1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

This file is being developed and will remain hacky until the new algorithm

is complete
This commit is contained in:
Peter Boyle 2015-07-21 13:52:23 +09:00
parent 0007669381
commit 487fde8496

View File

@ -6,6 +6,10 @@ using namespace std;
using namespace Grid;
using namespace Grid::QCD;
RealD InverseApproximation(RealD x){
return 1.0/x;
}
template<class Fobj,class CComplex,int nbasis, class Matrix>
class MultiGridPreconditioner : public LinearFunction< Lattice<Fobj> > {
public:
@ -33,6 +37,27 @@ public:
_Matrix(FineMatrix)
{
}
void PowerMethod(const FineField &in) {
FineField p1(in._grid);
FineField p2(in._grid);
MdagMLinearOperator<Matrix,FineField> fMdagMOp(_Matrix);
p1=in;
RealD absp2;
for(int i=0;i<20;i++){
RealD absp1=std::sqrt(norm2(p1));
fMdagMOp.HermOp(p1,p2);// this is the G5 herm bit
// _FineOperator.Op(p1,p2);// this is the G5 herm bit
RealD absp2=std::sqrt(norm2(p2));
if(i%10==9)
std::cout << "Power method on mdagm "<<i<<" " << absp2/absp1<<std::endl;
p1=p2*(1.0/std::sqrt(absp2));
}
}
#if 0
void operator()(const FineField &in, FineField & out) {
@ -49,7 +74,7 @@ public:
std::cout<<"Completeness: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
// Build some solvers
ConjugateGradient<FineField> fCG(1.0e-1,1000);
ConjugateGradient<FineField> fCG(1.0e-3,1000);
ConjugateGradient<CoarseVector> CG(1.0e-8,100000);
////////////////////////////////////////////////////////////////////////
@ -164,6 +189,7 @@ public:
}
#endif
// ADEF1: [MP+Q ] in =M [1 - A Q] in + Q in
#if 0
void operator()(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
@ -171,11 +197,11 @@ public:
CoarseVector Csol(_CoarseOperator.Grid()); Csol=zero;
ConjugateGradient<CoarseVector> CG(1.0e-10,100000);
ConjugateGradient<FineField> fCG(1.0e-3,1000);
ConjugateGradient<FineField> fCG(3.0e-2,1000);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
MdagMLinearOperator<Matrix,FineField> fMdagMOp(_Matrix);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_Matrix,0.1);
FineField tmp(in._grid);
FineField res(in._grid);
@ -191,7 +217,7 @@ public:
CG(MdagMOp,Ctmp,Csol);
_Aggregates.PromoteFromSubspace(Csol,Qin);
// Qin=0;
_FineOperator.Op(Qin,tmp);// A Q in
tmp = in - tmp; // in - A Q in
@ -206,6 +232,116 @@ public:
std::cout<<"preconditioner thinks residual is "<<std::sqrt(norm2(tmp)/norm2(in))<<std::endl;
}
#endif
void SmootherTest (const FineField & in){
FineField vec1(in._grid);
FineField vec2(in._grid);
RealD lo[3] = { 0.5, 1.0, 2.0};
// MdagMLinearOperator<Matrix,FineField> fMdagMOp(_Matrix);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_Matrix,0.5);
RealD Ni,r;
Ni = norm2(in);
for(int ilo=0;ilo<4;ilo++){
for(int ord=10;ord<60;ord+=10){
_FineOperator.AdjOp(in,vec1);
Chebyshev<FineField> Cheby (lo[ilo],70.0,ord,InverseApproximation);
Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M
_FineOperator.Op(vec2,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout << "Smoother resid "<<std::sqrt(r/Ni)<<std::endl;
}
}
}
void operator()(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Ctmp(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid()); Csol=zero;
ConjugateGradient<CoarseVector> CG(1.0e-5,100000);
ConjugateGradient<FineField> fCG(3.0e-2,1000);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
// MdagMLinearOperator<Matrix,FineField> fMdagMOp(_Matrix);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_Matrix,0.5);
FineField vec1(in._grid);
FineField vec2(in._grid);
// Chebyshev<FineField> Cheby (0.5,70.0,30,InverseApproximation);
// Chebyshev<FineField> ChebyAccu(0.5,70.0,30,InverseApproximation);
Chebyshev<FineField> Cheby (1.0,70.0,20,InverseApproximation);
Chebyshev<FineField> ChebyAccu(1.0,70.0,20,InverseApproximation);
_Aggregates.ProjectToSubspace (Csrc,in);
_Aggregates.PromoteFromSubspace(Csrc,out);
std::cout<<"Completeness: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
// ofstream fout("smoother");
// Cheby.csv(fout);
// V11 multigrid.
// Use a fixed chebyshev and hope hermiticity helps.
// To make a working smoother for indefinite operator
// must multiply by "Mdag" (ouch loses all low mode content)
// and apply to poly approx of (mdagm)^-1.
// so that we end up with an odd polynomial.
RealD Ni = norm2(in);
_FineOperator.AdjOp(in,vec1);// this is the G5 herm bit
ChebyAccu(fMdagMOp,vec1,out); // solves MdagM = g5 M g5M
std::cout << "Smoother norm "<<norm2(out)<<std::endl;
// Update with residual for out
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
RealD r = norm2(vec1);
std::cout << "Smoother resid "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl;
_Aggregates.ProjectToSubspace (Csrc,vec1);
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
CG(MdagMOp,Ctmp,Csol);
_Aggregates.PromoteFromSubspace(Csol,vec1); // Ass^{-1} [in - A Min]_s
// Q = Q[in - A Min]
out = out+vec1;
// Three preconditioner smoothing -- hermitian if C3 = C1
// Recompute error
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout << "Coarse resid "<<std::sqrt(r/Ni)<<std::endl;
// Reapply smoother
_FineOperator.Op(vec1,vec2); // this is the G5 herm bit
ChebyAccu(fMdagMOp,vec2,vec1); // solves MdagM = g5 M g5M
out =out+vec1;
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout << "Smoother resid "<<std::sqrt(r/Ni)<<std::endl;
}
};
@ -224,7 +360,7 @@ int main (int argc, char ** argv)
///////////////////////////////////////////////////
// Construct a coarsened grid; utility for this?
///////////////////////////////////////////////////
const int block=4;
const int block=2;
std::vector<int> clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/block;
@ -265,7 +401,8 @@ int main (int argc, char ** argv)
std::cout << "**************************************************"<< std::endl;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
const int nbasis = 6;
const int nbasis = 32;
// const int nbasis = 4;
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator;
@ -276,7 +413,19 @@ int main (int argc, char ** argv)
std::cout << "**************************************************"<< std::endl;
MdagMLinearOperator<DomainWallFermion,LatticeFermion> HermDefOp(Ddwf);
Subspace Aggregates(Coarse5d,FGrid);
Aggregates.CreateSubspace(RNG5,HermDefOp);
// Aggregates.CreateSubspace(RNG5,HermDefOp,nbasis);
assert ( (nbasis & 0x1)==0);
int nb=nbasis/2;
std::cout << " nbasis/2 = "<<nb<<std::endl;
Aggregates.CreateSubspace(RNG5,HermDefOp,nb);
for(int n=0;n<nb;n++){
G5R5(Aggregates.subspace[n+nb],Aggregates.subspace[n]);
std::cout<<n<<" subspace "<<norm2(Aggregates.subspace[n+nb])<<" "<<norm2(Aggregates.subspace[n]) <<std::endl;
}
for(int n=0;n<nbasis;n++){
std::cout << "vec["<<n<<"] = "<<norm2(Aggregates.subspace[n]) <<std::endl;
}
// for(int i=0;i<nbasis;i++){
// result = Aggregates.subspace[i];
// Aggregates.subspace[i]=result+g5*result;
@ -319,12 +468,18 @@ int main (int argc, char ** argv)
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,DomainWallFermion> Precon(Aggregates, LDOp,HermIndefOp,Ddwf);
TrivialPrecon<LatticeFermion> simple;
std::cout << "**************************************************"<< std::endl;
std::cout << "Testing smoother efficacy"<< std::endl;
std::cout << "**************************************************"<< std::endl;
Precon.SmootherTest(src);
std::cout << "**************************************************"<< std::endl;
std::cout << "Unprec CG "<< std::endl;
std::cout << "**************************************************"<< std::endl;
// TrivialPrecon<LatticeFermion> simple;
ConjugateGradient<LatticeFermion> fCG(1.0e-8,100000);
fCG(HermDefOp,src,result);
// exit(0);
std::cout << "**************************************************"<< std::endl;
std::cout << "Testing GCR on indef matrix "<< std::endl;
@ -332,6 +487,13 @@ int main (int argc, char ** argv)
// PrecGeneralisedConjugateResidual<LatticeFermion> UPGCR(1.0e-8,100000,simple,8,128);
// UPGCR(HermIndefOp,src,result);
/// Get themax eval
std::cout << "**************************************************"<< std::endl;
std::cout <<" Applying power method to find spectral range "<<std::endl;
std::cout << "**************************************************"<< std::endl;
Precon.PowerMethod(src);
std::cout << "**************************************************"<< std::endl;
std::cout << "Building a two level PGCR "<< std::endl;
std::cout << "**************************************************"<< std::endl;