs(scm-cm()()());
std::vector<int> peer(4); std::vector<int> peer(4);
int index=real(cm); Complex tmp =cm;
Integer index=real(tmp);
Fine.CoorFromIndex(peer,index,latt_size); Fine.CoorFromIndex(peer,index,latt_size);
if (nrm > 0){ if (nrm > 0){

View File

@ -100,7 +100,8 @@ int main (int argc, char ** argv)
double nrm = abs(scm-cm()()()); double nrm = abs(scm-cm()()());
std::vector<int> peer(4); std::vector<int> peer(4);
int index=real(cm); Complex ctmp = cm;
Integer index=real(ctmp);
Fine.CoorFromIndex(peer,index,latt_size); Fine.CoorFromIndex(peer,index,latt_size);
if (nrm > 0){ if (nrm > 0){
@ -138,7 +139,8 @@ int main (int argc, char ** argv)
nrm = abs(scm-cm()()()); nrm = abs(scm-cm()()());
std::vector<int> peer(4); std::vector<int> peer(4);
int index=real(cm); Complex ctmp=cm;
Integer index=real(ctmp);
Fine.CoorFromIndex(peer,index,latt_size); Fine.CoorFromIndex(peer,index,latt_size);
if (nrm > 0){ if (nrm > 0){

View File

@ -95,7 +95,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<6;mu++){ for(int mu=0;mu<6;mu++){
result = Gamma(g[mu])* ident * Gamma(g[mu]); result = Gamma(g[mu])* ident * Gamma(g[mu]);
result = result - ident; result = result - ident;
double mag = TensorRemove(norm2(result)); RealD mag = norm2(result);
std::cout << list[mu]<<" " << mag<<std::endl; std::cout << list[mu]<<" " << mag<<std::endl;
} }
@ -103,7 +103,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<6;mu++){ for(int mu=0;mu<6;mu++){
result = rnd * Gamma(g[mu]); result = rnd * Gamma(g[mu]);
result = result + rnd * Gamma(g[mu+6]); result = result + rnd * Gamma(g[mu+6]);
double mag = TensorRemove(norm2(result)); RealD mag = norm2(result);
std::cout << list[mu]<<" " << mag<<std::endl; std::cout << list[mu]<<" " << mag<<std::endl;
} }
@ -111,7 +111,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<6;mu++){ for(int mu=0;mu<6;mu++){
result = Gamma(g[mu]) *rnd; result = Gamma(g[mu]) *rnd;
result = result + Gamma(g[mu+6])*rnd; result = result + Gamma(g[mu+6])*rnd;
double mag = TensorRemove(norm2(result)); RealD mag = norm2(result);
std::cout << list[mu]<<" " << mag<<std::endl; std::cout << list[mu]<<" " << mag<<std::endl;
} }

View File

@ -2,226 +2,91 @@
#include <qcd/utils/CovariantCshift.h> #include <qcd/utils/CovariantCshift.h>
#include <qcd/utils/WilsonLoops.h> #include <qcd/utils/WilsonLoops.h>
#include <qcd/utils/SUn.h>
using namespace std; using namespace std;
using namespace Grid; using namespace Grid;
using namespace Grid::QCD; using namespace Grid::QCD;
class suN {
public:
static int generators(int ncolour) { return ncolour*ncolour-1; }
static int su2subgroups(int ncolour) { return (ncolour*(ncolour-1))/2; }
template<typename CComplex,int N> using suNmatrix = iScalar<iScalar<iMatrix<CComplex,N> > > ;
////////////////////////////////////////////////////////////////////////
// There are N^2-1 generators for SU(N).
//
// We take a traceless hermitian generator basis as follows
//
// * Normalisation: trace ta tb = 1/2 delta_ab
//
// * Off diagonal
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
//
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
// direct count off each row
//
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
//
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
// 1+ 2+ + + Nc-1
//
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
//
// - We enumerate the row-col pairs.
// - for each row col pair there is a (sigma_x) and a (sigma_y) like generator
//
//
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => delta_{i,i1} delta_{j,i2} + delta_{i,i1} delta_{j,i2}
// t^a_ij = { in Nc(Nc-1)/2 ... Nc^(Nc-1) -1} => i delta_{i,i1} delta_{j,i2} - i delta_{i,i1} delta_{j,i2}
//
// * Diagonal; must be traceless and normalised
// - Sequence is
// N (1,-1,0,0...)
// N (1, 1,-2,0...)
// N (1, 1, 1,-3,0...)
// N (1, 1, 1, 1,-4,0...)
//
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
// NB this gives the famous SU3 result for su2 index 8
//
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
//
// ( 1 )
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
// ( -2)
////////////////////////////////////////////////////////////////////////
template<class CComplex,int Ncolour>
static void suNgenerator(int lieIndex,suNmatrix<CComplex,Ncolour> &ta){
// map lie index to which type of generator
int diagIndex;
int su2Index;
int sigxy;
int NNm1 = Ncolour*(Ncolour-1);
if ( lieIndex>= NNm1 ) {
diagIndex = lieIndex -NNm1;
suNgeneratorDiagonal(diagIndex,ta);
return;
}
sigxy = lieIndex&0x1;
su2Index= lieIndex>>1;
if ( sigxy ) suNgeneratorSigmaY(su2Index,ta);
else suNgeneratorSigmaX(su2Index,ta);
}
template<class CComplex,int Ncolour>
static void suNgeneratorSigmaX(int su2Index,suNmatrix<CComplex,Ncolour> &ta){
ta=zero;
int i1,i2;
su2SubGroupIndex<Ncolour>(i1,i2,su2Index);
ta()()(i1,i2)=1.0;
ta()()(i2,i1)=1.0;
ta= ta *0.5;
}
template<class CComplex,int Ncolour>
static void suNgeneratorSigmaY(int su2Index,suNmatrix<CComplex,Ncolour> &ta){
ta=zero;
Complex i(0.0,1.0);
int i1,i2;
su2SubGroupIndex<Ncolour>(i1,i2,su2Index);
ta()()(i1,i2)=-i;
ta()()(i2,i1)= i;
ta= ta *0.5;
}
template<class CComplex,int Ncolour>
static void suNgeneratorDiagonal(int diagIndex,suNmatrix<CComplex,Ncolour> &ta){
ta=zero;
int trsq=0;
int last=diagIndex+1;
for(int i=0;i<=diagIndex;i++){
ta()()(i,i) = 1.0;
trsq++;
}
ta()()(last,last) = -last;
trsq+=last*last;
RealD nrm = 1.0/std::sqrt(2.0*trsq);
ta = ta *nrm;
}
////////////////////////////////////////////////////////////////////////
// Map a
//
////////////////////////////////////////////////////////////////////////
template<int Ncolour>
static void su2SubGroupIndex(int &i1,int &i2,int su2_index){
assert( (su2_index>=0) && (su2_index< (Ncolour*(Ncolour-1))/2) );
int spare=su2_index;
for(i1=0;spare >= (Ncolour-1-i1);i1++ ){
spare = spare - (Ncolour-1-i1); // remove the Nc-1-i1 terms
}
i2=i1+1+spare;
}
template<class CComplex,int Ncolour>
static void su2Extract(std::vector<LatticeComplex> &r,const Lattice<suNmatrix<CComplex,Ncolour> > &source, int su2_index)
{
assert(r.size() == 4); // store in 4 real parts
for(int i=0;i<4;i++){
conformable(r[i],source);
}
int i1,i2;
su2SubGroupIndex<Ncolour>(i1,i2,su2_index);
/* Compute the b(k) of A_SU(2) = b0 + i sum_k bk sigma_k */
r[0] = real(source()()(i1,i1) + source()()(i2,i2));
r[1] = imag(source()()(i1,i2) + source()()(i2,i1));
r[2] = real(source()()(i1,i2) - source()()(i2,i1));
r[3] = imag(source()()(i1,i1) - source()()(i2,i2));
}
template<int Ncolour> static void printGenerators(void)
{
for(int gen=0;gen<suN::generators(Ncolour);gen++){
suN::suNmatrix<Complex,Ncolour> ta;
suN::suNgenerator(gen,ta);
std::cout<< "Nc = "<<Ncolour<<" t_"<<gen<<std::endl;
std::cout<<ta<<std::endl;
}
}
template<int Ncolour> static void testGenerators(void){
suNmatrix<Complex,Ncolour> ta;
suNmatrix<Complex,Ncolour> tb;
std::cout<<"Checking trace ta tb is 0.5 delta_ab"<<std::endl;
for(int a=0;a<generators(Ncolour);a++){
for(int b=0;b<generators(Ncolour);b++){
suNgenerator(a,ta);
suNgenerator(b,tb);
Complex tr =TensorRemove(trace(ta*tb));
std::cout<<tr<<" ";
if(a==b) assert(abs(tr-Complex(0.5))<1.0e-6);
if(a!=b) assert(abs(tr)<1.0e-6);
}
std::cout<<std::endl;
}
std::cout<<"Checking hermitian"<<std::endl;
for(int a=0;a<generators(Ncolour);a++){
suNgenerator(a,ta);
std::cout<<a<<" ";
assert(norm2(ta-adj(ta))<1.0e-6);
}
std::cout<<std::endl;
std::cout<<"Checking traceless"<<std::endl;
for(int a=0;a<generators(Ncolour);a++){
suNgenerator(a,ta);
Complex tr =TensorRemove(trace(ta));
std::cout<<a<<" ";
assert(abs(tr)<1.0e-6);
}
std::cout<<std::endl;
}
};
int main (int argc, char ** argv) int main (int argc, char ** argv)
{ {
Grid_init(&argc,&argv); Grid_init(&argc,&argv);
std::vector<int> latt({4,4,4,8});
std::vector<int> simd_layout = GridDefaultSimd(4,vComplexF::Nsimd()); GridCartesian * grid = SpaceTimeGrid::makeFourDimGrid(latt,
std::vector<int> mpi_layout = GridDefaultMpi(); GridDefaultSimd(Nd,vComplexF::Nsimd()),
std::vector<int> latt_size ({4,4,4,4}); GridDefaultMpi());
GridCartesian Fine(latt_size,simd_layout,mpi_layout); GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(grid);
LatticeGaugeField Umu(&Fine);
std::cout<<"*********************************************"<<std::endl; std::cout<<"*********************************************"<<std::endl;
std::cout<<"* Generators for SU(2)"<<std::endl; std::cout<<"* Generators for SU(2)"<<std::endl;
std::cout<<"*********************************************"<<std::endl; std::cout<<"*********************************************"<<std::endl;
suN::printGenerators<2>(); SU2::printGenerators();
suN::testGenerators<2>(); SU2::testGenerators();
std::cout<<"*********************************************"<<std::endl; std::cout<<"*********************************************"<<std::endl;
std::cout<<"* Generators for SU(3)"<<std::endl; std::cout<<"* Generators for SU(3)"<<std::endl;
std::cout<<"*********************************************"<<std::endl; std::cout<<"*********************************************"<<std::endl;
suN::printGenerators<3>(); SU3::printGenerators();
suN::testGenerators<3>(); SU3::testGenerators();
std::cout<<"*********************************************"<<std::endl;
std::cout<<"* Generators for SU(4)"<<std::endl; // std::cout<<"*********************************************"<<std::endl;
std::cout<<"*********************************************"<<std::endl; // std::cout<<"* Generators for SU(4)"<<std::endl;
suN::printGenerators<4>(); // std::cout<<"*********************************************"<<std::endl;
suN::testGenerators<4>(); // SU4::printGenerators();
std::cout<<"*********************************************"<<std::endl; // SU4::testGenerators();
std::cout<<"* Generators for SU(5)"<<std::endl;
std::cout<<"*********************************************"<<std::endl; // std::cout<<"*********************************************"<<std::endl;
suN::printGenerators<5>(); // std::cout<<"* Generators for SU(5)"<<std::endl;
suN::testGenerators<5>(); // std::cout<<"*********************************************"<<std::endl;
// SU5::printGenerators();
// SU5::testGenerators();
///////////////////////////////
// Configuration of known size
///////////////////////////////
NerscField header;
std::string file("./ckpoint_lat.400");
LatticeGaugeField Umu(grid);
// readNerscConfiguration(Umu,header,file);
Umu=1.0; // Cold start
// RNG set up for test
std::vector<int> pseeds({1,2,3,4,5}); // once I caught a fish alive
std::vector<int> sseeds({6,7,8,9,10});// then i let it go again
GridParallelRNG pRNG(grid); pRNG.SeedFixedIntegers(pseeds);
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(sseeds);
// SU3 colour operatoions
LatticeColourMatrix link(grid);
LatticeColourMatrix staple(grid);
int mu=0;
// Get Staple
ColourWilsonLoops::Staple(staple,Umu,mu);
// Get Link
link = peekIndex<LorentzIndex>(Umu,mu);
// Apply heatbath to the link
RealD beta=6.0;
int subgroup=0;
int nhb=1;
int trials=0;
int fails=0;
LatticeInteger one(rbGrid); one = 1; // fill with ones
LatticeInteger mask(grid); mask= zero;
one.checkerboard=Even;
setCheckerboard(mask,one);
// update Even checkerboard
SU3::SubGroupHeatBath(sRNG,pRNG,beta,link,staple,subgroup,
nhb,trials,fails,mask);
Grid_finalize(); Grid_finalize();
} }

View File

@ -242,7 +242,7 @@ int main (int argc, char ** argv)
{ // Peek-ology and Poke-ology, with a little app-ology { // Peek-ology and Poke-ology, with a little app-ology
TComplex c; Complex c;
ColourMatrix c_m; ColourMatrix c_m;
SpinMatrix s_m; SpinMatrix s_m;
SpinColourMatrix sc_m; SpinColourMatrix sc_m;
@ -299,7 +299,7 @@ int main (int argc, char ** argv)
} }
Bar = zero; Bar = zero;
Bar = where(lex<10,Foo,Bar); Bar = where(lex<Integer(10),Foo,Bar);
{ {
std::vector<int> coor(4); std::vector<int> coor(4);
for(coor[3]=0;coor[3]<latt_size[3]/mpi_layout[3];coor[3]++){ for(coor[3]=0;coor[3]<latt_size[3]/mpi_layout[3];coor[3]++){
@ -467,7 +467,8 @@ int main (int argc, char ** argv)
mdiff = shifted1-shifted2; mdiff = shifted1-shifted2;
amdiff=adj(mdiff); amdiff=adj(mdiff);
ColourMatrix prod = amdiff*mdiff; ColourMatrix prod = amdiff*mdiff;
Real Ttr=real(trace(prod)); Complex trprod = trace(prod);
Real Ttr=real(trprod);
double nn=Ttr; double nn=Ttr;
if ( nn > 0 ) if ( nn > 0 )
cout<<"Shift real trace fail "<<coor[0]<<coor[1]<<coor[2]<<coor[3] <<endl; cout<<"Shift real trace fail "<<coor[0]<<coor[1]<<coor[2]<<coor[3] <<endl;