1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-08-16 11:11:53 +01:00

Debugged momentum projection for A2A Meson Field

This commit is contained in:
2025-08-07 15:51:01 +00:00
parent 9e6a4a4737
commit 4397b1c442

View File

@@ -0,0 +1,282 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: MomentumProject.h
Copyright (C) 2025
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
NAMESPACE_BEGIN(Grid);
/*
MultiMomProject
Import vectors -> nxyz x (ncomponent x nt)
Import complex phases -> nmom x nxy
apply = via (possibly batched) GEMM
*/
template<class Field, class ComplexField>
class MomentumProject
{
public:
typedef typename Field::scalar_type scalar;
typedef typename Field::scalar_object scalar_object;
GridBase *grid;
uint64_t nmom;
uint64_t nxyz;
uint64_t nt;
uint64_t nbtw;
uint64_t words;
deviceVector<scalar> BLAS_V; //
deviceVector<scalar> BLAS_M; //
deviceVector<scalar> BLAS_P; //
MomentumProject(){};
~MomentumProject(){ Deallocate(); };
void Deallocate(void)
{
grid=nullptr;
nmom=0;
nxyz=0;
nt=0;
nbtw=0;
words=0;
BLAS_V.resize(0);
BLAS_M.resize(0);
BLAS_P.resize(0);
}
void Allocate(int _nmom,GridBase *_grid)
{
grid=_grid;
Coordinate ldims = grid->LocalDimensions();
nmom=_nmom;
nt = ldims[grid->Nd()-1];
nxyz = grid->lSites()/nt;
words = sizeof(scalar_object)/sizeof(scalar);
nbtw = nt * words;
BLAS_V.resize (nxyz * nt * words );
BLAS_M.resize (nmom * nxyz );
BLAS_P.resize (nmom * nt * words );
}
void ImportMomenta(const std::vector <ComplexField> &momenta)
{
GRID_ASSERT(momenta.size()==nmom);
// might as well just make the momenta here
typedef typename Field::vector_object vobj;
int nd = grid->_ndimension;
uint64_t sz = BLAS_M.size();
GRID_ASSERT(momenta.size()==nmom)
GRID_ASSERT(momenta[0].Grid()==grid);
GRID_ASSERT(sz = nxyz * nmom);
Coordinate rdimensions = grid->_rdimensions;
Coordinate ldims = grid->LocalDimensions();
int64_t osites = grid->oSites();
Coordinate simd = grid->_simd_layout;
const int Nsimd = vobj::Nsimd();
uint64_t lwords = words; // local variable for copy in to GPU
int64_t Nxyz = nxyz;
auto blasData_p = &BLAS_M[0];
for(int m=0;m<momenta.size();m++){
autoView( Data , momenta[m], AcceleratorRead);
auto Data_p = &Data[0];
accelerator_for(xyz,nxyz,1,{
//////////////////////////////////////////
// isite -- map lane within buffer to lane within lattice
////////////////////////////////////////////
Coordinate lcoor(nd,0);
Lexicographic::CoorFromIndex(lcoor,xyz,ldims);
Coordinate icoor(nd);
Coordinate ocoor(nd);
for (int d = 0; d < nd; d++) {
icoor[d] = lcoor[d]/rdimensions[d];
ocoor[d] = lcoor[d]%rdimensions[d];
}
int64_t osite;
int64_t isite;
Lexicographic::IndexFromCoor(ocoor,osite,rdimensions);
Lexicographic::IndexFromCoor(icoor,isite,simd);
// BLAS_M[nmom][slice_vol]
// Fortran Column major BLAS layout is M_xyz,mom
scalar data = extractLane(isite,Data[osite]);
uint64_t idx = xyz+m*Nxyz;
blasData_p[idx] = data;
});
}
}
void ImportVector(Field &vec)
{
typedef typename Field::vector_object vobj;
int nd = grid->_ndimension;
uint64_t sz = BLAS_V.size();
GRID_ASSERT(sz = nxyz * words * nt);
Coordinate rdimensions = grid->_rdimensions;
Coordinate ldims= grid->LocalDimensions();
int64_t osites = grid->oSites();
Coordinate simd = grid->_simd_layout;
const int Nsimd = vobj::Nsimd();
uint64_t lwords= words; // local variable for copy in to GPU
auto blasData_p = &BLAS_V[0];
autoView( Data , vec, AcceleratorRead);
auto Data_p = &Data[0];
int64_t nwords = words;// for capture
int64_t Nt = nt;// for capture
accelerator_for(sf,osites,Nsimd,{
#ifdef GRID_SIMT
{
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
#else
for(int lane=0;lane<Nsimd;lane++) {
#endif
//////////////////////////////////////////
// isite -- map lane within buffer to lane within lattice
////////////////////////////////////////////
Coordinate lcoor(nd,0);
Coordinate icoor(nd);
Coordinate ocoor(nd);
Lexicographic::CoorFromIndex(icoor,lane,simd);
Lexicographic::CoorFromIndex(ocoor,sf,rdimensions);
int64_t l_xyz = 0;
for (int d = 0; d < nd; d++) {
lcoor[d] = rdimensions[d]*icoor[d] + ocoor[d];
}
uint64_t l_t = lcoor[nd-1];
Coordinate xyz_coor = lcoor;
xyz_coor[nd-1] =0;
Lexicographic::IndexFromCoor(xyz_coor,l_xyz,ldims);
scalar_object data = extractLane(lane,Data[sf]);
scalar *data_words = (scalar *) &data;
for(int w = 0 ; w < nwords; w++) {
// BLAS_V[slice_vol][nt][words]
// Fortran Column major BLAS layout is V_(t,w)_xyz
uint64_t idx = w+l_t*nwords + l_xyz * nwords * Nt;
blasData_p[idx] = data_words[w];
}
#ifdef GRID_SIMT
}
#else
}
#endif
});
}
void ExportMomentumProjection(std::vector<typename Field::scalar_object> &projection)
{
projection.resize(nmom*nt);
acceleratorCopyFromDevice(&BLAS_P[0],(scalar *)&projection[0],BLAS_P.size()*sizeof(scalar));
// Could decide on a layout late?
}
// Row major layout "C" order:
// BLAS_V[slice_vol][nt][words]
// BLAS_M[nmom][slice_vol]
// BLAS_P[nmom][nt][words]
//
// Fortran Column major BLAS layout is V_(w,t)_xyz
// Fortran Column major BLAS layout is M_xyz,mom
// Fortran Column major BLAS layout is P_(w,t),mom
//
// Projected
//
// P = (V * M)_(w,t),mom
//
void Project(Field &data,std::vector< typename Field::scalar_object > & projected_gdata)
{
this->ImportVector(data);
std::vector< typename Field::scalar_object > projected_planes;
deviceVector<scalar *> Vd(1);
deviceVector<scalar *> Md(1);
deviceVector<scalar *> Pd(1);
scalar * Vh = & BLAS_V[0];
scalar * Mh = & BLAS_M[0];
scalar * Ph = & BLAS_P[0];
acceleratorPut(Vd[0],Vh);
acceleratorPut(Md[0],Mh);
acceleratorPut(Pd[0],Ph);
GridBLAS BLAS;
/////////////////////////////////////////
// P_im = VMmx . Vxi
/////////////////////////////////////////
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
words*nt,nmom,nxyz,
scalar(1.0),
Vd,
Md,
scalar(0.0), // wipe out result
Pd);
BLAS.synchronise();
ExportMomentumProjection(projected_planes); // resizes
/////////////////////////////////
// Reduce across MPI ranks
/////////////////////////////////
int nd = grid->Nd();
int gt = grid->GlobalDimensions()[nd-1];
int lt = grid->LocalDimensions()[nd-1];
projected_gdata.resize(gt*nmom);
for(int t=0;t<gt*nmom;t++){ // global Nt array with zeroes for stuff not on this node
projected_gdata[t]=Zero();
}
for(int t=0;t<lt;t++){
for(int m=0;m<nmom;m++){
int st = grid->LocalStarts()[nd-1];
projected_gdata[t+st + gt*m] = projected_planes[t+lt*m];
}}
grid->GlobalSumVector((scalar *)&projected_gdata[0],gt*nmom*words);
}
};
NAMESPACE_END(Grid);