mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Cleanup in progress
This commit is contained in:
parent
5c54f27ac1
commit
45d4cf0971
@ -38,39 +38,6 @@
|
||||
#include <Hadrons/A2AVectors.hpp>
|
||||
#include <Hadrons/DilutedNoise.hpp>
|
||||
|
||||
/******************************************************************************
|
||||
A consistent set of cross-platform methods for big endian <-> host byte ordering
|
||||
I imagine this exists already?
|
||||
This can be removed once the (deprecated) NamedTensor::ReadBinary & WriteBinary methods are deleted
|
||||
******************************************************************************/
|
||||
|
||||
#if defined(__linux__)
|
||||
# include <endian.h>
|
||||
#elif defined(__FreeBSD__) || defined(__NetBSD__)
|
||||
# include <sys/endian.h>
|
||||
#elif defined(__OpenBSD__)
|
||||
# include <sys/types.h>
|
||||
# define be16toh(x) betoh16(x)
|
||||
# define be32toh(x) betoh32(x)
|
||||
# define be64toh(x) betoh64(x)
|
||||
#elif defined(__APPLE__)
|
||||
#include <libkern/OSByteOrder.h>
|
||||
#define htobe16(x) OSSwapHostToBigInt16(x)
|
||||
#define htole16(x) OSSwapHostToLittleInt16(x)
|
||||
#define be16toh(x) OSSwapBigToHostInt16(x)
|
||||
#define le16toh(x) OSSwapLittleToHostInt16(x)
|
||||
|
||||
#define htobe32(x) OSSwapHostToBigInt32(x)
|
||||
#define htole32(x) OSSwapHostToLittleInt32(x)
|
||||
#define be32toh(x) OSSwapBigToHostInt32(x)
|
||||
#define le32toh(x) OSSwapLittleToHostInt32(x)
|
||||
|
||||
#define htobe64(x) OSSwapHostToBigInt64(x)
|
||||
#define htole64(x) OSSwapHostToLittleInt64(x)
|
||||
#define be64toh(x) OSSwapBigToHostInt64(x)
|
||||
#define le64toh(x) OSSwapLittleToHostInt64(x)
|
||||
#endif
|
||||
|
||||
/******************************************************************************
|
||||
This potentially belongs in CartesianCommunicator
|
||||
******************************************************************************/
|
||||
@ -139,7 +106,7 @@ inline void SliceShare( GridBase * gridLowDim, GridBase * gridHighDim, void * Bu
|
||||
*************************************************************************************/
|
||||
|
||||
template<typename Field, typename GaugeField=LatticeGaugeField>
|
||||
class LinOpPeardonNabla : public LinearOperatorBase<Field>, public LinearFunction<Field> {
|
||||
class Laplacian3D : public LinearOperatorBase<Field>, public LinearFunction<Field> {
|
||||
typedef typename GaugeField::vector_type vCoeff_t;
|
||||
protected: // I don't really mind if _gf is messed with ... so make this public?
|
||||
//GaugeField & _gf;
|
||||
@ -147,7 +114,7 @@ protected: // I don't really mind if _gf is messed with ... so make this public?
|
||||
std::vector<Lattice<iColourMatrix<vCoeff_t> > > U;
|
||||
public:
|
||||
// Construct this operator given a gauge field and the number of dimensions it should act on
|
||||
LinOpPeardonNabla( GaugeField& gf, int dimSpatial = Tdir ) : /*_gf(gf),*/ nd{dimSpatial} {
|
||||
Laplacian3D( GaugeField& gf, int dimSpatial = Tdir ) : /*_gf(gf),*/ nd{dimSpatial} {
|
||||
assert(dimSpatial>=1);
|
||||
for( int mu = 0 ; mu < nd ; mu++ )
|
||||
U.push_back(PeekIndex<LorentzIndex>(gf,mu));
|
||||
@ -178,12 +145,12 @@ public:
|
||||
};
|
||||
|
||||
template<typename Field>
|
||||
class LinOpPeardonNablaHerm : public LinearFunction<Field> {
|
||||
class Laplacian3DHerm : public LinearFunction<Field> {
|
||||
public:
|
||||
OperatorFunction<Field> & _poly;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
LinOpPeardonNablaHerm(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
|
||||
Laplacian3DHerm(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
|
||||
: _poly{poly}, _Linop{linop} {}
|
||||
|
||||
void operator()(const Field& in, Field& out) {
|
||||
@ -244,12 +211,6 @@ const bool full_tdil{ TI == Nt }; \
|
||||
const bool exact_distillation{ full_tdil && LI == nvec }; \
|
||||
const int Nt_inv{ full_tdil ? 1 : TI }
|
||||
|
||||
class BFieldIO: Serializable{
|
||||
public:
|
||||
using BaryonTensorSet = Eigen::Tensor<ComplexD, 6>;
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(BFieldIO, BaryonTensorSet, BField );
|
||||
};
|
||||
|
||||
/******************************************************************************
|
||||
Default for distillation file operations. For now only used by NamedTensor
|
||||
******************************************************************************/
|
||||
@ -268,9 +229,6 @@ static const char * FileExtension = ".dat";
|
||||
NamedTensor object
|
||||
This is an Eigen::Tensor of type Scalar_ and rank NumIndices_ (row-major order)
|
||||
They can be persisted to disk
|
||||
Scalar_ objects are assumed to be composite objects of size Endian_Scalar_Size.
|
||||
(Disable big-endian by setting Endian_Scalar_Size=1).
|
||||
NB: Endian_Scalar_Size will disappear when ReadBinary & WriteBinary retired
|
||||
IndexNames contains one name for each index, and IndexNames are validated on load.
|
||||
WHAT TO SAVE / VALIDATE ON LOAD (Override to warn instead of assert on load)
|
||||
Ensemble string
|
||||
@ -280,20 +238,18 @@ static const char * FileExtension = ".dat";
|
||||
|
||||
******************************************************************************/
|
||||
|
||||
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size_ = sizeof(Scalar_)>
|
||||
template<typename Scalar_, int NumIndices_>
|
||||
class NamedTensor : Serializable
|
||||
{
|
||||
public:
|
||||
using Scalar = Scalar_;
|
||||
static constexpr int NumIndices = NumIndices_;
|
||||
static constexpr uint16_t Endian_Scalar_Size = Endian_Scalar_Size_;
|
||||
using ET = Eigen::Tensor<Scalar_, NumIndices_, Eigen::RowMajor>;
|
||||
using Index = typename ET::Index;
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(NamedTensor
|
||||
, ET, tensor
|
||||
, std::vector<std::string>, IndexNames
|
||||
);
|
||||
public:
|
||||
// Named tensors are intended to be a superset of Eigen tensor
|
||||
inline operator ET&() { return tensor; }
|
||||
template<typename... IndexTypes>
|
||||
@ -351,9 +307,6 @@ public:
|
||||
// Read/Write in default format, i.e. HDF5 if present, else binary
|
||||
inline void read (const char * filename, const char * pszTag = nullptr);
|
||||
inline void write(const char * filename, const char * pszTag = nullptr) const;
|
||||
// Original I/O implementation. This will be removed when we're sure it's no longer needed
|
||||
EIGEN_DEPRECATED inline void ReadBinary (const std::string filename); // To be removed
|
||||
EIGEN_DEPRECATED inline void WriteBinary(const std::string filename); // To be removed
|
||||
|
||||
// Case insensitive compare of two strings
|
||||
// Pesumably this exists already? Where should this go?
|
||||
@ -375,218 +328,31 @@ public:
|
||||
|
||||
// Is this a named tensor
|
||||
template<typename T, typename V = void> struct is_named_tensor : public std::false_type {};
|
||||
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size_> struct is_named_tensor<NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size_>> : public std::true_type {};
|
||||
template<typename T> struct is_named_tensor<T, typename std::enable_if<std::is_base_of<NamedTensor<typename T::Scalar, T::NumIndices, T::Endian_Scalar_Size_>, T>::value>::type> : public std::true_type {};
|
||||
template<typename Scalar_, int NumIndices_> struct is_named_tensor<NamedTensor<Scalar_, NumIndices_>> : public std::true_type {};
|
||||
template<typename T> struct is_named_tensor<T, typename std::enable_if<std::is_base_of<NamedTensor<typename T::Scalar, T::NumIndices>, T>::value>::type> : public std::true_type {};
|
||||
|
||||
/******************************************************************************
|
||||
PerambTensor object
|
||||
Endian_Scalar_Size can be removed once (deprecated) NamedTensor::ReadBinary & WriteBinary methods deleted
|
||||
******************************************************************************/
|
||||
|
||||
//template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size = sizeof(Scalar_)>
|
||||
using PerambTensor = NamedTensor<SpinVector, 6, sizeof(Real)>;
|
||||
using PerambTensor = NamedTensor<SpinVector, 6>;
|
||||
static const std::array<std::string, 6> PerambIndexNames{"nT", "nVec", "LI", "nNoise", "nT_inv", "SI"};
|
||||
|
||||
/******************************************************************************
|
||||
Save NamedTensor binary format (NB: On-disk format is Big Endian)
|
||||
Assumes the Scalar_ objects are contiguous (no padding)
|
||||
******************************************************************************/
|
||||
|
||||
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
||||
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::WriteBinary(const std::string filename) {
|
||||
LOG(Message) << "Writing NamedTensor to \"" << filename << "\"" << std::endl;
|
||||
std::ofstream w(filename, std::ios::binary);
|
||||
// Enforce assumption that the scalar is composed of fundamental elements of size Endian_Scalar_Size
|
||||
assert((Endian_Scalar_Size == 1 || Endian_Scalar_Size == 2 || Endian_Scalar_Size == 4 || Endian_Scalar_Size == 8 )
|
||||
&& "NamedTensor error: Endian_Scalar_Size should be 1, 2, 4 or 8");
|
||||
assert((sizeof(Scalar_) % Endian_Scalar_Size) == 0 && "NamedTensor error: Scalar_ is not composed of Endian_Scalar_Size" );
|
||||
// Size of the data (in bytes)
|
||||
const uint32_t Scalar_Size{sizeof(Scalar_)};
|
||||
const auto NumElements = tensor.size();
|
||||
const std::streamsize TotalDataSize{static_cast<std::streamsize>(NumElements * Scalar_Size)};
|
||||
uint64_t u64 = htobe64(static_cast<uint64_t>(TotalDataSize));
|
||||
w.write(reinterpret_cast<const char *>(&u64), sizeof(u64));
|
||||
// Size of a Scalar_
|
||||
uint32_t u32{htobe32(Scalar_Size)};
|
||||
w.write(reinterpret_cast<const char *>(&u32), sizeof(u32));
|
||||
// Endian_Scalar_Size
|
||||
uint16_t u16{htobe16(Endian_Scalar_Size)};
|
||||
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
|
||||
// number of dimensions which aren't 1
|
||||
u16 = static_cast<uint16_t>(this->NumIndices);
|
||||
for( auto dim : tensor.dimensions() )
|
||||
if( dim == 1 )
|
||||
u16--;
|
||||
u16 = htobe16( u16 );
|
||||
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
|
||||
// dimensions together with names
|
||||
int d = 0;
|
||||
for( auto dim : tensor.dimensions() ) {
|
||||
if( dim != 1 ) {
|
||||
// size of this dimension
|
||||
u16 = htobe16( static_cast<uint16_t>( dim ) );
|
||||
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
|
||||
// length of this dimension name
|
||||
u16 = htobe16( static_cast<uint16_t>( IndexNames[d].size() ) );
|
||||
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
|
||||
// dimension name
|
||||
w.write(IndexNames[d].c_str(), IndexNames[d].size());
|
||||
}
|
||||
d++;
|
||||
}
|
||||
// Actual data
|
||||
char * const pStart{reinterpret_cast<char *>(tensor.data())};
|
||||
// Swap to network byte order in place (alternative is to copy memory - still slow)
|
||||
void * const pEnd{pStart + TotalDataSize};
|
||||
if(Endian_Scalar_Size == 8)
|
||||
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
|
||||
* p = htobe64( * p );
|
||||
else if(Endian_Scalar_Size == 4)
|
||||
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
|
||||
* p = htobe32( * p );
|
||||
else if(Endian_Scalar_Size == 2)
|
||||
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
|
||||
* p = htobe16( * p );
|
||||
w.write(pStart, TotalDataSize);
|
||||
// Swap back from network byte order
|
||||
if(Endian_Scalar_Size == 8)
|
||||
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
|
||||
* p = be64toh( * p );
|
||||
else if(Endian_Scalar_Size == 4)
|
||||
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
|
||||
* p = be32toh( * p );
|
||||
else if(Endian_Scalar_Size == 2)
|
||||
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
|
||||
* p = be16toh( * p );
|
||||
// checksum
|
||||
#ifdef USE_IPP
|
||||
u32 = htobe32(GridChecksum::crc32c(tensor.data(), TotalDataSize));
|
||||
#else
|
||||
u32 = htobe32(GridChecksum::crc32(tensor.data(), TotalDataSize));
|
||||
#endif
|
||||
w.write(reinterpret_cast<const char *>(&u32), sizeof(u32));
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
Load NamedTensor binary format (NB: On-disk format is Big Endian)
|
||||
Assumes the Scalar_ objects are contiguous (no padding)
|
||||
******************************************************************************/
|
||||
|
||||
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
||||
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::ReadBinary(const std::string filename) {
|
||||
LOG(Message) << "Reading NamedTensor from \"" << filename << "\"" << std::endl;
|
||||
std::ifstream r(filename, std::ios::binary);
|
||||
// Enforce assumption that the scalar is composed of fundamental elements of size Endian_Scalar_Size
|
||||
assert((Endian_Scalar_Size == 1 || Endian_Scalar_Size == 2 || Endian_Scalar_Size == 4 || Endian_Scalar_Size == 8 )
|
||||
&& "NamedTensor error: Endian_Scalar_Size should be 1, 2, 4 or 8");
|
||||
assert((sizeof(Scalar_) % Endian_Scalar_Size) == 0 && "NamedTensor error: Scalar_ is not composed of Endian_Scalar_Size" );
|
||||
// Size of the data in bytes
|
||||
const uint32_t Scalar_Size{sizeof(Scalar_)};
|
||||
Index NumElements{tensor.size()};
|
||||
std::streamsize TotalDataSize{static_cast<std::streamsize>(NumElements * Scalar_Size)};
|
||||
uint64_t u64;
|
||||
r.read(reinterpret_cast<char *>(&u64), sizeof(u64));
|
||||
assert( TotalDataSize == 0 || TotalDataSize == be64toh( u64 ) && "NamedTensor error: Size of the data in bytes" );
|
||||
// Size of a Scalar_
|
||||
uint32_t u32;
|
||||
r.read(reinterpret_cast<char *>(&u32), sizeof(u32));
|
||||
assert( Scalar_Size == be32toh( u32 ) && "NamedTensor error: sizeof(Scalar_)");
|
||||
// Endian_Scalar_Size
|
||||
uint16_t u16;
|
||||
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
|
||||
assert( Endian_Scalar_Size == be16toh( u16 ) && "NamedTensor error: Scalar_Unit_size");
|
||||
// number of dimensions which aren't 1
|
||||
uint16_t NumFileDimensions;
|
||||
r.read(reinterpret_cast<char *>(&NumFileDimensions), sizeof(NumFileDimensions));
|
||||
NumFileDimensions = be16toh( NumFileDimensions );
|
||||
/*for( auto dim : tensor.dimensions() )
|
||||
if( dim == 1 )
|
||||
u16++;*/
|
||||
assert( ( TotalDataSize == 0 && this->NumIndices >= NumFileDimensions || this->NumIndices == NumFileDimensions )
|
||||
&& "NamedTensor error: number of dimensions which aren't 1" );
|
||||
if( TotalDataSize == 0 ) {
|
||||
// Read each dimension, using names to skip past dimensions == 1
|
||||
std::array<Index,NumIndices_> NewDimensions;
|
||||
for( Index &i : NewDimensions ) i = 1;
|
||||
int d = 0;
|
||||
for( int FileDimension = 0; FileDimension < NumFileDimensions; FileDimension++ ) {
|
||||
// read dimension
|
||||
uint16_t thisDim;
|
||||
r.read(reinterpret_cast<char *>(&thisDim), sizeof(thisDim));
|
||||
// read dimension name
|
||||
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
|
||||
size_t l = be16toh( u16 );
|
||||
std::string s( l, '?' );
|
||||
r.read(&s[0], l);
|
||||
// skip forward to matching name
|
||||
while( IndexNames[d].size() > 0 && !CompareCaseInsensitive( s, IndexNames[d] ) )
|
||||
assert(++d < NumIndices && "NamedTensor error: dimension name" );
|
||||
if( IndexNames[d].size() == 0 )
|
||||
IndexNames[d] = s;
|
||||
NewDimensions[d++] = be16toh( thisDim );
|
||||
}
|
||||
tensor.resize(NewDimensions);
|
||||
NumElements = 1;
|
||||
for( Index i : NewDimensions ) NumElements *= i;
|
||||
TotalDataSize = NumElements * Scalar_Size;
|
||||
} else {
|
||||
// dimensions together with names
|
||||
const auto & TensorDims = tensor.dimensions();
|
||||
for( int d = 0; d < NumIndices_; d++ ) {
|
||||
// size of dimension
|
||||
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
|
||||
u16 = be16toh( u16 );
|
||||
assert( TensorDims[d] == u16 && "size of dimension" );
|
||||
// length of dimension name
|
||||
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
|
||||
size_t l = be16toh( u16 );
|
||||
assert( l == IndexNames[d].size() && "NamedTensor error: length of dimension name" );
|
||||
// dimension name
|
||||
std::string s( l, '?' );
|
||||
r.read(&s[0], l);
|
||||
assert( s == IndexNames[d] && "NamedTensor error: dimension name" );
|
||||
}
|
||||
}
|
||||
// Actual data
|
||||
char * const pStart{reinterpret_cast<char *>(tensor.data())};
|
||||
void * const pEnd{pStart + TotalDataSize};
|
||||
r.read(pStart,TotalDataSize);
|
||||
// Swap back from network byte order
|
||||
if(Endian_Scalar_Size == 8)
|
||||
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
|
||||
* p = be64toh( * p );
|
||||
else if(Endian_Scalar_Size == 4)
|
||||
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
|
||||
* p = be32toh( * p );
|
||||
else if(Endian_Scalar_Size == 2)
|
||||
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
|
||||
* p = be16toh( * p );
|
||||
// checksum
|
||||
r.read(reinterpret_cast<char *>(&u32), sizeof(u32));
|
||||
u32 = be32toh( u32 );
|
||||
#ifdef USE_IPP
|
||||
u32 -= GridChecksum::crc32c(tensor.data(), TotalDataSize);
|
||||
#else
|
||||
u32 -= GridChecksum::crc32(tensor.data(), TotalDataSize);
|
||||
#endif
|
||||
assert( u32 == 0 && "NamedTensor error: PerambTensor checksum invalid");
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
Write NamedTensor
|
||||
******************************************************************************/
|
||||
|
||||
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
||||
template<typename Scalar_, int NumIndices_>
|
||||
template<typename Writer>
|
||||
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::write(Writer &w, const char * pszTag)const{
|
||||
void NamedTensor<Scalar_, NumIndices_>::write(Writer &w, const char * pszTag)const{
|
||||
if( pszTag == nullptr )
|
||||
pszTag = "NamedTensor";
|
||||
LOG(Message) << "Writing NamedTensor to tag " << pszTag << std::endl;
|
||||
write(w, pszTag, *this);
|
||||
}
|
||||
|
||||
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
||||
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::write(const char * filename, const char * pszTag)const{
|
||||
template<typename Scalar_, int NumIndices_>
|
||||
void NamedTensor<Scalar_, NumIndices_>::write(const char * filename, const char * pszTag)const{
|
||||
std::string sFileName{filename};
|
||||
sFileName.append( MDistil::FileExtension );
|
||||
LOG(Message) << "Writing NamedTensor to file " << sFileName << std::endl;
|
||||
@ -598,8 +364,8 @@ void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::write(const char * f
|
||||
Validate named tensor index names
|
||||
******************************************************************************/
|
||||
|
||||
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
||||
bool NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::ValidateIndexNames( int iNumNames, const std::string * MatchNames ) const {
|
||||
template<typename Scalar_, int NumIndices_>
|
||||
bool NamedTensor<Scalar_, NumIndices_>::ValidateIndexNames( int iNumNames, const std::string * MatchNames ) const {
|
||||
bool bSame{ iNumNames == NumIndices_ && IndexNames.size() == NumIndices_ };
|
||||
for( int i = 0; bSame && i < NumIndices_; i++ )
|
||||
bSame = CompareCaseInsensitive( MatchNames[i], IndexNames[i] );
|
||||
@ -610,9 +376,9 @@ bool NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::ValidateIndexNames(
|
||||
Read NamedTensor
|
||||
******************************************************************************/
|
||||
|
||||
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
||||
template<typename Scalar_, int NumIndices_>
|
||||
template<typename Reader>
|
||||
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::read(Reader &r, const char * pszTag) {
|
||||
void NamedTensor<Scalar_, NumIndices_>::read(Reader &r, const char * pszTag) {
|
||||
if( pszTag == nullptr )
|
||||
pszTag = "NamedTensor";
|
||||
// Grab index names and dimensions
|
||||
@ -626,8 +392,8 @@ void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::read(Reader &r, cons
|
||||
assert( ValidateIndexNames( OldIndexNames.size(), &OldIndexNames[0] ) && "NamedTensor::load dimension name" );
|
||||
}
|
||||
|
||||
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
|
||||
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::read(const char * filename, const char * pszTag) {
|
||||
template<typename Scalar_, int NumIndices_>
|
||||
void NamedTensor<Scalar_, NumIndices_>::read(const char * filename, const char * pszTag) {
|
||||
std::string sFileName{filename};
|
||||
sFileName.append( MDistil::FileExtension );
|
||||
LOG(Message) << "Reading NamedTensor from file " << sFileName << std::endl;
|
||||
@ -664,19 +430,14 @@ inline void RotateEigen(std::vector<LatticeColourVector> & evec)
|
||||
Coordinate siteFirst(grid->Nd(),0);
|
||||
peekSite(cv0, evec[0], siteFirst);
|
||||
Grid::Complex cplx0 = cv0()()(0);
|
||||
#ifdef GRID_NVCC
|
||||
if( cplx0.imag() == 0 )
|
||||
#else
|
||||
if( std::imag(cplx0) == 0 )
|
||||
#endif
|
||||
std::cout << GridLogMessage << "RotateEigen() : Site 0 : " << cplx0 << " => already meets phase convention" << std::endl;
|
||||
else {
|
||||
const Real cplx0_mag = Grid::abs(cplx0);
|
||||
#ifdef GRID_NVCC
|
||||
const Real cplx0_mag = thrust::abs(cplx0);
|
||||
const Grid::Complex phase = thrust::conj(cplx0 / cplx0_mag);
|
||||
const Real argphase = thrust::arg(phase);
|
||||
#else
|
||||
const Real cplx0_mag = std::abs(cplx0);
|
||||
const Grid::Complex phase = std::conj(cplx0 / cplx0_mag);
|
||||
const Real argphase = std::arg(phase);
|
||||
#endif
|
||||
|
@ -219,7 +219,7 @@ void TLapEvec<GImpl>::execute(void)
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Invert Peardon Nabla operator separately on each time-slice
|
||||
// Invert nabla operator separately on each time-slice
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
auto & eig4d = envGet(LapEvecs, getName() );
|
||||
@ -237,7 +237,7 @@ void TLapEvec<GImpl>::execute(void)
|
||||
|
||||
// Construct smearing operator
|
||||
ExtractSliceLocal(UmuNoTime,Umu_smear,0,t,Tdir); // switch to 3d/4d objects
|
||||
LinOpPeardonNabla<LatticeColourVector> PeardonNabla(UmuNoTime);
|
||||
Laplacian3D<LatticeColourVector> Nabla(UmuNoTime);
|
||||
LOG(Debug) << "Chebyshev preconditioning to order " << ChebPar.PolyOrder
|
||||
<< " with parameters (alpha,beta) = (" << ChebPar.alpha << "," << ChebPar.beta << ")" << std::endl;
|
||||
Chebyshev<LatticeColourVector> Cheb(ChebPar.alpha,ChebPar.beta,ChebPar.PolyOrder);
|
||||
@ -248,9 +248,9 @@ void TLapEvec<GImpl>::execute(void)
|
||||
nn = Grid::sqrt(nn);
|
||||
src = src * (1.0/nn);
|
||||
|
||||
LinOpPeardonNablaHerm<LatticeColourVector> PeardonNablaCheby(Cheb,PeardonNabla);
|
||||
Laplacian3DHerm<LatticeColourVector> NablaCheby(Cheb,Nabla);
|
||||
ImplicitlyRestartedLanczos<LatticeColourVector>
|
||||
IRL(PeardonNablaCheby,PeardonNabla,LPar.Nvec,LPar.Nk,LPar.Nk+LPar.Np,LPar.resid,LPar.MaxIt);
|
||||
IRL(NablaCheby,Nabla,LPar.Nvec,LPar.Nk,LPar.Nk+LPar.Np,LPar.resid,LPar.MaxIt);
|
||||
int Nconv = 0;
|
||||
IRL.calc(eig[t].eval,eig[t].evec,src,Nconv);
|
||||
if( Nconv < LPar.Nvec ) {
|
||||
|
@ -133,7 +133,8 @@ void TNoises<FImpl>::execute(void)
|
||||
UniqueIdentifier = getName();
|
||||
}
|
||||
UniqueIdentifier.append( std::to_string( vm().getTrajectory() ) );
|
||||
|
||||
|
||||
// We use our own seeds so we can specify different noises per quark
|
||||
GridSerialRNG sRNG;
|
||||
sRNG.SeedUniqueString(UniqueIdentifier);
|
||||
Real rn;
|
||||
|
@ -30,7 +30,6 @@
|
||||
#ifndef Hadrons_MDistil_Perambulator_hpp_
|
||||
#define Hadrons_MDistil_Perambulator_hpp_
|
||||
|
||||
// These are members of Distillation
|
||||
#include <Hadrons/Distil.hpp>
|
||||
|
||||
BEGIN_HADRONS_NAMESPACE
|
||||
@ -47,10 +46,10 @@ public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(PerambulatorPar,
|
||||
std::string, lapevec,
|
||||
std::string, solver,
|
||||
std::string, noise,
|
||||
std::string, PerambFileName,
|
||||
std::string, UnsmearedSinkFileName,
|
||||
std::string, UnsmearedSinkMultiFile,
|
||||
std::string, noise,
|
||||
std::string, PerambFileName,
|
||||
std::string, UnsmearedSinkFileName,
|
||||
std::string, UnsmearedSinkMultiFile,
|
||||
int, nvec,
|
||||
DistilParameters, Distil);
|
||||
};
|
||||
@ -59,29 +58,29 @@ template <typename FImpl>
|
||||
class TPerambulator: public Module<PerambulatorPar>
|
||||
{
|
||||
public:
|
||||
FERM_TYPE_ALIASES(FImpl,);
|
||||
SOLVER_TYPE_ALIASES(FImpl,);
|
||||
// constructor
|
||||
TPerambulator(const std::string name);
|
||||
// destructor
|
||||
virtual ~TPerambulator(void);
|
||||
// dependency relation
|
||||
virtual std::vector<std::string> getInput(void);
|
||||
virtual std::vector<std::string> getOutput(void);
|
||||
// setup
|
||||
virtual void setup(void);
|
||||
// execution
|
||||
virtual void execute(void);
|
||||
FERM_TYPE_ALIASES(FImpl,);
|
||||
SOLVER_TYPE_ALIASES(FImpl,);
|
||||
// constructor
|
||||
TPerambulator(const std::string name);
|
||||
// destructor
|
||||
virtual ~TPerambulator(void);
|
||||
// dependency relation
|
||||
virtual std::vector<std::string> getInput(void);
|
||||
virtual std::vector<std::string> getOutput(void);
|
||||
// setup
|
||||
virtual void setup(void);
|
||||
// execution
|
||||
virtual void execute(void);
|
||||
protected:
|
||||
virtual void Cleanup(void);
|
||||
virtual void Cleanup(void);
|
||||
protected:
|
||||
// These variables are created in setup() and freed in Cleanup()
|
||||
GridCartesian * grid3d; // Owned by me, so I must delete it
|
||||
GridCartesian * grid4d; // Owned by environment (so I won't delete it)
|
||||
// Other members
|
||||
unsigned int Ls_;
|
||||
std::string sLapEvecName;
|
||||
std::string sNoiseName;
|
||||
// These variables are created in setup() and freed in Cleanup()
|
||||
GridCartesian * grid3d; // Owned by me, so I must delete it
|
||||
GridCartesian * grid4d; // Owned by environment (so I won't delete it)
|
||||
// Other members
|
||||
unsigned int Ls_;
|
||||
std::string sLapEvecName;
|
||||
std::string sNoiseName;
|
||||
};
|
||||
|
||||
MODULE_REGISTER_TMP(Perambulator, TPerambulator<FIMPL>, MDistil);
|
||||
@ -99,174 +98,181 @@ TPerambulator<FImpl>::TPerambulator(const std::string name)
|
||||
template <typename FImpl>
|
||||
TPerambulator<FImpl>::~TPerambulator(void)
|
||||
{
|
||||
Cleanup();
|
||||
Cleanup();
|
||||
};
|
||||
|
||||
// dependencies/products ///////////////////////////////////////////////////////
|
||||
template <typename FImpl>
|
||||
std::vector<std::string> TPerambulator<FImpl>::getInput(void)
|
||||
{
|
||||
sLapEvecName = par().lapevec;
|
||||
sNoiseName = par().noise;
|
||||
if( sNoiseName.length() == 0 )
|
||||
sNoiseName = getName() + "_noise";
|
||||
return {sLapEvecName, par().solver, sNoiseName };
|
||||
sLapEvecName = par().lapevec;
|
||||
sNoiseName = par().noise;
|
||||
if( sNoiseName.length() == 0 )
|
||||
sNoiseName = getName() + "_noise";
|
||||
return {sLapEvecName, par().solver, sNoiseName };
|
||||
}
|
||||
|
||||
template <typename FImpl>
|
||||
std::vector<std::string> TPerambulator<FImpl>::getOutput(void)
|
||||
{
|
||||
return {getName(), getName() + "_unsmeared_sink"};
|
||||
return {getName(), getName() + "_unsmeared_sink"};
|
||||
}
|
||||
|
||||
// setup ///////////////////////////////////////////////////////////////////////
|
||||
template <typename FImpl>
|
||||
void TPerambulator<FImpl>::setup(void)
|
||||
{
|
||||
Cleanup();
|
||||
grid4d = env().getGrid();
|
||||
grid3d = MakeLowerDimGrid(grid4d);
|
||||
DISTIL_PARAMETERS_DEFINE( true );
|
||||
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
|
||||
if( !UnsmearedSinkFileName.empty() )
|
||||
bool bMulti = ( Hadrons::MDistil::DistilParameters::ParameterDefault( par().UnsmearedSinkMultiFile, 1, true ) != 0 );
|
||||
|
||||
envCreate(PerambTensor, getName(), 1, PerambIndexNames,Nt,nvec,LI,nnoise,Nt_inv,SI);
|
||||
envCreate(std::vector<FermionField>, getName() + "_unsmeared_sink", 1,
|
||||
nnoise*LI*Ns*Nt_inv, envGetGrid(FermionField));
|
||||
|
||||
envTmpLat(LatticeSpinColourVector, "dist_source");
|
||||
envTmpLat(LatticeSpinColourVector, "tmp2");
|
||||
envTmpLat(LatticeSpinColourVector, "result");
|
||||
envTmpLat(LatticeColourVector, "result_nospin");
|
||||
envTmp(LatticeSpinColourVector, "tmp3d",1,LatticeSpinColourVector(grid3d));
|
||||
envTmp(LatticeColourVector, "tmp3d_nospin",1,LatticeColourVector(grid3d));
|
||||
envTmp(LatticeColourVector, "result_3d",1,LatticeColourVector(grid3d));
|
||||
envTmp(LatticeColourVector, "evec3d",1,LatticeColourVector(grid3d));
|
||||
|
||||
Ls_ = env().getObjectLs(par().solver);
|
||||
envTmpLat(FermionField, "v4dtmp");
|
||||
envTmpLat(FermionField, "v5dtmp", Ls_);
|
||||
envTmpLat(FermionField, "v5dtmp_sol", Ls_);
|
||||
Cleanup();
|
||||
grid4d = env().getGrid();
|
||||
grid3d = MakeLowerDimGrid(grid4d);
|
||||
DISTIL_PARAMETERS_DEFINE( true );
|
||||
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
|
||||
if( !UnsmearedSinkFileName.empty() )
|
||||
bool bMulti = ( Hadrons::MDistil::DistilParameters::ParameterDefault( par().UnsmearedSinkMultiFile, 1, true ) != 0 );
|
||||
|
||||
envCreate(PerambTensor, getName(), 1, PerambIndexNames,Nt,nvec,LI,nnoise,Nt_inv,SI);
|
||||
envCreate(std::vector<FermionField>, getName() + "_unsmeared_sink", 1,
|
||||
nnoise*LI*Ns*Nt_inv, envGetGrid(FermionField));
|
||||
|
||||
envTmpLat(LatticeSpinColourVector, "dist_source");
|
||||
envTmpLat(LatticeSpinColourVector, "tmp2");
|
||||
envTmpLat(LatticeSpinColourVector, "result");
|
||||
envTmpLat(LatticeColourVector, "result_nospin");
|
||||
envTmp(LatticeSpinColourVector, "tmp3d",1,LatticeSpinColourVector(grid3d));
|
||||
envTmp(LatticeColourVector, "tmp3d_nospin",1,LatticeColourVector(grid3d));
|
||||
envTmp(LatticeColourVector, "result_3d",1,LatticeColourVector(grid3d));
|
||||
envTmp(LatticeColourVector, "evec3d",1,LatticeColourVector(grid3d));
|
||||
|
||||
Ls_ = env().getObjectLs(par().solver);
|
||||
envTmpLat(FermionField, "v4dtmp");
|
||||
envTmpLat(FermionField, "v5dtmp", Ls_);
|
||||
envTmpLat(FermionField, "v5dtmp_sol", Ls_);
|
||||
}
|
||||
|
||||
// clean up any temporaries created by setup (that aren't stored in the environment)
|
||||
template <typename FImpl>
|
||||
void TPerambulator<FImpl>::Cleanup(void)
|
||||
{
|
||||
if( grid3d != nullptr ) {
|
||||
delete grid3d;
|
||||
grid3d = nullptr;
|
||||
}
|
||||
grid4d = nullptr;
|
||||
if( grid3d != nullptr )
|
||||
{
|
||||
delete grid3d;
|
||||
grid3d = nullptr;
|
||||
}
|
||||
grid4d = nullptr;
|
||||
}
|
||||
|
||||
// execution ///////////////////////////////////////////////////////////////////
|
||||
template <typename FImpl>
|
||||
void TPerambulator<FImpl>::execute(void)
|
||||
{
|
||||
DISTIL_PARAMETERS_DEFINE( false );
|
||||
|
||||
DISTIL_PARAMETERS_DEFINE( false );
|
||||
auto &solver=envGet(Solver, par().solver);
|
||||
auto &mat = solver.getFMat();
|
||||
envGetTmp(FermionField, v4dtmp);
|
||||
envGetTmp(FermionField, v5dtmp);
|
||||
envGetTmp(FermionField, v5dtmp_sol);
|
||||
|
||||
auto &noise = envGet(NoiseTensor, sNoiseName);
|
||||
auto &perambulator = envGet(PerambTensor, getName());
|
||||
auto &epack = envGet(LapEvecs, sLapEvecName);
|
||||
auto &unsmeared_sink = envGet(std::vector<FermionField>, getName() + "_unsmeared_sink");
|
||||
|
||||
|
||||
// Load perambulator if it exists on disk instead of creating it
|
||||
// Not sure this is how we want it - rather specify an input flag 'read'
|
||||
// and assert that the file is there.
|
||||
|
||||
envGetTmp(LatticeSpinColourVector, dist_source);
|
||||
envGetTmp(LatticeSpinColourVector, tmp2);
|
||||
envGetTmp(LatticeSpinColourVector, result);
|
||||
envGetTmp(LatticeColourVector, result_nospin);
|
||||
envGetTmp(LatticeSpinColourVector, tmp3d);
|
||||
envGetTmp(LatticeColourVector, tmp3d_nospin);
|
||||
envGetTmp(LatticeColourVector, result_3d);
|
||||
envGetTmp(LatticeColourVector, evec3d);
|
||||
|
||||
envGetTmp(LatticeSpinColourVector, dist_source);
|
||||
envGetTmp(LatticeSpinColourVector, tmp2);
|
||||
envGetTmp(LatticeSpinColourVector, result);
|
||||
envGetTmp(LatticeColourVector, result_nospin);
|
||||
envGetTmp(LatticeSpinColourVector, tmp3d);
|
||||
envGetTmp(LatticeColourVector, tmp3d_nospin);
|
||||
envGetTmp(LatticeColourVector, result_3d);
|
||||
envGetTmp(LatticeColourVector, evec3d);
|
||||
const int Ntlocal{grid4d->LocalDimensions()[3]};
|
||||
const int Ntfirst{grid4d->LocalStarts()[3]};
|
||||
|
||||
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
|
||||
|
||||
{
|
||||
|
||||
int t_inv;
|
||||
for (int inoise = 0; inoise < nnoise; inoise++) {
|
||||
for (int dk = 0; dk < LI; dk++) {
|
||||
for (int dt = 0; dt < Nt_inv; dt++) {
|
||||
for (int ds = 0; ds < SI; ds++) {
|
||||
LOG(Message) << "LapH source vector from noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl;
|
||||
dist_source = 0;
|
||||
tmp3d_nospin = 0;
|
||||
evec3d = 0;
|
||||
for (int it = dt; it < Nt; it += TI){
|
||||
if (full_tdil) t_inv = tsrc; else t_inv = it;
|
||||
if( t_inv >= Ntfirst && t_inv < Ntfirst + Ntlocal ) {
|
||||
for (int ik = dk; ik < nvec; ik += LI){
|
||||
for (int is = ds; is < Ns; is += SI){
|
||||
ExtractSliceLocal(evec3d,epack.evec[ik],0,t_inv-Ntfirst,Tdir);
|
||||
tmp3d_nospin = evec3d * noise(inoise, t_inv, ik, is);
|
||||
tmp3d=0;
|
||||
pokeSpin(tmp3d,tmp3d_nospin,is);
|
||||
tmp2=0;
|
||||
InsertSliceLocal(tmp3d,tmp2,0,t_inv-Ntfirst,Tdir);
|
||||
dist_source += tmp2;
|
||||
}
|
||||
int t_inv;
|
||||
for (int inoise = 0; inoise < nnoise; inoise++)
|
||||
{
|
||||
for (int dk = 0; dk < LI; dk++)
|
||||
{
|
||||
for (int dt = 0; dt < Nt_inv; dt++)
|
||||
{
|
||||
for (int ds = 0; ds < SI; ds++)
|
||||
{
|
||||
LOG(Message) << "LapH source vector from noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl;
|
||||
dist_source = 0;
|
||||
tmp3d_nospin = 0;
|
||||
evec3d = 0;
|
||||
for (int it = dt; it < Nt; it += TI)
|
||||
{
|
||||
if (full_tdil) t_inv = tsrc; else t_inv = it;
|
||||
if( t_inv >= Ntfirst && t_inv < Ntfirst + Ntlocal )
|
||||
{
|
||||
for (int ik = dk; ik < nvec; ik += LI)
|
||||
{
|
||||
for (int is = ds; is < Ns; is += SI)
|
||||
{
|
||||
ExtractSliceLocal(evec3d,epack.evec[ik],0,t_inv-Ntfirst,Tdir);
|
||||
tmp3d_nospin = evec3d * noise(inoise, t_inv, ik, is);
|
||||
tmp3d=0;
|
||||
pokeSpin(tmp3d,tmp3d_nospin,is);
|
||||
tmp2=0;
|
||||
InsertSliceLocal(tmp3d,tmp2,0,t_inv-Ntfirst,Tdir);
|
||||
dist_source += tmp2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
result=0;
|
||||
v4dtmp = dist_source;
|
||||
if (Ls_ == 1)
|
||||
{
|
||||
solver(result, v4dtmp);
|
||||
}
|
||||
else
|
||||
{
|
||||
mat.ImportPhysicalFermionSource(v4dtmp, v5dtmp);
|
||||
solver(v5dtmp_sol, v5dtmp);
|
||||
mat.ExportPhysicalFermionSolution(v5dtmp_sol, v4dtmp);
|
||||
result = v4dtmp;
|
||||
}
|
||||
if( !UnsmearedSinkFileName.empty() )
|
||||
unsmeared_sink[inoise+nnoise*(dk+LI*(dt+Nt_inv*ds))] = result;
|
||||
for (int is = 0; is < Ns; is++)
|
||||
{
|
||||
result_nospin = peekSpin(result,is);
|
||||
for (int t = Ntfirst; t < Ntfirst + Ntlocal; t++)
|
||||
{
|
||||
ExtractSliceLocal(result_3d,result_nospin,0,t-Ntfirst,Tdir);
|
||||
for (int ivec = 0; ivec < nvec; ivec++)
|
||||
{
|
||||
ExtractSliceLocal(evec3d,epack.evec[ivec],0,t-Ntfirst,Tdir);
|
||||
pokeSpin(perambulator(t, ivec, dk, inoise,dt,ds),static_cast<Complex>(innerProduct(evec3d, result_3d)),is);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
result=0;
|
||||
v4dtmp = dist_source;
|
||||
if (Ls_ == 1){
|
||||
solver(result, v4dtmp);
|
||||
} else {
|
||||
mat.ImportPhysicalFermionSource(v4dtmp, v5dtmp);
|
||||
solver(v5dtmp_sol, v5dtmp);
|
||||
mat.ExportPhysicalFermionSolution(v5dtmp_sol, v4dtmp);
|
||||
result = v4dtmp;
|
||||
}
|
||||
if( !UnsmearedSinkFileName.empty() )
|
||||
unsmeared_sink[inoise+nnoise*(dk+LI*(dt+Nt_inv*ds))] = result;
|
||||
for (int is = 0; is < Ns; is++) {
|
||||
result_nospin = peekSpin(result,is);
|
||||
for (int t = Ntfirst; t < Ntfirst + Ntlocal; t++) {
|
||||
ExtractSliceLocal(result_3d,result_nospin,0,t-Ntfirst,Tdir);
|
||||
for (int ivec = 0; ivec < nvec; ivec++) {
|
||||
ExtractSliceLocal(evec3d,epack.evec[ivec],0,t-Ntfirst,Tdir);
|
||||
pokeSpin(perambulator(t, ivec, dk, inoise,dt,ds),static_cast<Complex>(innerProduct(evec3d, result_3d)),is);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
LOG(Message) << "perambulator done" << std::endl;
|
||||
perambulator.SliceShare( grid3d, grid4d );
|
||||
|
||||
if(grid4d->IsBoss()) {
|
||||
std::string sPerambName{par().PerambFileName};
|
||||
if( sPerambName.length() == 0 )
|
||||
sPerambName = getName();
|
||||
sPerambName.append( "." );
|
||||
sPerambName.append( std::to_string(vm().getTrajectory()));
|
||||
perambulator.write(sPerambName.c_str());
|
||||
}
|
||||
|
||||
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
|
||||
if( !UnsmearedSinkFileName.empty() ) {
|
||||
bool bMulti = ( Hadrons::MDistil::DistilParameters::ParameterDefault( par().UnsmearedSinkMultiFile, 1, false ) != 0 );
|
||||
LOG(Message) << "Writing unsmeared sink to " << UnsmearedSinkFileName << std::endl;
|
||||
A2AVectorsIo::write(UnsmearedSinkFileName, unsmeared_sink, bMulti, vm().getTrajectory());
|
||||
}
|
||||
LOG(Message) << "perambulator done" << std::endl;
|
||||
perambulator.SliceShare( grid3d, grid4d );
|
||||
|
||||
if(grid4d->IsBoss())
|
||||
{
|
||||
std::string sPerambName{par().PerambFileName};
|
||||
if( sPerambName.length() == 0 )
|
||||
sPerambName = getName();
|
||||
sPerambName.append( "." );
|
||||
sPerambName.append( std::to_string(vm().getTrajectory()));
|
||||
perambulator.write(sPerambName.c_str());
|
||||
}
|
||||
|
||||
if( !UnsmearedSinkFileName.empty() )
|
||||
{
|
||||
bool bMulti = ( Hadrons::MDistil::DistilParameters::ParameterDefault( par().UnsmearedSinkMultiFile, 1, false ) != 0 );
|
||||
LOG(Message) << "Writing unsmeared sink to " << UnsmearedSinkFileName << std::endl;
|
||||
A2AVectorsIo::write(UnsmearedSinkFileName, unsmeared_sink, bMulti, vm().getTrajectory());
|
||||
}
|
||||
}
|
||||
|
||||
END_MODULE_NAMESPACE
|
||||
|
@ -190,98 +190,22 @@ void test_Perambulators( Application &application, const char * pszSuffix = null
|
||||
// DistilVectors
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
#define TEST_DISTIL_VECTORS_COMMON \
|
||||
std::string sModuleName{"DistilVecs"}; \
|
||||
if( pszSuffix ) \
|
||||
sModuleName.append( pszSuffix ); \
|
||||
std::string sPerambName{"Peramb"}; \
|
||||
if( pszSuffix ) \
|
||||
sPerambName.append( pszSuffix ); \
|
||||
MDistil::DistilVectors::Par DistilVecPar; \
|
||||
DistilVecPar.noise = sPerambName + "_noise"; \
|
||||
DistilVecPar.perambulator = sPerambName; \
|
||||
DistilVecPar.lapevec = "LapEvec"; \
|
||||
DistilVecPar.tsrc = 0; \
|
||||
if( pszNvec ) \
|
||||
DistilVecPar.nvec = pszNvec
|
||||
|
||||
#define TEST_DISTIL_VECTORS_COMMON_END \
|
||||
application.createModule<MDistil::DistilVectors>(sModuleName,DistilVecPar)
|
||||
|
||||
void test_DistilVectors(Application &application, const char * pszSuffix = nullptr, const char * pszNvec = nullptr )
|
||||
{
|
||||
TEST_DISTIL_VECTORS_COMMON;
|
||||
TEST_DISTIL_VECTORS_COMMON_END;
|
||||
}
|
||||
|
||||
void test_DistilVectorsSS(Application &application, const char * pszSink, const char * pszSource,
|
||||
const char * pszSuffix = nullptr, const char * pszNvec = nullptr )
|
||||
{
|
||||
TEST_DISTIL_VECTORS_COMMON;
|
||||
if( pszSink )
|
||||
DistilVecPar.sink = pszSink;
|
||||
if( pszSource )
|
||||
DistilVecPar.source = pszSource;
|
||||
TEST_DISTIL_VECTORS_COMMON_END;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Multiple Perambulators
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_MultiPerambulators(Application &application)
|
||||
{
|
||||
test_Perambulators( application, "5" );
|
||||
MDistil::PerambFromSolve::Par SolvePar;
|
||||
SolvePar.eigenPack="LapEvec";
|
||||
SolvePar.PerambFileName="Peramb2";
|
||||
SolvePar.solve = "Peramb5_unsmeared_sink";
|
||||
SolvePar.Distil.nnoise = 1;
|
||||
SolvePar.Distil.LI=5;
|
||||
SolvePar.Distil.SI=4;
|
||||
SolvePar.Distil.TI=8;
|
||||
SolvePar.nvec=5;
|
||||
SolvePar.nvec_reduced=2;
|
||||
SolvePar.LI_reduced=2;
|
||||
application.createModule<MDistil::PerambFromSolve>("Peramb2",SolvePar);
|
||||
SolvePar.PerambFileName="Peramb3";
|
||||
SolvePar.nvec_reduced=3;
|
||||
SolvePar.LI_reduced=3;
|
||||
application.createModule<MDistil::PerambFromSolve>("Peramb3",SolvePar);
|
||||
|
||||
test_DistilVectors( application, "2", "2" );
|
||||
test_DistilVectors( application, "3", "3" );
|
||||
test_DistilVectors( application, "5", "5" );
|
||||
|
||||
MContraction::A2AMesonField::Par A2AMesonFieldPar;
|
||||
A2AMesonFieldPar.left="DistilVecs2_rho";
|
||||
A2AMesonFieldPar.right="DistilVecs2_rho";
|
||||
A2AMesonFieldPar.output="MesonSinksRho2";
|
||||
A2AMesonFieldPar.gammas="Identity";
|
||||
A2AMesonFieldPar.mom={"0 0 0"};
|
||||
A2AMesonFieldPar.cacheBlock=2;
|
||||
A2AMesonFieldPar.block=4;
|
||||
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldRho2",A2AMesonFieldPar);
|
||||
A2AMesonFieldPar.left="DistilVecs2_phi";
|
||||
A2AMesonFieldPar.right="DistilVecs2_phi";
|
||||
A2AMesonFieldPar.output="MesonSinksPhi2";
|
||||
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldPhi2",A2AMesonFieldPar);
|
||||
A2AMesonFieldPar.left="DistilVecs3_rho";
|
||||
A2AMesonFieldPar.right="DistilVecs3_rho";
|
||||
A2AMesonFieldPar.output="MesonSinksRho3";
|
||||
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldRho3",A2AMesonFieldPar);
|
||||
A2AMesonFieldPar.left="DistilVecs3_phi";
|
||||
A2AMesonFieldPar.right="DistilVecs3_phi";
|
||||
A2AMesonFieldPar.output="MesonSinksPhi3";
|
||||
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldPhi3",A2AMesonFieldPar);
|
||||
A2AMesonFieldPar.left="DistilVecs5_rho";
|
||||
A2AMesonFieldPar.right="DistilVecs5_rho";
|
||||
A2AMesonFieldPar.output="MesonSinksRho5";
|
||||
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldRho5",A2AMesonFieldPar);
|
||||
A2AMesonFieldPar.left="DistilVecs5_phi";
|
||||
A2AMesonFieldPar.right="DistilVecs5_phi";
|
||||
A2AMesonFieldPar.output="MesonSinksPhi5";
|
||||
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldPhi5",A2AMesonFieldPar);
|
||||
std::string sModuleName{"DistilVecs"};
|
||||
if( pszSuffix )
|
||||
sModuleName.append( pszSuffix );
|
||||
std::string sPerambName{"Peramb"};
|
||||
if( pszSuffix )
|
||||
sPerambName.append( pszSuffix );
|
||||
MDistil::DistilVectors::Par DistilVecPar;
|
||||
DistilVecPar.noise = sPerambName + "_noise";
|
||||
DistilVecPar.perambulator = sPerambName;
|
||||
DistilVecPar.lapevec = "LapEvec";
|
||||
DistilVecPar.tsrc = 0;
|
||||
if( pszNvec )
|
||||
DistilVecPar.nvec = pszNvec;
|
||||
application.createModule<MDistil::DistilVectors>(sModuleName,DistilVecPar);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
@ -330,163 +254,6 @@ void test_MesonField(Application &application, const char * pszFileSuffix,
|
||||
application.createModule<MContraction::A2AMesonField>(sObjectName, A2AMesonFieldPar);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// g5*unsmeared
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef DISTIL_PRE_RELEASE
|
||||
void test_g5_sinks(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MDistil::g5_multiply::Par g5_multiplyPar;
|
||||
g5_multiplyPar.input="Peramb_unsmeared_sink";
|
||||
g5_multiplyPar.nnoise = 1;
|
||||
g5_multiplyPar.LI=5;
|
||||
g5_multiplyPar.Ns=4;
|
||||
g5_multiplyPar.Nt_inv=1;
|
||||
application.createModule<MDistil::g5_multiply>("g5phi",g5_multiplyPar);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// BaryonFields - phiphiphi - efficient
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_BaryonFieldPhi2(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MDistil::BC2::Par BC2Par;
|
||||
BC2Par.one="DistilVecs_phi";
|
||||
BC2Par.two="DistilVecs_phi";
|
||||
BC2Par.three="DistilVecs_phi";
|
||||
BC2Par.output="BaryonFieldPhi2";
|
||||
BC2Par.parity=1;
|
||||
BC2Par.mom={"0 0 0"};
|
||||
application.createModule<MDistil::BC2>("BaryonFieldPhi2",BC2Par);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// BaryonFields - rhorhorho - efficient
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_BaryonFieldRho2(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MDistil::BC2::Par BC2Par;
|
||||
BC2Par.one="DistilVecs_rho";
|
||||
BC2Par.two="DistilVecs_rho";
|
||||
BC2Par.three="DistilVecs_rho";
|
||||
BC2Par.output="BaryonFieldRho2";
|
||||
BC2Par.parity=1;
|
||||
BC2Par.mom={"0 0 0"};
|
||||
application.createModule<MDistil::BC2>("BaryonFieldRho2",BC2Par);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// BaryonFields - phiphiphi
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_BaryonFieldPhi(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MDistil::BContraction::Par BContractionPar;
|
||||
BContractionPar.one="DistilVecs_phi";
|
||||
BContractionPar.two="DistilVecs_phi";
|
||||
BContractionPar.three="DistilVecs_phi";
|
||||
BContractionPar.output="BaryonFieldPhi";
|
||||
BContractionPar.parity=1;
|
||||
BContractionPar.mom={"0 0 0"};
|
||||
application.createModule<MDistil::BContraction>("BaryonFieldPhi",BContractionPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// BaryonFields - rhorhorho
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_BaryonFieldRho(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MDistil::BContraction::Par BContractionPar;
|
||||
BContractionPar.one="DistilVecs_rho";
|
||||
BContractionPar.two="DistilVecs_rho";
|
||||
BContractionPar.three="DistilVecs_rho";
|
||||
BContractionPar.output="BaryonFieldRho";
|
||||
BContractionPar.parity=1;
|
||||
BContractionPar.mom={"0 0 0"};
|
||||
application.createModule<MDistil::BContraction>("BaryonFieldRho",BContractionPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// BaryonContraction
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_Baryon2pt(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MDistil::Baryon2pt::Par Baryon2ptPar;
|
||||
Baryon2ptPar.inputL="BaryonFieldPhi";
|
||||
Baryon2ptPar.inputR="BaryonFieldRho";
|
||||
Baryon2ptPar.quarksL="uud";
|
||||
Baryon2ptPar.quarksR="uud";
|
||||
Baryon2ptPar.output="C2_baryon";
|
||||
application.createModule<MDistil::Baryon2pt>("C2_b",Baryon2ptPar);
|
||||
}
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// emField
|
||||
/////////////////////////////////////////////////////////////
|
||||
void test_em(Application &application)
|
||||
{
|
||||
MGauge::StochEm::Par StochEmPar;
|
||||
StochEmPar.gauge=PhotonR::Gauge::feynman;
|
||||
StochEmPar.zmScheme=PhotonR::ZmScheme::qedL;
|
||||
application.createModule<MGauge::StochEm>("Em",StochEmPar);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// MesonA2ASlash
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_Aslash(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MContraction::A2AAslashField::Par A2AAslashFieldPar;
|
||||
A2AAslashFieldPar.left="g5phi";
|
||||
//A2AAslashFieldPar.right="DistilVecs_phi";
|
||||
A2AAslashFieldPar.right="Peramb_unsmeared_sink";
|
||||
A2AAslashFieldPar.output="unsmeared_Aslash";
|
||||
A2AAslashFieldPar.emField={"Em"};
|
||||
A2AAslashFieldPar.cacheBlock=2;
|
||||
A2AAslashFieldPar.block=4;
|
||||
application.createModule<MContraction::A2AAslashField>("Aslash_field",A2AAslashFieldPar);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// MesonA2ASlashSequential
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_AslashSeq(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MSolver::A2AAslashVectors::Par A2AAslashVectorsPar;
|
||||
A2AAslashVectorsPar.vector="PerambS_unsmeared_sink";
|
||||
A2AAslashVectorsPar.emField="Em";
|
||||
A2AAslashVectorsPar.solver="CG_s";
|
||||
A2AAslashVectorsPar.output="AslashSeq";
|
||||
application.createModule<MSolver::A2AAslashVectors>("Aslash_seq",A2AAslashVectorsPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Aslash_perambulators
|
||||
/////////////////////////////////////////////////////////////
|
||||
void test_PerambulatorsSolve(Application &application)
|
||||
{
|
||||
// Perambulator parameters
|
||||
MDistil::PerambFromSolve::Par PerambFromSolvePar;
|
||||
PerambFromSolvePar.eigenPack="LapEvec";
|
||||
PerambFromSolvePar.solve="Aslash_seq";
|
||||
PerambFromSolvePar.PerambFileName="perambAslashS.bin";
|
||||
PerambFromSolvePar.Distil.tsrc = 0;
|
||||
PerambFromSolvePar.Distil.nnoise = 1;
|
||||
PerambFromSolvePar.nvec=5;
|
||||
application.createModule<MDistil::PerambFromSolve>("PerambAslashS",PerambFromSolvePar);
|
||||
}
|
||||
|
||||
bool bNumber( int &ri, const char * & pstr, bool bGobbleWhiteSpace = true )
|
||||
{
|
||||
if( bGobbleWhiteSpace )
|
||||
@ -515,398 +282,8 @@ bool bNumber( int &ri, const char * & pstr, bool bGobbleWhiteSpace = true )
|
||||
return true;
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
|
||||
typedef Grid::Hadrons::MDistil::NamedTensor<Complex,3,sizeof(Real)> MyTensor;
|
||||
|
||||
template<typename T>
|
||||
typename std::enable_if<Grid::EigenIO::is_tensor<T>::value && !Grid::Hadrons::MDistil::is_named_tensor<T>::value>::type
|
||||
DebugShowTensor(T &x, const char * n, std::string * pIndexNames=nullptr)
|
||||
{
|
||||
const MyTensor::Index s{x.size()};
|
||||
std::cout << n << ".size() = " << s << std::endl;
|
||||
std::cout << n << ".NumDimensions = " << x.NumDimensions << " (TensorBase)" << std::endl;
|
||||
std::cout << n << ".NumIndices = " << x.NumIndices << std::endl;
|
||||
const auto d{x.dimensions()};
|
||||
//std::cout << n << ".dimensions().size() = " << d.size() << std::endl;
|
||||
std::cout << "Dimensions are ";
|
||||
for(auto i = 0; i < x.NumDimensions ; i++)
|
||||
std::cout << "[" << d[i] << "]";
|
||||
std::cout << std::endl;
|
||||
MyTensor::Index SizeCalculated{1};
|
||||
std::cout << "Dimensions again";
|
||||
for(int i=0 ; i < x.NumDimensions ; i++ ) {
|
||||
std::cout << " : [" << i;
|
||||
if( pIndexNames )
|
||||
std::cout << ", " << pIndexNames[i];
|
||||
std::cout << "]=" << x.dimension(i);
|
||||
SizeCalculated *= d[i];
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "SizeCalculated = " << SizeCalculated << std::endl;\
|
||||
assert( SizeCalculated == s );
|
||||
// Initialise
|
||||
assert( x.NumDimensions == 3 );
|
||||
for( int i = 0 ; i < d[0] ; i++ )
|
||||
for( int j = 0 ; j < d[1] ; j++ )
|
||||
for( int k = 0 ; k < d[2] ; k++ ) {
|
||||
x(i,j,k) = std::complex<double>(SizeCalculated, -SizeCalculated);
|
||||
SizeCalculated--;
|
||||
}
|
||||
// Show raw data
|
||||
std::cout << "Data follow : " << std::endl;
|
||||
typename T::Scalar * p = x.data();
|
||||
for( auto i = 0 ; i < s ; i++ ) {
|
||||
if( i ) std::cout << ", ";
|
||||
std::cout << n << ".data()[" << i << "]=" << * p++;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
typename std::enable_if<Grid::Hadrons::MDistil::is_named_tensor<T>::value>::type
|
||||
DebugShowTensor(T &x, const char * n)
|
||||
{
|
||||
DebugShowTensor( x.tensor, n, &x.IndexNames[0] );
|
||||
}
|
||||
|
||||
// Test whether typedef and underlying types are the same
|
||||
|
||||
void DebugTestTypeEqualities(void)
|
||||
{
|
||||
Real r1;
|
||||
RealD r2;
|
||||
double r3;
|
||||
const std::type_info &tr1{typeid(r1)};
|
||||
const std::type_info &tr2{typeid(r2)};
|
||||
const std::type_info &tr3{typeid(r3)};
|
||||
if( tr1 == tr2 && tr2 == tr3 )
|
||||
std::cout << "r1, r2 and r3 are the same type" << std::endl;
|
||||
else
|
||||
std::cout << "r1, r2 and r3 are different types" << std::endl;
|
||||
std::cout << "r1 is a " << tr1.name() << std::endl;
|
||||
std::cout << "r2 is a " << tr2.name() << std::endl;
|
||||
std::cout << "r3 is a " << tr3.name() << std::endl;
|
||||
|
||||
// These are the same
|
||||
Complex c1;
|
||||
std::complex<Real> c2;
|
||||
const std::type_info &tc1{typeid(c1)};
|
||||
const std::type_info &tc2{typeid(c2)};
|
||||
const std::type_info &tc3{typeid(SpinVector::scalar_type)};
|
||||
if( tc1 == tc2 && tc2 == tc3)
|
||||
std::cout << "c1, c2 and SpinVector::scalar_type are the same type" << std::endl;
|
||||
else
|
||||
std::cout << "c1, c2 and SpinVector::scalar_type are different types" << std::endl;
|
||||
std::cout << "c1 is a " << tc1.name() << std::endl;
|
||||
std::cout << "c2 is a " << tc2.name() << std::endl;
|
||||
std::cout << "SpinVector::scalar_type is a " << tc3.name() << std::endl;
|
||||
|
||||
// These are the same
|
||||
SpinVector s1;
|
||||
iSpinVector<Complex > s2;
|
||||
iScalar<iVector<iScalar<Complex>, Ns> > s3;
|
||||
const std::type_info &ts1{typeid(s1)};
|
||||
const std::type_info &ts2{typeid(s2)};
|
||||
const std::type_info &ts3{typeid(s3)};
|
||||
if( ts1 == ts2 && ts2 == ts3 )
|
||||
std::cout << "s1, s2 and s3 are the same type" << std::endl;
|
||||
else
|
||||
std::cout << "s1, s2 and s3 are different types" << std::endl;
|
||||
std::cout << "s1 is a " << ts1.name() << std::endl;
|
||||
std::cout << "s2 is a " << ts2.name() << std::endl;
|
||||
std::cout << "s3 is a " << ts3.name() << std::endl;
|
||||
|
||||
// These are the same
|
||||
SpinColourVector sc1;
|
||||
iSpinColourVector<Complex > sc2;
|
||||
const std::type_info &tsc1{typeid(sc1)};
|
||||
const std::type_info &tsc2{typeid(sc2)};
|
||||
if( tsc1 == tsc2 )
|
||||
std::cout << "sc1 and sc2 are the same type" << std::endl;
|
||||
else
|
||||
std::cout << "sc1 and sc2 are different types" << std::endl;
|
||||
std::cout << "sc1 is a " << tsc1.name() << std::endl;
|
||||
std::cout << "sc2 is a " << tsc2.name() << std::endl;
|
||||
}
|
||||
|
||||
bool DebugEigenTest()
|
||||
{
|
||||
{
|
||||
Eigen::TensorFixedSize<std::complex<double>,Eigen::Sizes<3,4,5>> x;
|
||||
DebugShowTensor(x, "fixed");
|
||||
}
|
||||
const char pszTestFileName[] = "test_tensor.bin";
|
||||
std::array<std::string,3> as={"Alpha", "Beta", "Gamma"};
|
||||
MyTensor x(as, 2,1,4);
|
||||
DebugShowTensor(x, "x");
|
||||
x.write(pszTestFileName);
|
||||
// Test initialisation of an array of strings
|
||||
for( auto a : as )
|
||||
std::cout << a << std::endl;
|
||||
Grid::Hadrons::MDistil::NamedTensor<Complex,3,sizeof(Real)> p{as,2,7,2};
|
||||
DebugShowTensor(p, "p");
|
||||
std::cout << "p.IndexNames follow" << std::endl;
|
||||
for( auto a : p.IndexNames )
|
||||
std::cout << a << std::endl;
|
||||
|
||||
// Now see whether we can read a tensor back
|
||||
std::array<std::string,3> Names2={"Alpha", "Gamma", "Delta"};
|
||||
MyTensor y(Names2, 2,4,1);
|
||||
y.read(pszTestFileName);
|
||||
DebugShowTensor(y, "y");
|
||||
|
||||
// Now see whether we can read a tensor back from an hdf5 file
|
||||
const char * pszFileName = "test";
|
||||
y.write(pszFileName);
|
||||
{
|
||||
MyTensor z;
|
||||
const char * pszName = "z1";
|
||||
DebugShowTensor(z, pszName);
|
||||
z.read(pszFileName);
|
||||
DebugShowTensor(z, pszName);
|
||||
}
|
||||
{
|
||||
MyTensor z(Names2,2,0,0);
|
||||
const char * pszName = "z2";
|
||||
DebugShowTensor(z, pszName);
|
||||
z.read(pszFileName);
|
||||
DebugShowTensor(z, pszName);
|
||||
}
|
||||
{
|
||||
// Now see whether we can read a tensor back from an xml file
|
||||
const char * pszXmlName = "test.xml";
|
||||
{
|
||||
XmlWriter w(pszXmlName);
|
||||
y.write<XmlWriter>(w);
|
||||
}
|
||||
MyTensor z;
|
||||
const char * pszName = "xml1";
|
||||
DebugShowTensor(z, pszName);
|
||||
XmlReader r(pszXmlName);
|
||||
z.read<XmlReader>(r);
|
||||
DebugShowTensor(z, pszName);
|
||||
}
|
||||
if((0)) // The following tests would fail
|
||||
{
|
||||
MyTensor z(Names2,2,0,78);
|
||||
//std::array<std::string,3> NamesBad={"Alpha", "Gamma", "Kilo"};
|
||||
//MyTensor z(NamesBad);
|
||||
const char * pszName = "zFail";
|
||||
DebugShowTensor(z, pszName);
|
||||
z.read(pszFileName);
|
||||
DebugShowTensor(z, pszName);
|
||||
}
|
||||
|
||||
// Testing whether typedef produces the same type - yes it does
|
||||
|
||||
DebugTestTypeEqualities();
|
||||
std::cout << std::endl;
|
||||
|
||||
// How to access members of SpinColourVector
|
||||
SpinColourVector sc;
|
||||
for( int s = 0 ; s < Ns ; s++ ) {
|
||||
auto cv{sc()(s)};
|
||||
iVector<Complex,Nc> c2{sc()(s)};
|
||||
std::cout << " cv is a " << typeid(cv).name() << std::endl;
|
||||
std::cout << " c2 is a " << typeid(c2).name() << std::endl;
|
||||
for( int c = 0 ; c < Nc ; c++ ) {
|
||||
Complex & z{cv(c)};
|
||||
std::cout << " sc[spin=" << s << ", colour=" << c << "] = " << z << std::endl;
|
||||
}
|
||||
}
|
||||
// We could have removed the Lorentz index independently, but much easier to do as we do above
|
||||
iVector<iVector<Complex,Nc>,Ns> sc2{sc()};
|
||||
std::cout << "sc() is a " << typeid(sc()).name() << std::endl;
|
||||
std::cout << "sc2 is a " << typeid(sc2 ).name() << std::endl;
|
||||
|
||||
// Or you can access elements directly
|
||||
std::complex<Real> z = sc()(0)(0);
|
||||
std::cout << "z = " << z << std::endl;
|
||||
sc()(3)(2) = std::complex<Real>{3.141,-3.141};
|
||||
std::cout << "sc()(3)(2) = " << sc()(3)(2) << std::endl;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void DebugGridTensorTest_print( int i )
|
||||
{
|
||||
// std::cout << i << " : " << EigenIO::is_tensor<T>::value
|
||||
// << ", Rank " << EigenIO::Traits<T>::Rank
|
||||
// << ", count " << EigenIO::Traits<T>::count
|
||||
// << std::endl;
|
||||
}
|
||||
|
||||
// begin() and end() are the minimum necessary to support range-for loops
|
||||
// should really turn this into an iterator ...
|
||||
template<typename T, int N>
|
||||
class TestObject {
|
||||
public:
|
||||
using value_type = T;
|
||||
private:
|
||||
value_type * m_p;
|
||||
public:
|
||||
TestObject() {
|
||||
m_p = reinterpret_cast<value_type *>(std::malloc(N * sizeof(value_type)));
|
||||
}
|
||||
~TestObject() { std::free(m_p); }
|
||||
inline value_type * begin(void) { return m_p; }
|
||||
inline value_type * end(void) { return m_p + N; }
|
||||
};
|
||||
|
||||
template<typename ET> typename std::enable_if<EigenIO::is_tensor<ET>::value>::type
|
||||
dump_tensor(const ET & et, const char * psz = nullptr) {
|
||||
if( psz )
|
||||
std::cout << psz << ": ";
|
||||
else
|
||||
std::cout << "Unnamed tensor: ";
|
||||
Serializable::WriteMember( std::cout, et );
|
||||
}
|
||||
|
||||
template <int Options>
|
||||
void EigenSliceExample()
|
||||
{
|
||||
std::cout << "Eigen example, Options = " << Options << std::endl;
|
||||
using T2 = Eigen::Tensor<int, 2, Options>;
|
||||
T2 a(4, 3);
|
||||
a.setValues({{0, 100, 200}, {300, 400, 500},
|
||||
{600, 700, 800}, {900, 1000, 1100}});
|
||||
std::cout << "a\n" << a << std::endl;
|
||||
dump_tensor( a, "a" );
|
||||
Eigen::array<typename T2::Index, 2> offsets = {0, 1};
|
||||
Eigen::array<typename T2::Index, 2> extents = {4, 2};
|
||||
T2 slice = a.slice(offsets, extents);
|
||||
std::cout << "slice\n" << slice << std::endl;
|
||||
dump_tensor( slice, "slice" );
|
||||
std::cout << "\n========================================" << std::endl;
|
||||
}
|
||||
|
||||
template <int Options>
|
||||
void EigenSliceExample2()
|
||||
{
|
||||
using TestScalar = std::complex<float>;
|
||||
using T3 = Eigen::Tensor<TestScalar, 3, Options>;
|
||||
using T2 = Eigen::Tensor<TestScalar, 2, Options>;
|
||||
T3 a(2,3,4);
|
||||
|
||||
std::cout << "Initialising a:";
|
||||
TestScalar f{ 0 };
|
||||
const TestScalar Inc{ 1, -1 };
|
||||
for( auto &c : a ) {
|
||||
c = f;
|
||||
f += Inc;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "Validating a (Eigen::" << ( ( Options & Eigen::RowMajor ) ? "Row" : "Col" ) << "Major):" << std::endl;
|
||||
f = 0;
|
||||
for( int i = 0 ; i < a.dimension(0) ; i++ )
|
||||
for( int j = 0 ; j < a.dimension(1) ; j++ )
|
||||
for( int k = 0 ; k < a.dimension(2) ; k++ ) {
|
||||
std::cout << " a(" << i << "," << j << "," << k << ")=" << a(i,j,k) << std::endl;
|
||||
assert( ( Options & Eigen::RowMajor ) == 0 || a(i,j,k) == f );
|
||||
f += Inc;
|
||||
}
|
||||
//std::cout << std::endl;
|
||||
//std::cout << "a initialised to:\n" << a << std::endl;
|
||||
dump_tensor( a, "a" );
|
||||
std::cout << std::endl;
|
||||
Eigen::array<typename T3::Index, 3> offsets = {0,1,1};
|
||||
Eigen::array<typename T3::Index, 3> extents = {1,2,2};
|
||||
T3 b;
|
||||
b = a.slice( offsets, extents );//.reshape(NewExtents);
|
||||
std::cout << "b = a.slice( offsets, extents ):\n" << b << std::endl;
|
||||
dump_tensor( b, "b" );
|
||||
T2 c(3,4);
|
||||
c = a.chip(0,1);
|
||||
std::cout << "c = a.chip(0,0):\n" << c << std::endl;
|
||||
dump_tensor( c, "c" );
|
||||
//T2 d = b.reshape(extents);
|
||||
//std::cout << "b.reshape(extents) is:\n" << d << std::endl;
|
||||
std::cout << "\n========================================" << std::endl;
|
||||
}
|
||||
|
||||
void DebugFelixTensorTest( void )
|
||||
{
|
||||
unsigned int Nmom = 2;
|
||||
unsigned int Nt = 2;
|
||||
unsigned int N_1 = 2;
|
||||
unsigned int N_2 = 2;
|
||||
unsigned int N_3 = 2;
|
||||
using BaryonTensorSet = Eigen::Tensor<Complex, 6, Eigen::RowMajor>;
|
||||
BaryonTensorSet BField3(Nmom,4,Nt,N_1,N_2,N_3);
|
||||
std::vector<Complex> Memory(Nmom * Nt * N_1 * N_2 * N_3 * 2);
|
||||
using BaryonTensorMap = Eigen::TensorMap<BaryonTensorSet>;
|
||||
BaryonTensorMap BField4 (&Memory[0], Nmom,4,Nt,N_1,N_2,N_3);
|
||||
|
||||
EigenSliceExample<Eigen::RowMajor>();
|
||||
EigenSliceExample<0>();
|
||||
EigenSliceExample2<Eigen::RowMajor>();
|
||||
EigenSliceExample2<0>();
|
||||
}
|
||||
|
||||
bool DebugGridTensorTest( void )
|
||||
{
|
||||
DebugFelixTensorTest();
|
||||
typedef Complex t1;
|
||||
typedef iScalar<t1> t2;
|
||||
typedef iVector<t1, Ns> t3;
|
||||
typedef iMatrix<t1, Nc> t4;
|
||||
typedef iVector<iMatrix<t1,1>,4> t5;
|
||||
typedef iScalar<t5> t6;
|
||||
typedef iMatrix<t6, 3> t7;
|
||||
typedef iMatrix<iVector<iScalar<t7>,4>,2> t8;
|
||||
int i = 1;
|
||||
DebugGridTensorTest_print<t1>( i++ );
|
||||
DebugGridTensorTest_print<t2>( i++ );
|
||||
DebugGridTensorTest_print<t3>( i++ );
|
||||
DebugGridTensorTest_print<t4>( i++ );
|
||||
DebugGridTensorTest_print<t5>( i++ );
|
||||
DebugGridTensorTest_print<t6>( i++ );
|
||||
DebugGridTensorTest_print<t7>( i++ );
|
||||
DebugGridTensorTest_print<t8>( i++ );
|
||||
|
||||
//using TOC7 = TestObject<std::complex<double>, 7>;
|
||||
using TOC7 = t7;
|
||||
TOC7 toc7;
|
||||
constexpr std::complex<double> Inc{1,-1};
|
||||
std::complex<double> Start{Inc};
|
||||
for( auto &x : toc7 ) {
|
||||
x = Start;
|
||||
Start += Inc;
|
||||
}
|
||||
i = 0;
|
||||
std::cout << "toc7:";
|
||||
for( auto x : toc7 ) std::cout << " [" << i++ << "]=" << x;
|
||||
std::cout << std::endl;
|
||||
|
||||
//t2 o2;
|
||||
//auto a2 = TensorRemove(o2);
|
||||
//t3 o3;
|
||||
//t4 o4;
|
||||
//auto a3 = TensorRemove(o3);
|
||||
//auto a4 = TensorRemove(o4);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ConvertPeramb(const char * pszSource, const char * pszDest) {
|
||||
Grid::Hadrons::MDistil::PerambTensor p(Hadrons::MDistil::PerambIndexNames);
|
||||
p.ReadBinary( pszSource );
|
||||
p.write(pszDest);
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#ifdef DEBUG
|
||||
// Debug only - test of Eigen::Tensor
|
||||
//if( DebugEigenTest() ) return 0;
|
||||
//if(DebugGridTensorTest()) return 0;
|
||||
//if(ConvertPeramb("PerambL_100_tsrc0.3000","PerambL_100_tsrc0.3000")) return 0;
|
||||
#endif
|
||||
|
||||
// Decode command-line parameters. 1st one is which test to run
|
||||
int iTestNum = -1;
|
||||
|
||||
@ -948,31 +325,10 @@ int main(int argc, char *argv[])
|
||||
|
||||
// For now perform free propagator test - replace this with distillation test(s)
|
||||
LOG(Message) << "====== Creating xml for test " << iTestNum << " ======" << std::endl;
|
||||
//const unsigned int nt = GridDefaultLatt()[Tp];
|
||||
|
||||
switch(iTestNum) {
|
||||
case 0:
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
break;
|
||||
case 1:
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_Perambulators( application );
|
||||
break;
|
||||
default: // 2
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_Perambulators( application );
|
||||
test_DistilVectors( application );
|
||||
break;
|
||||
case 3:
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_LoadPerambulators( application );
|
||||
test_DistilVectors( application );
|
||||
break;
|
||||
case 4:
|
||||
default: // 0
|
||||
LOG(Message) << "Computing Meson 2pt-function" << std::endl;
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_Perambulators( application );
|
||||
@ -980,7 +336,17 @@ int main(int argc, char *argv[])
|
||||
test_MesonField( application, "Phi", "_phi" );
|
||||
test_MesonField( application, "Rho", "_rho" );
|
||||
break;
|
||||
case 5:
|
||||
case 1:
|
||||
LOG(Message) << "Computing Meson 2pt-function by loading perambulators" << std::endl;
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_LoadPerambulators( application );
|
||||
test_DistilVectors( application );
|
||||
test_MesonField( application, "Phi", "_phi" );
|
||||
test_MesonField( application, "Rho", "_rho" );
|
||||
break;
|
||||
case 2:
|
||||
LOG(Message) << "Computing Meson 2pt-function for two quark flavours" << std::endl;
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_Perambulators( application );
|
||||
@ -990,69 +356,13 @@ int main(int argc, char *argv[])
|
||||
test_MesonField( application, "SPhi", "S_phi" );
|
||||
test_MesonField( application, "SRho", "S_rho" );
|
||||
break;
|
||||
#ifdef DISTIL_PRE_RELEASE
|
||||
case 6: // 3
|
||||
case 3:
|
||||
LOG(Message) << "Computing Meson 2pt-function with current insertion" << std::endl;
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_Perambulators( application );
|
||||
test_g5_sinks( application );
|
||||
test_MesonSink( application );
|
||||
break;
|
||||
case 7: // 3
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_Perambulators( application );
|
||||
test_DistilVectors( application );
|
||||
test_BaryonFieldPhi( application );
|
||||
test_BaryonFieldRho( application );
|
||||
break;
|
||||
#endif
|
||||
case 8: // 3
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_Perambulators( application );
|
||||
test_DistilVectors( application );
|
||||
test_MesonField( application, "Phi", "_phi" );
|
||||
test_MesonField( application, "Rho", "_rho" );
|
||||
break;
|
||||
#ifdef DISTIL_PRE_RELEASE
|
||||
case 9: // 3
|
||||
test_Global( application );
|
||||
test_Solver( application );
|
||||
test_Baryon2pt( application );
|
||||
break;
|
||||
case 10: // 3
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_Perambulators( application );
|
||||
test_g5_sinks( application );
|
||||
test_em( application );
|
||||
test_Aslash( application );
|
||||
break;
|
||||
case 11: // 3
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_Perambulators( application );
|
||||
test_DistilVectors( application );
|
||||
test_BaryonFieldPhi2( application );
|
||||
test_BaryonFieldRho2( application );
|
||||
break;
|
||||
#endif
|
||||
case 12: // 3
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_Perambulators( application, "S" );
|
||||
test_em( application );
|
||||
test_AslashSeq( application );
|
||||
test_PerambulatorsSolve( application );
|
||||
test_DistilVectorsSS( application, "AslashSeq", nullptr, "S" );
|
||||
test_MesonField( application, "AslashSeq" );
|
||||
break;
|
||||
case 13:
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_MultiPerambulators( application );
|
||||
break;
|
||||
}
|
||||
// execution
|
||||
static const char XmlFileName[] = "test_distil.xml";
|
||||
|
Loading…
Reference in New Issue
Block a user