1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-18 07:47:06 +01:00

Cleanup in progress

This commit is contained in:
Michael Marshall
2019-11-01 15:35:07 +00:00
parent 5c54f27ac1
commit 45d4cf0971
5 changed files with 209 additions and 1131 deletions

View File

@ -38,39 +38,6 @@
#include <Hadrons/A2AVectors.hpp>
#include <Hadrons/DilutedNoise.hpp>
/******************************************************************************
A consistent set of cross-platform methods for big endian <-> host byte ordering
I imagine this exists already?
This can be removed once the (deprecated) NamedTensor::ReadBinary & WriteBinary methods are deleted
******************************************************************************/
#if defined(__linux__)
# include <endian.h>
#elif defined(__FreeBSD__) || defined(__NetBSD__)
# include <sys/endian.h>
#elif defined(__OpenBSD__)
# include <sys/types.h>
# define be16toh(x) betoh16(x)
# define be32toh(x) betoh32(x)
# define be64toh(x) betoh64(x)
#elif defined(__APPLE__)
#include <libkern/OSByteOrder.h>
#define htobe16(x) OSSwapHostToBigInt16(x)
#define htole16(x) OSSwapHostToLittleInt16(x)
#define be16toh(x) OSSwapBigToHostInt16(x)
#define le16toh(x) OSSwapLittleToHostInt16(x)
#define htobe32(x) OSSwapHostToBigInt32(x)
#define htole32(x) OSSwapHostToLittleInt32(x)
#define be32toh(x) OSSwapBigToHostInt32(x)
#define le32toh(x) OSSwapLittleToHostInt32(x)
#define htobe64(x) OSSwapHostToBigInt64(x)
#define htole64(x) OSSwapHostToLittleInt64(x)
#define be64toh(x) OSSwapBigToHostInt64(x)
#define le64toh(x) OSSwapLittleToHostInt64(x)
#endif
/******************************************************************************
This potentially belongs in CartesianCommunicator
******************************************************************************/
@ -139,7 +106,7 @@ inline void SliceShare( GridBase * gridLowDim, GridBase * gridHighDim, void * Bu
*************************************************************************************/
template<typename Field, typename GaugeField=LatticeGaugeField>
class LinOpPeardonNabla : public LinearOperatorBase<Field>, public LinearFunction<Field> {
class Laplacian3D : public LinearOperatorBase<Field>, public LinearFunction<Field> {
typedef typename GaugeField::vector_type vCoeff_t;
protected: // I don't really mind if _gf is messed with ... so make this public?
//GaugeField & _gf;
@ -147,7 +114,7 @@ protected: // I don't really mind if _gf is messed with ... so make this public?
std::vector<Lattice<iColourMatrix<vCoeff_t> > > U;
public:
// Construct this operator given a gauge field and the number of dimensions it should act on
LinOpPeardonNabla( GaugeField& gf, int dimSpatial = Tdir ) : /*_gf(gf),*/ nd{dimSpatial} {
Laplacian3D( GaugeField& gf, int dimSpatial = Tdir ) : /*_gf(gf),*/ nd{dimSpatial} {
assert(dimSpatial>=1);
for( int mu = 0 ; mu < nd ; mu++ )
U.push_back(PeekIndex<LorentzIndex>(gf,mu));
@ -178,12 +145,12 @@ public:
};
template<typename Field>
class LinOpPeardonNablaHerm : public LinearFunction<Field> {
class Laplacian3DHerm : public LinearFunction<Field> {
public:
OperatorFunction<Field> & _poly;
LinearOperatorBase<Field> &_Linop;
LinOpPeardonNablaHerm(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
Laplacian3DHerm(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
: _poly{poly}, _Linop{linop} {}
void operator()(const Field& in, Field& out) {
@ -244,12 +211,6 @@ const bool full_tdil{ TI == Nt }; \
const bool exact_distillation{ full_tdil && LI == nvec }; \
const int Nt_inv{ full_tdil ? 1 : TI }
class BFieldIO: Serializable{
public:
using BaryonTensorSet = Eigen::Tensor<ComplexD, 6>;
GRID_SERIALIZABLE_CLASS_MEMBERS(BFieldIO, BaryonTensorSet, BField );
};
/******************************************************************************
Default for distillation file operations. For now only used by NamedTensor
******************************************************************************/
@ -268,9 +229,6 @@ static const char * FileExtension = ".dat";
NamedTensor object
This is an Eigen::Tensor of type Scalar_ and rank NumIndices_ (row-major order)
They can be persisted to disk
Scalar_ objects are assumed to be composite objects of size Endian_Scalar_Size.
(Disable big-endian by setting Endian_Scalar_Size=1).
NB: Endian_Scalar_Size will disappear when ReadBinary & WriteBinary retired
IndexNames contains one name for each index, and IndexNames are validated on load.
WHAT TO SAVE / VALIDATE ON LOAD (Override to warn instead of assert on load)
Ensemble string
@ -280,20 +238,18 @@ static const char * FileExtension = ".dat";
******************************************************************************/
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size_ = sizeof(Scalar_)>
template<typename Scalar_, int NumIndices_>
class NamedTensor : Serializable
{
public:
using Scalar = Scalar_;
static constexpr int NumIndices = NumIndices_;
static constexpr uint16_t Endian_Scalar_Size = Endian_Scalar_Size_;
using ET = Eigen::Tensor<Scalar_, NumIndices_, Eigen::RowMajor>;
using Index = typename ET::Index;
GRID_SERIALIZABLE_CLASS_MEMBERS(NamedTensor
, ET, tensor
, std::vector<std::string>, IndexNames
);
public:
// Named tensors are intended to be a superset of Eigen tensor
inline operator ET&() { return tensor; }
template<typename... IndexTypes>
@ -351,9 +307,6 @@ public:
// Read/Write in default format, i.e. HDF5 if present, else binary
inline void read (const char * filename, const char * pszTag = nullptr);
inline void write(const char * filename, const char * pszTag = nullptr) const;
// Original I/O implementation. This will be removed when we're sure it's no longer needed
EIGEN_DEPRECATED inline void ReadBinary (const std::string filename); // To be removed
EIGEN_DEPRECATED inline void WriteBinary(const std::string filename); // To be removed
// Case insensitive compare of two strings
// Pesumably this exists already? Where should this go?
@ -375,218 +328,31 @@ public:
// Is this a named tensor
template<typename T, typename V = void> struct is_named_tensor : public std::false_type {};
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size_> struct is_named_tensor<NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size_>> : public std::true_type {};
template<typename T> struct is_named_tensor<T, typename std::enable_if<std::is_base_of<NamedTensor<typename T::Scalar, T::NumIndices, T::Endian_Scalar_Size_>, T>::value>::type> : public std::true_type {};
template<typename Scalar_, int NumIndices_> struct is_named_tensor<NamedTensor<Scalar_, NumIndices_>> : public std::true_type {};
template<typename T> struct is_named_tensor<T, typename std::enable_if<std::is_base_of<NamedTensor<typename T::Scalar, T::NumIndices>, T>::value>::type> : public std::true_type {};
/******************************************************************************
PerambTensor object
Endian_Scalar_Size can be removed once (deprecated) NamedTensor::ReadBinary & WriteBinary methods deleted
******************************************************************************/
//template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size = sizeof(Scalar_)>
using PerambTensor = NamedTensor<SpinVector, 6, sizeof(Real)>;
using PerambTensor = NamedTensor<SpinVector, 6>;
static const std::array<std::string, 6> PerambIndexNames{"nT", "nVec", "LI", "nNoise", "nT_inv", "SI"};
/******************************************************************************
Save NamedTensor binary format (NB: On-disk format is Big Endian)
Assumes the Scalar_ objects are contiguous (no padding)
******************************************************************************/
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::WriteBinary(const std::string filename) {
LOG(Message) << "Writing NamedTensor to \"" << filename << "\"" << std::endl;
std::ofstream w(filename, std::ios::binary);
// Enforce assumption that the scalar is composed of fundamental elements of size Endian_Scalar_Size
assert((Endian_Scalar_Size == 1 || Endian_Scalar_Size == 2 || Endian_Scalar_Size == 4 || Endian_Scalar_Size == 8 )
&& "NamedTensor error: Endian_Scalar_Size should be 1, 2, 4 or 8");
assert((sizeof(Scalar_) % Endian_Scalar_Size) == 0 && "NamedTensor error: Scalar_ is not composed of Endian_Scalar_Size" );
// Size of the data (in bytes)
const uint32_t Scalar_Size{sizeof(Scalar_)};
const auto NumElements = tensor.size();
const std::streamsize TotalDataSize{static_cast<std::streamsize>(NumElements * Scalar_Size)};
uint64_t u64 = htobe64(static_cast<uint64_t>(TotalDataSize));
w.write(reinterpret_cast<const char *>(&u64), sizeof(u64));
// Size of a Scalar_
uint32_t u32{htobe32(Scalar_Size)};
w.write(reinterpret_cast<const char *>(&u32), sizeof(u32));
// Endian_Scalar_Size
uint16_t u16{htobe16(Endian_Scalar_Size)};
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
// number of dimensions which aren't 1
u16 = static_cast<uint16_t>(this->NumIndices);
for( auto dim : tensor.dimensions() )
if( dim == 1 )
u16--;
u16 = htobe16( u16 );
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
// dimensions together with names
int d = 0;
for( auto dim : tensor.dimensions() ) {
if( dim != 1 ) {
// size of this dimension
u16 = htobe16( static_cast<uint16_t>( dim ) );
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
// length of this dimension name
u16 = htobe16( static_cast<uint16_t>( IndexNames[d].size() ) );
w.write(reinterpret_cast<const char *>(&u16), sizeof(u16));
// dimension name
w.write(IndexNames[d].c_str(), IndexNames[d].size());
}
d++;
}
// Actual data
char * const pStart{reinterpret_cast<char *>(tensor.data())};
// Swap to network byte order in place (alternative is to copy memory - still slow)
void * const pEnd{pStart + TotalDataSize};
if(Endian_Scalar_Size == 8)
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
* p = htobe64( * p );
else if(Endian_Scalar_Size == 4)
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
* p = htobe32( * p );
else if(Endian_Scalar_Size == 2)
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
* p = htobe16( * p );
w.write(pStart, TotalDataSize);
// Swap back from network byte order
if(Endian_Scalar_Size == 8)
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
* p = be64toh( * p );
else if(Endian_Scalar_Size == 4)
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
* p = be32toh( * p );
else if(Endian_Scalar_Size == 2)
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
* p = be16toh( * p );
// checksum
#ifdef USE_IPP
u32 = htobe32(GridChecksum::crc32c(tensor.data(), TotalDataSize));
#else
u32 = htobe32(GridChecksum::crc32(tensor.data(), TotalDataSize));
#endif
w.write(reinterpret_cast<const char *>(&u32), sizeof(u32));
}
/******************************************************************************
Load NamedTensor binary format (NB: On-disk format is Big Endian)
Assumes the Scalar_ objects are contiguous (no padding)
******************************************************************************/
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::ReadBinary(const std::string filename) {
LOG(Message) << "Reading NamedTensor from \"" << filename << "\"" << std::endl;
std::ifstream r(filename, std::ios::binary);
// Enforce assumption that the scalar is composed of fundamental elements of size Endian_Scalar_Size
assert((Endian_Scalar_Size == 1 || Endian_Scalar_Size == 2 || Endian_Scalar_Size == 4 || Endian_Scalar_Size == 8 )
&& "NamedTensor error: Endian_Scalar_Size should be 1, 2, 4 or 8");
assert((sizeof(Scalar_) % Endian_Scalar_Size) == 0 && "NamedTensor error: Scalar_ is not composed of Endian_Scalar_Size" );
// Size of the data in bytes
const uint32_t Scalar_Size{sizeof(Scalar_)};
Index NumElements{tensor.size()};
std::streamsize TotalDataSize{static_cast<std::streamsize>(NumElements * Scalar_Size)};
uint64_t u64;
r.read(reinterpret_cast<char *>(&u64), sizeof(u64));
assert( TotalDataSize == 0 || TotalDataSize == be64toh( u64 ) && "NamedTensor error: Size of the data in bytes" );
// Size of a Scalar_
uint32_t u32;
r.read(reinterpret_cast<char *>(&u32), sizeof(u32));
assert( Scalar_Size == be32toh( u32 ) && "NamedTensor error: sizeof(Scalar_)");
// Endian_Scalar_Size
uint16_t u16;
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
assert( Endian_Scalar_Size == be16toh( u16 ) && "NamedTensor error: Scalar_Unit_size");
// number of dimensions which aren't 1
uint16_t NumFileDimensions;
r.read(reinterpret_cast<char *>(&NumFileDimensions), sizeof(NumFileDimensions));
NumFileDimensions = be16toh( NumFileDimensions );
/*for( auto dim : tensor.dimensions() )
if( dim == 1 )
u16++;*/
assert( ( TotalDataSize == 0 && this->NumIndices >= NumFileDimensions || this->NumIndices == NumFileDimensions )
&& "NamedTensor error: number of dimensions which aren't 1" );
if( TotalDataSize == 0 ) {
// Read each dimension, using names to skip past dimensions == 1
std::array<Index,NumIndices_> NewDimensions;
for( Index &i : NewDimensions ) i = 1;
int d = 0;
for( int FileDimension = 0; FileDimension < NumFileDimensions; FileDimension++ ) {
// read dimension
uint16_t thisDim;
r.read(reinterpret_cast<char *>(&thisDim), sizeof(thisDim));
// read dimension name
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
size_t l = be16toh( u16 );
std::string s( l, '?' );
r.read(&s[0], l);
// skip forward to matching name
while( IndexNames[d].size() > 0 && !CompareCaseInsensitive( s, IndexNames[d] ) )
assert(++d < NumIndices && "NamedTensor error: dimension name" );
if( IndexNames[d].size() == 0 )
IndexNames[d] = s;
NewDimensions[d++] = be16toh( thisDim );
}
tensor.resize(NewDimensions);
NumElements = 1;
for( Index i : NewDimensions ) NumElements *= i;
TotalDataSize = NumElements * Scalar_Size;
} else {
// dimensions together with names
const auto & TensorDims = tensor.dimensions();
for( int d = 0; d < NumIndices_; d++ ) {
// size of dimension
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
u16 = be16toh( u16 );
assert( TensorDims[d] == u16 && "size of dimension" );
// length of dimension name
r.read(reinterpret_cast<char *>(&u16), sizeof(u16));
size_t l = be16toh( u16 );
assert( l == IndexNames[d].size() && "NamedTensor error: length of dimension name" );
// dimension name
std::string s( l, '?' );
r.read(&s[0], l);
assert( s == IndexNames[d] && "NamedTensor error: dimension name" );
}
}
// Actual data
char * const pStart{reinterpret_cast<char *>(tensor.data())};
void * const pEnd{pStart + TotalDataSize};
r.read(pStart,TotalDataSize);
// Swap back from network byte order
if(Endian_Scalar_Size == 8)
for(uint64_t * p = reinterpret_cast<uint64_t *>(pStart) ; p < pEnd ; p++ )
* p = be64toh( * p );
else if(Endian_Scalar_Size == 4)
for(uint32_t * p = reinterpret_cast<uint32_t *>(pStart) ; p < pEnd ; p++ )
* p = be32toh( * p );
else if(Endian_Scalar_Size == 2)
for(uint16_t * p = reinterpret_cast<uint16_t *>(pStart) ; p < pEnd ; p++ )
* p = be16toh( * p );
// checksum
r.read(reinterpret_cast<char *>(&u32), sizeof(u32));
u32 = be32toh( u32 );
#ifdef USE_IPP
u32 -= GridChecksum::crc32c(tensor.data(), TotalDataSize);
#else
u32 -= GridChecksum::crc32(tensor.data(), TotalDataSize);
#endif
assert( u32 == 0 && "NamedTensor error: PerambTensor checksum invalid");
}
/******************************************************************************
Write NamedTensor
******************************************************************************/
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
template<typename Scalar_, int NumIndices_>
template<typename Writer>
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::write(Writer &w, const char * pszTag)const{
void NamedTensor<Scalar_, NumIndices_>::write(Writer &w, const char * pszTag)const{
if( pszTag == nullptr )
pszTag = "NamedTensor";
LOG(Message) << "Writing NamedTensor to tag " << pszTag << std::endl;
write(w, pszTag, *this);
}
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::write(const char * filename, const char * pszTag)const{
template<typename Scalar_, int NumIndices_>
void NamedTensor<Scalar_, NumIndices_>::write(const char * filename, const char * pszTag)const{
std::string sFileName{filename};
sFileName.append( MDistil::FileExtension );
LOG(Message) << "Writing NamedTensor to file " << sFileName << std::endl;
@ -598,8 +364,8 @@ void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::write(const char * f
Validate named tensor index names
******************************************************************************/
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
bool NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::ValidateIndexNames( int iNumNames, const std::string * MatchNames ) const {
template<typename Scalar_, int NumIndices_>
bool NamedTensor<Scalar_, NumIndices_>::ValidateIndexNames( int iNumNames, const std::string * MatchNames ) const {
bool bSame{ iNumNames == NumIndices_ && IndexNames.size() == NumIndices_ };
for( int i = 0; bSame && i < NumIndices_; i++ )
bSame = CompareCaseInsensitive( MatchNames[i], IndexNames[i] );
@ -610,9 +376,9 @@ bool NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::ValidateIndexNames(
Read NamedTensor
******************************************************************************/
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
template<typename Scalar_, int NumIndices_>
template<typename Reader>
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::read(Reader &r, const char * pszTag) {
void NamedTensor<Scalar_, NumIndices_>::read(Reader &r, const char * pszTag) {
if( pszTag == nullptr )
pszTag = "NamedTensor";
// Grab index names and dimensions
@ -626,8 +392,8 @@ void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::read(Reader &r, cons
assert( ValidateIndexNames( OldIndexNames.size(), &OldIndexNames[0] ) && "NamedTensor::load dimension name" );
}
template<typename Scalar_, int NumIndices_, uint16_t Endian_Scalar_Size>
void NamedTensor<Scalar_, NumIndices_, Endian_Scalar_Size>::read(const char * filename, const char * pszTag) {
template<typename Scalar_, int NumIndices_>
void NamedTensor<Scalar_, NumIndices_>::read(const char * filename, const char * pszTag) {
std::string sFileName{filename};
sFileName.append( MDistil::FileExtension );
LOG(Message) << "Reading NamedTensor from file " << sFileName << std::endl;
@ -664,19 +430,14 @@ inline void RotateEigen(std::vector<LatticeColourVector> & evec)
Coordinate siteFirst(grid->Nd(),0);
peekSite(cv0, evec[0], siteFirst);
Grid::Complex cplx0 = cv0()()(0);
#ifdef GRID_NVCC
if( cplx0.imag() == 0 )
#else
if( std::imag(cplx0) == 0 )
#endif
std::cout << GridLogMessage << "RotateEigen() : Site 0 : " << cplx0 << " => already meets phase convention" << std::endl;
else {
const Real cplx0_mag = Grid::abs(cplx0);
#ifdef GRID_NVCC
const Real cplx0_mag = thrust::abs(cplx0);
const Grid::Complex phase = thrust::conj(cplx0 / cplx0_mag);
const Real argphase = thrust::arg(phase);
#else
const Real cplx0_mag = std::abs(cplx0);
const Grid::Complex phase = std::conj(cplx0 / cplx0_mag);
const Real argphase = std::arg(phase);
#endif

View File

@ -219,7 +219,7 @@ void TLapEvec<GImpl>::execute(void)
}
////////////////////////////////////////////////////////////////////////
// Invert Peardon Nabla operator separately on each time-slice
// Invert nabla operator separately on each time-slice
////////////////////////////////////////////////////////////////////////
auto & eig4d = envGet(LapEvecs, getName() );
@ -237,7 +237,7 @@ void TLapEvec<GImpl>::execute(void)
// Construct smearing operator
ExtractSliceLocal(UmuNoTime,Umu_smear,0,t,Tdir); // switch to 3d/4d objects
LinOpPeardonNabla<LatticeColourVector> PeardonNabla(UmuNoTime);
Laplacian3D<LatticeColourVector> Nabla(UmuNoTime);
LOG(Debug) << "Chebyshev preconditioning to order " << ChebPar.PolyOrder
<< " with parameters (alpha,beta) = (" << ChebPar.alpha << "," << ChebPar.beta << ")" << std::endl;
Chebyshev<LatticeColourVector> Cheb(ChebPar.alpha,ChebPar.beta,ChebPar.PolyOrder);
@ -248,9 +248,9 @@ void TLapEvec<GImpl>::execute(void)
nn = Grid::sqrt(nn);
src = src * (1.0/nn);
LinOpPeardonNablaHerm<LatticeColourVector> PeardonNablaCheby(Cheb,PeardonNabla);
Laplacian3DHerm<LatticeColourVector> NablaCheby(Cheb,Nabla);
ImplicitlyRestartedLanczos<LatticeColourVector>
IRL(PeardonNablaCheby,PeardonNabla,LPar.Nvec,LPar.Nk,LPar.Nk+LPar.Np,LPar.resid,LPar.MaxIt);
IRL(NablaCheby,Nabla,LPar.Nvec,LPar.Nk,LPar.Nk+LPar.Np,LPar.resid,LPar.MaxIt);
int Nconv = 0;
IRL.calc(eig[t].eval,eig[t].evec,src,Nconv);
if( Nconv < LPar.Nvec ) {

View File

@ -133,7 +133,8 @@ void TNoises<FImpl>::execute(void)
UniqueIdentifier = getName();
}
UniqueIdentifier.append( std::to_string( vm().getTrajectory() ) );
// We use our own seeds so we can specify different noises per quark
GridSerialRNG sRNG;
sRNG.SeedUniqueString(UniqueIdentifier);
Real rn;

View File

@ -30,7 +30,6 @@
#ifndef Hadrons_MDistil_Perambulator_hpp_
#define Hadrons_MDistil_Perambulator_hpp_
// These are members of Distillation
#include <Hadrons/Distil.hpp>
BEGIN_HADRONS_NAMESPACE
@ -47,10 +46,10 @@ public:
GRID_SERIALIZABLE_CLASS_MEMBERS(PerambulatorPar,
std::string, lapevec,
std::string, solver,
std::string, noise,
std::string, PerambFileName,
std::string, UnsmearedSinkFileName,
std::string, UnsmearedSinkMultiFile,
std::string, noise,
std::string, PerambFileName,
std::string, UnsmearedSinkFileName,
std::string, UnsmearedSinkMultiFile,
int, nvec,
DistilParameters, Distil);
};
@ -59,29 +58,29 @@ template <typename FImpl>
class TPerambulator: public Module<PerambulatorPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
SOLVER_TYPE_ALIASES(FImpl,);
// constructor
TPerambulator(const std::string name);
// destructor
virtual ~TPerambulator(void);
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
FERM_TYPE_ALIASES(FImpl,);
SOLVER_TYPE_ALIASES(FImpl,);
// constructor
TPerambulator(const std::string name);
// destructor
virtual ~TPerambulator(void);
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
protected:
virtual void Cleanup(void);
virtual void Cleanup(void);
protected:
// These variables are created in setup() and freed in Cleanup()
GridCartesian * grid3d; // Owned by me, so I must delete it
GridCartesian * grid4d; // Owned by environment (so I won't delete it)
// Other members
unsigned int Ls_;
std::string sLapEvecName;
std::string sNoiseName;
// These variables are created in setup() and freed in Cleanup()
GridCartesian * grid3d; // Owned by me, so I must delete it
GridCartesian * grid4d; // Owned by environment (so I won't delete it)
// Other members
unsigned int Ls_;
std::string sLapEvecName;
std::string sNoiseName;
};
MODULE_REGISTER_TMP(Perambulator, TPerambulator<FIMPL>, MDistil);
@ -99,174 +98,181 @@ TPerambulator<FImpl>::TPerambulator(const std::string name)
template <typename FImpl>
TPerambulator<FImpl>::~TPerambulator(void)
{
Cleanup();
Cleanup();
};
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TPerambulator<FImpl>::getInput(void)
{
sLapEvecName = par().lapevec;
sNoiseName = par().noise;
if( sNoiseName.length() == 0 )
sNoiseName = getName() + "_noise";
return {sLapEvecName, par().solver, sNoiseName };
sLapEvecName = par().lapevec;
sNoiseName = par().noise;
if( sNoiseName.length() == 0 )
sNoiseName = getName() + "_noise";
return {sLapEvecName, par().solver, sNoiseName };
}
template <typename FImpl>
std::vector<std::string> TPerambulator<FImpl>::getOutput(void)
{
return {getName(), getName() + "_unsmeared_sink"};
return {getName(), getName() + "_unsmeared_sink"};
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TPerambulator<FImpl>::setup(void)
{
Cleanup();
grid4d = env().getGrid();
grid3d = MakeLowerDimGrid(grid4d);
DISTIL_PARAMETERS_DEFINE( true );
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
if( !UnsmearedSinkFileName.empty() )
bool bMulti = ( Hadrons::MDistil::DistilParameters::ParameterDefault( par().UnsmearedSinkMultiFile, 1, true ) != 0 );
envCreate(PerambTensor, getName(), 1, PerambIndexNames,Nt,nvec,LI,nnoise,Nt_inv,SI);
envCreate(std::vector<FermionField>, getName() + "_unsmeared_sink", 1,
nnoise*LI*Ns*Nt_inv, envGetGrid(FermionField));
envTmpLat(LatticeSpinColourVector, "dist_source");
envTmpLat(LatticeSpinColourVector, "tmp2");
envTmpLat(LatticeSpinColourVector, "result");
envTmpLat(LatticeColourVector, "result_nospin");
envTmp(LatticeSpinColourVector, "tmp3d",1,LatticeSpinColourVector(grid3d));
envTmp(LatticeColourVector, "tmp3d_nospin",1,LatticeColourVector(grid3d));
envTmp(LatticeColourVector, "result_3d",1,LatticeColourVector(grid3d));
envTmp(LatticeColourVector, "evec3d",1,LatticeColourVector(grid3d));
Ls_ = env().getObjectLs(par().solver);
envTmpLat(FermionField, "v4dtmp");
envTmpLat(FermionField, "v5dtmp", Ls_);
envTmpLat(FermionField, "v5dtmp_sol", Ls_);
Cleanup();
grid4d = env().getGrid();
grid3d = MakeLowerDimGrid(grid4d);
DISTIL_PARAMETERS_DEFINE( true );
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
if( !UnsmearedSinkFileName.empty() )
bool bMulti = ( Hadrons::MDistil::DistilParameters::ParameterDefault( par().UnsmearedSinkMultiFile, 1, true ) != 0 );
envCreate(PerambTensor, getName(), 1, PerambIndexNames,Nt,nvec,LI,nnoise,Nt_inv,SI);
envCreate(std::vector<FermionField>, getName() + "_unsmeared_sink", 1,
nnoise*LI*Ns*Nt_inv, envGetGrid(FermionField));
envTmpLat(LatticeSpinColourVector, "dist_source");
envTmpLat(LatticeSpinColourVector, "tmp2");
envTmpLat(LatticeSpinColourVector, "result");
envTmpLat(LatticeColourVector, "result_nospin");
envTmp(LatticeSpinColourVector, "tmp3d",1,LatticeSpinColourVector(grid3d));
envTmp(LatticeColourVector, "tmp3d_nospin",1,LatticeColourVector(grid3d));
envTmp(LatticeColourVector, "result_3d",1,LatticeColourVector(grid3d));
envTmp(LatticeColourVector, "evec3d",1,LatticeColourVector(grid3d));
Ls_ = env().getObjectLs(par().solver);
envTmpLat(FermionField, "v4dtmp");
envTmpLat(FermionField, "v5dtmp", Ls_);
envTmpLat(FermionField, "v5dtmp_sol", Ls_);
}
// clean up any temporaries created by setup (that aren't stored in the environment)
template <typename FImpl>
void TPerambulator<FImpl>::Cleanup(void)
{
if( grid3d != nullptr ) {
delete grid3d;
grid3d = nullptr;
}
grid4d = nullptr;
if( grid3d != nullptr )
{
delete grid3d;
grid3d = nullptr;
}
grid4d = nullptr;
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TPerambulator<FImpl>::execute(void)
{
DISTIL_PARAMETERS_DEFINE( false );
DISTIL_PARAMETERS_DEFINE( false );
auto &solver=envGet(Solver, par().solver);
auto &mat = solver.getFMat();
envGetTmp(FermionField, v4dtmp);
envGetTmp(FermionField, v5dtmp);
envGetTmp(FermionField, v5dtmp_sol);
auto &noise = envGet(NoiseTensor, sNoiseName);
auto &perambulator = envGet(PerambTensor, getName());
auto &epack = envGet(LapEvecs, sLapEvecName);
auto &unsmeared_sink = envGet(std::vector<FermionField>, getName() + "_unsmeared_sink");
// Load perambulator if it exists on disk instead of creating it
// Not sure this is how we want it - rather specify an input flag 'read'
// and assert that the file is there.
envGetTmp(LatticeSpinColourVector, dist_source);
envGetTmp(LatticeSpinColourVector, tmp2);
envGetTmp(LatticeSpinColourVector, result);
envGetTmp(LatticeColourVector, result_nospin);
envGetTmp(LatticeSpinColourVector, tmp3d);
envGetTmp(LatticeColourVector, tmp3d_nospin);
envGetTmp(LatticeColourVector, result_3d);
envGetTmp(LatticeColourVector, evec3d);
envGetTmp(LatticeSpinColourVector, dist_source);
envGetTmp(LatticeSpinColourVector, tmp2);
envGetTmp(LatticeSpinColourVector, result);
envGetTmp(LatticeColourVector, result_nospin);
envGetTmp(LatticeSpinColourVector, tmp3d);
envGetTmp(LatticeColourVector, tmp3d_nospin);
envGetTmp(LatticeColourVector, result_3d);
envGetTmp(LatticeColourVector, evec3d);
const int Ntlocal{grid4d->LocalDimensions()[3]};
const int Ntfirst{grid4d->LocalStarts()[3]};
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
{
int t_inv;
for (int inoise = 0; inoise < nnoise; inoise++) {
for (int dk = 0; dk < LI; dk++) {
for (int dt = 0; dt < Nt_inv; dt++) {
for (int ds = 0; ds < SI; ds++) {
LOG(Message) << "LapH source vector from noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl;
dist_source = 0;
tmp3d_nospin = 0;
evec3d = 0;
for (int it = dt; it < Nt; it += TI){
if (full_tdil) t_inv = tsrc; else t_inv = it;
if( t_inv >= Ntfirst && t_inv < Ntfirst + Ntlocal ) {
for (int ik = dk; ik < nvec; ik += LI){
for (int is = ds; is < Ns; is += SI){
ExtractSliceLocal(evec3d,epack.evec[ik],0,t_inv-Ntfirst,Tdir);
tmp3d_nospin = evec3d * noise(inoise, t_inv, ik, is);
tmp3d=0;
pokeSpin(tmp3d,tmp3d_nospin,is);
tmp2=0;
InsertSliceLocal(tmp3d,tmp2,0,t_inv-Ntfirst,Tdir);
dist_source += tmp2;
}
int t_inv;
for (int inoise = 0; inoise < nnoise; inoise++)
{
for (int dk = 0; dk < LI; dk++)
{
for (int dt = 0; dt < Nt_inv; dt++)
{
for (int ds = 0; ds < SI; ds++)
{
LOG(Message) << "LapH source vector from noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl;
dist_source = 0;
tmp3d_nospin = 0;
evec3d = 0;
for (int it = dt; it < Nt; it += TI)
{
if (full_tdil) t_inv = tsrc; else t_inv = it;
if( t_inv >= Ntfirst && t_inv < Ntfirst + Ntlocal )
{
for (int ik = dk; ik < nvec; ik += LI)
{
for (int is = ds; is < Ns; is += SI)
{
ExtractSliceLocal(evec3d,epack.evec[ik],0,t_inv-Ntfirst,Tdir);
tmp3d_nospin = evec3d * noise(inoise, t_inv, ik, is);
tmp3d=0;
pokeSpin(tmp3d,tmp3d_nospin,is);
tmp2=0;
InsertSliceLocal(tmp3d,tmp2,0,t_inv-Ntfirst,Tdir);
dist_source += tmp2;
}
}
}
}
result=0;
v4dtmp = dist_source;
if (Ls_ == 1)
{
solver(result, v4dtmp);
}
else
{
mat.ImportPhysicalFermionSource(v4dtmp, v5dtmp);
solver(v5dtmp_sol, v5dtmp);
mat.ExportPhysicalFermionSolution(v5dtmp_sol, v4dtmp);
result = v4dtmp;
}
if( !UnsmearedSinkFileName.empty() )
unsmeared_sink[inoise+nnoise*(dk+LI*(dt+Nt_inv*ds))] = result;
for (int is = 0; is < Ns; is++)
{
result_nospin = peekSpin(result,is);
for (int t = Ntfirst; t < Ntfirst + Ntlocal; t++)
{
ExtractSliceLocal(result_3d,result_nospin,0,t-Ntfirst,Tdir);
for (int ivec = 0; ivec < nvec; ivec++)
{
ExtractSliceLocal(evec3d,epack.evec[ivec],0,t-Ntfirst,Tdir);
pokeSpin(perambulator(t, ivec, dk, inoise,dt,ds),static_cast<Complex>(innerProduct(evec3d, result_3d)),is);
}
}
}
}
}
}
}
result=0;
v4dtmp = dist_source;
if (Ls_ == 1){
solver(result, v4dtmp);
} else {
mat.ImportPhysicalFermionSource(v4dtmp, v5dtmp);
solver(v5dtmp_sol, v5dtmp);
mat.ExportPhysicalFermionSolution(v5dtmp_sol, v4dtmp);
result = v4dtmp;
}
if( !UnsmearedSinkFileName.empty() )
unsmeared_sink[inoise+nnoise*(dk+LI*(dt+Nt_inv*ds))] = result;
for (int is = 0; is < Ns; is++) {
result_nospin = peekSpin(result,is);
for (int t = Ntfirst; t < Ntfirst + Ntlocal; t++) {
ExtractSliceLocal(result_3d,result_nospin,0,t-Ntfirst,Tdir);
for (int ivec = 0; ivec < nvec; ivec++) {
ExtractSliceLocal(evec3d,epack.evec[ivec],0,t-Ntfirst,Tdir);
pokeSpin(perambulator(t, ivec, dk, inoise,dt,ds),static_cast<Complex>(innerProduct(evec3d, result_3d)),is);
}
}
}
}
}
}
}
}
LOG(Message) << "perambulator done" << std::endl;
perambulator.SliceShare( grid3d, grid4d );
if(grid4d->IsBoss()) {
std::string sPerambName{par().PerambFileName};
if( sPerambName.length() == 0 )
sPerambName = getName();
sPerambName.append( "." );
sPerambName.append( std::to_string(vm().getTrajectory()));
perambulator.write(sPerambName.c_str());
}
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
if( !UnsmearedSinkFileName.empty() ) {
bool bMulti = ( Hadrons::MDistil::DistilParameters::ParameterDefault( par().UnsmearedSinkMultiFile, 1, false ) != 0 );
LOG(Message) << "Writing unsmeared sink to " << UnsmearedSinkFileName << std::endl;
A2AVectorsIo::write(UnsmearedSinkFileName, unsmeared_sink, bMulti, vm().getTrajectory());
}
LOG(Message) << "perambulator done" << std::endl;
perambulator.SliceShare( grid3d, grid4d );
if(grid4d->IsBoss())
{
std::string sPerambName{par().PerambFileName};
if( sPerambName.length() == 0 )
sPerambName = getName();
sPerambName.append( "." );
sPerambName.append( std::to_string(vm().getTrajectory()));
perambulator.write(sPerambName.c_str());
}
if( !UnsmearedSinkFileName.empty() )
{
bool bMulti = ( Hadrons::MDistil::DistilParameters::ParameterDefault( par().UnsmearedSinkMultiFile, 1, false ) != 0 );
LOG(Message) << "Writing unsmeared sink to " << UnsmearedSinkFileName << std::endl;
A2AVectorsIo::write(UnsmearedSinkFileName, unsmeared_sink, bMulti, vm().getTrajectory());
}
}
END_MODULE_NAMESPACE