mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-09 23:45:36 +00:00
Merge branch 'feature/distil' of https://github.com/mmphys/Grid into feature/distil
This commit is contained in:
commit
50b6db75da
@ -101,6 +101,186 @@ public:
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
template <class FImpl>
|
||||
template <typename TensorType>
|
||||
void A2Autils<FImpl>::BaryonField(TensorType &mat,
|
||||
const FermionField *one,
|
||||
const FermionField *two,
|
||||
const FermionField *three,
|
||||
std::vector<Gamma::Algebra> gammaA,
|
||||
std::vector<Gamma::Algebra> gammaB,
|
||||
const std::vector<ComplexField > &mom,
|
||||
int orthogdim, double *t_kernel, double *t_gsum)
|
||||
{
|
||||
typedef typename FImpl::SiteSpinor vobj;
|
||||
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
typedef iSpinMatrix<vector_type> SpinMatrix_v;
|
||||
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
|
||||
|
||||
int oneBlock = mat.dimension(3);
|
||||
int twoBlock = mat.dimension(4);
|
||||
int threeBlock = mat.dimension(5);
|
||||
|
||||
GridBase *grid = one[0]._grid;
|
||||
|
||||
const int Nd = grid->_ndimension;
|
||||
const int Nsimd = grid->Nsimd();
|
||||
|
||||
int Nt = grid->GlobalDimensions()[orthogdim];
|
||||
int Ngamma = gammaA.size();
|
||||
assert (Ngamma = gammaB.size()); // Only combinatin of two gammas gives correct operator!
|
||||
int Nmom = mom.size();
|
||||
|
||||
int fd=grid->_fdimensions[orthogdim];
|
||||
int ld=grid->_ldimensions[orthogdim];
|
||||
int rd=grid->_rdimensions[orthogdim];
|
||||
|
||||
// will locally sum vectors first
|
||||
// sum across these down to scalars
|
||||
// splitting the SIMD
|
||||
int MFrvol = rd*oneBlock*twoBlock*threeBlock*Nmom;
|
||||
int MFlvol = ld*oneBlock*twoBlock*threeBlock*Nmom;
|
||||
|
||||
Vector<SpinMatrix_v > lvSum(MFrvol);
|
||||
parallel_for (int r = 0; r < MFrvol; r++){
|
||||
lvSum[r] = zero;
|
||||
}
|
||||
|
||||
Vector<SpinMatrix_s > lsSum(MFlvol);
|
||||
parallel_for (int r = 0; r < MFlvol; r++){
|
||||
lsSum[r]=scalar_type(0.0);
|
||||
}
|
||||
|
||||
int e1= grid->_slice_nblock[orthogdim];
|
||||
int e2= grid->_slice_block [orthogdim];
|
||||
int stride=grid->_slice_stride[orthogdim];
|
||||
|
||||
// potentially wasting cores here if local time extent too small
|
||||
if (t_kernel) *t_kernel = -usecond();
|
||||
parallel_for(int r=0;r<rd;r++){
|
||||
|
||||
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
|
||||
|
||||
// first, the diquark two*gammaB*three
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
for(int j=0;j<twoBlock;j++){
|
||||
|
||||
auto two_j = two[j]._odata[ss];
|
||||
|
||||
for(int k=0;k<threeBlock;k++){
|
||||
|
||||
auto three_k = three[j]._odata[ss];
|
||||
|
||||
SpinMatrix_v vv;
|
||||
|
||||
for(int s1=0;s1<Ns;s1++){
|
||||
for(int s2=0;s2<Ns;s2++){
|
||||
vv()(s1,s2)() = two_j()(s2)(0) * three_k()(s1)(0) //make this a colorMatrix for the diquark???
|
||||
+ two_j()(s2)(1) * three_k()(s1)(1)
|
||||
+ two_j()(s2)(2) * three_k()(s1)(2);
|
||||
}}
|
||||
|
||||
// After getting the sitewise product do the mom phase loop
|
||||
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
|
||||
for ( int m=0;m<Nmom;m++){
|
||||
int idx = m+base;
|
||||
auto phase = mom[m]._odata[ss];
|
||||
mac(&lvSum[idx],&vv,&phase);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Sum across simd lanes in the plane, breaking out orthog dir.
|
||||
parallel_for(int rt=0;rt<rd;rt++){
|
||||
|
||||
std::vector<int> icoor(Nd);
|
||||
std::vector<SpinMatrix_s> extracted(Nsimd);
|
||||
|
||||
for(int i=0;i<Lblock;i++){
|
||||
for(int j=0;j<Rblock;j++){
|
||||
for(int m=0;m<Nmom;m++){
|
||||
|
||||
int ij_rdx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*rt;
|
||||
|
||||
extract(lvSum[ij_rdx],extracted);
|
||||
|
||||
for(int idx=0;idx<Nsimd;idx++){
|
||||
|
||||
grid->iCoorFromIindex(icoor,idx);
|
||||
|
||||
int ldx = rt+icoor[orthogdim]*rd;
|
||||
|
||||
int ij_ldx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*ldx;
|
||||
|
||||
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
|
||||
|
||||
}
|
||||
}}}
|
||||
}
|
||||
if (t_kernel) *t_kernel += usecond();
|
||||
assert(mat.dimension(0) == Nmom);
|
||||
assert(mat.dimension(1) == Ngamma);
|
||||
assert(mat.dimension(2) == Nt);
|
||||
|
||||
// ld loop and local only??
|
||||
int pd = grid->_processors[orthogdim];
|
||||
int pc = grid->_processor_coor[orthogdim];
|
||||
parallel_for_nest2(int lt=0;lt<ld;lt++)
|
||||
{
|
||||
for(int pt=0;pt<pd;pt++){
|
||||
int t = lt + pt*ld;
|
||||
if (pt == pc){
|
||||
for(int i=0;i<Lblock;i++){
|
||||
for(int j=0;j<Rblock;j++){
|
||||
for(int m=0;m<Nmom;m++){
|
||||
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
|
||||
for(int mu=0;mu<Ngamma;mu++){
|
||||
// this is a bit slow
|
||||
mat(m,mu,t,i,j) = trace(lsSum[ij_dx]*Gamma(gammas[mu]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
const scalar_type zz(0.0);
|
||||
for(int i=0;i<Lblock;i++){
|
||||
for(int j=0;j<Rblock;j++){
|
||||
for(int mu=0;mu<Ngamma;mu++){
|
||||
for(int m=0;m<Nmom;m++){
|
||||
mat(m,mu,t,i,j) =zz;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// This global sum is taking as much as 50% of time on 16 nodes
|
||||
// Vector size is 7 x 16 x 32 x 16 x 16 x sizeof(complex) = 2MB - 60MB depending on volume
|
||||
// Healthy size that should suffice
|
||||
////////////////////////////////////////////////////////////////////
|
||||
if (t_gsum) *t_gsum = -usecond();
|
||||
grid->GlobalSumVector(&mat(0,0,0,0,0),Nmom*Ngamma*Nt*Lblock*Rblock);
|
||||
if (t_gsum) *t_gsum += usecond();
|
||||
}
|
||||
*/
|
||||
|
||||
template <class FImpl>
|
||||
template <typename TensorType>
|
||||
void A2Autils<FImpl>::MesonField(TensorType &mat,
|
||||
|
@ -172,7 +172,7 @@ namespace Grid {
|
||||
template <typename ETensor, typename Lambda>
|
||||
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
|
||||
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
|
||||
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank_non_trivial> &MyIndex)
|
||||
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank> &MyIndex)
|
||||
{
|
||||
lambda( scalar, Seq++, MyIndex );
|
||||
}
|
||||
@ -180,8 +180,8 @@ namespace Grid {
|
||||
// for_all helper function to call the lambda
|
||||
template <typename ETensor, typename Lambda>
|
||||
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
|
||||
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index Seq,
|
||||
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank_non_trivial> &MyIndex)
|
||||
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
|
||||
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank> &MyIndex)
|
||||
{
|
||||
using Scalar = typename ETensor::Scalar; // This could be a Container - we'll check later
|
||||
const auto InnerRank = EigenIO::Traits<Scalar>::rank_non_trivial;
|
||||
@ -190,7 +190,7 @@ namespace Grid {
|
||||
lambda(Source, Seq++, MyIndex );
|
||||
// Now increment SubIndex
|
||||
for( auto i = InnerRank - 1; i != -1 && ++MyIndex[rank + i] == EigenIO::Traits<Scalar>::DimensionNT(i); i-- )
|
||||
MyIndex[i] = 0;
|
||||
MyIndex[rank + i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
@ -206,7 +206,7 @@ namespace Grid {
|
||||
assert( NumScalars > 0 );
|
||||
using Index = typename ETensor::Index;
|
||||
Index ScalarElementCount{1};
|
||||
const auto InnerRank = EigenIO::Traits<Scalar>::rank_non_trivial;
|
||||
const auto InnerRank = EigenIO::Traits<Scalar>::rank;
|
||||
const auto rank{ETensor::NumIndices};
|
||||
std::array<std::size_t, rank + InnerRank> Dims;
|
||||
for(auto i = 0; i < rank; i++ ) {
|
||||
@ -218,11 +218,11 @@ namespace Grid {
|
||||
}
|
||||
// Check that the number of containers is correct ... and we didn't lose anything in conversions
|
||||
assert( NumScalars == ScalarElementCount );
|
||||
// If the Scalar is actually a container, add the inner Scalar's non-trivial dimensions
|
||||
// If the Scalar is actually a container, add the inner Scalar's dimensions
|
||||
size_t InnerScalarCount{1};
|
||||
for(auto i = 0; i < InnerRank; i++ ) {
|
||||
auto dim = EigenIO::Traits<Scalar>::DimensionNT(i);
|
||||
assert( dim > 1 );
|
||||
auto dim = EigenIO::Traits<Scalar>::Dimension(i);
|
||||
assert( dim > 0 );
|
||||
Dims[rank + i] = static_cast<std::size_t>(dim);
|
||||
assert( Dims[rank + i] == dim ); // check we didn't lose anything in the conversion
|
||||
InnerScalarCount *= dim;
|
||||
@ -242,11 +242,12 @@ namespace Grid {
|
||||
} else {
|
||||
for( auto i = 0; i < rank && ++MyIndex[i] == Dims[i]; i++ )
|
||||
MyIndex[i] = 0;
|
||||
Seq = 0;
|
||||
size_t NewSeq = 0;
|
||||
for( auto i = 0; i < rank + InnerRank ; i++ ) {
|
||||
Seq *= Dims[i];
|
||||
Seq += MyIndex[i];
|
||||
NewSeq *= Dims[i];
|
||||
NewSeq += MyIndex[i];
|
||||
}
|
||||
Seq = static_cast<Index>( NewSeq );
|
||||
}
|
||||
pScalar++;
|
||||
}
|
||||
@ -271,7 +272,7 @@ namespace Grid {
|
||||
{
|
||||
using Traits = EigenIO::Traits<typename ETensor::Scalar>;
|
||||
using scalar_type = typename Traits::scalar_type;
|
||||
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank_non_trivial> &Dims ) {
|
||||
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank> &Dims ) {
|
||||
c = Inc * static_cast<typename RealType<scalar_type>::type>(n);
|
||||
} );
|
||||
}
|
||||
@ -291,7 +292,7 @@ namespace Grid {
|
||||
std::cout << pName;
|
||||
for( auto i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]";
|
||||
std::cout << " in memory order:" << std::endl;
|
||||
for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::array<size_t, T::NumIndices + Traits::rank_non_trivial> &Dims ){
|
||||
for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::array<size_t, T::NumIndices + Traits::rank> &Dims ){
|
||||
std::cout << " ";
|
||||
for( auto dim : Dims )
|
||||
std::cout << "[" << dim << "]";
|
||||
|
@ -51,6 +51,8 @@ namespace Grid
|
||||
void writeDefault(const std::string &s, const U &x);
|
||||
template <typename U>
|
||||
void writeDefault(const std::string &s, const std::vector<U> &x);
|
||||
template <typename U>
|
||||
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
|
||||
private:
|
||||
void indent(void);
|
||||
private:
|
||||
@ -69,6 +71,8 @@ namespace Grid
|
||||
void readDefault(const std::string &s, U &output);
|
||||
template <typename U>
|
||||
void readDefault(const std::string &s, std::vector<U> &output);
|
||||
template <typename U>
|
||||
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
|
||||
private:
|
||||
void checkIndent(void);
|
||||
private:
|
||||
@ -95,7 +99,18 @@ namespace Grid
|
||||
write(s, x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename U>
|
||||
void TextWriter::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
|
||||
{
|
||||
uint64_t Rank = Dimensions.size();
|
||||
write(s, Rank);
|
||||
for( uint64_t d : Dimensions )
|
||||
write(s, d);
|
||||
while( NumElements-- )
|
||||
write(s, *pDataRowMajor++);
|
||||
}
|
||||
|
||||
// Reader template implementation ////////////////////////////////////////////
|
||||
template <typename U>
|
||||
void TextReader::readDefault(const std::string &s, U &output)
|
||||
@ -121,6 +136,23 @@ namespace Grid
|
||||
read("", output[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
void TextReader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
|
||||
{
|
||||
const char sz[] = "";
|
||||
uint64_t Rank;
|
||||
read(sz, Rank);
|
||||
dim.resize( Rank );
|
||||
size_t NumElements = 1;
|
||||
for( auto &d : dim ) {
|
||||
read(sz, d);
|
||||
NumElements *= d;
|
||||
}
|
||||
buf.resize( NumElements );
|
||||
for( auto &x : buf )
|
||||
read(s, x);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -57,6 +57,8 @@ namespace Grid
|
||||
void writeDefault(const std::string &s, const U &x);
|
||||
template <typename U>
|
||||
void writeDefault(const std::string &s, const std::vector<U> &x);
|
||||
template <typename U>
|
||||
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
|
||||
std::string docString(void);
|
||||
std::string string(void);
|
||||
private:
|
||||
@ -79,6 +81,8 @@ namespace Grid
|
||||
void readDefault(const std::string &s, U &output);
|
||||
template <typename U>
|
||||
void readDefault(const std::string &s, std::vector<U> &output);
|
||||
template <typename U>
|
||||
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
|
||||
void readCurrentSubtree(std::string &s);
|
||||
private:
|
||||
void checkParse(const pugi::xml_parse_result &result, const std::string name);
|
||||
@ -122,13 +126,30 @@ namespace Grid
|
||||
void XmlWriter::writeDefault(const std::string &s, const std::vector<U> &x)
|
||||
{
|
||||
push(s);
|
||||
for (auto &x_i: x)
|
||||
for( auto &u : x )
|
||||
{
|
||||
write("elem", x_i);
|
||||
write("elem", u);
|
||||
}
|
||||
pop();
|
||||
}
|
||||
|
||||
|
||||
template <typename U>
|
||||
void XmlWriter::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
|
||||
{
|
||||
push(s);
|
||||
size_t count = 1;
|
||||
const size_t Rank = Dimensions.size();
|
||||
write("rank", Rank );
|
||||
for( auto d : Dimensions ) {
|
||||
write("dim", d);
|
||||
count *= d;
|
||||
}
|
||||
assert( count == NumElements && "XmlIO : element count doesn't match dimensions" );
|
||||
while (NumElements--)
|
||||
write("elem", *pDataRowMajor++);
|
||||
pop();
|
||||
}
|
||||
|
||||
// Reader template implementation ////////////////////////////////////////////
|
||||
template <typename U>
|
||||
void XmlReader::readDefault(const std::string &s, U &output)
|
||||
@ -145,25 +166,47 @@ namespace Grid
|
||||
template <typename U>
|
||||
void XmlReader::readDefault(const std::string &s, std::vector<U> &output)
|
||||
{
|
||||
std::string buf;
|
||||
unsigned int i = 0;
|
||||
|
||||
if (!push(s))
|
||||
{
|
||||
std::cout << GridLogWarning << "XML: cannot open node '" << s << "'";
|
||||
std::cout << std::endl;
|
||||
|
||||
return;
|
||||
} else {
|
||||
for(unsigned int i = 0; node_.child("elem"); )
|
||||
{
|
||||
output.resize(i + 1);
|
||||
read("elem", output[i++]);
|
||||
node_.child("elem").set_name("elem-done");
|
||||
}
|
||||
pop();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
void XmlReader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
|
||||
{
|
||||
if (!push(s))
|
||||
{
|
||||
std::cout << GridLogWarning << "XML: cannot open node '" << s << "'";
|
||||
std::cout << std::endl;
|
||||
} else {
|
||||
size_t Rank;
|
||||
read("rank", Rank);
|
||||
dim.resize( Rank );
|
||||
size_t NumElements = 1;
|
||||
for( auto &d : dim )
|
||||
{
|
||||
read("dim", d);
|
||||
node_.child("dim").set_name("dim-done");
|
||||
NumElements *= d;
|
||||
}
|
||||
buf.resize( NumElements );
|
||||
for( auto &x : buf )
|
||||
{
|
||||
read("elem", x);
|
||||
node_.child("elem").set_name("elem-done");
|
||||
}
|
||||
pop();
|
||||
}
|
||||
while (node_.child("elem"))
|
||||
{
|
||||
output.resize(i + 1);
|
||||
read("elem", output[i]);
|
||||
node_.child("elem").set_name("elem-done");
|
||||
i++;
|
||||
}
|
||||
pop();
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -86,7 +86,7 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam
|
||||
// writer needs to be destroyed so that writing physically happens
|
||||
{
|
||||
W writer(filename);
|
||||
|
||||
writer.setPrecision(std::numeric_limits<double>::digits10 + 1);
|
||||
write(writer, tag , object);
|
||||
}
|
||||
|
||||
@ -113,7 +113,7 @@ typedef Eigen::Tensor<TestScalar, 3, Eigen::StorageOptions::RowMajor> TensorRank
|
||||
typedef Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<9,4,2>, Eigen::StorageOptions::RowMajor> Tensor_9_4_2;
|
||||
typedef std::vector<Tensor_9_4_2> aTensor_9_4_2;
|
||||
typedef Eigen::TensorFixedSize<SpinColourVector, Eigen::Sizes<6,5>> LSCTensor;
|
||||
#ifdef DEBUG
|
||||
#ifndef DEBUG
|
||||
typedef Eigen::TensorFixedSize<iMatrix<iVector<iMatrix<iVector<LorentzColourMatrix,5>,2>,7>,3>, Eigen::Sizes<2,4,11,10,9>, Eigen::StorageOptions::RowMajor> LCMTensor;
|
||||
#endif
|
||||
|
||||
@ -141,14 +141,14 @@ public:
|
||||
, tensorRank3(7,3,2)
|
||||
, atensor_9_4_2(3)
|
||||
{
|
||||
Grid_complex<double> Flag{1,-3.1415927};
|
||||
//Grid_complex<double> Flag{1,-3.1415927}; // Gives errors on readback for text types
|
||||
Grid_complex<double> Flag{1,-1};
|
||||
SequentialInit(Perambulator, Flag);
|
||||
SequentialInit(Perambulator2, Flag);
|
||||
SequentialInit(tensorRank5UShort);
|
||||
SequentialInit(tensorRank3, Flag);
|
||||
SequentialInit(tensor_9_4_2, Flag);
|
||||
for( auto &t : atensor_9_4_2 )
|
||||
SequentialInit(t, Flag);
|
||||
for( auto &t : atensor_9_4_2 ) SequentialInit(t, Flag);
|
||||
SequentialInit( MyLSCTensor );
|
||||
}
|
||||
};
|
||||
@ -193,7 +193,7 @@ void EigenHdf5IOTest(const char * pszExtension)
|
||||
}
|
||||
TensorWriteRead ( LSCTensor )
|
||||
TensorWriteReadLarge( PerambIOTestClass )
|
||||
#ifdef DEBUG
|
||||
#ifndef DEBUG
|
||||
std::cout << "sizeof( LCMTensor ) = " << sizeof( LCMTensor ) / 1024 / 1024 << " MB" << std::endl;
|
||||
TensorWriteReadLarge ( LCMTensor )
|
||||
// Also write > 4GB of complex numbers (I suspect this will fail inside Hdf5)
|
||||
@ -297,6 +297,10 @@ int main(int argc,char **argv)
|
||||
#endif
|
||||
std::cout << "\n==== detailed binary tensor tests (Grid::EigenIO)" << std::endl;
|
||||
EigenHdf5IOTest<BinaryWriter, BinaryReader>(".bin");
|
||||
std::cout << "\n==== detailed text tensor tests (Grid::EigenIO)" << std::endl;
|
||||
EigenHdf5IOTest<TextWriter, TextReader>(".dat");
|
||||
std::cout << "\n==== detailed xml tensor tests (Grid::EigenIO)" << std::endl;
|
||||
EigenHdf5IOTest<XmlWriter, XmlReader>(".xml");
|
||||
|
||||
std::cout << "\n==== vector flattening/reconstruction" << std::endl;
|
||||
typedef std::vector<std::vector<std::vector<double>>> vec3d;
|
||||
|
Loading…
Reference in New Issue
Block a user