1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Moving Eigen trensor utilities to separate (optional) header

This commit is contained in:
Michael Marshall 2019-03-06 11:16:22 +00:00
parent d56d8c923f
commit 4a00513e65
3 changed files with 249 additions and 215 deletions

View File

@ -163,221 +163,6 @@ namespace Grid {
template <typename T, int N> struct Traits<std::array<T, N>> : Traits<iVector<T, N>> {};
}
// for_all helper function to call the lambda for scalar
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank> &MyIndex)
{
lambda( scalar, Seq++, MyIndex );
}
// for_all helper function to call the lambda for container
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &container, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank> &MyIndex)
{
using Traits = EigenIO::Traits<typename ETensor::Scalar>;
const auto rank{ETensor::NumIndices};
const auto InnerRank = Traits::rank;
for( typename Traits::scalar_type &Source : container ) {
lambda(Source, Seq++, MyIndex );
// Now increment SubIndex
for( auto i = InnerRank - 1; i != -1 && ++MyIndex[rank + i] == Traits::Dimension(i); i-- )
MyIndex[rank + i] = 0;
}
}
// Calls a lamda (passing index and sequence number) for every member of an Eigen::Tensor
// For efficiency, iteration proceeds in memory order,
// ... but parameters guaranteed to be the same regardless of memory order
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
for_all( ETensor &ET, Lambda lambda )
{
using Scalar = typename ETensor::Scalar; // This could be a Container - we'll check later
const std::size_t NumScalars = ET.size();
assert( NumScalars > 0 );
using Index = typename ETensor::Index;
Index ScalarElementCount{1};
const auto InnerRank = EigenIO::Traits<Scalar>::rank;
const auto rank{ETensor::NumIndices};
std::array<std::size_t, rank + InnerRank> Dims;
for(auto i = 0; i < rank; i++ ) {
auto dim = ET.dimension(i);
assert( dim > 0 );
Dims[i] = static_cast<std::size_t>(dim);
assert( Dims[i] == dim ); // check we didn't lose anything in the conversion
ScalarElementCount *= Dims[i];
}
// Check that the number of containers is correct ... and we didn't lose anything in conversions
assert( NumScalars == ScalarElementCount );
// If the Scalar is actually a container, add the inner Scalar's dimensions
size_t InnerScalarCount{1};
for(auto i = 0; i < InnerRank; i++ ) {
auto dim = EigenIO::Traits<Scalar>::Dimension(i);
assert( dim > 0 );
Dims[rank + i] = static_cast<std::size_t>(dim);
assert( Dims[rank + i] == dim ); // check we didn't lose anything in the conversion
InnerScalarCount *= dim;
}
assert(EigenIO::Traits<Scalar>::count == InnerScalarCount);
assert(EigenIO::Traits<Scalar>::size == sizeof( Scalar ));
std::array<std::size_t, rank + InnerRank> MyIndex;
for( auto &idx : MyIndex ) idx = 0;
Index Seq = 0;
Scalar * pScalar = ET.data();
for( std::size_t j = 0; j < NumScalars; j++ ) {
for_all_do_lambda<ETensor, Lambda>( lambda, * pScalar, Seq, MyIndex );
// Now increment the index to pass to the lambda (bearing in mind we're walking in memory order)
if( ETensor::Options & Eigen::RowMajor ) {
for( auto i = rank - 1; i != -1 && ++MyIndex[i] == Dims[i]; i-- )
MyIndex[i] = 0;
} else {
for( auto i = 0; i < rank && ++MyIndex[i] == Dims[i]; i++ )
MyIndex[i] = 0;
size_t NewSeq = 0;
for( auto i = 0; i < rank + InnerRank ; i++ ) {
NewSeq *= Dims[i];
NewSeq += MyIndex[i];
}
Seq = static_cast<Index>( NewSeq );
}
pScalar++;
}
}
// Sequential initialisation of tensors
// Would have preferred to define template variables for this, but that's c++ 17
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && !EigenIO::is_complex<typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type>::value, void>::type
SequentialInit( ETensor &ET, typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type Inc = 1,
unsigned short Precision = 0 )
{
using Traits = EigenIO::Traits<typename ETensor::Scalar>;
using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank> &Dims ) {
scalar_type x = Inc * static_cast<scalar_type>(n);
if( Precision ) {
std::stringstream s;
s << std::scientific << std::setprecision(Precision) << x;
s >> x;
}
c = x;
} );
}
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && EigenIO::is_complex<typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type>::value, void>::type
SequentialInit( ETensor &ET, typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type Inc={1,-1},
unsigned short Precision = 0 )
{
using Traits = EigenIO::Traits<typename ETensor::Scalar>;
using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank> &Dims ) {
auto re = Inc.real();
auto im = Inc.imag();
re *= n;
im *= n;
if( Precision ) {
std::stringstream s;
s << std::setprecision(Precision) << re;
s >> re;
s.clear();
s << im;
s >> im;
}
c = scalar_type(re,im);
} );
}
// Helper to dump a tensor
#ifdef DEBUG
#define dump_tensor(args...) dump_tensor_func(args)
template <typename T>
typename std::enable_if<EigenIO::is_tensor<T>::value, void>::type
dump_tensor_func(T &t, const char * pName = nullptr)
{
using Traits = typename EigenIO::Traits<typename T::Scalar>;
const auto rank{T::NumIndices};
const auto &dims = t.dimensions();
std::cout << "Dumping rank " << rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
if( pName )
std::cout << pName;
for( auto i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]";
std::cout << " in memory order:" << std::endl;
for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::array<size_t, T::NumIndices + Traits::rank> &Dims ){
std::cout << " ";
for( auto dim : Dims )
std::cout << "[" << dim << "]";
std::cout << " = " << c << std::endl;
} );
std::cout << "========================================" << std::endl;
}
template <typename T>
typename std::enable_if<!EigenIO::is_tensor<T>::value, void>::type
dump_tensor_func(T &t, const char * pName = nullptr)
{
std::cout << "Dumping non-tensor object ";
if( pName )
std::cout << pName;
std::cout << "=" << t;
}
// Helper to dump a tensor in memory order
// Kind of superfluous given the above ... just keeping in case I need to fall back to this
#define DumpMemoryOrder(args...) DumpMemoryOrder_func(args)
template <typename T>
typename std::enable_if<EigenIO::is_tensor_of_scalar<T>::value, void>::type
DumpMemoryOrder_func(T &t, const char * pName = nullptr)
{
const auto rank = t.rank();
const auto &dims = t.dimensions();
std::cout << "Dumping rank " << rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
if( pName )
std::cout << pName;
for( auto d : dims ) std::cout << "[" << d << "]";
std::cout << " in memory order:" << std::endl;
const typename T::Scalar * p = t.data();
const auto size = t.size();
const typename T::Scalar * pEnd = p + size;
if( rank <= 2 ) {
for( unsigned int i = 0 ; i < t.size() ; i++ )
std::cout << "[" << i << "]=" << *p++ << " ";
std::cout << std::endl;
} else {
const auto innersize = dims[rank-2] * dims[rank-1];
using Index = typename T::Index;
std::vector<Index> idx(rank - 2);
for( auto &i : idx ) i = 0;
Index idxCounter = 0;
while( p < pEnd ) {
if( T::Options & Eigen::RowMajor ) {
if( pName )
std::cout << pName;
idxCounter = 0;
for(auto i = 0 ; i < rank - 2 ; i++)
std::cout << "[" << idx[i] << "]:";
}
for( unsigned int i = 0 ; i < innersize ; i++ )
std::cout << " [" << idxCounter++ << "]=" << *p++;
if( T::Options & Eigen::RowMajor )
std::cout << std::endl;
// Now increment MyIndex
for( auto i = rank - 3; i != -1 && ++idx[i] == dims[i]; i-- )
idx[i] = 0;
}
if( ! ( T::Options & Eigen::RowMajor ) )
std::cout << std::endl;
}
}
#else
#define dump_tensor(args...)
#define DumpMemoryOrder(args...)
#endif
// Abstract writer/reader classes ////////////////////////////////////////////
// static polymorphism implemented using CRTP idiom
class Serializable;

248
Grid/util/Eigen.h Normal file
View File

@ -0,0 +1,248 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Grid/util/Eigen.h
Copyright (C) 2019
Author: Michael Marshall <michael.marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_UTIL_EIGEN_H
#define GRID_UTIL_EIGEN_H
#include <Grid/Eigen/unsupported/CXX11/Tensor>
namespace Grid {
// for_all helper function to call the lambda for scalar
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank> &MyIndex)
{
lambda( scalar, Seq++, MyIndex );
}
// for_all helper function to call the lambda for container
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &container, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank> &MyIndex)
{
using Traits = EigenIO::Traits<typename ETensor::Scalar>;
const auto rank{ETensor::NumIndices};
const auto InnerRank = Traits::rank;
for( typename Traits::scalar_type &Source : container ) {
lambda(Source, Seq++, MyIndex );
// Now increment SubIndex
for( auto i = InnerRank - 1; i != -1 && ++MyIndex[rank + i] == Traits::Dimension(i); i-- )
MyIndex[rank + i] = 0;
}
}
// Calls a lamda (passing index and sequence number) for every member of an Eigen::Tensor
// For efficiency, iteration proceeds in memory order,
// ... but parameters guaranteed to be the same regardless of memory order
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value, void>::type
for_all( ETensor &ET, Lambda lambda )
{
using Scalar = typename ETensor::Scalar; // This could be a Container - we'll check later
const std::size_t NumScalars = ET.size();
assert( NumScalars > 0 );
using Index = typename ETensor::Index;
Index ScalarElementCount{1};
const auto InnerRank = EigenIO::Traits<Scalar>::rank;
const auto rank{ETensor::NumIndices};
std::array<std::size_t, rank + InnerRank> Dims;
for(auto i = 0; i < rank; i++ ) {
auto dim = ET.dimension(i);
assert( dim > 0 );
Dims[i] = static_cast<std::size_t>(dim);
assert( Dims[i] == dim ); // check we didn't lose anything in the conversion
ScalarElementCount *= Dims[i];
}
// Check that the number of containers is correct ... and we didn't lose anything in conversions
assert( NumScalars == ScalarElementCount );
// If the Scalar is actually a container, add the inner Scalar's dimensions
size_t InnerScalarCount{1};
for(auto i = 0; i < InnerRank; i++ ) {
auto dim = EigenIO::Traits<Scalar>::Dimension(i);
assert( dim > 0 );
Dims[rank + i] = static_cast<std::size_t>(dim);
assert( Dims[rank + i] == dim ); // check we didn't lose anything in the conversion
InnerScalarCount *= dim;
}
assert(EigenIO::Traits<Scalar>::count == InnerScalarCount);
assert(EigenIO::Traits<Scalar>::size == sizeof( Scalar ));
std::array<std::size_t, rank + InnerRank> MyIndex;
for( auto &idx : MyIndex ) idx = 0;
Index Seq = 0;
Scalar * pScalar = ET.data();
for( std::size_t j = 0; j < NumScalars; j++ ) {
for_all_do_lambda<ETensor, Lambda>( lambda, * pScalar, Seq, MyIndex );
// Now increment the index to pass to the lambda (bearing in mind we're walking in memory order)
if( ETensor::Options & Eigen::RowMajor ) {
for( auto i = rank - 1; i != -1 && ++MyIndex[i] == Dims[i]; i-- )
MyIndex[i] = 0;
} else {
for( auto i = 0; i < rank && ++MyIndex[i] == Dims[i]; i++ )
MyIndex[i] = 0;
size_t NewSeq = 0;
for( auto i = 0; i < rank + InnerRank ; i++ ) {
NewSeq *= Dims[i];
NewSeq += MyIndex[i];
}
Seq = static_cast<Index>( NewSeq );
}
pScalar++;
}
}
// Sequential initialisation of tensors
// Would have preferred to define template variables for this, but that's c++ 17
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && !EigenIO::is_complex<typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type>::value, void>::type
SequentialInit( ETensor &ET, typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type Inc = 1,
unsigned short Precision = 0 )
{
using Traits = EigenIO::Traits<typename ETensor::Scalar>;
using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank> &Dims ) {
scalar_type x = Inc * static_cast<scalar_type>(n);
if( Precision ) {
std::stringstream s;
s << std::scientific << std::setprecision(Precision) << x;
s >> x;
}
c = x;
} );
}
template <typename ETensor>
typename std::enable_if<EigenIO::is_tensor<ETensor>::value && EigenIO::is_complex<typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type>::value, void>::type
SequentialInit( ETensor &ET, typename EigenIO::Traits<typename ETensor::Scalar>::scalar_type Inc={1,-1},
unsigned short Precision = 0 )
{
using Traits = EigenIO::Traits<typename ETensor::Scalar>;
using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank> &Dims ) {
auto re = Inc.real();
auto im = Inc.imag();
re *= n;
im *= n;
if( Precision ) {
std::stringstream s;
s << std::setprecision(Precision) << re;
s >> re;
s.clear();
s << im;
s >> im;
}
c = scalar_type(re,im);
} );
}
// Helper to dump a tensor
#ifdef DEBUG
#define dump_tensor(args...) dump_tensor_func(args)
template <typename T>
typename std::enable_if<EigenIO::is_tensor<T>::value, void>::type
dump_tensor_func(T &t, const char * pName = nullptr)
{
using Traits = typename EigenIO::Traits<typename T::Scalar>;
const auto rank{T::NumIndices};
const auto &dims = t.dimensions();
std::cout << "Dumping rank " << rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
if( pName )
std::cout << pName;
for( auto i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]";
std::cout << " in memory order:" << std::endl;
for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::array<size_t, T::NumIndices + Traits::rank> &Dims ){
std::cout << " ";
for( auto dim : Dims )
std::cout << "[" << dim << "]";
std::cout << " = " << c << std::endl;
} );
std::cout << "========================================" << std::endl;
}
template <typename T>
typename std::enable_if<!EigenIO::is_tensor<T>::value, void>::type
dump_tensor_func(T &t, const char * pName = nullptr)
{
std::cout << "Dumping non-tensor object ";
if( pName )
std::cout << pName;
std::cout << "=" << t;
}
// Helper to dump a tensor in memory order
// Kind of superfluous given the above ... just keeping in case I need to fall back to this
#define DumpMemoryOrder(args...) DumpMemoryOrder_func(args)
template <typename T>
typename std::enable_if<EigenIO::is_tensor_of_scalar<T>::value, void>::type
DumpMemoryOrder_func(T &t, const char * pName = nullptr)
{
const auto rank = t.rank();
const auto &dims = t.dimensions();
std::cout << "Dumping rank " << rank << ((T::Options & Eigen::RowMajor) ? ", row" : ", column") << "-major tensor ";
if( pName )
std::cout << pName;
for( auto d : dims ) std::cout << "[" << d << "]";
std::cout << " in memory order:" << std::endl;
const typename T::Scalar * p = t.data();
const auto size = t.size();
const typename T::Scalar * pEnd = p + size;
if( rank <= 2 ) {
for( unsigned int i = 0 ; i < t.size() ; i++ )
std::cout << "[" << i << "]=" << *p++ << " ";
std::cout << std::endl;
} else {
const auto innersize = dims[rank-2] * dims[rank-1];
using Index = typename T::Index;
std::vector<Index> idx(rank - 2);
for( auto &i : idx ) i = 0;
Index idxCounter = 0;
while( p < pEnd ) {
if( T::Options & Eigen::RowMajor ) {
if( pName )
std::cout << pName;
idxCounter = 0;
for(auto i = 0 ; i < rank - 2 ; i++)
std::cout << "[" << idx[i] << "]:";
}
for( unsigned int i = 0 ; i < innersize ; i++ )
std::cout << " [" << idxCounter++ << "]=" << *p++;
if( T::Options & Eigen::RowMajor )
std::cout << std::endl;
// Now increment MyIndex
for( auto i = rank - 3; i != -1 && ++idx[i] == dims[i]; i-- )
idx[i] = 0;
}
if( ! ( T::Options & Eigen::RowMajor ) )
std::cout << std::endl;
}
}
#else
#define dump_tensor(args...)
#define DumpMemoryOrder(args...)
#endif
}
#endif

View File

@ -29,6 +29,7 @@ Author: Michael Marshall <michael.marshall@ed.ac.uk>
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/util/Eigen.h>
using namespace Grid;
using namespace Grid::QCD;