1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Correcting modules use in test files

This commit is contained in:
Guido Cossu 2017-03-10 23:54:53 +09:00
parent c07cb10247
commit 4e34132f4d
26 changed files with 52 additions and 417 deletions

View File

@ -138,15 +138,7 @@ class HMCWrapperTemplate: public HMCRunnerBase<ReaderClass> {
// Can move this outside?
typedef IntegratorType<SmearingPolicy> TheIntegrator;
// Metric
//TrivialMetric<typename Implementation::Field> Mtr;
ConjugateGradient<LatticeGaugeField> CG(1.0e-8,10000);
LaplacianParams LapPar(0.0001, 1.0, 1000, 1e-8, 12, 64);
RealD Kappa = 0.6;
// Better to pass the generalised momenta to the integrator
LaplacianAdjointField<PeriodicGimplR> Laplacian(UGrid, CG, LapPar, Kappa);
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing, Laplacian);
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
if (Parameters.StartingType == "HotStart") {
// Hot start

View File

@ -77,8 +77,7 @@ class Integrator {
double t_U; // Track time passing on each level and for U and for P
std::vector<double> t_P;
//MomentaField P;
GeneralisedMomenta<FieldImplementation > P;
MomentaField P;
SmearingPolicy& Smearer;
RepresentationPolicy Representations;
IntegratorParameters Params;
@ -87,7 +86,7 @@ class Integrator {
void update_P(Field& U, int level, double ep) {
t_P[level] += ep;
update_P(P.Mom, U, level, ep);
update_P(P, U, level, ep);
std::cout << GridLogIntegrator << "[" << level << "] P "
<< " dt " << ep << " : t_P " << t_P[level] << std::endl;
@ -115,23 +114,7 @@ class Integrator {
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
// Generalised momenta
// Derivative of the kinetic term must be computed before
// Mom is the momenta and gets updated by the
// actions derivatives
MomentaField MomDer(P.Mom._grid);
P.M.ImportGauge(U);
P.DerivativeU(P.Mom, MomDer);
Mom -= MomDer * ep;
// Auxiliary fields
P.update_auxiliary_momenta(ep*0.5);
P.AuxiliaryFieldsDerivative(MomDer);
Mom -= MomDer * ep;
P.update_auxiliary_momenta(ep*0.5);
for (int a = 0; a < as[level].actions.size(); ++a) {
for (int a = 0; a < as[level].actions.size(); ++a) {
Field force(U._grid);
conformable(U._grid, Mom._grid);
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
@ -145,89 +128,12 @@ class Integrator {
Mom -= force * ep;
}
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
}
void implicit_update_P(Field& U, int level, double ep, bool intermediate = false) {
t_P[level] += ep;
std::cout << GridLogIntegrator << "[" << level << "] P "
<< " dt " << ep << " : t_P " << t_P[level] << std::endl;
// Fundamental updates, include smearing
MomentaField Msum(P.Mom._grid);
Msum = zero;
for (int a = 0; a < as[level].actions.size(); ++a) {
// Compute the force terms for the lagrangian part
// We need to compute the derivative of the actions
// only once
Field force(U._grid);
conformable(U._grid, P.Mom._grid);
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
force = FieldImplementation::projectForce(force); // Ta for gauge fields
Real force_abs = std::sqrt(norm2(force) / U._grid->gSites());
std::cout << GridLogIntegrator << "|Force| site average: " << force_abs
<< std::endl;
Msum += force;
}
MomentaField NewMom = P.Mom;
MomentaField OldMom = P.Mom;
double threshold = 1e-6;
P.M.ImportGauge(U);
MomentaField MomDer(P.Mom._grid);
MomentaField MomDer1(P.Mom._grid);
MomentaField AuxDer(P.Mom._grid);
MomDer1 = zero;
MomentaField diff(P.Mom._grid);
double factor = 2.0;
if (intermediate){
P.DerivativeU(P.Mom, MomDer1);
factor = 1.0;
}
// Auxiliary fields
P.update_auxiliary_momenta(ep*0.5);
P.AuxiliaryFieldsDerivative(AuxDer);
Msum += AuxDer;
// Here run recursively
int counter = 1;
RealD RelativeError;
do {
std::cout << GridLogIntegrator << "UpdateP implicit step "<< counter << std::endl;
// Compute the derivative of the kinetic term
// with respect to the gauge field
P.DerivativeU(NewMom, MomDer);
Real force_abs = std::sqrt(norm2(MomDer) / U._grid->gSites());
std::cout << GridLogIntegrator << "|Force| laplacian site average: " << force_abs
<< std::endl;
NewMom = P.Mom - ep* 0.5 * (2.0*Msum + factor*MomDer + MomDer1);// simplify
diff = NewMom - OldMom;
counter++;
RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewMom));
std::cout << GridLogIntegrator << "UpdateP RelativeError: " << RelativeError << std::endl;
OldMom = NewMom;
} while (RelativeError > threshold);
P.Mom = NewMom;
// update the auxiliary fields momenta
P.update_auxiliary_momenta(ep*0.5);
}
void update_U(Field& U, double ep) {
update_U(P.Mom, U, ep);
update_U(P, U, ep);
t_U += ep;
int fl = levels - 1;
@ -245,68 +151,15 @@ class Integrator {
Representations.update(U); // void functions if fundamental representation
}
void implicit_update_U(Field&U, double ep){
t_U += ep;
int fl = levels - 1;
std::cout << GridLogIntegrator << " " << "[" << fl << "] U " << " dt " << ep << " : t_U " << t_U << std::endl;
MomentaField Mom1(P.Mom._grid);
MomentaField Mom2(P.Mom._grid);
RealD RelativeError;
Field diff(U._grid);
Real threshold = 1e-8;
int counter = 1;
int MaxCounter = 100;
Field OldU = U;
Field NewU = U;
P.M.ImportGauge(U);
P.DerivativeP(Mom1); // first term in the derivative
P.update_auxiliary_fields(ep*0.5);
do {
std::cout << GridLogIntegrator << "UpdateU implicit step "<< counter << std::endl;
P.DerivativeP(Mom2); // second term in the derivative, on the updated U
MomentaField sum = (Mom1 + Mom2);
//std::cout << GridLogMessage << "sum Norm " << norm2(sum) << std::endl;
for (int mu = 0; mu < Nd; mu++) {
auto Umu = PeekIndex<LorentzIndex>(U, mu);
auto Pmu = PeekIndex<LorentzIndex>(sum, mu);
Umu = expMat(Pmu, ep * 0.5, 24) * Umu;
PokeIndex<LorentzIndex>(NewU, ProjectOnGroup(Umu), mu);
}
diff = NewU - OldU;
RelativeError = std::sqrt(norm2(diff))/std::sqrt(norm2(NewU));
std::cout << GridLogIntegrator << "UpdateU RelativeError: " << RelativeError << std::endl;
P.M.ImportGauge(NewU);
OldU = NewU; // some redundancy to be eliminated
counter++;
} while (RelativeError > threshold && counter < MaxCounter);
U = NewU;
P.update_auxiliary_fields(ep*0.5);
}
virtual void step(Field& U, int level, int first, int last) = 0;
public:
Integrator(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset,
SmearingPolicy& Sm, Metric<MomentaField>& M)
SmearingPolicy& Sm)
: Params(Par),
as(Aset),
P(grid, M),
P(grid),
levels(Aset.size()),
Smearer(Sm),
Representations(grid) {
@ -339,8 +192,7 @@ class Integrator {
}
void reverse_momenta(){
P.Mom *= -1.0;
P.AuxMom *= -1.0;
P *= -1.0;
}
// to be used by the actionlevel class to iterate
@ -359,13 +211,10 @@ class Integrator {
// Initialization of momenta and actions
void refresh(Field& U, GridParallelRNG& pRNG) {
assert(P.Mom._grid == U._grid);
assert(P._grid == U._grid);
std::cout << GridLogIntegrator << "Integrator refresh\n";
//FieldImplementation::generate_momenta(P, pRNG);
P.M.ImportGauge(U);
P.MomentaDistribution(pRNG);
FieldImplementation::generate_momenta(P, pRNG);
// Update the smeared fields, can be implemented as observer
// necessary to keep the fields updated even after a reject
@ -411,9 +260,7 @@ class Integrator {
// Calculate action
RealD S(Field& U) { // here also U not used
//RealD H = - FieldImplementation::FieldSquareNorm(P.Mom); // - trace (P*P)
P.M.ImportGauge(U);
RealD H = - P.MomentaAction();
RealD H = - FieldImplementation::FieldSquareNorm(P); // - trace (P*P)
RealD Hterm;
std::cout << GridLogMessage << "Momentum action H_p = " << H << "\n";

View File

@ -287,141 +287,6 @@ class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy,
};
////////////////////////////////
// Riemannian Manifold HMC
// Girolami et al
////////////////////////////////
// correct
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitLeapFrog : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
public:
typedef ImplicitLeapFrog<FieldImplementation, SmearingPolicy, RepresentationPolicy>
Algorithm;
INHERIT_FIELD_TYPES(FieldImplementation);
// Riemannian manifold metric operator
// Hermitian operator Fisher
std::string integrator_name(){return "ImplicitLeapFrog";}
ImplicitLeapFrog(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
void step(Field& U, int level, int _first, int _last) {
int fl = this->as.size() - 1;
// level : current level
// fl : final level
// eps : current step size
// Get current level step size
RealD eps = this->Params.trajL/this->Params.MDsteps;
for (int l = 0; l <= level; ++l) eps /= this->as[l].multiplier;
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) {
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->implicit_update_P(U, level, eps / 2.0);
}
if (level == fl) { // lowest level
this->implicit_update_U(U, eps);
} else { // recursive function call
this->step(U, level + 1, first_step, last_step);
}
//int mm = last_step ? 1 : 2;
if (last_step){
this->update_P(U, level, eps / 2.0);
} else {
this->implicit_update_P(U, level, eps, true);// works intermediate step
// this->update_P(U, level, eps); // looks not reversible
}
}
}
};
// This is not completely tested
template <class FieldImplementation, class SmearingPolicy,
class RepresentationPolicy =
Representations<FundamentalRepresentation> >
class ImplicitMinimumNorm2 : public Integrator<FieldImplementation, SmearingPolicy,
RepresentationPolicy> {
private:
const RealD lambda = 0.1931833275037836;
public:
INHERIT_FIELD_TYPES(FieldImplementation);
ImplicitMinimumNorm2(GridBase* grid, IntegratorParameters Par,
ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm, Metric<Field>& M)
: Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>(
grid, Par, Aset, Sm, M){};
std::string integrator_name(){return "ImplicitMininumNorm2";}
void step(Field& U, int level, int _first, int _last) {
// level : current level
// fl : final level
// eps : current step size
int fl = this->as.size() - 1;
RealD eps = this->Params.trajL/this->Params.MDsteps * 2.0;
for (int l = 0; l <= level; ++l) eps /= 2.0 * this->as[l].multiplier;
// Nesting: 2xupdate_U of size eps/2
// Next level is eps/2/multiplier
int multiplier = this->as[level].multiplier;
for (int e = 0; e < multiplier; ++e) { // steps per step
int first_step = _first && (e == 0);
int last_step = _last && (e == multiplier - 1);
if (first_step) { // initial half step
this->implicit_update_P(U, level, lambda * eps);
}
if (level == fl) { // lowest level
this->implicit_update_U(U, 0.5 * eps);
} else { // recursive function call
this->step(U, level + 1, first_step, 0);
}
this->implicit_update_P(U, level, (1.0 - 2.0 * lambda) * eps);
if (level == fl) { // lowest level
this->implicit_update_U(U, 0.5 * eps);
} else { // recursive function call
this->step(U, level + 1, 0, last_step);
}
//int mm = (last_step) ? 1 : 2;
//this->update_P(U, level, lambda * eps * mm);
if (last_step) {
this->update_P(U, level, eps * lambda);
} else {
this->implicit_update_P(U, level, lambda * eps*2.0);
}
}
}
};
}

View File

@ -191,57 +191,6 @@ class LaplacianAdjointField: public Metric<typename Impl::Field> {
std::vector<GaugeLinkField> U;
};
// This is just for debuggin purposes
// not meant to be used by the final users
template <class Impl>
class LaplacianAlgebraField {
public:
INHERIT_GIMPL_TYPES(Impl);
typedef SU<Nc>::LatticeAlgebraVector AVector;
LaplacianAlgebraField(GridBase* grid, const RealD k) :
U(Nd, grid), kappa(k){};
void ImportGauge(const GaugeField& _U) {
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(_U, mu);
}
}
void Mdiag(const AVector& in, AVector& out) { assert(0); }
void Mdir(const AVector& in, AVector& out, int dir, int disp) { assert(0); }
// Operator with algebra vector inputs and outputs
void M(const AVector& in, AVector& out) {
GaugeLinkField tmp(in._grid);
GaugeLinkField tmp2(in._grid);
GaugeLinkField sum(in._grid);
GaugeLinkField out_mat(in._grid);
GaugeLinkField in_mat(in._grid);
// Reconstruct matrix
SU<Nc>::FundamentalLieAlgebraMatrix(in, in_mat);
sum = zero;
for (int mu = 0; mu < Nd; mu++) {
tmp = U[mu] * Cshift(in_mat, mu, +1) * adj(U[mu]);
tmp2 = adj(U[mu]) * in_mat * U[mu];
sum += tmp + Cshift(tmp2, mu, -1) - 2.0 * in_mat;
}
out_mat = (1.0 - kappa) * in_mat - kappa / (double(4 * Nd)) * sum;
// Project
SU<Nc>::projectOnAlgebra(out, out_mat);
}
private:
RealD kappa;
std::vector<GaugeLinkField> U;
};
}
}

View File

@ -66,8 +66,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -68,8 +68,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -65,8 +65,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -63,8 +63,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -65,8 +65,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -64,8 +64,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -65,8 +65,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -57,8 +57,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -58,8 +58,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -63,8 +63,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
//////////////////////////////////////////////

View File

@ -68,8 +68,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -65,8 +65,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -40,7 +40,7 @@ int main(int argc, char **argv) {
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef GenericHMCRunner<ImplicitLeapFrog> HMCWrapper; // Uses the default minimum norm
typedef GenericHMCRunner<LeapFrog> HMCWrapper; // Uses the default minimum norm
HMCWrapper TheHMC;
// Grid from the command line

View File

@ -77,8 +77,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -64,8 +64,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -65,8 +65,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -67,8 +67,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -64,8 +64,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -65,8 +65,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -65,8 +65,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -64,8 +64,8 @@ int main(int argc, char **argv) {
TheHMC.Resources.LoadBinaryCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.SerialSeed = {1,2,3,4,5};
RNGpar.ParallelSeed = {6,7,8,9,10};
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables

View File

@ -86,23 +86,5 @@ int main (int argc, char ** argv)
Laplacian.MSquareRoot(src_f);
// Tests also the version using the algebra decomposition
/*
LaplacianAlgebraField<PeriodicGimplR> LaplacianAlgebra(&Grid, Kappa);
LaplacianAlgebra.ImportGauge(Umu);
HermitianLinearOperator<LaplacianAlgebraField<PeriodicGimplR>,AVector> HermOpAlg(LaplacianAlgebra);
ConjugateGradient<AVector> CG_Algebra(1.0e-8,10000);
std::cout << GridLogMessage << "Testing the Laplacian using the algebra vectors" <<std::endl;
CG_Algebra(HermOpAlg,src_vec,result_vec);
LatticeColourMatrix result2(&Grid);
SU<Nc>::FundamentalLieAlgebraMatrix(result_vec, result2);
result2 -= result;
std::cout << GridLogMessage << "Results difference " << norm2(result2) << std::endl;
*/
Grid_finalize();
}