mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-09 23:45:36 +00:00
Merge branch 'feature/distil' of github.com:mmphys/Grid into feature/distil
This commit is contained in:
commit
4b9200b35c
@ -41,12 +41,21 @@ public:
|
||||
const std::vector<ComplexField > &mom,
|
||||
int orthogdim);
|
||||
|
||||
|
||||
static void NucleonFieldMom(Eigen::Tensor<ComplexD,6> &mat,
|
||||
const FermionField *one,
|
||||
const FermionField *two,
|
||||
const FermionField *three,
|
||||
const std::vector<ComplexField > &mom,
|
||||
int parity,
|
||||
int orthogdim);
|
||||
|
||||
static void PionFieldXX(Eigen::Tensor<ComplexD,3> &mat,
|
||||
const FermionField *wi,
|
||||
const FermionField *vj,
|
||||
int orthogdim,
|
||||
int g5);
|
||||
|
||||
|
||||
static void PionFieldWV(Eigen::Tensor<ComplexD,3> &mat,
|
||||
const FermionField *wi,
|
||||
const FermionField *vj,
|
||||
@ -101,6 +110,187 @@ public:
|
||||
#endif
|
||||
};
|
||||
|
||||
template<class FImpl>
|
||||
void A2Autils<FImpl>::NucleonFieldMom(Eigen::Tensor<ComplexD,6> &mat,
|
||||
const FermionField *one,
|
||||
const FermionField *two,
|
||||
const FermionField *three,
|
||||
const std::vector<ComplexField > &mom,
|
||||
int parity,
|
||||
int orthogdim)
|
||||
{
|
||||
assert(parity == 1 || parity == -1);
|
||||
|
||||
typedef typename FImpl::SiteSpinor vobj;
|
||||
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
typedef iSpinVector<vector_type> SpinVector_v;
|
||||
typedef iSpinVector<scalar_type> SpinVector_s;
|
||||
|
||||
int oneBlock = mat.dimension(2);
|
||||
int twoBlock = mat.dimension(3);
|
||||
int threeBlock = mat.dimension(4);
|
||||
|
||||
GridBase *grid = wi[0]._grid;
|
||||
|
||||
const int nd = grid->_ndimension;
|
||||
const int Nsimd = grid->Nsimd();
|
||||
|
||||
int Nt = grid->GlobalDimensions()[orthogdim];
|
||||
int Nmom = mom.size();
|
||||
|
||||
int fd=grid->_fdimensions[orthogdim];
|
||||
int ld=grid->_ldimensions[orthogdim];
|
||||
int rd=grid->_rdimensions[orthogdim];
|
||||
|
||||
// will locally sum vectors first
|
||||
// sum across these down to scalars
|
||||
// splitting the SIMD
|
||||
int MFrvol = rd*oneBlock*twoBlock*threeBlock*Nmom;
|
||||
int MFlvol = ld*oneBlock*twoBlock*threeBlock*Nmom;
|
||||
|
||||
Vector<SpinVector_v > lvSum(MFrvol);
|
||||
parallel_for (int r = 0; r < MFrvol; r++){
|
||||
lvSum[r] = zero;
|
||||
}
|
||||
|
||||
Vector<SpinVector_s > lsSum(MFlvol);
|
||||
parallel_for (int r = 0; r < MFlvol; r++){
|
||||
lsSum[r]=scalar_type(0.0);
|
||||
}
|
||||
|
||||
int e1= grid->_slice_nblock[orthogdim];
|
||||
int e2= grid->_slice_block [orthogdim];
|
||||
int stride=grid->_slice_stride[orthogdim];
|
||||
|
||||
parallel_for(int r=0;r<rd;r++){
|
||||
|
||||
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
|
||||
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
for(int i=0;i<oneBlock;i++){
|
||||
|
||||
auto v1 = one[i]._odata[ss];
|
||||
auto pv1 = 0.5*(double)parity*(v1 + Gamma(Gamma::Algebra::GammaT)*v1);
|
||||
|
||||
for(int j=0;j<twoBlock;j++){
|
||||
|
||||
auto v2 = conjugate(two[j]._odata[ss]);
|
||||
|
||||
for(int k=0;k<threeBlock;k++){
|
||||
|
||||
auto v3 = three[k]._odata[ss];
|
||||
// C = i gamma_2 gamma_4 => C gamma_5 = - i gamma_1 gamma_3
|
||||
auto gv3 = Gamma(Gamma::Algebra::SigmaXZ) * v3;
|
||||
SpinVector_v vv;
|
||||
|
||||
vv()()() = pv1()()(0) * v2()()(1) * gv3()()(2) //Cross product
|
||||
- pv1()()(0) * v2()()(2) * gv3()()(1)
|
||||
+ pv1()()(1) * v2()()(2) * gv3()()(0)
|
||||
- pv1()()(1) * v2()()(0) * gv3()()(2)
|
||||
+ pv1()()(2) * v2()()(0) * gv3()()(1)
|
||||
- pv1()()(2) * v2()()(1) * gv3()()(0);
|
||||
|
||||
|
||||
// After getting the sitewise product do the mom phase loop
|
||||
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
|
||||
for ( int m=0;m<Nmom;m++){
|
||||
int idx = m+base;
|
||||
auto phase = mom[m]._odata[ss];
|
||||
mac(&lvSum[idx],&vv,&phase()()());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Sum across simd lanes in the plane, breaking out orthog dir.
|
||||
parallel_for(int rt=0;rt<rd;rt++){
|
||||
|
||||
std::vector<int> icoor(nd);
|
||||
iScalar<vector_type> temp;
|
||||
std::vector<iScalar<SpinVector_s> > extracted(Nsimd);
|
||||
|
||||
for(int i=0;i<oneBlock;i++){
|
||||
for(int j=0;j<twoBlock;j++){
|
||||
for(int k=0;k<threeBlock;k++){
|
||||
for(int m=0;m<Nmom;m++){
|
||||
|
||||
int ij_rdx = m+Nmom*i + Nmom*oneBlock * j + Nmom*oneBlock * twoBlock * k + Nmom*oneBlock * twoBlock *threeBlock * rt;
|
||||
|
||||
temp._internal = lvSum[ij_rdx];
|
||||
extract(temp,extracted);
|
||||
|
||||
for(int idx=0;idx<Nsimd;idx++){
|
||||
|
||||
grid->iCoorFromIindex(icoor,idx);
|
||||
|
||||
int ldx = rt+icoor[orthogdim]*rd;
|
||||
|
||||
int ij_ldx = m+Nmom*i + Nmom*oneBlock * j + Nmom*oneBlock * twoBlock * k + Nmom*oneBlock * twoBlock *threeBlock * ldx;
|
||||
|
||||
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx]._internal;
|
||||
|
||||
}
|
||||
}}}}
|
||||
}
|
||||
|
||||
assert(mat.dimension(0) == Nmom);
|
||||
assert(mat.dimension(1) == Nt);
|
||||
|
||||
int pd = grid->_processors[orthogdim];
|
||||
int pc = grid->_processor_coor[orthogdim];
|
||||
parallel_for_nest2(int lt=0;lt<ld;lt++)
|
||||
{
|
||||
for(int pt=0;pt<pd;pt++){
|
||||
int t = lt + pt*ld;
|
||||
if (pt == pc){
|
||||
for(int i=0;i<oneBlock;i++){
|
||||
for(int j=0;j<twoBlock;j++){
|
||||
for(int k=0;k<threeBlock;k++){
|
||||
for(int m=0;m<Nmom;m++){
|
||||
int ij_dx = m+Nmom*i + Nmom*oneBlock * j + Nmom*oneBlock * twoBlock * k + Nmom*oneBlock * twoBlock *threeBlock * lt;
|
||||
for(int is=0;is<4;is++){
|
||||
mat(m,t,i,j,k,is) = lsSum[ij_dx]()(is)();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
const scalar_type zz(0.0);
|
||||
for(int i=0;i<oneBlock;i++){
|
||||
for(int j=0;j<twoBlock;j++){
|
||||
for(int k=0;k<threeBlock;k++){
|
||||
for(int m=0;m<Nmom;m++){
|
||||
for(int is=0;is<4;is++){
|
||||
mat(m,t,i,j,k,is) =zz;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
grid->GlobalSumVector(&mat(0,0,0,0,0,0),Nmom*Nt*oneBlock*twoBlock*threeBlock);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
template <class FImpl>
|
||||
template <typename TensorType>
|
||||
@ -122,6 +312,8 @@ void A2Autils<FImpl>::BaryonField(TensorType &mat,
|
||||
typedef iSpinMatrix<vector_type> SpinMatrix_v;
|
||||
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
|
||||
|
||||
typedef iSpinColourMatrix<vector_type> SpinColourMatrix_v;
|
||||
|
||||
int oneBlock = mat.dimension(3);
|
||||
int twoBlock = mat.dimension(4);
|
||||
int threeBlock = mat.dimension(5);
|
||||
@ -143,17 +335,23 @@ void A2Autils<FImpl>::BaryonField(TensorType &mat,
|
||||
// will locally sum vectors first
|
||||
// sum across these down to scalars
|
||||
// splitting the SIMD
|
||||
int MFrvol = rd*oneBlock*twoBlock*threeBlock*Nmom;
|
||||
int MFlvol = ld*oneBlock*twoBlock*threeBlock*Nmom;
|
||||
int MFrvol = rd*twoBlock*threeBlock*Nmom;
|
||||
int MFlvol = ld*twoBlock*threeBlock*Nmom;
|
||||
|
||||
Vector<SpinMatrix_v > lvSum(MFrvol);
|
||||
parallel_for (int r = 0; r < MFrvol; r++){
|
||||
lvSum[r] = zero;
|
||||
Vector<Vector<SpinMatrix_v >> lvSum(3);
|
||||
for (int ic=0;ic<3;ic++){
|
||||
lvSum[ic].resize(MFrvol);
|
||||
parallel_for (int r = 0; r < MFrvol; r++){
|
||||
lvSum[ic][r] = zero;
|
||||
}
|
||||
}
|
||||
|
||||
Vector<SpinMatrix_s > lsSum(MFlvol);
|
||||
parallel_for (int r = 0; r < MFlvol; r++){
|
||||
lsSum[r]=scalar_type(0.0);
|
||||
Vector<Vector<SpinMatrix_s >> lsSum(3);
|
||||
for (int ic=0;ic<3;ic++){
|
||||
lsSum[ic].resize(MFlvol);
|
||||
parallel_for (int r = 0; r < MFlvol; r++){
|
||||
lsSum[ic][r] = scalar_type(0.0);
|
||||
}
|
||||
}
|
||||
|
||||
int e1= grid->_slice_nblock[orthogdim];
|
||||
@ -180,21 +378,26 @@ void A2Autils<FImpl>::BaryonField(TensorType &mat,
|
||||
|
||||
auto three_k = three[j]._odata[ss];
|
||||
|
||||
SpinMatrix_v vv;
|
||||
Vector<SpinMatrix_v > vv(3);
|
||||
|
||||
for(int s1=0;s1<Ns;s1++){
|
||||
for(int s2=0;s2<Ns;s2++){
|
||||
vv()(s1,s2)() = two_j()(s2)(0) * three_k()(s1)(0) //make this a colorMatrix for the diquark???
|
||||
+ two_j()(s2)(1) * three_k()(s1)(1)
|
||||
+ two_j()(s2)(2) * three_k()(s1)(2);
|
||||
vv[0]()(s1,s2)() = two_j()(s2)(1) * three_k()(s1)(2) //ideal would be SpinMatrix but ColourVector...
|
||||
- two_j()(s2)(2) * three_k()(s1)(1); //this is the cross product (two x three)^i
|
||||
vv[1]()(s1,s2)() = two_j()(s2)(2) * three_k()(s1)(0)
|
||||
- two_j()(s2)(0) * three_k()(s1)(2);
|
||||
vv[2]()(s1,s2)() = two_j()(s2)(0) * three_k()(s1)(1)
|
||||
- two_j()(s2)(1) * three_k()(s1)(0);
|
||||
}}
|
||||
|
||||
// After getting the sitewise product do the mom phase loop
|
||||
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
|
||||
for ( int m=0;m<Nmom;m++){
|
||||
int idx = m+base;
|
||||
auto phase = mom[m]._odata[ss];
|
||||
mac(&lvSum[idx],&vv,&phase);
|
||||
for ( int ic=0;ic<3;ic++){
|
||||
int idx = m+base;
|
||||
auto phase = mom[m]._odata[ss];
|
||||
mac(&lvSum[ic][idx],&vv,&phase);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
@ -204,19 +407,20 @@ void A2Autils<FImpl>::BaryonField(TensorType &mat,
|
||||
}
|
||||
|
||||
|
||||
for ( int ic=0;ic<3;ic++){
|
||||
// Sum across simd lanes in the plane, breaking out orthog dir.
|
||||
parallel_for(int rt=0;rt<rd;rt++){
|
||||
|
||||
std::vector<int> icoor(Nd);
|
||||
std::vector<SpinMatrix_s> extracted(Nsimd);
|
||||
|
||||
for(int i=0;i<Lblock;i++){
|
||||
for(int j=0;j<Rblock;j++){
|
||||
for(int i=0;i<twoBlock;i++){
|
||||
for(int j=0;j<threeBlock;j++){
|
||||
for(int m=0;m<Nmom;m++){
|
||||
|
||||
int ij_rdx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*rt;
|
||||
|
||||
extract(lvSum[ij_rdx],extracted);
|
||||
extract(lvSum[ic][ij_rdx],extracted);
|
||||
|
||||
for(int idx=0;idx<Nsimd;idx++){
|
||||
|
||||
@ -226,16 +430,20 @@ void A2Autils<FImpl>::BaryonField(TensorType &mat,
|
||||
|
||||
int ij_ldx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*ldx;
|
||||
|
||||
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
|
||||
lsSum[ic][ij_ldx]=lsSum[ic][ij_ldx]+extracted[idx];
|
||||
|
||||
}
|
||||
}}}
|
||||
}
|
||||
|
||||
|
||||
if (t_kernel) *t_kernel += usecond();
|
||||
assert(mat.dimension(0) == Nmom);
|
||||
assert(mat.dimension(1) == Ngamma);
|
||||
assert(mat.dimension(2) == Nt);
|
||||
|
||||
TensorType diquark; // Need this instead of mat!!!
|
||||
|
||||
// ld loop and local only??
|
||||
int pd = grid->_processors[orthogdim];
|
||||
int pc = grid->_processor_coor[orthogdim];
|
||||
@ -244,21 +452,21 @@ void A2Autils<FImpl>::BaryonField(TensorType &mat,
|
||||
for(int pt=0;pt<pd;pt++){
|
||||
int t = lt + pt*ld;
|
||||
if (pt == pc){
|
||||
for(int i=0;i<Lblock;i++){
|
||||
for(int j=0;j<Rblock;j++){
|
||||
for(int i=0;i<twoBlock;i++){
|
||||
for(int j=0;j<threeBlock;j++){
|
||||
for(int m=0;m<Nmom;m++){
|
||||
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
|
||||
for(int mu=0;mu<Ngamma;mu++){
|
||||
// this is a bit slow
|
||||
mat(m,mu,t,i,j) = trace(lsSum[ij_dx]*Gamma(gammas[mu]));
|
||||
mat(m,mu,t,i,j) = trace(lsSum[ic][ij_dx]*Gamma(gammaB[mu]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
const scalar_type zz(0.0);
|
||||
for(int i=0;i<Lblock;i++){
|
||||
for(int j=0;j<Rblock;j++){
|
||||
for(int i=0;i<twoBlock;i++){
|
||||
for(int j=0;j<threeBlock;j++){
|
||||
for(int mu=0;mu<Ngamma;mu++){
|
||||
for(int m=0;m<Nmom;m++){
|
||||
mat(m,mu,t,i,j) =zz;
|
||||
@ -269,7 +477,7 @@ void A2Autils<FImpl>::BaryonField(TensorType &mat,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// This global sum is taking as much as 50% of time on 16 nodes
|
||||
// Vector size is 7 x 16 x 32 x 16 x 16 x sizeof(complex) = 2MB - 60MB depending on volume
|
||||
|
@ -239,7 +239,7 @@ void TLapEvec<GImpl>::execute(void)
|
||||
auto &Umu = envGet(GaugeField, par().gauge);
|
||||
envGetTmp(GaugeField, Umu_smear);
|
||||
FieldMetaData header;
|
||||
if((1)) {
|
||||
if((0)) {
|
||||
const std::vector<int> seeds({1, 2, 3, 4, 5});
|
||||
GridParallelRNG pRNG4d(gridHD);
|
||||
pRNG4d.SeedFixedIntegers(seeds);
|
||||
|
@ -212,7 +212,7 @@ void TPerambLight<FImpl>::execute(void)
|
||||
|
||||
envGetTmp(GaugeField, Umu);
|
||||
FieldMetaData header;
|
||||
if((1)){
|
||||
if((0)){
|
||||
const std::vector<int> seeds({1, 2, 3, 4, 5});
|
||||
GridParallelRNG pRNG4d(grid4d);
|
||||
pRNG4d.SeedFixedIntegers(seeds);
|
||||
|
772
tests/hadrons/Test_24.cc
Normal file
772
tests/hadrons/Test_24.cc
Normal file
@ -0,0 +1,772 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Tests/Hadrons/Test_hadrons_distil.cc
|
||||
|
||||
Copyright (C) 2015-2019
|
||||
|
||||
Author: Felix Erben <ferben@ed.ac.uk>
|
||||
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <typeinfo>
|
||||
#include <Hadrons/Application.hpp>
|
||||
#include <Hadrons/Modules.hpp>
|
||||
|
||||
using namespace Grid;
|
||||
using namespace Hadrons;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Test creation of laplacian eigenvectors
|
||||
/////////////////////////////////////////////////////////////
|
||||
int Nconf = 3160;
|
||||
|
||||
void test_Global(Application &application)
|
||||
{
|
||||
// global parameters
|
||||
Application::GlobalPar globalPar;
|
||||
globalPar.trajCounter.start = Nconf;
|
||||
globalPar.trajCounter.end = Nconf + 20;
|
||||
globalPar.trajCounter.step = 20;
|
||||
globalPar.runId = "test";
|
||||
application.setPar(globalPar);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Test creation of laplacian eigenvectors
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_LapEvec(Application &application)
|
||||
{
|
||||
const char szGaugeName[] = "gauge";
|
||||
// gauge field
|
||||
application.createModule<MGauge::Random>(szGaugeName);
|
||||
// Now make an instance of the LapEvec object
|
||||
MDistil::LapEvecPar p;
|
||||
//p.ConfigFileDir="/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/";
|
||||
//p.ConfigFileName="ckpoint_lat.3000";
|
||||
p.ConfigFileDir="/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/";
|
||||
p.ConfigFileName="ckpoint_lat." + std::to_string(Nconf);
|
||||
p.gauge = szGaugeName;
|
||||
//p.EigenPackName = "ePack";
|
||||
//p.Distil.TI = 8;
|
||||
//p.Distil.LI = 3;
|
||||
//p.Distil.Nnoise = 2;
|
||||
//p.Distil.tSrc = 0;
|
||||
p.Stout.steps = 3;
|
||||
p.Stout.parm = 0.2;
|
||||
p.Cheby.PolyOrder = 11;
|
||||
p.Cheby.alpha = 0.3;
|
||||
p.Cheby.beta = 12.5;
|
||||
p.Lanczos.Nvec = 50;
|
||||
p.Lanczos.Nk = 60;
|
||||
p.Lanczos.Np = 20;
|
||||
p.Lanczos.MaxIt = 1000;
|
||||
p.Lanczos.resid = 1e-8;
|
||||
application.createModule<MDistil::LapEvec>("LapEvec",p);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Perambulators
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_Perambulators(Application &application)
|
||||
{
|
||||
// PerambLight parameters
|
||||
MDistil::PerambLight::Par PerambPar;
|
||||
PerambPar.eigenPack="LapEvec";
|
||||
PerambPar.PerambFileName="peramb_" + std::to_string(Nconf) + ".bin";
|
||||
PerambPar.ConfigFileDir="/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/";
|
||||
PerambPar.ConfigFileName="ckpoint_lat." + std::to_string(Nconf);
|
||||
PerambPar.UniqueIdentifier="full_dilution";
|
||||
PerambPar.Distil.tsrc = 0;
|
||||
PerambPar.Distil.nnoise = 1;
|
||||
PerambPar.Distil.LI=50;
|
||||
PerambPar.Distil.SI=4;
|
||||
PerambPar.Distil.TI=64;
|
||||
PerambPar.nvec=50;
|
||||
PerambPar.Distil.Ns=4;
|
||||
PerambPar.Distil.Nt=64;
|
||||
PerambPar.Distil.Nt_inv=1;
|
||||
PerambPar.Solver.mass=0.005;
|
||||
PerambPar.Solver.M5=1.8;
|
||||
PerambPar.Ls=16;
|
||||
PerambPar.Solver.CGPrecision=1e-7;
|
||||
PerambPar.Solver.MaxIterations=10000;
|
||||
application.createModule<MDistil::PerambLight>("Peramb",PerambPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// DistilVectors
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_DistilVectors(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MDistil::DistilVectors::Par DistilVecPar;
|
||||
DistilVecPar.noise="Peramb_noise";
|
||||
DistilVecPar.perambulator="Peramb_perambulator_light";
|
||||
DistilVecPar.eigenPack="LapEvec";
|
||||
DistilVecPar.tsrc = 0;
|
||||
DistilVecPar.nnoise = 1;
|
||||
DistilVecPar.LI=50;
|
||||
DistilVecPar.SI=4;
|
||||
DistilVecPar.TI=64;
|
||||
DistilVecPar.nvec=50;
|
||||
DistilVecPar.Ns=4;
|
||||
DistilVecPar.Nt=64;
|
||||
DistilVecPar.Nt_inv=1;
|
||||
application.createModule<MDistil::DistilVectors>("DistilVecs",DistilVecPar);
|
||||
}
|
||||
void test_PerambulatorsS(Application &application)
|
||||
{
|
||||
// PerambLight parameters
|
||||
MDistil::PerambLight::Par PerambPar;
|
||||
PerambPar.eigenPack="LapEvec";
|
||||
PerambPar.PerambFileName="perambS.bin";
|
||||
PerambPar.ConfigFileDir="/home/dp008/dp008/paboyle/A2A/run/";
|
||||
PerambPar.ConfigFileName="ckpoint_lat.IEEE64BIG.1100";
|
||||
PerambPar.UniqueIdentifier="full_dilution";
|
||||
PerambPar.Distil.tsrc = 0;
|
||||
PerambPar.Distil.nnoise = 1;
|
||||
PerambPar.Distil.LI=50;
|
||||
PerambPar.Distil.SI=4;
|
||||
PerambPar.Distil.TI=64;
|
||||
PerambPar.nvec=50;
|
||||
PerambPar.Distil.Ns=4;
|
||||
PerambPar.Distil.Nt=64;
|
||||
PerambPar.Distil.Nt_inv=1;
|
||||
PerambPar.Solver.mass=0.04; //strange mass???
|
||||
PerambPar.Solver.M5=1.8;
|
||||
PerambPar.Ls=16;
|
||||
PerambPar.Solver.CGPrecision=1e-8;
|
||||
PerambPar.Solver.MaxIterations=10000;
|
||||
application.createModule<MDistil::PerambLight>("PerambS",PerambPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// DistilVectors
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_DistilVectorsS(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MDistil::DistilVectors::Par DistilVecPar;
|
||||
DistilVecPar.noise="PerambS_noise";
|
||||
DistilVecPar.perambulator="PerambS_perambulator_light";
|
||||
DistilVecPar.eigenPack="LapEvec";
|
||||
DistilVecPar.tsrc = 0;
|
||||
DistilVecPar.nnoise = 1;
|
||||
DistilVecPar.LI=50;
|
||||
DistilVecPar.SI=4;
|
||||
DistilVecPar.TI=64;
|
||||
DistilVecPar.nvec=50;
|
||||
DistilVecPar.Ns=4;
|
||||
DistilVecPar.Nt=64;
|
||||
DistilVecPar.Nt_inv=1;
|
||||
application.createModule<MDistil::DistilVectors>("DistilVecsS",DistilVecPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// MesonSink
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_MesonSink(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MContraction::A2AMesonField::Par A2AMesonFieldPar;
|
||||
A2AMesonFieldPar.left="Peramb_unsmeared_sink";
|
||||
A2AMesonFieldPar.right="Peramb_unsmeared_sink";
|
||||
A2AMesonFieldPar.output="DistilFields";
|
||||
A2AMesonFieldPar.gammas="all";
|
||||
A2AMesonFieldPar.mom={"0 0 0"};
|
||||
A2AMesonFieldPar.cacheBlock=2;
|
||||
A2AMesonFieldPar.block=4;
|
||||
application.createModule<MContraction::A2AMesonField>("DistilMesonSink",A2AMesonFieldPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// g5*unsmeared
|
||||
/////////////////////////////////////////////////////////////
|
||||
void test_g5_sinks(Application &application)
|
||||
{
|
||||
MDistil::g5_multiply::Par g5_multiplyPar;
|
||||
g5_multiplyPar.input="Peramb_unsmeared_sink";
|
||||
g5_multiplyPar.nnoise = 1;
|
||||
g5_multiplyPar.LI=50;
|
||||
g5_multiplyPar.Ns=4;
|
||||
g5_multiplyPar.Nt_inv=1;
|
||||
application.createModule<MDistil::g5_multiply>("g5phi",g5_multiplyPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// MesonFields
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_MesonFieldSL(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MContraction::A2AMesonField::Par A2AMesonFieldPar;
|
||||
A2AMesonFieldPar.left="DistilVecsS_phi";
|
||||
//A2AMesonFieldPar.right="DistilVecs_rho";
|
||||
A2AMesonFieldPar.right="DistilVecs_phi";
|
||||
A2AMesonFieldPar.output="DistilFieldsS";
|
||||
A2AMesonFieldPar.gammas="all";
|
||||
A2AMesonFieldPar.mom={"0 0 0"};
|
||||
A2AMesonFieldPar.cacheBlock=2;
|
||||
A2AMesonFieldPar.block=4;
|
||||
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldS",A2AMesonFieldPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// MesonFields - phiphi
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_MesonField(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MContraction::A2AMesonField::Par A2AMesonFieldPar;
|
||||
A2AMesonFieldPar.left="DistilVecs_phi";
|
||||
//A2AMesonFieldPar.right="DistilVecs_rho";
|
||||
A2AMesonFieldPar.right="DistilVecs_phi";
|
||||
A2AMesonFieldPar.output="MesonSinksPhi";
|
||||
A2AMesonFieldPar.gammas="all";
|
||||
A2AMesonFieldPar.mom={"0 0 0"};
|
||||
A2AMesonFieldPar.cacheBlock=2;
|
||||
A2AMesonFieldPar.block=4;
|
||||
application.createModule<MContraction::A2AMesonField>("DistilMesonField",A2AMesonFieldPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// MesonFields - rhorho
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_MesonFieldRho(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MContraction::A2AMesonField::Par A2AMesonFieldPar;
|
||||
A2AMesonFieldPar.left="DistilVecs_rho";
|
||||
//A2AMesonFieldPar.right="DistilVecs_rho";
|
||||
A2AMesonFieldPar.right="DistilVecs_rho";
|
||||
A2AMesonFieldPar.output="MesonSinksRho";
|
||||
A2AMesonFieldPar.gammas="all";
|
||||
A2AMesonFieldPar.mom={"0 0 0"};
|
||||
A2AMesonFieldPar.cacheBlock=2;
|
||||
A2AMesonFieldPar.block=4;
|
||||
application.createModule<MContraction::A2AMesonField>("DistilMesonFieldRho",A2AMesonFieldPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// BaryonFields - phiphiphi
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_BaryonFieldPhi(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MDistil::BContraction::Par BContractionPar;
|
||||
BContractionPar.one="DistilVecs_phi";
|
||||
BContractionPar.two="DistilVecs_phi";
|
||||
BContractionPar.three="DistilVecs_phi";
|
||||
BContractionPar.output="BaryonFieldPhi";
|
||||
BContractionPar.parity=1;
|
||||
BContractionPar.mom={"0 0 0"};
|
||||
application.createModule<MDistil::BContraction>("BaryonFieldPhi",BContractionPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// BaryonFields - rhorhorho
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_BaryonFieldRho(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MDistil::BContraction::Par BContractionPar;
|
||||
BContractionPar.one="DistilVecs_rho";
|
||||
BContractionPar.two="DistilVecs_rho";
|
||||
BContractionPar.three="DistilVecs_rho";
|
||||
BContractionPar.output="BaryonFieldRho";
|
||||
BContractionPar.parity=1;
|
||||
BContractionPar.mom={"0 0 0"};
|
||||
application.createModule<MDistil::BContraction>("BaryonFieldRho",BContractionPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// BaryonContraction
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
void test_Baryon2pt(Application &application)
|
||||
{
|
||||
// DistilVectors parameters
|
||||
MDistil::Baryon2pt::Par Baryon2ptPar;
|
||||
Baryon2ptPar.inputL="BaryonFieldPhi";
|
||||
Baryon2ptPar.inputR="BaryonFieldRho";
|
||||
Baryon2ptPar.quarksL="uud";
|
||||
Baryon2ptPar.quarksR="uud";
|
||||
Baryon2ptPar.output="C2_baryon";
|
||||
application.createModule<MDistil::Baryon2pt>("C2_b",Baryon2ptPar);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// emField
|
||||
/////////////////////////////////////////////////////////////
|
||||
void test_em(Application &application)
|
||||
{
|
||||
MGauge::StochEm::Par StochEmPar;
|
||||
StochEmPar.gauge=PhotonR::Gauge::feynman;
|
||||
StochEmPar.zmScheme=PhotonR::ZmScheme::qedL;
|
||||
application.createModule<MGauge::StochEm>("Em",StochEmPar);
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
// MesonA2ASlash
|
||||
/////////////////////////////////////////////////////////////
|
||||
void test_Aslash(Application &application)
|
||||
{
|
||||
MContraction::A2AAslashField::Par A2AAslashFieldPar;
|
||||
A2AAslashFieldPar.left="Peramb_unsmeared_sink";
|
||||
A2AAslashFieldPar.right="Peramb_unsmeared_sink";
|
||||
A2AAslashFieldPar.output="unsmeared_Aslash";
|
||||
A2AAslashFieldPar.emField={"Em"};
|
||||
A2AAslashFieldPar.cacheBlock=2;
|
||||
A2AAslashFieldPar.block=4;
|
||||
application.createModule<MContraction::A2AAslashField>("Aslash_field",A2AAslashFieldPar);
|
||||
}
|
||||
|
||||
bool bNumber( int &ri, const char * & pstr, bool bGobbleWhiteSpace = true )
|
||||
{
|
||||
if( bGobbleWhiteSpace )
|
||||
while( std::isspace(static_cast<unsigned char>(*pstr)) )
|
||||
pstr++;
|
||||
const char * p = pstr;
|
||||
bool bMinus = false;
|
||||
char c = * p++;
|
||||
if( c == '+' )
|
||||
c = * p++;
|
||||
else if( c == '-' ) {
|
||||
bMinus = true;
|
||||
c = * p++;
|
||||
}
|
||||
int n = c - '0';
|
||||
if( n < 0 || n > 9 )
|
||||
return false;
|
||||
while( * p >= '0' && * p <= '9' ) {
|
||||
n = n * 10 + ( * p ) - '0';
|
||||
p++;
|
||||
}
|
||||
if( bMinus )
|
||||
n *= -1;
|
||||
ri = n;
|
||||
pstr = p;
|
||||
return true;
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
|
||||
typedef Grid::Hadrons::MDistil::NamedTensor<Complex,3,sizeof(Real)> MyTensor;
|
||||
|
||||
template<typename T>
|
||||
void DebugShowTensor(T &x, const char * n)
|
||||
{
|
||||
const MyTensor::Index s{x.size()};
|
||||
std::cout << n << ".size() = " << s << std::endl;
|
||||
std::cout << n << ".NumDimensions = " << x.NumDimensions << " (TensorBase)" << std::endl;
|
||||
std::cout << n << ".NumIndices = " << x.NumIndices << std::endl;
|
||||
const auto d{x.dimensions()};
|
||||
//std::cout << n << ".dimensions().size() = " << d.size() << std::endl;
|
||||
std::cout << "Dimensions are ";
|
||||
for(auto i = 0; i < x.NumDimensions ; i++)
|
||||
std::cout << "[" << d[i] << "]";
|
||||
std::cout << std::endl;
|
||||
MyTensor::Index SizeCalculated{1};
|
||||
std::cout << "Dimensions again";
|
||||
for(int i=0 ; i < x.NumDimensions ; i++ ) {
|
||||
std::cout << " : [" << i << /*", " << x.IndexNames[i] << */"]=" << x.dimension(i);
|
||||
SizeCalculated *= d[i];
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout << "SizeCalculated = " << SizeCalculated << std::endl;\
|
||||
assert( SizeCalculated == s );
|
||||
// Initialise
|
||||
assert( x.NumDimensions == 3 );
|
||||
for( int i = 0 ; i < d[0] ; i++ )
|
||||
for( int j = 0 ; j < d[1] ; j++ )
|
||||
for( int k = 0 ; k < d[2] ; k++ ) {
|
||||
x(i,j,k) = std::complex<double>(SizeCalculated, -SizeCalculated);
|
||||
SizeCalculated--;
|
||||
}
|
||||
// Show raw data
|
||||
std::cout << "Data follow : " << std::endl;
|
||||
typename T::Scalar * p = x.data();
|
||||
for( auto i = 0 ; i < s ; i++ ) {
|
||||
if( i ) std::cout << ", ";
|
||||
std::cout << n << ".data()[" << i << "]=" << * p++;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
// Test whether typedef and underlying types are the same
|
||||
|
||||
void DebugTestTypeEqualities(void)
|
||||
{
|
||||
Real r1;
|
||||
RealD r2;
|
||||
double r3;
|
||||
const std::type_info &tr1{typeid(r1)};
|
||||
const std::type_info &tr2{typeid(r2)};
|
||||
const std::type_info &tr3{typeid(r3)};
|
||||
if( tr1 == tr2 && tr2 == tr3 )
|
||||
std::cout << "r1, r2 and r3 are the same type" << std::endl;
|
||||
else
|
||||
std::cout << "r1, r2 and r3 are different types" << std::endl;
|
||||
std::cout << "r1 is a " << tr1.name() << std::endl;
|
||||
std::cout << "r2 is a " << tr2.name() << std::endl;
|
||||
std::cout << "r3 is a " << tr3.name() << std::endl;
|
||||
|
||||
// These are the same
|
||||
Complex c1;
|
||||
std::complex<Real> c2;
|
||||
const std::type_info &tc1{typeid(c1)};
|
||||
const std::type_info &tc2{typeid(c2)};
|
||||
const std::type_info &tc3{typeid(SpinVector::scalar_type)};
|
||||
if( tc1 == tc2 && tc2 == tc3)
|
||||
std::cout << "c1, c2 and SpinVector::scalar_type are the same type" << std::endl;
|
||||
else
|
||||
std::cout << "c1, c2 and SpinVector::scalar_type are different types" << std::endl;
|
||||
std::cout << "c1 is a " << tc1.name() << std::endl;
|
||||
std::cout << "c2 is a " << tc2.name() << std::endl;
|
||||
std::cout << "SpinVector::scalar_type is a " << tc3.name() << std::endl;
|
||||
|
||||
// These are the same
|
||||
SpinVector s1;
|
||||
iSpinVector<Complex > s2;
|
||||
iScalar<iVector<iScalar<Complex>, Ns> > s3;
|
||||
const std::type_info &ts1{typeid(s1)};
|
||||
const std::type_info &ts2{typeid(s2)};
|
||||
const std::type_info &ts3{typeid(s3)};
|
||||
if( ts1 == ts2 && ts2 == ts3 )
|
||||
std::cout << "s1, s2 and s3 are the same type" << std::endl;
|
||||
else
|
||||
std::cout << "s1, s2 and s3 are different types" << std::endl;
|
||||
std::cout << "s1 is a " << ts1.name() << std::endl;
|
||||
std::cout << "s2 is a " << ts2.name() << std::endl;
|
||||
std::cout << "s3 is a " << ts3.name() << std::endl;
|
||||
|
||||
// These are the same
|
||||
SpinColourVector sc1;
|
||||
iSpinColourVector<Complex > sc2;
|
||||
const std::type_info &tsc1{typeid(sc1)};
|
||||
const std::type_info &tsc2{typeid(sc2)};
|
||||
if( tsc1 == tsc2 )
|
||||
std::cout << "sc1 and sc2 are the same type" << std::endl;
|
||||
else
|
||||
std::cout << "sc1 and sc2 are different types" << std::endl;
|
||||
std::cout << "sc1 is a " << tsc1.name() << std::endl;
|
||||
std::cout << "sc2 is a " << tsc2.name() << std::endl;
|
||||
}
|
||||
|
||||
bool DebugEigenTest()
|
||||
{
|
||||
{
|
||||
Eigen::TensorFixedSize<std::complex<double>,Eigen::Sizes<3,4,5>> x;
|
||||
DebugShowTensor(x, "fixed");
|
||||
}
|
||||
const char pszTestFileName[] = "test_tensor.bin";
|
||||
std::array<std::string,3> as={"Alpha", "Beta", "Gamma"};
|
||||
MyTensor x(as, 2,1,4);
|
||||
DebugShowTensor(x, "x");
|
||||
x.WriteBinary(pszTestFileName);
|
||||
DebugShowTensor(x, "x");
|
||||
// Test initialisation of an array of strings
|
||||
for( auto a : as )
|
||||
std::cout << a << std::endl;
|
||||
Grid::Hadrons::MDistil::Perambulator<Complex,3,sizeof(Real)> p{as,2,7,2};
|
||||
DebugShowTensor(p, "p");
|
||||
std::cout << "p.IndexNames follow" << std::endl;
|
||||
for( auto a : p.IndexNames )
|
||||
std::cout << a << std::endl;
|
||||
// Now see whether we can read a tensor back
|
||||
std::array<std::string,3> Names2={"Alpha", "Gamma", "Delta"};
|
||||
MyTensor y(Names2, 2,4,1);
|
||||
y.ReadBinary(pszTestFileName);
|
||||
DebugShowTensor(y, "y");
|
||||
|
||||
// Testing whether typedef produces the same type - yes it does
|
||||
|
||||
DebugTestTypeEqualities();
|
||||
std::cout << std::endl;
|
||||
|
||||
// How to access members of SpinColourVector
|
||||
SpinColourVector sc;
|
||||
for( int s = 0 ; s < Ns ; s++ ) {
|
||||
auto cv{sc()(s)};
|
||||
iVector<Complex,Nc> c2{sc()(s)};
|
||||
std::cout << " cv is a " << typeid(cv).name() << std::endl;
|
||||
std::cout << " c2 is a " << typeid(c2).name() << std::endl;
|
||||
for( int c = 0 ; c < Nc ; c++ ) {
|
||||
Complex & z{cv(c)};
|
||||
std::cout << " sc[spin=" << s << ", colour=" << c << "] = " << z << std::endl;
|
||||
}
|
||||
}
|
||||
// We could have removed the Lorentz index independently, but much easier to do as we do above
|
||||
iVector<iVector<Complex,Nc>,Ns> sc2{sc()};
|
||||
std::cout << "sc() is a " << typeid(sc()).name() << std::endl;
|
||||
std::cout << "sc2 is a " << typeid(sc2 ).name() << std::endl;
|
||||
|
||||
// Or you can access elements directly
|
||||
std::complex<Real> z = sc()(0)(0);
|
||||
std::cout << "z = " << z << std::endl;
|
||||
sc()(3)(2) = std::complex<Real>{3.141,-3.141};
|
||||
std::cout << "sc()(3)(2) = " << sc()(3)(2) << std::endl;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void DebugGridTensorTest_print( int i )
|
||||
{
|
||||
std::cout << i << " : " << EigenIO::is_tensor<T>::value
|
||||
<< ", rank " << EigenIO::Traits<T>::rank
|
||||
<< ", rank_non_trivial " << EigenIO::Traits<T>::rank_non_trivial
|
||||
<< ", count " << EigenIO::Traits<T>::count
|
||||
<< ", scalar_size " << EigenIO::Traits<T>::scalar_size
|
||||
<< ", size " << EigenIO::Traits<T>::size
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
// begin() and end() are the minimum necessary to support range-for loops
|
||||
// should really turn this into an iterator ...
|
||||
template<typename T, int N>
|
||||
class TestObject {
|
||||
public:
|
||||
using value_type = T;
|
||||
private:
|
||||
value_type * m_p;
|
||||
public:
|
||||
TestObject() {
|
||||
m_p = reinterpret_cast<value_type *>(std::malloc(N * sizeof(value_type)));
|
||||
}
|
||||
~TestObject() { std::free(m_p); }
|
||||
inline value_type * begin(void) { return m_p; }
|
||||
inline value_type * end(void) { return m_p + N; }
|
||||
};
|
||||
|
||||
template <int Options>
|
||||
void EigenSliceExample()
|
||||
{
|
||||
std::cout << "Eigen example, Options = " << Options << std::endl;
|
||||
using T2 = Eigen::Tensor<int, 2, Options>;
|
||||
T2 a(4, 3);
|
||||
a.setValues({{0, 100, 200}, {300, 400, 500},
|
||||
{600, 700, 800}, {900, 1000, 1100}});
|
||||
std::cout << "a\n" << a << std::endl;
|
||||
DumpMemoryOrder( a, "a" );
|
||||
Eigen::array<typename T2::Index, 2> offsets = {0, 1};
|
||||
Eigen::array<typename T2::Index, 2> extents = {4, 2};
|
||||
T2 slice = a.slice(offsets, extents);
|
||||
std::cout << "slice\n" << slice << std::endl;
|
||||
DumpMemoryOrder( slice, "slice" );
|
||||
std::cout << "\n========================================" << std::endl;
|
||||
}
|
||||
|
||||
template <int Options>
|
||||
void EigenSliceExample2()
|
||||
{
|
||||
using TestScalar = std::complex<float>;
|
||||
using T3 = Eigen::Tensor<TestScalar, 3, Options>;
|
||||
using T2 = Eigen::Tensor<TestScalar, 2, Options>;
|
||||
T3 a(2,3,4);
|
||||
|
||||
std::cout << "Initialising a:";
|
||||
for_all( a, [&](TestScalar &c, float f, const std::array<size_t,T3::NumIndices> &Dims ){
|
||||
c = TestScalar{f,-f};
|
||||
std::cout << " a(" << Dims[0] << "," << Dims[1] << "," << Dims[2] << ")=" << c;
|
||||
} );
|
||||
std::cout << std::endl;
|
||||
//std::cout << "Validating a:";
|
||||
float z = 0;
|
||||
for( int i = 0 ; i < a.dimension(0) ; i++ )
|
||||
for( int j = 0 ; j < a.dimension(1) ; j++ )
|
||||
for( int k = 0 ; k < a.dimension(2) ; k++ ) {
|
||||
TestScalar w{z, -z};
|
||||
//std::cout << " a(" << i << "," << j << "," << k << ")=" << w;
|
||||
assert( a(i,j,k) == w );
|
||||
z++;
|
||||
}
|
||||
//std::cout << std::endl;
|
||||
//std::cout << "a initialised to:\n" << a << std::endl;
|
||||
DumpMemoryOrder( a, "a" );
|
||||
std::cout << "for_all(a):";
|
||||
for_all( a, [&](TestScalar c, typename T3::Index n, const std::array<size_t,T3::NumIndices> &Dims ){
|
||||
std::cout << " (" << Dims[0] << "," << Dims[1] << "," << Dims[2] << ")<" << n << ">=" << c;
|
||||
} );
|
||||
std::cout << std::endl;
|
||||
Eigen::array<typename T3::Index, 3> offsets = {0,1,1};
|
||||
Eigen::array<typename T3::Index, 3> extents = {1,2,2};
|
||||
T3 b;
|
||||
b = a.slice( offsets, extents );//.reshape(NewExtents);
|
||||
std::cout << "b = a.slice( offsets, extents ):\n" << b << std::endl;
|
||||
DumpMemoryOrder( b, "b" );
|
||||
T2 c(3,4);
|
||||
c = a.chip(0,1);
|
||||
std::cout << "c = a.chip(0,0):\n" << c << std::endl;
|
||||
DumpMemoryOrder( c, "c" );
|
||||
//T2 d = b.reshape(extents);
|
||||
//std::cout << "b.reshape(extents) is:\n" << d << std::endl;
|
||||
std::cout << "\n========================================" << std::endl;
|
||||
}
|
||||
|
||||
void DebugFelixTensorTest( void )
|
||||
{
|
||||
unsigned int Nmom = 2;
|
||||
unsigned int Nt = 2;
|
||||
unsigned int N_1 = 2;
|
||||
unsigned int N_2 = 2;
|
||||
unsigned int N_3 = 2;
|
||||
using BaryonTensorSet = Eigen::Tensor<Complex, 6, Eigen::RowMajor>;
|
||||
BaryonTensorSet BField3(Nmom,4,Nt,N_1,N_2,N_3);
|
||||
std::vector<Complex> Memory(Nmom * Nt * N_1 * N_2 * N_3 * 2);
|
||||
using BaryonTensorMap = Eigen::TensorMap<BaryonTensorSet>;
|
||||
BaryonTensorMap BField4 (&Memory[0], Nmom,4,Nt,N_1,N_2,N_3);
|
||||
|
||||
EigenSliceExample<Eigen::RowMajor>();
|
||||
EigenSliceExample<0>();
|
||||
EigenSliceExample2<Eigen::RowMajor>();
|
||||
EigenSliceExample2<0>();
|
||||
}
|
||||
|
||||
bool DebugGridTensorTest( void )
|
||||
{
|
||||
DebugFelixTensorTest();
|
||||
typedef Complex t1;
|
||||
typedef iScalar<t1> t2;
|
||||
typedef iVector<t1, Ns> t3;
|
||||
typedef iMatrix<t1, Nc> t4;
|
||||
typedef iVector<iMatrix<t1,1>,4> t5;
|
||||
typedef iScalar<t5> t6;
|
||||
typedef iMatrix<t6, 3> t7;
|
||||
typedef iMatrix<iVector<iScalar<t7>,4>,2> t8;
|
||||
int i = 1;
|
||||
DebugGridTensorTest_print<t1>( i++ );
|
||||
DebugGridTensorTest_print<t2>( i++ );
|
||||
DebugGridTensorTest_print<t3>( i++ );
|
||||
DebugGridTensorTest_print<t4>( i++ );
|
||||
DebugGridTensorTest_print<t5>( i++ );
|
||||
DebugGridTensorTest_print<t6>( i++ );
|
||||
DebugGridTensorTest_print<t7>( i++ );
|
||||
DebugGridTensorTest_print<t8>( i++ );
|
||||
|
||||
//using TOC7 = TestObject<std::complex<double>, 7>;
|
||||
using TOC7 = t7;
|
||||
TOC7 toc7;
|
||||
constexpr std::complex<double> Inc{1,-1};
|
||||
std::complex<double> Start{Inc};
|
||||
for( auto &x : toc7 ) {
|
||||
x = Start;
|
||||
Start += Inc;
|
||||
}
|
||||
i = 0;
|
||||
std::cout << "toc7:";
|
||||
for( auto x : toc7 ) std::cout << " [" << i++ << "]=" << x;
|
||||
std::cout << std::endl;
|
||||
|
||||
t2 o2;
|
||||
auto a2 = TensorRemove(o2);
|
||||
//t3 o3;
|
||||
//t4 o4;
|
||||
//auto a3 = TensorRemove(o3);
|
||||
//auto a4 = TensorRemove(o4);
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
#ifdef DEBUG
|
||||
// Debug only - test of Eigen::Tensor
|
||||
std::cout << "sizeof(int) = " << sizeof(int)
|
||||
<< ", sizeof(long) = " << sizeof(long)
|
||||
<< ", sizeof(size_t) = " << sizeof(size_t)
|
||||
<< ", sizeof(std::size_t) = " << sizeof(std::size_t)
|
||||
<< ", sizeof(std::streamsize) = " << sizeof(std::streamsize)
|
||||
<< ", sizeof(Eigen::Index) = " << sizeof(Eigen::Index) << std::endl;
|
||||
if( DebugEigenTest() ) return 0;
|
||||
if(DebugGridTensorTest()) return 0;
|
||||
#endif
|
||||
|
||||
// Decode command-line parameters. 1st one is which test to run
|
||||
int iTestNum = -1;
|
||||
|
||||
for(int i = 1 ; i < argc ; i++ ) {
|
||||
std::cout << "argv[" << i << "]=\"" << argv[i] << "\"" << std::endl;
|
||||
const char * p = argv[i];
|
||||
if( * p == '/' || * p == '-' ) {
|
||||
p++;
|
||||
char c = * p++;
|
||||
switch(toupper(c)) {
|
||||
case 'T':
|
||||
if( bNumber( iTestNum, p ) ) {
|
||||
std::cout << "Test " << iTestNum << " requested";
|
||||
if( * p )
|
||||
std::cout << " (ignoring trailer \"" << p << "\")";
|
||||
std::cout << std::endl;
|
||||
}
|
||||
else
|
||||
std::cout << "Invalid test \"" << &argv[i][2] << "\"" << std::endl;
|
||||
break;
|
||||
default:
|
||||
std::cout << "Ignoring switch \"" << &argv[i][1] << "\"" << std::endl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// initialization //////////////////////////////////////////////////////////
|
||||
Grid_init(&argc, &argv);
|
||||
HadronsLogError.Active(GridLogError.isActive());
|
||||
HadronsLogWarning.Active(GridLogWarning.isActive());
|
||||
HadronsLogMessage.Active(GridLogMessage.isActive());
|
||||
HadronsLogIterative.Active(GridLogIterative.isActive());
|
||||
HadronsLogDebug.Active(GridLogDebug.isActive());
|
||||
LOG(Message) << "Grid initialized" << std::endl;
|
||||
|
||||
// run setup ///////////////////////////////////////////////////////////////
|
||||
Application application;
|
||||
|
||||
// For now perform free propagator test - replace this with distillation test(s)
|
||||
LOG(Message) << "====== Creating xml for test " << iTestNum << " ======" << std::endl;
|
||||
//const unsigned int nt = GridDefaultLatt()[Tp];
|
||||
|
||||
switch(iTestNum) {
|
||||
default:
|
||||
test_Global( application );
|
||||
test_LapEvec( application );
|
||||
test_Perambulators( application );
|
||||
test_MesonSink( application );
|
||||
test_g5_sinks( application );
|
||||
test_em( application );
|
||||
test_Aslash( application );
|
||||
test_DistilVectors( application );
|
||||
test_MesonField( application );
|
||||
test_MesonFieldRho( application );
|
||||
break;
|
||||
}
|
||||
LOG(Message) << "====== XML creation for test " << iTestNum << " complete ======" << std::endl;
|
||||
|
||||
// execution
|
||||
application.saveParameterFile("test_hadrons_distil.xml");
|
||||
application.run();
|
||||
|
||||
// epilogue
|
||||
LOG(Message) << "Grid is finalizing now" << std::endl;
|
||||
Grid_finalize();
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
Loading…
Reference in New Issue
Block a user