1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Cleanup in progress

This commit is contained in:
Michael Marshall 2019-11-01 15:35:07 +00:00
parent 5c54f27ac1
commit 45d4cf0971
5 changed files with 209 additions and 1131 deletions

View File

@ -38,39 +38,6 @@
#include <Hadrons/A2AVectors.hpp>
#include <Hadrons/DilutedNoise.hpp>
/******************************************************************************
A consistent set of cross-platform methods for big endian <-> host byte ordering
I imagine this exists already?
This can be removed once the (deprecated) NamedTensor::ReadBinary & WriteBinary methods are deleted
******************************************************************************/
#if defined(__linux__)
# include <endian.h>
#elif defined(__FreeBSD__) || defined(__NetBSD__)
# include <sys/endian.h>
#elif defined(__OpenBSD__)
# include <sys/types.h>
# define be16toh(x) betoh16(x)
# define be32toh(x) betoh32(x)
# define be64toh(x) betoh64(x)
#elif defined(__APPLE__)
#include <libkern/OSByteOrder.h>
#define htobe16(x) OSSwapHostToBigInt16(x)
#define htole16(x) OSSwapHostToLittleInt16(x)
#define be16toh(x) OSSwapBigToHostInt16(x)
#define le16toh(x) OSSwapLittleToHostInt16(x)
#define htobe32(x) OSSwapHostToBigInt32(x)
#define htole32(x) OSSwapHostToLittleInt32(x)
#define be32toh(x) OSSwapBigToHostInt32(x)
#define le32toh(x) OSSwapLittleToHostInt32(x)
#define htobe64(x) OSSwapHostToBigInt64(x)
#define htole64(x) OSSwapHostToLittleInt64(x)
#define be64toh(x) OSSwapBigToHostInt64(x)
#define le64toh(x) OSSwapLittleToHostInt64(x)
#endif
/******************************************************************************
This potentially belongs in CartesianCommunicator
******************************************************************************/
@ -139,7 +106,7 @@ inline void SliceShare( GridBase * gridLowDim, GridBase * gridHighDim, void * Bu
*************************************************************************************/
template<typename Field, typename GaugeField=LatticeGaugeField>
class LinOpPeardonNabla : public LinearOperatorBase<Field>, public LinearFunction<Field> {
class Laplacian3D : public LinearOperatorBase<Field>, public LinearFunction<Field> {
typedef typename GaugeField::vector_type vCoeff_t;
protected: // I don't really mind if _gf is messed with ... so make this public?
//GaugeField & _gf;
@ -147,7 +114,7 @@ protected: // I don't really mind if _gf is messed with ... so make this public?
std::vector<Lattice<iColourMatrix<vCoeff_t> > > U;
public:
// Construct this operator given a gauge field and the number of dimensions it should act on
LinOpPeardonNabla( GaugeField& gf, int dimSpatial = Tdir ) : /*_gf(gf),*/ nd{dimSpatial} {
Laplacian3D( GaugeField& gf, int dimSpatial = Tdir ) : /*_gf(gf),*/ nd{dimSpatial} {
assert(dimSpatial>=1);
for( int mu = 0 ; mu < nd ; mu++ )
U.push_back(PeekIndex<LorentzIndex>(gf,mu));
@ -178,12 +145,12 @@ public:
};
template<typename Field>
class LinOpPeardonNablaHerm : public LinearFunction<Field> {
class Laplacian3DHerm : public LinearFunction<Field> {
public:
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;
LinOpPeardonNablaHerm(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
Laplacian3DHerm(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
: _poly{poly}, _Linop{linop} {}
void operator()(const Field& in, Field& out) {
@ -244,12 +211,6 @@ const bool full_tdil{ TI == Nt }; \
const bool exact_distillation{ full_tdil && LI == nvec }; \
const int Nt_inv{ full_tdil ? 1 : TI }
class BFieldIO: Serializable{
public:
using BaryonTensorSet = Eigen::Tensor<ComplexD, 6>;
GRID_SERIALIZABLE_CLASS_MEMBERS(BFieldIO, BaryonTensorSet, BField );
};
/******************************************************************************
Default for distillation file operations. For now only used by NamedTensor
******************************************************************************/
@ -268,9 +229,6 @@ static const char * FileExtension = ".dat";
NamedTensor object
This is an Eigen::Tensor of type Scalar_ and rank NumIndices_ (row-major order)
They can be persisted to disk
Scalar_ objects are assumed to be composite objects of size Endian_Scalar_Size.
(Disable big-endian by setting Endian_Scalar_Size=1).
NB: Endian_Scalar_Size will disappear when ReadBinary & WriteBinary retired
IndexNames contains one name for each index, and IndexNames are validated on load.
WHAT TO SAVE / VALIDATE ON LOAD (Override to warn instead of assert on load)
Ensemble string
@ -280,20 +238,18 @@ static const char * FileExtension = ".dat";
******************************************************************************/
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size_ = sizeof(Scalar_)>
template<typename Scalar_, int NumIndices_>
class NamedTensor : Serializable
{
public:
using Scalar = Scalar_;
static constexpr int NumIndices = NumIndices_;
static constexpr uint16_t Endian_Scalar_Size = Endian_Scalar_Size_;
using ET = Eigen::Tensor<Scalar_, NumIndices_, Eigen::RowMajor>;
using Index = typename ET::Index;
GRID_SERIALIZABLE_CLASS_MEMBERS(NamedTensor
, ET, tensor
, std::vector<std::string>, IndexNames
);
public:
// Named tensors are intended to be a superset of Eigen tensor
inline operator ET&() { return tensor; }
template<typename... IndexTypes>
@ -351,9 +307,6 @@ public:
// Read/Write in default format, i.e. HDF5 if present, else binary
inline void read (const char * filename, const char * pszTag = nullptr);
inline void write(const char * filename, const char * pszTag = nullptr) const;
// Original I/O implementation. This will be removed when we're sure it's no longer needed
EIGEN_DEPRECATED inline void ReadBinary (const std::string filename); // To be removed
EIGEN_DEPRECATED inline void WriteBinary(const std::string filename); // To be removed
// Case insensitive compare of two strings
// Pesumably this exists already? Where should this go?
@ -375,218 +328,31 @@ public:
// Is this a named tensor
template<typename T, typename V = void> struct is_named_tensor : public std::false_type {};
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size_> struct is_named_tensor<NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size_>> : public std::true_type {};
template<typename T> struct is_named_tensor<T, typename std::enable_if<std::is_base_of<NamedTensor<typename T::Scalar, T::NumIndices, T::Endian_Scalar_Size_>, T>::value>::type> : public std::true_type {};
template<typename Scalar_, int NumIndices_> struct is_named_tensor<NamedTensor<Scalar_, NumIndices_>> : public std::true_type {};
template<typename T> struct is_named_tensor<T, typename std::enable_if<std::is_base_of<NamedTensor<typename T::Scalar, T::NumIndices>, T>::value>::type> : public std::true_type {};
/******************************************************************************
PerambTensor object
Endian_Scalar_Size can be removed once (deprecated) NamedTensor::ReadBinary & WriteBinary methods deleted
******************************************************************************/
//template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size = sizeof(Scalar_)>
using PerambTensor = NamedTensor<SpinVector, 6, sizeof(Real)>;
using PerambTensor = NamedTensor<SpinVector, 6>;
static const std::array<std::string, 6> PerambIndexNames{"nT", "nVec", "LI", "nNoise", "nT_inv", "SI"};
/******************************************************************************
Save NamedTensor binary format (NB: On-disk format is Big Endian)
Assumes the Scalar_ objects are contiguous (no padding)
******************************************************************************/
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::WriteBinary(const std::string filename) {
LOG(Message) << "Writing NamedTensor to \"" << filename << "\"" << std::endl;
std::ofstream w(filename, std::ios::binary);
// Enforce assumption that the scalar is composed of fundamental elements of size Endian_Scalar_Size
assert((Endian_Scalar_Size == 1 || Endian_Scalar_Size == 2 || Endian_Scalar_Size == 4 || Endian_Scalar_Size == 8 )
&& "NamedTensor error: Endian_Scalar_Size should be 1, 2, 4 or 8");
assert((sizeof(Scalar_) % Endian_Scalar_Size) == 0 && "NamedTensor error: Scalar_ is not composed of Endian_Scalar_Size" );
// Size of the data (in bytes)
const uint32_t Scalar_Size{sizeof(Scalar_)};
const auto NumElements = tensor.size();
const std::streamsize TotalDataSize{static_cast<std::streamsize>(NumElements * Scalar_Size)};
uint64_t u64 = htobe64(static_cast<uint64_t>(TotalDataSize));
w.write(reinterpret_cast<const char *>(&u64), sizeof(u64));
// Size of a Scalar_
uint32_t u32{htobe32(Scalar_Size)};
w.write(reinterpret_cast<const char *>(&u32), sizeof(u32));
// Endian_Scalar_Size
uint16_t u16{htobe16(Endian_Scalar_Size)};
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
// number of dimensions which aren't 1
u16 = static_cast<uint16_t>(this->NumIndices);
for( auto dim : tensor.dimensions() )
if( dim == 1 )
u16--;
u16 = htobe16( u16 );
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
// dimensions together with names
int d = 0;
for( auto dim : tensor.dimensions() ) {
if( dim != 1 ) {
// size of this dimension
u16 = htobe16( static_cast<uint16_t>( dim ) );
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
// length of this dimension name
u16 = htobe16( static_cast<uint16_t>( IndexNames[d].size() ) );
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
// dimension name
w.write(IndexNames[d].c_str(), IndexNames[d].size());
}
d++;
}
// Actual data
char * const pStart{reinterpret_cast<char *>(tensor.data())};
// Swap to network byte order in place (alternative is to copy memory - still slow)
void * const pEnd{pStart + TotalDataSize};
if(Endian_Scalar_Size == 8)
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
* p = htobe64( * p );
else if(Endian_Scalar_Size == 4)
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
* p = htobe32( * p );
else if(Endian_Scalar_Size == 2)
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
* p = htobe16( * p );
w.write(pStart, TotalDataSize);
// Swap back from network byte order
if(Endian_Scalar_Size == 8)
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
* p = be64toh( * p );
else if(Endian_Scalar_Size == 4)
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
* p = be32toh( * p );
else if(Endian_Scalar_Size == 2)
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
* p = be16toh( * p );
// checksum
#ifdef USE_IPP
u32 = htobe32(GridChecksum::crc32c(tensor.data(), TotalDataSize));
#else
u32 = htobe32(GridChecksum::crc32(tensor.data(), TotalDataSize));
#endif
w.write(reinterpret_cast<const char *>(&u32), sizeof(u32));
}
/******************************************************************************
Load NamedTensor binary format (NB: On-disk format is Big Endian)
Assumes the Scalar_ objects are contiguous (no padding)
******************************************************************************/
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::ReadBinary(const std::string filename) {
LOG(Message) << "Reading NamedTensor from \"" << filename << "\"" << std::endl;
std::ifstream r(filename, std::ios::binary);
// Enforce assumption that the scalar is composed of fundamental elements of size Endian_Scalar_Size
assert((Endian_Scalar_Size == 1 || Endian_Scalar_Size == 2 || Endian_Scalar_Size == 4 || Endian_Scalar_Size == 8 )
&& "NamedTensor error: Endian_Scalar_Size should be 1, 2, 4 or 8");
assert((sizeof(Scalar_) % Endian_Scalar_Size) == 0 && "NamedTensor error: Scalar_ is not composed of Endian_Scalar_Size" );
// Size of the data in bytes
const uint32_t Scalar_Size{sizeof(Scalar_)};
Index NumElements{tensor.size()};
std::streamsize TotalDataSize{static_cast<std::streamsize>(NumElements * Scalar_Size)};
uint64_t u64;
r.read(reinterpret_cast<char *>(&u64), sizeof(u64));
assert( TotalDataSize == 0 || TotalDataSize == be64toh( u64 ) && "NamedTensor error: Size of the data in bytes" );
// Size of a Scalar_
uint32_t u32;
r.read(reinterpret_cast<char *>(&u32), sizeof(u32));
assert( Scalar_Size == be32toh( u32 ) && "NamedTensor error: sizeof(Scalar_)");
// Endian_Scalar_Size
uint16_t u16;
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
assert( Endian_Scalar_Size == be16toh( u16 ) && "NamedTensor error: Scalar_Unit_size");
// number of dimensions which aren't 1
uint16_t NumFileDimensions;
r.read(reinterpret_cast<char *>(&NumFileDimensions), sizeof(NumFileDimensions));
NumFileDimensions = be16toh( NumFileDimensions );
/*for( auto dim : tensor.dimensions() )
if( dim == 1 )
u16++;*/
assert( ( TotalDataSize == 0 && this->NumIndices >= NumFileDimensions || this->NumIndices == NumFileDimensions )
&& "NamedTensor error: number of dimensions which aren't 1" );
if( TotalDataSize == 0 ) {
// Read each dimension, using names to skip past dimensions == 1
std::array<Index,NumIndices_> NewDimensions;
for( Index &i : NewDimensions ) i = 1;
int d = 0;
for( int FileDimension = 0; FileDimension < NumFileDimensions; FileDimension++ ) {
// read dimension
uint16_t thisDim;
r.read(reinterpret_cast<char *>(&thisDim), sizeof(thisDim));
// read dimension name
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
size_t l = be16toh( u16 );
std::string s( l, '?' );
r.read(&s[0], l);
// skip forward to matching name
while( IndexNames[d].size() > 0 && !CompareCaseInsensitive( s, IndexNames[d] ) )
assert(++d < NumIndices && "NamedTensor error: dimension name" );
if( IndexNames[d].size() == 0 )
IndexNames[d] = s;
NewDimensions[d++] = be16toh( thisDim );
}
tensor.resize(NewDimensions);
NumElements = 1;
for( Index i : NewDimensions ) NumElements *= i;
TotalDataSize = NumElements * Scalar_Size;
} else {
// dimensions together with names
const auto & TensorDims = tensor.dimensions();
for( int d = 0; d < NumIndices_; d++ ) {
// size of dimension
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
u16 = be16toh( u16 );
assert( TensorDims[d] == u16 && "size of dimension" );
// length of dimension name
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
size_t l = be16toh( u16 );
assert( l == IndexNames[d].size() && "NamedTensor error: length of dimension name" );
// dimension name
std::string s( l, '?' );
r.read(&s[0], l);
assert( s == IndexNames[d] && "NamedTensor error: dimension name" );
}
}
// Actual data
char * const pStart{reinterpret_cast<char *>(tensor.data())};
void * const pEnd{pStart + TotalDataSize};
r.read(pStart,TotalDataSize);
// Swap back from network byte order
if(Endian_Scalar_Size == 8)
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
* p = be64toh( * p );
else if(Endian_Scalar_Size == 4)
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
* p = be32toh( * p );
else if(Endian_Scalar_Size == 2)
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
* p = be16toh( * p );
// checksum
r.read(reinterpret_cast<char *>(&u32), sizeof(u32));
u32 = be32toh( u32 );
#ifdef USE_IPP
u32 -= GridChecksum::crc32c(tensor.data(), TotalDataSize);
#else
u32 -= GridChecksum::crc32(tensor.data(), TotalDataSize);
#endif
assert( u32 == 0 && "NamedTensor error: PerambTensor checksum invalid");
}
/******************************************************************************
Write NamedTensor
******************************************************************************/
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
template<typename Scalar_, int NumIndices_>
template<typename Writer>
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::write(Writer &w, const char * pszTag)const{
void NamedTensor<Scalar_, NumIndices_>::write(Writer &w, const char * pszTag)const{
if( pszTag == nullptr )
pszTag = "NamedTensor";
LOG(Message) << "Writing NamedTensor to tag " << pszTag << std::endl;
write(w, pszTag, *this);
}
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::write(const char * filename, const char * pszTag)const{
template<typename Scalar_, int NumIndices_>
void NamedTensor<Scalar_, NumIndices_>::write(const char * filename, const char * pszTag)const{
std::string sFileName{filename};
sFileName.append( MDistil::FileExtension );
LOG(Message) << "Writing NamedTensor to file " << sFileName << std::endl;
@ -598,8 +364,8 @@ void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::write(const char * f
Validate named tensor index names
******************************************************************************/
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
bool NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::ValidateIndexNames( int iNumNames, const std::string * MatchNames ) const {
template<typename Scalar_, int NumIndices_>
bool NamedTensor<Scalar_, NumIndices_>::ValidateIndexNames( int iNumNames, const std::string * MatchNames ) const {
bool bSame{ iNumNames == NumIndices_ && IndexNames.size() == NumIndices_ };
for( int i = 0; bSame && i < NumIndices_; i++ )
bSame = CompareCaseInsensitive( MatchNames[i], IndexNames[i] );
@ -610,9 +376,9 @@ bool NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::ValidateIndexNames(
Read NamedTensor
******************************************************************************/
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
template<typename Scalar_, int NumIndices_>
template<typename Reader>
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::read(Reader &r, const char * pszTag) {
void NamedTensor<Scalar_, NumIndices_>::read(Reader &r, const char * pszTag) {
if( pszTag == nullptr )
pszTag = "NamedTensor";
// Grab index names and dimensions
@ -626,8 +392,8 @@ void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::read(Reader &r, cons
assert( ValidateIndexNames( OldIndexNames.size(), &OldIndexNames[0] ) && "NamedTensor::load dimension name" );
}
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::read(const char * filename, const char * pszTag) {
template<typename Scalar_, int NumIndices_>
void NamedTensor<Scalar_, NumIndices_>::read(const char * filename, const char * pszTag) {
std::string sFileName{filename};
sFileName.append( MDistil::FileExtension );
LOG(Message) << "Reading NamedTensor from file " << sFileName << std::endl;
@ -664,19 +430,14 @@ inline void RotateEigen(std::vector<LatticeColourVector> & evec)
Coordinate siteFirst(grid->Nd(),0);
peekSite(cv0, evec[0], siteFirst);
Grid::Complex cplx0 = cv0()()(0);
#ifdef GRID_NVCC
if( cplx0.imag() == 0 )
#else
if( std::imag(cplx0) == 0 )
#endif
std::cout << GridLogMessage << "RotateEigen() : Site 0 : " << cplx0 << " => already meets phase convention" << std::endl;
else {
const Real cplx0_mag = Grid::abs(cplx0);
#ifdef GRID_NVCC
const Real cplx0_mag = thrust::abs(cplx0);
const Grid::Complex phase = thrust::conj(cplx0 / cplx0_mag);
const Real argphase = thrust::arg(phase);
#else
const Real cplx0_mag = std::abs(cplx0);
const Grid::Complex phase = std::conj(cplx0 / cplx0_mag);
const Real argphase = std::arg(phase);
#endif

View File

@ -219,7 +219,7 @@ void TLapEvec<GImpl>::execute(void)
}
////////////////////////////////////////////////////////////////////////
// Invert Peardon Nabla operator separately on each time-slice
// Invert nabla operator separately on each time-slice
////////////////////////////////////////////////////////////////////////
auto & eig4d = envGet(LapEvecs, getName() );
@ -237,7 +237,7 @@ void TLapEvec<GImpl>::execute(void)
// Construct smearing operator
ExtractSliceLocal(UmuNoTime,Umu_smear,0,t,Tdir); // switch to 3d/4d objects
LinOpPeardonNabla<LatticeColourVector> PeardonNabla(UmuNoTime);
Laplacian3D<LatticeColourVector> Nabla(UmuNoTime);
LOG(Debug) << "Chebyshev preconditioning to order " << ChebPar.PolyOrder
<< " with parameters (alpha,beta) = (" << ChebPar.alpha << "," << ChebPar.beta << ")" << std::endl;
Chebyshev<LatticeColourVector> Cheb(ChebPar.alpha,ChebPar.beta,ChebPar.PolyOrder);
@ -248,9 +248,9 @@ void TLapEvec<GImpl>::execute(void)
nn = Grid::sqrt(nn);
src = src * (1.0/nn);
LinOpPeardonNablaHerm<LatticeColourVector> PeardonNablaCheby(Cheb,PeardonNabla);
Laplacian3DHerm<LatticeColourVector> NablaCheby(Cheb,Nabla);
ImplicitlyRestartedLanczos<LatticeColourVector>
IRL(PeardonNablaCheby,PeardonNabla,LPar.Nvec,LPar.Nk,LPar.Nk+LPar.Np,LPar.resid,LPar.MaxIt);
IRL(NablaCheby,Nabla,LPar.Nvec,LPar.Nk,LPar.Nk+LPar.Np,LPar.resid,LPar.MaxIt);
int Nconv = 0;
IRL.calc(eig[t].eval,eig[t].evec,src,Nconv);
if( Nconv < LPar.Nvec ) {

View File

@ -133,7 +133,8 @@ void TNoises<FImpl>::execute(void)
UniqueIdentifier = getName();
}
UniqueIdentifier.append( std::to_string( vm().getTrajectory() ) );
// We use our own seeds so we can specify different noises per quark
GridSerialRNG sRNG;
sRNG.SeedUniqueString(UniqueIdentifier);
Real rn;

View File

@ -30,7 +30,6 @@
#ifndef Hadrons_MDistil_Perambulator_hpp_
#define Hadrons_MDistil_Perambulator_hpp_
// These are members of Distillation
#include <Hadrons/Distil.hpp>
BEGIN_HADRONS_NAMESPACE
@ -47,10 +46,10 @@ public:
GRID_SERIALIZABLE_CLASS_MEMBERS(PerambulatorPar,
std::string, lapevec,
std::string, solver,
std::string, noise,
std::string, PerambFileName,
std::string, UnsmearedSinkFileName,
std::string, UnsmearedSinkMultiFile,
std::string, noise,
std::string, PerambFileName,
std::string, UnsmearedSinkFileName,
std::string, UnsmearedSinkMultiFile,
int, nvec,
DistilParameters, Distil);
};
@ -59,29 +58,29 @@ template <typename FImpl>
class TPerambulator: public Module<PerambulatorPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
SOLVER_TYPE_ALIASES(FImpl,);
// constructor
TPerambulator(const std::string name);
// destructor
virtual ~TPerambulator(void);
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
FERM_TYPE_ALIASES(FImpl,);
SOLVER_TYPE_ALIASES(FImpl,);
// constructor
TPerambulator(const std::string name);
// destructor
virtual ~TPerambulator(void);
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
protected:
virtual void Cleanup(void);
virtual void Cleanup(void);
protected:
// These variables are created in setup() and freed in Cleanup()
GridCartesian * grid3d; // Owned by me, so I must delete it
GridCartesian * grid4d; // Owned by environment (so I won't delete it)
// Other members
unsigned int Ls_;
std::string sLapEvecName;
std::string sNoiseName;
// These variables are created in setup() and freed in Cleanup()
GridCartesian * grid3d; // Owned by me, so I must delete it
GridCartesian * grid4d; // Owned by environment (so I won't delete it)
// Other members
unsigned int Ls_;
std::string sLapEvecName;
std::string sNoiseName;
};
MODULE_REGISTER_TMP(Perambulator, TPerambulator<FIMPL>, MDistil);
@ -99,174 +98,181 @@ TPerambulator<FImpl>::TPerambulator(const std::string name)
template <typename FImpl>
TPerambulator<FImpl>::~TPerambulator(void)
{
Cleanup();
Cleanup();
};
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TPerambulator<FImpl>::getInput(void)
{
sLapEvecName = par().lapevec;
sNoiseName = par().noise;
if( sNoiseName.length() == 0 )
sNoiseName = getName() + "_noise";
return {sLapEvecName, par().solver, sNoiseName };
sLapEvecName = par().lapevec;
sNoiseName = par().noise;
if( sNoiseName.length() == 0 )
sNoiseName = getName() + "_noise";
return {sLapEvecName, par().solver, sNoiseName };
}
template <typename FImpl>
std::vector<std::string> TPerambulator<FImpl>::getOutput(void)
{
return {getName(), getName() + "_unsmeared_sink"};
return {getName(), getName() + "_unsmeared_sink"};
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TPerambulator<FImpl>::setup(void)
{
Cleanup();
grid4d = env().getGrid();
grid3d = MakeLowerDimGrid(grid4d);
DISTIL_PARAMETERS_DEFINE( true );
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
if( !UnsmearedSinkFileName.empty() )
bool bMulti = ( Hadrons::MDistil::DistilParameters::ParameterDefault( par().UnsmearedSinkMultiFile, 1, true ) != 0 );
envCreate(PerambTensor, getName(), 1, PerambIndexNames,Nt,nvec,LI,nnoise,Nt_inv,SI);
envCreate(std::vector<FermionField>, getName() + "_unsmeared_sink", 1,
nnoise*LI*Ns*Nt_inv, envGetGrid(FermionField));
envTmpLat(LatticeSpinColourVector, "dist_source");
envTmpLat(LatticeSpinColourVector, "tmp2");
envTmpLat(LatticeSpinColourVector, "result");
envTmpLat(LatticeColourVector, "result_nospin");
envTmp(LatticeSpinColourVector, "tmp3d",1,LatticeSpinColourVector(grid3d));
envTmp(LatticeColourVector, "tmp3d_nospin",1,LatticeColourVector(grid3d));
envTmp(LatticeColourVector, "result_3d",1,LatticeColourVector(grid3d));
envTmp(LatticeColourVector, "evec3d",1,LatticeColourVector(grid3d));
Ls_ = env().getObjectLs(par().solver);
envTmpLat(FermionField, "v4dtmp");
envTmpLat(FermionField, "v5dtmp", Ls_);
envTmpLat(FermionField, "v5dtmp_sol", Ls_);
Cleanup();
grid4d = env().getGrid();
grid3d = MakeLowerDimGrid(grid4d);
DISTIL_PARAMETERS_DEFINE( true );
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
if( !UnsmearedSinkFileName.empty() )
bool bMulti = ( Hadrons::MDistil::DistilParameters::ParameterDefault( par().UnsmearedSinkMultiFile, 1, true ) != 0 );
envCreate(PerambTensor, getName(), 1, PerambIndexNames,Nt,nvec,LI,nnoise,Nt_inv,SI);
envCreate(std::vector<FermionField>, getName() + "_unsmeared_sink", 1,
nnoise*LI*Ns*Nt_inv, envGetGrid(FermionField));
envTmpLat(LatticeSpinColourVector, "dist_source");
envTmpLat(LatticeSpinColourVector, "tmp2");
envTmpLat(LatticeSpinColourVector, "result");
envTmpLat(LatticeColourVector, "result_nospin");
envTmp(LatticeSpinColourVector, "tmp3d",1,LatticeSpinColourVector(grid3d));
envTmp(LatticeColourVector, "tmp3d_nospin",1,LatticeColourVector(grid3d));
envTmp(LatticeColourVector, "result_3d",1,LatticeColourVector(grid3d));
envTmp(LatticeColourVector, "evec3d",1,LatticeColourVector(grid3d));
Ls_ = env().getObjectLs(par().solver);
envTmpLat(FermionField, "v4dtmp");
envTmpLat(FermionField, "v5dtmp", Ls_);
envTmpLat(FermionField, "v5dtmp_sol", Ls_);
}
// clean up any temporaries created by setup (that aren't stored in the environment)
template <typename FImpl>
void TPerambulator<FImpl>::Cleanup(void)
{
if( grid3d != nullptr ) {
delete grid3d;
grid3d = nullptr;
}
grid4d = nullptr;
if( grid3d != nullptr )
{
delete grid3d;
grid3d = nullptr;
}
grid4d = nullptr;
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TPerambulator<FImpl>::execute(void)
{
DISTIL_PARAMETERS_DEFINE( false );
DISTIL_PARAMETERS_DEFINE( false );
auto &solver=envGet(Solver, par().solver);
auto &mat = solver.getFMat();
envGetTmp(FermionField, v4dtmp);
envGetTmp(FermionField, v5dtmp);
envGetTmp(FermionField, v5dtmp_sol);
auto &noise = envGet(NoiseTensor, sNoiseName);
auto &perambulator = envGet(PerambTensor, getName());
auto &epack = envGet(LapEvecs, sLapEvecName);
auto &unsmeared_sink = envGet(std::vector<FermionField>, getName() + "_unsmeared_sink");
// Load perambulator if it exists on disk instead of creating it
// Not sure this is how we want it - rather specify an input flag 'read'
// and assert that the file is there.
envGetTmp(LatticeSpinColourVector, dist_source);
envGetTmp(LatticeSpinColourVector, tmp2);
envGetTmp(LatticeSpinColourVector, result);
envGetTmp(LatticeColourVector, result_nospin);
envGetTmp(LatticeSpinColourVector, tmp3d);
envGetTmp(LatticeColourVector, tmp3d_nospin);
envGetTmp(LatticeColourVector, result_3d);
envGetTmp(LatticeColourVector, evec3d);
envGetTmp(LatticeSpinColourVector, dist_source);
envGetTmp(LatticeSpinColourVector, tmp2);
envGetTmp(LatticeSpinColourVector, result);
envGetTmp(LatticeColourVector, result_nospin);
envGetTmp(LatticeSpinColourVector, tmp3d);
envGetTmp(LatticeColourVector, tmp3d_nospin);
envGetTmp(LatticeColourVector, result_3d);
envGetTmp(LatticeColourVector, evec3d);
const int Ntlocal{grid4d->LocalDimensions()[3]};
const int Ntfirst{grid4d->LocalStarts()[3]};
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
{
int t_inv;
for (int inoise = 0; inoise < nnoise; inoise++) {
for (int dk = 0; dk < LI; dk++) {
for (int dt = 0; dt < Nt_inv; dt++) {
for (int ds = 0; ds < SI; ds++) {
LOG(Message) << "LapH source vector from noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl;
dist_source = 0;
tmp3d_nospin = 0;
evec3d = 0;
for (int it = dt; it < Nt; it += TI){
if (full_tdil) t_inv = tsrc; else t_inv = it;
if( t_inv >= Ntfirst && t_inv < Ntfirst + Ntlocal ) {
for (int ik = dk; ik < nvec; ik += LI){
for (int is = ds; is < Ns; is += SI){
ExtractSliceLocal(evec3d,epack.evec[ik],0,t_inv-Ntfirst,Tdir);
tmp3d_nospin = evec3d * noise(inoise, t_inv, ik, is);
tmp3d=0;
pokeSpin(tmp3d,tmp3d_nospin,is);
tmp2=0;
InsertSliceLocal(tmp3d,tmp2,0,t_inv-Ntfirst,Tdir);
dist_source += tmp2;
}
int t_inv;
for (int inoise = 0; inoise < nnoise; inoise++)
{
for (int dk = 0; dk < LI; dk++)
{
for (int dt = 0; dt < Nt_inv; dt++)
{
for (int ds = 0; ds < SI; ds++)
{
LOG(Message) << "LapH source vector from noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl;
dist_source = 0;
tmp3d_nospin = 0;
evec3d = 0;
for (int it = dt; it < Nt; it += TI)
{
if (full_tdil) t_inv = tsrc; else t_inv = it;
if( t_inv >= Ntfirst && t_inv < Ntfirst + Ntlocal )
{
for (int ik = dk; ik < nvec; ik += LI)
{
for (int is = ds; is < Ns; is += SI)
{
ExtractSliceLocal(evec3d,epack.evec[ik],0,t_inv-Ntfirst,Tdir);
tmp3d_nospin = evec3d * noise(inoise, t_inv, ik, is);
tmp3d=0;
pokeSpin(tmp3d,tmp3d_nospin,is);
tmp2=0;
InsertSliceLocal(tmp3d,tmp2,0,t_inv-Ntfirst,Tdir);
dist_source += tmp2;
}
}
}
}
result=0;
v4dtmp = dist_source;
if (Ls_ == 1)
{
solver(result, v4dtmp);
}
else
{
mat.ImportPhysicalFermionSource(v4dtmp, v5dtmp);
solver(v5dtmp_sol, v5dtmp);
mat.ExportPhysicalFermionSolution(v5dtmp_sol, v4dtmp);
result = v4dtmp;
}
if( !UnsmearedSinkFileName.empty() )
unsmeared_sink[inoise+nnoise*(dk+LI*(dt+Nt_inv*ds))] = result;
for (int is = 0; is < Ns; is++)
{
result_nospin = peekSpin(result,is);
for (int t = Ntfirst; t < Ntfirst + Ntlocal; t++)
{
ExtractSliceLocal(result_3d,result_nospin,0,t-Ntfirst,Tdir);
for (int ivec = 0; ivec < nvec; ivec++)
{
ExtractSliceLocal(evec3d,epack.evec[ivec],0,t-Ntfirst,Tdir);
pokeSpin(perambulator(t, ivec, dk, inoise,dt,ds),static_cast<Complex>(innerProduct(evec3d, result_3d)),is);
}
}
}
}
}
}
}
result=0;
v4dtmp = dist_source;
if (Ls_ == 1){
solver(result, v4dtmp);
} else {
mat.ImportPhysicalFermionSource(v4dtmp, v5dtmp);
solver(v5dtmp_sol, v5dtmp);
mat.ExportPhysicalFermionSolution(v5dtmp_sol, v4dtmp);
result = v4dtmp;
}
if( !UnsmearedSinkFileName.empty() )
unsmeared_sink[inoise+nnoise*(dk+LI*(dt+Nt_inv*ds))] = result;
for (int is = 0; is < Ns; is++) {
result_nospin = peekSpin(result,is);
for (int t = Ntfirst; t < Ntfirst + Ntlocal; t++) {
ExtractSliceLocal(result_3d,result_nospin,0,t-Ntfirst,Tdir);
for (int ivec = 0; ivec < nvec; ivec++) {
ExtractSliceLocal(evec3d,epack.evec[ivec],0,t-Ntfirst,Tdir);
pokeSpin(perambulator(t, ivec, dk, inoise,dt,ds),static_cast<Complex>(innerProduct(evec3d, result_3d)),is);
}
}
}
}
}
}
}
}
LOG(Message) << "perambulator done" << std::endl;
perambulator.SliceShare( grid3d, grid4d );
if(grid4d->IsBoss()) {
std::string sPerambName{par().PerambFileName};
if( sPerambName.length() == 0 )
sPerambName = getName();
sPerambName.append( "." );
sPerambName.append( std::to_string(vm().getTrajectory()));
perambulator.write(sPerambName.c_str());
}
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
if( !UnsmearedSinkFileName.empty() ) {
bool bMulti = ( Hadrons::MDistil::DistilParameters::ParameterDefault( par().UnsmearedSinkMultiFile, 1, false ) != 0 );
LOG(Message) << "Writing unsmeared sink to " << UnsmearedSinkFileName << std::endl;
A2AVectorsIo::write(UnsmearedSinkFileName, unsmeared_sink, bMulti, vm().getTrajectory());
}
LOG(Message) << "perambulator done" << std::endl;
perambulator.SliceShare( grid3d, grid4d );
if(grid4d->IsBoss())
{
std::string sPerambName{par().PerambFileName};
if( sPerambName.length() == 0 )
sPerambName = getName();
sPerambName.append( "." );
sPerambName.append( std::to_string(vm().getTrajectory()));
perambulator.write(sPerambName.c_str());
}
if( !UnsmearedSinkFileName.empty() )
{
bool bMulti = ( Hadrons::MDistil::DistilParameters::ParameterDefault( par().UnsmearedSinkMultiFile, 1, false ) != 0 );
LOG(Message) << "Writing unsmeared sink to " << UnsmearedSinkFileName << std::endl;
A2AVectorsIo::write(UnsmearedSinkFileName, unsmeared_sink, bMulti, vm().getTrajectory());
}
}
END_MODULE_NAMESPACE

View File

@ -190,98 +190,22 @@ void test_Perambulators( Application &application, const char * pszSuffix = null
// DistilVectors
/////////////////////////////////////////////////////////////
#define TEST_DISTIL_VECTORS_COMMON \
std::string sModuleName{"DistilVecs"}; \
if( pszSuffix ) \
sModuleName.append( pszSuffix ); \
std::string sPerambName{"Peramb"}; \
if( pszSuffix ) \
sPerambName.append( pszSuffix ); \
MDistil::DistilVectors::Par DistilVecPar; \
DistilVecPar.noise = sPerambName + "_noise"; \
DistilVecPar.perambulator = sPerambName; \
DistilVecPar.lapevec = "LapEvec"; \
DistilVecPar.tsrc = 0; \
if( pszNvec ) \
DistilVecPar.nvec = pszNvec
#define TEST_DISTIL_VECTORS_COMMON_END \
application.createModule<MDistil::DistilVectors>(sModuleName,DistilVecPar)
void test_DistilVectors(Application &application, const char * pszSuffix = nullptr, const char * pszNvec = nullptr )
{
TEST_DISTIL_VECTORS_COMMON;
TEST_DISTIL_VECTORS_COMMON_END;
}
void test_DistilVectorsSS(Application &application, const char * pszSink, const char * pszSource,
const char * pszSuffix = nullptr, const char * pszNvec = nullptr )
{
TEST_DISTIL_VECTORS_COMMON;
if( pszSink )
DistilVecPar.sink = pszSink;
if( pszSource )
DistilVecPar.source = pszSource;
TEST_DISTIL_VECTORS_COMMON_END;
}
/////////////////////////////////////////////////////////////
// Multiple Perambulators
/////////////////////////////////////////////////////////////
void test_MultiPerambulators(Application &application)
{
test_Perambulators( application, "5" );
MDistil::PerambFromSolve::Par SolvePar;
SolvePar.eigenPack="LapEvec";
SolvePar.PerambFileName="Peramb2";
SolvePar.solve = "Peramb5_unsmeared_sink";
SolvePar.Distil.nnoise = 1;
SolvePar.Distil.LI=5;
SolvePar.Distil.SI=4;
SolvePar.Distil.TI=8;
SolvePar.nvec=5;
SolvePar.nvec_reduced=2;
SolvePar.LI_reduced=2;
application.createModule<MDistil::PerambFromSolve>("Peramb2",SolvePar);
SolvePar.PerambFileName="Peramb3";
SolvePar.nvec_reduced=3;
SolvePar.LI_reduced=3;
application.createModule<MDistil::PerambFromSolve>("Peramb3",SolvePar);
test_DistilVectors( application, "2", "2" );
test_DistilVectors( application, "3", "3" );
test_DistilVectors( application, "5", "5" );
MContraction::A2AMesonField::Par A2AMesonFieldPar;
A2AMesonFieldPar.left="DistilVecs2_rho";
A2AMesonFieldPar.right="DistilVecs2_rho";
A2AMesonFieldPar.output="MesonSinksRho2";
A2AMesonFieldPar.gammas="Identity";
A2AMesonFieldPar.mom={"0 0 0"};
A2AMesonFieldPar.cacheBlock=2;
A2AMesonFieldPar.block=4;
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldRho2",A2AMesonFieldPar);
A2AMesonFieldPar.left="DistilVecs2_phi";
A2AMesonFieldPar.right="DistilVecs2_phi";
A2AMesonFieldPar.output="MesonSinksPhi2";
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldPhi2",A2AMesonFieldPar);
A2AMesonFieldPar.left="DistilVecs3_rho";
A2AMesonFieldPar.right="DistilVecs3_rho";
A2AMesonFieldPar.output="MesonSinksRho3";
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldRho3",A2AMesonFieldPar);
A2AMesonFieldPar.left="DistilVecs3_phi";
A2AMesonFieldPar.right="DistilVecs3_phi";
A2AMesonFieldPar.output="MesonSinksPhi3";
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldPhi3",A2AMesonFieldPar);
A2AMesonFieldPar.left="DistilVecs5_rho";
A2AMesonFieldPar.right="DistilVecs5_rho";
A2AMesonFieldPar.output="MesonSinksRho5";
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldRho5",A2AMesonFieldPar);
A2AMesonFieldPar.left="DistilVecs5_phi";
A2AMesonFieldPar.right="DistilVecs5_phi";
A2AMesonFieldPar.output="MesonSinksPhi5";
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldPhi5",A2AMesonFieldPar);
std::string sModuleName{"DistilVecs"};
if( pszSuffix )
sModuleName.append( pszSuffix );
std::string sPerambName{"Peramb"};
if( pszSuffix )
sPerambName.append( pszSuffix );
MDistil::DistilVectors::Par DistilVecPar;
DistilVecPar.noise = sPerambName + "_noise";
DistilVecPar.perambulator = sPerambName;
DistilVecPar.lapevec = "LapEvec";
DistilVecPar.tsrc = 0;
if( pszNvec )
DistilVecPar.nvec = pszNvec;
application.createModule<MDistil::DistilVectors>(sModuleName,DistilVecPar);
}
/////////////////////////////////////////////////////////////
@ -330,163 +254,6 @@ void test_MesonField(Application &application, const char * pszFileSuffix,
application.createModule<MContraction::A2AMesonField>(sObjectName, A2AMesonFieldPar);
}
/////////////////////////////////////////////////////////////
// g5*unsmeared
/////////////////////////////////////////////////////////////
#ifdef DISTIL_PRE_RELEASE
void test_g5_sinks(Application &application)
{
// DistilVectors parameters
MDistil::g5_multiply::Par g5_multiplyPar;
g5_multiplyPar.input="Peramb_unsmeared_sink";
g5_multiplyPar.nnoise = 1;
g5_multiplyPar.LI=5;
g5_multiplyPar.Ns=4;
g5_multiplyPar.Nt_inv=1;
application.createModule<MDistil::g5_multiply>("g5phi",g5_multiplyPar);
}
/////////////////////////////////////////////////////////////
// BaryonFields - phiphiphi - efficient
/////////////////////////////////////////////////////////////
void test_BaryonFieldPhi2(Application &application)
{
// DistilVectors parameters
MDistil::BC2::Par BC2Par;
BC2Par.one="DistilVecs_phi";
BC2Par.two="DistilVecs_phi";
BC2Par.three="DistilVecs_phi";
BC2Par.output="BaryonFieldPhi2";
BC2Par.parity=1;
BC2Par.mom={"0 0 0"};
application.createModule<MDistil::BC2>("BaryonFieldPhi2",BC2Par);
}
/////////////////////////////////////////////////////////////
// BaryonFields - rhorhorho - efficient
/////////////////////////////////////////////////////////////
void test_BaryonFieldRho2(Application &application)
{
// DistilVectors parameters
MDistil::BC2::Par BC2Par;
BC2Par.one="DistilVecs_rho";
BC2Par.two="DistilVecs_rho";
BC2Par.three="DistilVecs_rho";
BC2Par.output="BaryonFieldRho2";
BC2Par.parity=1;
BC2Par.mom={"0 0 0"};
application.createModule<MDistil::BC2>("BaryonFieldRho2",BC2Par);
}
/////////////////////////////////////////////////////////////
// BaryonFields - phiphiphi
/////////////////////////////////////////////////////////////
void test_BaryonFieldPhi(Application &application)
{
// DistilVectors parameters
MDistil::BContraction::Par BContractionPar;
BContractionPar.one="DistilVecs_phi";
BContractionPar.two="DistilVecs_phi";
BContractionPar.three="DistilVecs_phi";
BContractionPar.output="BaryonFieldPhi";
BContractionPar.parity=1;
BContractionPar.mom={"0 0 0"};
application.createModule<MDistil::BContraction>("BaryonFieldPhi",BContractionPar);
}
/////////////////////////////////////////////////////////////
// BaryonFields - rhorhorho
/////////////////////////////////////////////////////////////
void test_BaryonFieldRho(Application &application)
{
// DistilVectors parameters
MDistil::BContraction::Par BContractionPar;
BContractionPar.one="DistilVecs_rho";
BContractionPar.two="DistilVecs_rho";
BContractionPar.three="DistilVecs_rho";
BContractionPar.output="BaryonFieldRho";
BContractionPar.parity=1;
BContractionPar.mom={"0 0 0"};
application.createModule<MDistil::BContraction>("BaryonFieldRho",BContractionPar);
}
/////////////////////////////////////////////////////////////
// BaryonContraction
/////////////////////////////////////////////////////////////
void test_Baryon2pt(Application &application)
{
// DistilVectors parameters
MDistil::Baryon2pt::Par Baryon2ptPar;
Baryon2ptPar.inputL="BaryonFieldPhi";
Baryon2ptPar.inputR="BaryonFieldRho";
Baryon2ptPar.quarksL="uud";
Baryon2ptPar.quarksR="uud";
Baryon2ptPar.output="C2_baryon";
application.createModule<MDistil::Baryon2pt>("C2_b",Baryon2ptPar);
}
#endif
/////////////////////////////////////////////////////////////
// emField
/////////////////////////////////////////////////////////////
void test_em(Application &application)
{
MGauge::StochEm::Par StochEmPar;
StochEmPar.gauge=PhotonR::Gauge::feynman;
StochEmPar.zmScheme=PhotonR::ZmScheme::qedL;
application.createModule<MGauge::StochEm>("Em",StochEmPar);
}
/////////////////////////////////////////////////////////////
// MesonA2ASlash
/////////////////////////////////////////////////////////////
void test_Aslash(Application &application)
{
// DistilVectors parameters
MContraction::A2AAslashField::Par A2AAslashFieldPar;
A2AAslashFieldPar.left="g5phi";
//A2AAslashFieldPar.right="DistilVecs_phi";
A2AAslashFieldPar.right="Peramb_unsmeared_sink";
A2AAslashFieldPar.output="unsmeared_Aslash";
A2AAslashFieldPar.emField={"Em"};
A2AAslashFieldPar.cacheBlock=2;
A2AAslashFieldPar.block=4;
application.createModule<MContraction::A2AAslashField>("Aslash_field",A2AAslashFieldPar);
}
/////////////////////////////////////////////////////////////
// MesonA2ASlashSequential
/////////////////////////////////////////////////////////////
void test_AslashSeq(Application &application)
{
// DistilVectors parameters
MSolver::A2AAslashVectors::Par A2AAslashVectorsPar;
A2AAslashVectorsPar.vector="PerambS_unsmeared_sink";
A2AAslashVectorsPar.emField="Em";
A2AAslashVectorsPar.solver="CG_s";
A2AAslashVectorsPar.output="AslashSeq";
application.createModule<MSolver::A2AAslashVectors>("Aslash_seq",A2AAslashVectorsPar);
}
/////////////////////////////////////////////////////////////
// Aslash_perambulators
/////////////////////////////////////////////////////////////
void test_PerambulatorsSolve(Application &application)
{
// Perambulator parameters
MDistil::PerambFromSolve::Par PerambFromSolvePar;
PerambFromSolvePar.eigenPack="LapEvec";
PerambFromSolvePar.solve="Aslash_seq";
PerambFromSolvePar.PerambFileName="perambAslashS.bin";
PerambFromSolvePar.Distil.tsrc = 0;
PerambFromSolvePar.Distil.nnoise = 1;
PerambFromSolvePar.nvec=5;
application.createModule<MDistil::PerambFromSolve>("PerambAslashS",PerambFromSolvePar);
}
bool bNumber( int &ri, const char * & pstr, bool bGobbleWhiteSpace = true )
{
if( bGobbleWhiteSpace )
@ -515,398 +282,8 @@ bool bNumber( int &ri, const char * & pstr, bool bGobbleWhiteSpace = true )
return true;
}
#ifdef DEBUG
typedef Grid::Hadrons::MDistil::NamedTensor<Complex,3,sizeof(Real)> MyTensor;
template<typename T>
typename std::enable_if<Grid::EigenIO::is_tensor<T>::value && !Grid::Hadrons::MDistil::is_named_tensor<T>::value>::type
DebugShowTensor(T &x, const char * n, std::string * pIndexNames=nullptr)
{
const MyTensor::Index s{x.size()};
std::cout << n << ".size() = " << s << std::endl;
std::cout << n << ".NumDimensions = " << x.NumDimensions << " (TensorBase)" << std::endl;
std::cout << n << ".NumIndices = " << x.NumIndices << std::endl;
const auto d{x.dimensions()};
//std::cout << n << ".dimensions().size() = " << d.size() << std::endl;
std::cout << "Dimensions are ";
for(auto i = 0; i < x.NumDimensions ; i++)
std::cout << "[" << d[i] << "]";
std::cout << std::endl;
MyTensor::Index SizeCalculated{1};
std::cout << "Dimensions again";
for(int i=0 ; i < x.NumDimensions ; i++ ) {
std::cout << " : [" << i;
if( pIndexNames )
std::cout << ", " << pIndexNames[i];
std::cout << "]=" << x.dimension(i);
SizeCalculated *= d[i];
}
std::cout << std::endl;
std::cout << "SizeCalculated = " << SizeCalculated << std::endl;\
assert( SizeCalculated == s );
// Initialise
assert( x.NumDimensions == 3 );
for( int i = 0 ; i < d[0] ; i++ )
for( int j = 0 ; j < d[1] ; j++ )
for( int k = 0 ; k < d[2] ; k++ ) {
x(i,j,k) = std::complex<double>(SizeCalculated, -SizeCalculated);
SizeCalculated--;
}
// Show raw data
std::cout << "Data follow : " << std::endl;
typename T::Scalar * p = x.data();
for( auto i = 0 ; i < s ; i++ ) {
if( i ) std::cout << ", ";
std::cout << n << ".data()[" << i << "]=" << * p++;
}
std::cout << std::endl;
}
template<typename T>
typename std::enable_if<Grid::Hadrons::MDistil::is_named_tensor<T>::value>::type
DebugShowTensor(T &x, const char * n)
{
DebugShowTensor( x.tensor, n, &x.IndexNames[0] );
}
// Test whether typedef and underlying types are the same
void DebugTestTypeEqualities(void)
{
Real r1;
RealD r2;
double r3;
const std::type_info &tr1{typeid(r1)};
const std::type_info &tr2{typeid(r2)};
const std::type_info &tr3{typeid(r3)};
if( tr1 == tr2 && tr2 == tr3 )
std::cout << "r1, r2 and r3 are the same type" << std::endl;
else
std::cout << "r1, r2 and r3 are different types" << std::endl;
std::cout << "r1 is a " << tr1.name() << std::endl;
std::cout << "r2 is a " << tr2.name() << std::endl;
std::cout << "r3 is a " << tr3.name() << std::endl;
// These are the same
Complex c1;
std::complex<Real> c2;
const std::type_info &tc1{typeid(c1)};
const std::type_info &tc2{typeid(c2)};
const std::type_info &tc3{typeid(SpinVector::scalar_type)};
if( tc1 == tc2 && tc2 == tc3)
std::cout << "c1, c2 and SpinVector::scalar_type are the same type" << std::endl;
else
std::cout << "c1, c2 and SpinVector::scalar_type are different types" << std::endl;
std::cout << "c1 is a " << tc1.name() << std::endl;
std::cout << "c2 is a " << tc2.name() << std::endl;
std::cout << "SpinVector::scalar_type is a " << tc3.name() << std::endl;
// These are the same
SpinVector s1;
iSpinVector<Complex > s2;
iScalar<iVector<iScalar<Complex>, Ns> > s3;
const std::type_info &ts1{typeid(s1)};
const std::type_info &ts2{typeid(s2)};
const std::type_info &ts3{typeid(s3)};
if( ts1 == ts2 && ts2 == ts3 )
std::cout << "s1, s2 and s3 are the same type" << std::endl;
else
std::cout << "s1, s2 and s3 are different types" << std::endl;
std::cout << "s1 is a " << ts1.name() << std::endl;
std::cout << "s2 is a " << ts2.name() << std::endl;
std::cout << "s3 is a " << ts3.name() << std::endl;
// These are the same
SpinColourVector sc1;
iSpinColourVector<Complex > sc2;
const std::type_info &tsc1{typeid(sc1)};
const std::type_info &tsc2{typeid(sc2)};
if( tsc1 == tsc2 )
std::cout << "sc1 and sc2 are the same type" << std::endl;
else
std::cout << "sc1 and sc2 are different types" << std::endl;
std::cout << "sc1 is a " << tsc1.name() << std::endl;
std::cout << "sc2 is a " << tsc2.name() << std::endl;
}
bool DebugEigenTest()
{
{
Eigen::TensorFixedSize<std::complex<double>,Eigen::Sizes<3,4,5>> x;
DebugShowTensor(x, "fixed");
}
const char pszTestFileName[] = "test_tensor.bin";
std::array<std::string,3> as={"Alpha", "Beta", "Gamma"};
MyTensor x(as, 2,1,4);
DebugShowTensor(x, "x");
x.write(pszTestFileName);
// Test initialisation of an array of strings
for( auto a : as )
std::cout << a << std::endl;
Grid::Hadrons::MDistil::NamedTensor<Complex,3,sizeof(Real)> p{as,2,7,2};
DebugShowTensor(p, "p");
std::cout << "p.IndexNames follow" << std::endl;
for( auto a : p.IndexNames )
std::cout << a << std::endl;
// Now see whether we can read a tensor back
std::array<std::string,3> Names2={"Alpha", "Gamma", "Delta"};
MyTensor y(Names2, 2,4,1);
y.read(pszTestFileName);
DebugShowTensor(y, "y");
// Now see whether we can read a tensor back from an hdf5 file
const char * pszFileName = "test";
y.write(pszFileName);
{
MyTensor z;
const char * pszName = "z1";
DebugShowTensor(z, pszName);
z.read(pszFileName);
DebugShowTensor(z, pszName);
}
{
MyTensor z(Names2,2,0,0);
const char * pszName = "z2";
DebugShowTensor(z, pszName);
z.read(pszFileName);
DebugShowTensor(z, pszName);
}
{
// Now see whether we can read a tensor back from an xml file
const char * pszXmlName = "test.xml";
{
XmlWriter w(pszXmlName);
y.write<XmlWriter>(w);
}
MyTensor z;
const char * pszName = "xml1";
DebugShowTensor(z, pszName);
XmlReader r(pszXmlName);
z.read<XmlReader>(r);
DebugShowTensor(z, pszName);
}
if((0)) // The following tests would fail
{
MyTensor z(Names2,2,0,78);
//std::array<std::string,3> NamesBad={"Alpha", "Gamma", "Kilo"};
//MyTensor z(NamesBad);
const char * pszName = "zFail";
DebugShowTensor(z, pszName);
z.read(pszFileName);
DebugShowTensor(z, pszName);
}
// Testing whether typedef produces the same type - yes it does
DebugTestTypeEqualities();
std::cout << std::endl;
// How to access members of SpinColourVector
SpinColourVector sc;
for( int s = 0 ; s < Ns ; s++ ) {
auto cv{sc()(s)};
iVector<Complex,Nc> c2{sc()(s)};
std::cout << " cv is a " << typeid(cv).name() << std::endl;
std::cout << " c2 is a " << typeid(c2).name() << std::endl;
for( int c = 0 ; c < Nc ; c++ ) {
Complex & z{cv(c)};
std::cout << " sc[spin=" << s << ", colour=" << c << "] = " << z << std::endl;
}
}
// We could have removed the Lorentz index independently, but much easier to do as we do above
iVector<iVector<Complex,Nc>,Ns> sc2{sc()};
std::cout << "sc() is a " << typeid(sc()).name() << std::endl;
std::cout << "sc2 is a " << typeid(sc2 ).name() << std::endl;
// Or you can access elements directly
std::complex<Real> z = sc()(0)(0);
std::cout << "z = " << z << std::endl;
sc()(3)(2) = std::complex<Real>{3.141,-3.141};
std::cout << "sc()(3)(2) = " << sc()(3)(2) << std::endl;
return true;
}
template <typename T>
void DebugGridTensorTest_print( int i )
{
// std::cout << i << " : " << EigenIO::is_tensor<T>::value
// << ", Rank " << EigenIO::Traits<T>::Rank
// << ", count " << EigenIO::Traits<T>::count
// << std::endl;
}
// begin() and end() are the minimum necessary to support range-for loops
// should really turn this into an iterator ...
template<typename T, int N>
class TestObject {
public:
using value_type = T;
private:
value_type * m_p;
public:
TestObject() {
m_p = reinterpret_cast<value_type *>(std::malloc(N * sizeof(value_type)));
}
~TestObject() { std::free(m_p); }
inline value_type * begin(void) { return m_p; }
inline value_type * end(void) { return m_p + N; }
};
template<typename ET> typename std::enable_if<EigenIO::is_tensor<ET>::value>::type
dump_tensor(const ET & et, const char * psz = nullptr) {
if( psz )
std::cout << psz << ": ";
else
std::cout << "Unnamed tensor: ";
Serializable::WriteMember( std::cout, et );
}
template <int Options>
void EigenSliceExample()
{
std::cout << "Eigen example, Options = " << Options << std::endl;
using T2 = Eigen::Tensor<int, 2, Options>;
T2 a(4, 3);
a.setValues({{0, 100, 200}, {300, 400, 500},
{600, 700, 800}, {900, 1000, 1100}});
std::cout << "a\n" << a << std::endl;
dump_tensor( a, "a" );
Eigen::array<typename T2::Index, 2> offsets = {0, 1};
Eigen::array<typename T2::Index, 2> extents = {4, 2};
T2 slice = a.slice(offsets, extents);
std::cout << "slice\n" << slice << std::endl;
dump_tensor( slice, "slice" );
std::cout << "\n========================================" << std::endl;
}
template <int Options>
void EigenSliceExample2()
{
using TestScalar = std::complex<float>;
using T3 = Eigen::Tensor<TestScalar, 3, Options>;
using T2 = Eigen::Tensor<TestScalar, 2, Options>;
T3 a(2,3,4);
std::cout << "Initialising a:";
TestScalar f{ 0 };
const TestScalar Inc{ 1, -1 };
for( auto &c : a ) {
c = f;
f += Inc;
}
std::cout << std::endl;
std::cout << "Validating a (Eigen::" << ( ( Options & Eigen::RowMajor ) ? "Row" : "Col" ) << "Major):" << std::endl;
f = 0;
for( int i = 0 ; i < a.dimension(0) ; i++ )
for( int j = 0 ; j < a.dimension(1) ; j++ )
for( int k = 0 ; k < a.dimension(2) ; k++ ) {
std::cout << " a(" << i << "," << j << "," << k << ")=" << a(i,j,k) << std::endl;
assert( ( Options & Eigen::RowMajor ) == 0 || a(i,j,k) == f );
f += Inc;
}
//std::cout << std::endl;
//std::cout << "a initialised to:\n" << a << std::endl;
dump_tensor( a, "a" );
std::cout << std::endl;
Eigen::array<typename T3::Index, 3> offsets = {0,1,1};
Eigen::array<typename T3::Index, 3> extents = {1,2,2};
T3 b;
b = a.slice( offsets, extents );//.reshape(NewExtents);
std::cout << "b = a.slice( offsets, extents ):\n" << b << std::endl;
dump_tensor( b, "b" );
T2 c(3,4);
c = a.chip(0,1);
std::cout << "c = a.chip(0,0):\n" << c << std::endl;
dump_tensor( c, "c" );
//T2 d = b.reshape(extents);
//std::cout << "b.reshape(extents) is:\n" << d << std::endl;
std::cout << "\n========================================" << std::endl;
}
void DebugFelixTensorTest( void )
{
unsigned int Nmom = 2;
unsigned int Nt = 2;
unsigned int N_1 = 2;
unsigned int N_2 = 2;
unsigned int N_3 = 2;
using BaryonTensorSet = Eigen::Tensor<Complex, 6, Eigen::RowMajor>;
BaryonTensorSet BField3(Nmom,4,Nt,N_1,N_2,N_3);
std::vector<Complex> Memory(Nmom * Nt * N_1 * N_2 * N_3 * 2);
using BaryonTensorMap = Eigen::TensorMap<BaryonTensorSet>;
BaryonTensorMap BField4 (&Memory[0], Nmom,4,Nt,N_1,N_2,N_3);
EigenSliceExample<Eigen::RowMajor>();
EigenSliceExample<0>();
EigenSliceExample2<Eigen::RowMajor>();
EigenSliceExample2<0>();
}
bool DebugGridTensorTest( void )
{
DebugFelixTensorTest();
typedef Complex t1;
typedef iScalar<t1> t2;
typedef iVector<t1, Ns> t3;
typedef iMatrix<t1, Nc> t4;
typedef iVector<iMatrix<t1,1>,4> t5;
typedef iScalar<t5> t6;
typedef iMatrix<t6, 3> t7;
typedef iMatrix<iVector<iScalar<t7>,4>,2> t8;
int i = 1;
DebugGridTensorTest_print<t1>( i++ );
DebugGridTensorTest_print<t2>( i++ );
DebugGridTensorTest_print<t3>( i++ );
DebugGridTensorTest_print<t4>( i++ );
DebugGridTensorTest_print<t5>( i++ );
DebugGridTensorTest_print<t6>( i++ );
DebugGridTensorTest_print<t7>( i++ );
DebugGridTensorTest_print<t8>( i++ );
//using TOC7 = TestObject<std::complex<double>, 7>;
using TOC7 = t7;
TOC7 toc7;
constexpr std::complex<double> Inc{1,-1};
std::complex<double> Start{Inc};
for( auto &x : toc7 ) {
x = Start;
Start += Inc;
}
i = 0;
std::cout << "toc7:";
for( auto x : toc7 ) std::cout << " [" << i++ << "]=" << x;
std::cout << std::endl;
//t2 o2;
//auto a2 = TensorRemove(o2);
//t3 o3;
//t4 o4;
//auto a3 = TensorRemove(o3);
//auto a4 = TensorRemove(o4);
return true;
}
bool ConvertPeramb(const char * pszSource, const char * pszDest) {
Grid::Hadrons::MDistil::PerambTensor p(Hadrons::MDistil::PerambIndexNames);
p.ReadBinary( pszSource );
p.write(pszDest);
return true;
}
#endif
int main(int argc, char *argv[])
{
#ifdef DEBUG
// Debug only - test of Eigen::Tensor
//if( DebugEigenTest() ) return 0;
//if(DebugGridTensorTest()) return 0;
//if(ConvertPeramb("PerambL_100_tsrc0.3000","PerambL_100_tsrc0.3000")) return 0;
#endif
// Decode command-line parameters. 1st one is which test to run
int iTestNum = -1;
@ -948,31 +325,10 @@ int main(int argc, char *argv[])
// For now perform free propagator test - replace this with distillation test(s)
LOG(Message) << "====== Creating xml for test " << iTestNum << " ======" << std::endl;
//const unsigned int nt = GridDefaultLatt()[Tp];
switch(iTestNum) {
case 0:
test_Global( application );
test_LapEvec( application );
break;
case 1:
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
break;
default: // 2
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
break;
case 3:
test_Global( application );
test_LapEvec( application );
test_LoadPerambulators( application );
test_DistilVectors( application );
break;
case 4:
default: // 0
LOG(Message) << "Computing Meson 2pt-function" << std::endl;
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
@ -980,7 +336,17 @@ int main(int argc, char *argv[])
test_MesonField( application, "Phi", "_phi" );
test_MesonField( application, "Rho", "_rho" );
break;
case 5:
case 1:
LOG(Message) << "Computing Meson 2pt-function by loading perambulators" << std::endl;
test_Global( application );
test_LapEvec( application );
test_LoadPerambulators( application );
test_DistilVectors( application );
test_MesonField( application, "Phi", "_phi" );
test_MesonField( application, "Rho", "_rho" );
break;
case 2:
LOG(Message) << "Computing Meson 2pt-function for two quark flavours" << std::endl;
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
@ -990,69 +356,13 @@ int main(int argc, char *argv[])
test_MesonField( application, "SPhi", "S_phi" );
test_MesonField( application, "SRho", "S_rho" );
break;
#ifdef DISTIL_PRE_RELEASE
case 6: // 3
case 3:
LOG(Message) << "Computing Meson 2pt-function with current insertion" << std::endl;
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_g5_sinks( application );
test_MesonSink( application );
break;
case 7: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_BaryonFieldPhi( application );
test_BaryonFieldRho( application );
break;
#endif
case 8: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_MesonField( application, "Phi", "_phi" );
test_MesonField( application, "Rho", "_rho" );
break;
#ifdef DISTIL_PRE_RELEASE
case 9: // 3
test_Global( application );
test_Solver( application );
test_Baryon2pt( application );
break;
case 10: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_g5_sinks( application );
test_em( application );
test_Aslash( application );
break;
case 11: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
test_BaryonFieldPhi2( application );
test_BaryonFieldRho2( application );
break;
#endif
case 12: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application, "S" );
test_em( application );
test_AslashSeq( application );
test_PerambulatorsSolve( application );
test_DistilVectorsSS( application, "AslashSeq", nullptr, "S" );
test_MesonField( application, "AslashSeq" );
break;
case 13:
test_Global( application );
test_LapEvec( application );
test_MultiPerambulators( application );
break;
}
// execution
static const char XmlFileName[] = "test_distil.xml";