mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
Logging improvement; reunified the Lanczos codes
This commit is contained in:
parent
4b4d187935
commit
47af3565f4
@ -1,789 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_BIRL_H
|
||||
#define GRID_BIRL_H
|
||||
|
||||
#include <string.h> //memset
|
||||
//#include <zlib.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
|
||||
{
|
||||
for(int j=0; j<k; ++j){
|
||||
auto ip = innerProduct(basis[j],w);
|
||||
w = w - ip*basis[j];
|
||||
}
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)
|
||||
{
|
||||
typedef typename Field::vector_object vobj;
|
||||
GridBase* grid = basis[0]._grid;
|
||||
|
||||
parallel_region
|
||||
{
|
||||
std::vector < vobj > B(Nm); // Thread private
|
||||
|
||||
parallel_for_internal(int ss=0;ss < grid->oSites();ss++){
|
||||
for(int j=j0; j<j1; ++j) B[j]=0.;
|
||||
|
||||
for(int j=j0; j<j1; ++j){
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B[j] +=Qt(j,k) * basis[k]._odata[ss];
|
||||
}
|
||||
}
|
||||
for(int j=j0; j<j1; ++j){
|
||||
basis[j]._odata[ss] = B[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
|
||||
{
|
||||
int vlen = idx.size();
|
||||
|
||||
assert(vlen>=1);
|
||||
assert(vlen<=sort_vals.size());
|
||||
assert(vlen<=_v.size());
|
||||
|
||||
for (size_t i=0;i<vlen;i++) {
|
||||
|
||||
if (idx[i] != i) {
|
||||
|
||||
assert(idx[i] > i);
|
||||
//////////////////////////////////////
|
||||
// idx[i] is a table of desired sources giving a permutation.
|
||||
//
|
||||
// Swap v[i] with v[idx[i]].
|
||||
//
|
||||
// Find j>i for which _vnew[j] = _vold[i],
|
||||
// track the move idx[j] => idx[i]
|
||||
// track the move idx[i] => i
|
||||
//////////////////////////////////////
|
||||
size_t j;
|
||||
for (j=i;j<idx.size();j++)
|
||||
if (idx[j]==i)
|
||||
break;
|
||||
|
||||
assert(j!=idx.size());
|
||||
assert(idx[j]==i);
|
||||
|
||||
std::swap(_v[i]._odata,_v[idx[i]]._odata); // should use vector move constructor, no data copy
|
||||
std::swap(sort_vals[i],sort_vals[idx[i]]);
|
||||
|
||||
idx[j] = idx[i];
|
||||
idx[i] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
|
||||
{
|
||||
std::vector<int> idx(sort_vals.size());
|
||||
std::iota(idx.begin(), idx.end(), 0);
|
||||
|
||||
// sort indexes based on comparing values in v
|
||||
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
|
||||
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
|
||||
});
|
||||
return idx;
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
|
||||
{
|
||||
std::vector<int> idx = basisSortGetIndex(sort_vals);
|
||||
if (reverse)
|
||||
std::reverse(idx.begin(), idx.end());
|
||||
|
||||
basisReorderInPlace(_v,sort_vals,idx);
|
||||
}
|
||||
|
||||
// PAB: faster to compute the inner products first then fuse loops.
|
||||
// If performance critical can improve.
|
||||
template<class Field>
|
||||
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
|
||||
result = zero;
|
||||
assert(_v.size()==eval.size());
|
||||
int N = (int)_v.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
Field& tmp = _v[i];
|
||||
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
|
||||
}
|
||||
}
|
||||
|
||||
/* enum IRLdiagonalisation {
|
||||
IRLdiagonaliseWithDSTEGR,
|
||||
IRLdiagonaliseWithQR,
|
||||
IRLdiagonaliseWithEigen
|
||||
};*/
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field>
|
||||
class BlockImplicitlyRestartedLanczos {
|
||||
private:
|
||||
const RealD small = 1.0e-8;
|
||||
int MaxIter;
|
||||
int MinRestart; // Minimum number of restarts; only check for convergence after
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nk; // Number of converged sought
|
||||
// int Np; // Np -- Number of spare vecs in krylov space // == Nm - Nk
|
||||
int Nm; // Nm -- total number of vectors
|
||||
IRLdiagonalisation diagonalisation;
|
||||
int orth_period;
|
||||
|
||||
RealD OrthoTime;
|
||||
RealD eresid, betastp;
|
||||
////////////////////////////////
|
||||
// Embedded objects
|
||||
////////////////////////////////
|
||||
// SortEigen<Field> _sort;
|
||||
LinearFunction<Field> &_HermOp;
|
||||
LinearFunction<Field> &_HermOpTest;
|
||||
/////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////
|
||||
public:
|
||||
BlockImplicitlyRestartedLanczos(LinearFunction<Field> & HermOp,
|
||||
LinearFunction<Field> & HermOpTest,
|
||||
int _Nstop, // sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
RealD _betastp, // if beta(k) < betastp: converged
|
||||
int _MaxIter, // Max iterations
|
||||
int _MinRestart, int _orth_period = 1,
|
||||
IRLdiagonalisation _diagonalisation= IRLdiagonaliseWithEigen) :
|
||||
_HermOp(HermOp), _HermOpTest(HermOpTest),
|
||||
Nstop(_Nstop) , Nk(_Nk), Nm(_Nm),
|
||||
eresid(_eresid), betastp(_betastp),
|
||||
MaxIter(_MaxIter) , MinRestart(_MinRestart),
|
||||
orth_period(_orth_period), diagonalisation(_diagonalisation) { };
|
||||
|
||||
////////////////////////////////
|
||||
// Helpers
|
||||
////////////////////////////////
|
||||
template<typename T> static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, std::vector<Field>& evec,int k)
|
||||
{
|
||||
OrthoTime-=usecond()/1e6;
|
||||
basisOrthogonalize(evec,w,k);
|
||||
normalise(w);
|
||||
OrthoTime+=usecond()/1e6;
|
||||
}
|
||||
|
||||
/* Rudy Arthur's thesis pp.137
|
||||
------------------------
|
||||
Require: M > K P = M − K †
|
||||
Compute the factorization AVM = VM HM + fM eM
|
||||
repeat
|
||||
Q=I
|
||||
for i = 1,...,P do
|
||||
QiRi =HM −θiI Q = QQi
|
||||
H M = Q †i H M Q i
|
||||
end for
|
||||
βK =HM(K+1,K) σK =Q(M,K)
|
||||
r=vK+1βK +rσK
|
||||
VK =VM(1:M)Q(1:M,1:K)
|
||||
HK =HM(1:K,1:K)
|
||||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||||
until convergence
|
||||
*/
|
||||
void calc(std::vector<RealD>& eval, std::vector<Field>& evec, const Field& src, int& Nconv, bool reverse, int SkipTest)
|
||||
{
|
||||
GridBase *grid = src._grid;
|
||||
assert(grid == evec[0]._grid);
|
||||
|
||||
GridLogIRL.TimingMode(1);
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL <<" ImplicitlyRestartedLanczos::calc() starting iteration 0 / "<< MaxIter<< std::endl;
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- seek Nk = " << Nk <<" vectors"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- accept Nstop = " << Nstop <<" vectors"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- total Nm = " << Nm <<" vectors"<< std::endl;
|
||||
std::cout << GridLogIRL <<" -- size of eval = " << eval.size() << std::endl;
|
||||
std::cout << GridLogIRL <<" -- size of evec = " << evec.size() << std::endl;
|
||||
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
|
||||
std::cout << GridLogIRL << "Diagonalisation is DSTEGR "<<std::endl;
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
|
||||
std::cout << GridLogIRL << "Diagonalisation is QR "<<std::endl;
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
std::cout << GridLogIRL << "Diagonalisation is Eigen "<<std::endl;
|
||||
}
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
|
||||
assert(Nm <= evec.size() && Nm <= eval.size());
|
||||
|
||||
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
|
||||
RealD evalMaxApprox = 0.0;
|
||||
{
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_IRL_MEVAPP_ = 50;
|
||||
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
|
||||
_HermOpTest(src_n,tmp);
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
|
||||
i=_MAX_ITER_IRL_MEVAPP_;
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogIRL << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
src_n = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<RealD> lme(Nm);
|
||||
std::vector<RealD> lme2(Nm);
|
||||
std::vector<RealD> eval2(Nm);
|
||||
std::vector<RealD> eval2_copy(Nm);
|
||||
Eigen::MatrixXd Qt = Eigen::MatrixXd::Zero(Nm,Nm);
|
||||
|
||||
Field f(grid);
|
||||
Field v(grid);
|
||||
int k1 = 1;
|
||||
int k2 = Nk;
|
||||
RealD beta_k;
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
// Set initial vector
|
||||
evec[0] = src;
|
||||
normalise(evec[0]);
|
||||
|
||||
// Initial Nk steps
|
||||
OrthoTime=0.;
|
||||
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
std::cout<<GridLogIRL <<"Initial "<< Nk <<"steps done "<<std::endl;
|
||||
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// Restarting loop begins
|
||||
//////////////////////////////////
|
||||
int iter;
|
||||
for(iter = 0; iter<MaxIter; ++iter){
|
||||
|
||||
OrthoTime=0.;
|
||||
|
||||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||||
std::cout<< GridLogMessage <<" Restart iteration = "<< iter << std::endl;
|
||||
std::cout<< GridLogMessage <<" **********************"<< std::endl;
|
||||
|
||||
std::cout<<GridLogIRL <<" running "<<Nm-Nk <<" steps: "<<std::endl;
|
||||
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
f *= lme[Nm-1];
|
||||
|
||||
std::cout<<GridLogIRL <<" "<<Nm-Nk <<" steps done "<<std::endl;
|
||||
std::cout<<GridLogIRL <<"Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// getting eigenvalues
|
||||
//////////////////////////////////
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k+k1-1];
|
||||
lme2[k] = lme[k+k1-1];
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
|
||||
std::cout<<GridLogIRL <<" diagonalized "<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// sorting
|
||||
//////////////////////////////////
|
||||
eval2_copy = eval2;
|
||||
|
||||
// _sort.push(eval2,Nm);
|
||||
std::partial_sort(eval2.begin(),eval2.begin()+Nm,eval2.end());
|
||||
|
||||
std::cout<<GridLogIRL <<" evals sorted "<<std::endl;
|
||||
for(int ip=0; ip<k2; ++ip) std::cout<<GridLogIRL << "eval "<< ip << " "<< eval2[ip] << std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// Implicitly shifted QR transformations
|
||||
//////////////////////////////////
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
std::cout<<GridLogIRL << "QR decompose " << std::endl;
|
||||
for(int ip=k2; ip<Nm; ++ip){
|
||||
QR_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
}
|
||||
std::cout<<GridLogIRL <<"QR decompose done "<<std::endl;
|
||||
|
||||
assert(k2<Nm);
|
||||
assert(k2<Nm);
|
||||
assert(k1>0);
|
||||
basisRotate(evec,Qt,k1-1,k2+1,0,Nm,Nm); /// big constraint on the basis
|
||||
|
||||
std::cout<<GridLogIRL <<"QR rotation done "<<std::endl;
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Compressed vector f and beta(k2)
|
||||
////////////////////////////////////////////////////
|
||||
f *= Qt(k2-1,Nm-1);
|
||||
f += lme[k2-1] * evec[k2];
|
||||
beta_k = norm2(f);
|
||||
beta_k = sqrt(beta_k);
|
||||
std::cout<<GridLogIRL<<" beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
RealD betar = 1.0/beta_k;
|
||||
evec[k2] = betar * f;
|
||||
lme[k2-1] = beta_k;
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Convergence test
|
||||
////////////////////////////////////////////////////
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k];
|
||||
lme2[k] = lme[k];
|
||||
// std::cout<<GridLogIRL << "eval2[" << k << "] = " << eval2[k] << std::endl;
|
||||
}
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
|
||||
std::cout<<GridLogIRL <<" Diagonalized "<<std::endl;
|
||||
|
||||
Nconv = 0;
|
||||
if (iter >= MinRestart) {
|
||||
std::cout << GridLogIRL << "Rotation to test convergence " << std::endl;
|
||||
|
||||
Field ev0_orig(grid);
|
||||
ev0_orig = evec[0];
|
||||
|
||||
basisRotate(evec,Qt,0,Nk,0,Nk,Nm);
|
||||
|
||||
{
|
||||
std::cout << GridLogIRL << "Test convergence" << std::endl;
|
||||
Field B(grid);
|
||||
|
||||
for(int j = 0; j<Nk; j+=SkipTest){
|
||||
B=evec[j];
|
||||
|
||||
//std::cout << "Checkerboard: " << evec[j].checkerboard << std::endl;
|
||||
B.checkerboard = evec[0].checkerboard;
|
||||
|
||||
_HermOpTest(B,v);
|
||||
|
||||
RealD vnum = real(innerProduct(B,v)); // HermOp.
|
||||
RealD vden = norm2(B);
|
||||
RealD vv0 = norm2(v);
|
||||
eval2[j] = vnum/vden;
|
||||
v -= eval2[j]*B;
|
||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[j] << " (" << eval2_copy[j] << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv
|
||||
<<" "<< vnum/(sqrt(vden)*sqrt(vv0))
|
||||
<<std::endl;
|
||||
|
||||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||||
if((vv<eresid*eresid) && (j == Nconv) ){
|
||||
Nconv+=SkipTest;
|
||||
}
|
||||
}
|
||||
|
||||
// test if we converged, if so, terminate
|
||||
std::cout<<GridLogIRL<<" #modes converged: "<<Nconv<<std::endl;
|
||||
if( Nconv>=Nstop || beta_k < betastp){
|
||||
goto converged;
|
||||
}
|
||||
|
||||
//B[j] +=Qt[k+_Nm*j] * _v[k]._odata[ss];
|
||||
{
|
||||
Eigen::MatrixXd qm = Eigen::MatrixXd::Zero(Nk,Nk); // Restrict Qt to Nk x Nk
|
||||
for (int k=0;k<Nk;k++)
|
||||
for (int j=0;j<Nk;j++)
|
||||
qm(j,k) = Qt(j,k);
|
||||
|
||||
Eigen::MatrixXd qmI = qm.inverse();
|
||||
|
||||
RealD res_check_rotate_inverse = (qm*qmI - Eigen::MatrixXd::Identity(Nk,Nk)).norm(); // sqrt( |X|^2 )
|
||||
|
||||
std::cout << GridLogIRL << "\tInverted ("<<Nk<<"x"<<Nk<<") Qt matrix " << " error = " << res_check_rotate_inverse <<std::endl;
|
||||
|
||||
assert(res_check_rotate_inverse < 1e-7);
|
||||
|
||||
basisRotate(evec,qmI,0,Nk,0,Nk,Nm);
|
||||
std::cout << GridLogIRL << "\t Basis rotation done "<<std::endl;
|
||||
|
||||
axpy(ev0_orig,-1.0,evec[0],ev0_orig);
|
||||
std::cout << GridLogIRL << " | evec[0] - evec[0]_orig | = " << ::sqrt(norm2(ev0_orig)) << std::endl;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
std::cout << GridLogIRL << "iter < MinRestart: do not yet test for convergence\n";
|
||||
} // end of iter loop
|
||||
}
|
||||
|
||||
std::cout<<GridLogError<<"\n NOT converged.\n";
|
||||
abort();
|
||||
|
||||
converged:
|
||||
|
||||
if (SkipTest == 1) {
|
||||
eval = eval2;
|
||||
} else {
|
||||
// test quickly
|
||||
// PAB -- what precisely does this test?
|
||||
for (int j=0;j<Nstop;j+=SkipTest) {
|
||||
std::cout<<GridLogIRL << "Eigenvalue[" << j << "] = " << eval2[j] << " (" << eval2_copy[j] << ")" << std::endl;
|
||||
}
|
||||
eval2_copy.resize(eval2.size());
|
||||
eval = eval2_copy;
|
||||
}
|
||||
|
||||
basisSortInPlace(evec,eval,reverse);
|
||||
|
||||
// test // PAB -- what does this test ?
|
||||
for (int j=0;j<Nstop;j++) {
|
||||
std::cout<<GridLogIRL << " |e[" << j << "]|^2 = " << norm2(evec[j]) << std::endl;
|
||||
}
|
||||
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL << "ImplicitlyRestartedLanczos CONVERGED ; Summary :\n";
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
std::cout << GridLogIRL << " -- Iterations = "<< iter << "\n";
|
||||
std::cout << GridLogIRL << " -- beta(k) = "<< beta_k << "\n";
|
||||
std::cout << GridLogIRL << " -- Nconv = "<< Nconv << "\n";
|
||||
std::cout << GridLogIRL <<"**************************************************************************"<< std::endl;
|
||||
}
|
||||
|
||||
private:
|
||||
/* Saad PP. 195
|
||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||||
2. For k = 1,2,...,m Do:
|
||||
3. wk:=Avk−βkv_{k−1}
|
||||
4. αk:=(wk,vk) //
|
||||
5. wk:=wk−αkvk // wk orthog vk
|
||||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
7. vk+1 := wk/βk+1
|
||||
8. EndDo
|
||||
*/
|
||||
void step(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
std::vector<Field>& evec,
|
||||
Field& w,int Nm,int k)
|
||||
{
|
||||
const RealD tiny = 1.0e-20;
|
||||
assert( k< Nm );
|
||||
|
||||
GridStopWatch gsw_op,gsw_o;
|
||||
|
||||
Field& evec_k = evec[k];
|
||||
|
||||
_HermOp(evec_k,w);
|
||||
std::cout<<GridLogIRL << "_HermOp (poly)" <<std::endl;
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
|
||||
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
|
||||
RealD alph = real(zalph);
|
||||
|
||||
w = w - alph * evec_k;// 5. wk:=wk−αkvk
|
||||
|
||||
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
// 7. vk+1 := wk/βk+1
|
||||
|
||||
lmd[k] = alph;
|
||||
lme[k] = beta;
|
||||
|
||||
std::cout<<GridLogIRL << "linalg " <<std::endl;
|
||||
|
||||
if (k>0 && k % orth_period == 0) {
|
||||
orthogonalize(w,evec,k); // orthonormalise
|
||||
std::cout<<GridLogIRL << "orthogonalised " <<std::endl;
|
||||
}
|
||||
|
||||
if(k < Nm-1) evec[k+1] = w;
|
||||
|
||||
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
if ( beta < tiny )
|
||||
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
||||
}
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt, // Nm x Nm
|
||||
GridBase *grid)
|
||||
{
|
||||
Eigen::MatrixXd TriDiag = Eigen::MatrixXd::Zero(Nk,Nk);
|
||||
|
||||
for(int i=0;i<Nk;i++) TriDiag(i,i) = lmd[i];
|
||||
for(int i=0;i<Nk-1;i++) TriDiag(i,i+1) = lme[i];
|
||||
for(int i=0;i<Nk-1;i++) TriDiag(i+1,i) = lme[i];
|
||||
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigensolver(TriDiag);
|
||||
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
lmd[Nk-1-i] = eigensolver.eigenvalues()(i);
|
||||
}
|
||||
for (int i = 0; i < Nk; i++) {
|
||||
for (int j = 0; j < Nk; j++) {
|
||||
Qt(Nk-1-i,j) = eigensolver.eigenvectors()(j,i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// File could end here if settle on Eigen ???
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void QR_decomp(std::vector<RealD>& lmd, // Nm
|
||||
std::vector<RealD>& lme, // Nm
|
||||
int Nk, int Nm, // Nk, Nm
|
||||
Eigen::MatrixXd& Qt, // Nm x Nm matrix
|
||||
RealD Dsh, int kmin, int kmax)
|
||||
{
|
||||
int k = kmin-1;
|
||||
RealD x;
|
||||
|
||||
RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
|
||||
RealD c = ( lmd[k] -Dsh) *Fden;
|
||||
RealD s = -lme[k] *Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k+1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||||
x =-s*lme[k+1];
|
||||
lme[k+1] = c*lme[k+1];
|
||||
|
||||
for(int i=0; i<Nk; ++i){
|
||||
RealD Qtmp1 = Qt(k,i);
|
||||
RealD Qtmp2 = Qt(k+1,i);
|
||||
Qt(k,i) = c*Qtmp1 - s*Qtmp2;
|
||||
Qt(k+1,i)= s*Qtmp1 + c*Qtmp2;
|
||||
}
|
||||
|
||||
// Givens transformations
|
||||
for(int k = kmin; k < kmax-1; ++k){
|
||||
|
||||
RealD Fden = 1.0/hypot(x,lme[k-1]);
|
||||
RealD c = lme[k-1]*Fden;
|
||||
RealD s = - x*Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k+1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||||
lme[k-1] = c*lme[k-1] -s*x;
|
||||
|
||||
if(k != kmax-2){
|
||||
x = -s*lme[k+1];
|
||||
lme[k+1] = c*lme[k+1];
|
||||
}
|
||||
|
||||
for(int i=0; i<Nk; ++i){
|
||||
RealD Qtmp1 = Qt(k,i);
|
||||
RealD Qtmp2 = Qt(k+1,i);
|
||||
Qt(k,i) = c*Qtmp1 -s*Qtmp2;
|
||||
Qt(k+1,i) = s*Qtmp1 +c*Qtmp2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void diagonalize(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
Qt = Eigen::MatrixXd::Identity(Nm,Nm);
|
||||
if ( diagonalisation == IRLdiagonaliseWithDSTEGR ) {
|
||||
diagonalize_lapack(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithQR ) {
|
||||
diagonalize_QR(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else if ( diagonalisation == IRLdiagonaliseWithEigen ) {
|
||||
diagonalize_Eigen(lmd,lme,Nk,Nm,Qt,grid);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_LAPACK
|
||||
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
|
||||
double *vl, double *vu, int *il, int *iu, double *abstol,
|
||||
int *m, double *w, double *z, int *ldz, int *isuppz,
|
||||
double *work, int *lwork, int *iwork, int *liwork,
|
||||
int *info);
|
||||
#endif
|
||||
|
||||
void diagonalize_lapack(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd& Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
#ifdef USE_LAPACK
|
||||
const int size = Nm;
|
||||
int NN = Nk;
|
||||
double evals_tmp[NN];
|
||||
double evec_tmp[NN][NN];
|
||||
memset(evec_tmp[0],0,sizeof(double)*NN*NN);
|
||||
double DD[NN];
|
||||
double EE[NN];
|
||||
for (int i = 0; i< NN; i++) {
|
||||
for (int j = i - 1; j <= i + 1; j++) {
|
||||
if ( j < NN && j >= 0 ) {
|
||||
if (i==j) DD[i] = lmd[i];
|
||||
if (i==j) evals_tmp[i] = lmd[i];
|
||||
if (j==(i-1)) EE[j] = lme[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
int evals_found;
|
||||
int lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
|
||||
int liwork = 3+NN*10 ;
|
||||
int iwork[liwork];
|
||||
double work[lwork];
|
||||
int isuppz[2*NN];
|
||||
char jobz = 'V'; // calculate evals & evecs
|
||||
char range = 'I'; // calculate all evals
|
||||
// char range = 'A'; // calculate all evals
|
||||
char uplo = 'U'; // refer to upper half of original matrix
|
||||
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
|
||||
int ifail[NN];
|
||||
int info;
|
||||
int total = grid->_Nprocessors;
|
||||
int node = grid->_processor;
|
||||
int interval = (NN/total)+1;
|
||||
double vl = 0.0, vu = 0.0;
|
||||
int il = interval*node+1 , iu = interval*(node+1);
|
||||
if (iu > NN) iu=NN;
|
||||
double tol = 0.0;
|
||||
if (1) {
|
||||
memset(evals_tmp,0,sizeof(double)*NN);
|
||||
if ( il <= NN){
|
||||
LAPACK_dstegr(&jobz, &range, &NN,
|
||||
(double*)DD, (double*)EE,
|
||||
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
|
||||
&tol, // tolerance
|
||||
&evals_found, evals_tmp, (double*)evec_tmp, &NN,
|
||||
isuppz,
|
||||
work, &lwork, iwork, &liwork,
|
||||
&info);
|
||||
for (int i = iu-1; i>= il-1; i--){
|
||||
evals_tmp[i] = evals_tmp[i - (il-1)];
|
||||
if (il>1) evals_tmp[i-(il-1)]=0.;
|
||||
for (int j = 0; j< NN; j++){
|
||||
evec_tmp[i][j] = evec_tmp[i - (il-1)][j];
|
||||
if (il>1) evec_tmp[i-(il-1)][j]=0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
grid->GlobalSumVector(evals_tmp,NN);
|
||||
grid->GlobalSumVector((double*)evec_tmp,NN*NN);
|
||||
}
|
||||
}
|
||||
// Safer to sort instead of just reversing it,
|
||||
// but the document of the routine says evals are sorted in increasing order.
|
||||
// qr gives evals in decreasing order.
|
||||
for(int i=0;i<NN;i++){
|
||||
lmd [NN-1-i]=evals_tmp[i];
|
||||
for(int j=0;j<NN;j++){
|
||||
Qt((NN-1-i),j)=evec_tmp[i][j];
|
||||
}
|
||||
}
|
||||
#else
|
||||
assert(0);
|
||||
#endif
|
||||
}
|
||||
|
||||
void diagonalize_QR(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
int Nk, int Nm,
|
||||
Eigen::MatrixXd & Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
int QRiter = 100*Nm;
|
||||
int kmin = 1;
|
||||
int kmax = Nk;
|
||||
|
||||
// (this should be more sophisticated)
|
||||
for(int iter=0; iter<QRiter; ++iter){
|
||||
|
||||
// determination of 2x2 leading submatrix
|
||||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||||
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||||
// (Dsh: shift)
|
||||
|
||||
// transformation
|
||||
QR_decomp(lmd,lme,Nk,Nm,Qt,Dsh,kmin,kmax); // Nk, Nm
|
||||
|
||||
// Convergence criterion (redef of kmin and kamx)
|
||||
for(int j=kmax-1; j>= kmin; --j){
|
||||
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
|
||||
if(fabs(lme[j-1])+dds > dds){
|
||||
kmax = j+1;
|
||||
goto continued;
|
||||
}
|
||||
}
|
||||
QRiter = iter;
|
||||
return;
|
||||
|
||||
continued:
|
||||
for(int j=0; j<kmax-1; ++j){
|
||||
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
|
||||
if(fabs(lme[j])+dds > dds){
|
||||
kmin = j+1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::cout << GridLogError << "[QL method] Error - Too many iteration: "<<QRiter<<"\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
@ -50,7 +50,7 @@ namespace Grid {
|
||||
return (status==0) ? res.get() : name ;
|
||||
}
|
||||
|
||||
GridStopWatch Logger::StopWatch;
|
||||
GridStopWatch Logger::GlobalStopWatch;
|
||||
int Logger::timestamp;
|
||||
std::ostream Logger::devnull(0);
|
||||
|
||||
|
@ -91,7 +91,9 @@ protected:
|
||||
std::string COLOUR;
|
||||
|
||||
public:
|
||||
static GridStopWatch StopWatch;
|
||||
static GridStopWatch GlobalStopWatch;
|
||||
GridStopWatch LocalStopWatch;
|
||||
GridStopWatch *StopWatch;
|
||||
static std::ostream devnull;
|
||||
|
||||
std::string background() {return Painter.colour["NORMAL"];}
|
||||
@ -103,13 +105,25 @@ public:
|
||||
topName(topNm),
|
||||
Painter(col_class),
|
||||
timing_mode(0),
|
||||
COLOUR(col) {} ;
|
||||
COLOUR(col)
|
||||
{
|
||||
StopWatch = & GlobalStopWatch;
|
||||
};
|
||||
|
||||
void Active(int on) {active = on;};
|
||||
int isActive(void) {return active;};
|
||||
static void Timestamp(int on) {timestamp = on;};
|
||||
void Reset(void) { StopWatch.Reset(); }
|
||||
void TimingMode(int on) { timing_mode = on; if(on) Reset(); }
|
||||
void Reset(void) {
|
||||
StopWatch->Reset();
|
||||
StopWatch->Start();
|
||||
}
|
||||
void TimingMode(int on) {
|
||||
timing_mode = on;
|
||||
if(on) {
|
||||
StopWatch = &LocalStopWatch;
|
||||
Reset();
|
||||
}
|
||||
}
|
||||
|
||||
friend std::ostream& operator<< (std::ostream& stream, Logger& log){
|
||||
|
||||
@ -117,10 +131,10 @@ public:
|
||||
stream << log.background()<< std::left << log.topName << log.background()<< " : ";
|
||||
stream << log.colour() << std::left << log.name << log.background() << " : ";
|
||||
if ( log.timestamp ) {
|
||||
StopWatch.Stop();
|
||||
GridTime now = StopWatch.Elapsed();
|
||||
if ( log.timing_mode==1 ) StopWatch.Reset();
|
||||
StopWatch.Start();
|
||||
log.StopWatch->Stop();
|
||||
GridTime now = log.StopWatch->Elapsed();
|
||||
if ( log.timing_mode==1 ) log.StopWatch->Reset();
|
||||
log.StopWatch->Start();
|
||||
stream << log.evidence()<< now << log.background() << " : " ;
|
||||
}
|
||||
stream << log.colour();
|
||||
|
@ -208,7 +208,7 @@ static int Grid_is_initialised = 0;
|
||||
|
||||
void Grid_init(int *argc,char ***argv)
|
||||
{
|
||||
GridLogger::StopWatch.Start();
|
||||
GridLogger::GlobalStopWatch.Start();
|
||||
|
||||
std::string arg;
|
||||
|
||||
|
@ -21,7 +21,14 @@
|
||||
(ortho krylov low poly); and then fix up lowest say 200 eigenvalues by 1 run with high-degree poly (600 could be enough)
|
||||
*/
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// The following are now decoupled from the Lanczos and deal with grids.
|
||||
// Safe to replace functionality
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockedGrid.h>
|
||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldBasisVector.h>
|
||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockProjector.h>
|
||||
#include "FieldVectorIO.h"
|
||||
#include "Params.h"
|
||||
|
||||
@ -319,7 +326,7 @@ void CoarseGridLanczos(BlockProjector<Field>& pr,RealD alpha2,RealD beta,int Npo
|
||||
Op2 = &Op2plain;
|
||||
}
|
||||
ProjectedHermOp<CoarseLatticeFermion<Nstop1>,LatticeFermion> Op2nopoly(pr,HermOp);
|
||||
BlockImplicitlyRestartedLanczos<CoarseLatticeFermion<Nstop1> > IRL2(*Op2,*Op2,Nstop2,Nk2,Nm2,resid2,betastp2,MaxIt,MinRes2);
|
||||
ImplicitlyRestartedLanczos<CoarseLatticeFermion<Nstop1> > IRL2(*Op2,*Op2,Nstop2,Nk2,Nm2,resid2,betastp2,MaxIt,MinRes2);
|
||||
|
||||
|
||||
src_coarse = 1.0;
|
||||
@ -350,7 +357,7 @@ void CoarseGridLanczos(BlockProjector<Field>& pr,RealD alpha2,RealD beta,int Npo
|
||||
) {
|
||||
|
||||
|
||||
IRL2.calc(eval2,coef,src_coarse,Nconv,true,SkipTest2);
|
||||
IRL2.calc(eval2,coef._v,src_coarse,Nconv,true,SkipTest2);
|
||||
|
||||
coef.resize(Nstop2);
|
||||
eval2.resize(Nstop2);
|
||||
@ -641,7 +648,7 @@ int main (int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// First round of Lanczos to get low mode basis
|
||||
BlockImplicitlyRestartedLanczos<LatticeFermion> IRL1(Op1,Op1test,Nstop1,Nk1,Nm1,resid1,betastp1,MaxIt,MinRes1);
|
||||
ImplicitlyRestartedLanczos<LatticeFermion> IRL1(Op1,Op1test,Nstop1,Nk1,Nm1,resid1,betastp1,MaxIt,MinRes1);
|
||||
int Nconv;
|
||||
|
||||
char tag[1024];
|
||||
@ -650,7 +657,7 @@ int main (int argc, char ** argv) {
|
||||
if (simple_krylov_basis) {
|
||||
quick_krylov_basis(evec,src,Op1,Nstop1);
|
||||
} else {
|
||||
IRL1.calc(eval1,evec,src,Nconv,false,1);
|
||||
IRL1.calc(eval1,evec._v,src,Nconv,false,1);
|
||||
}
|
||||
evec.resize(Nstop1); // and throw away superfluous
|
||||
eval1.resize(Nstop1);
|
||||
|
Loading…
Reference in New Issue
Block a user