1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Merge branch 'feature/distil' of https://github.com/mmphys/Grid into feature/distil

This commit is contained in:
Felix Erben 2019-02-26 15:57:09 +00:00
commit 50b6db75da
5 changed files with 297 additions and 37 deletions

View File

@ -101,6 +101,186 @@ public:
#endif
};
/*
template <class FImpl>
template <typename TensorType>
void A2Autils<FImpl>::BaryonField(TensorType &mat,
const FermionField *one,
const FermionField *two,
const FermionField *three,
std::vector<Gamma::Algebra> gammaA,
std::vector<Gamma::Algebra> gammaB,
const std::vector<ComplexField > &mom,
int orthogdim, double *t_kernel, double *t_gsum)
{
typedef typename FImpl::SiteSpinor vobj;
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
int oneBlock = mat.dimension(3);
int twoBlock = mat.dimension(4);
int threeBlock = mat.dimension(5);
GridBase *grid = one[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammaA.size();
assert (Ngamma = gammaB.size()); // Only combinatin of two gammas gives correct operator!
int Nmom = mom.size();
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*oneBlock*twoBlock*threeBlock*Nmom;
int MFlvol = ld*oneBlock*twoBlock*threeBlock*Nmom;
Vector<SpinMatrix_v > lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++){
lvSum[r] = zero;
}
Vector<SpinMatrix_s > lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[r]=scalar_type(0.0);
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
// potentially wasting cores here if local time extent too small
if (t_kernel) *t_kernel = -usecond();
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
// first, the diquark two*gammaB*three
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int j=0;j<twoBlock;j++){
auto two_j = two[j]._odata[ss];
for(int k=0;k<threeBlock;k++){
auto three_k = three[j]._odata[ss];
SpinMatrix_v vv;
for(int s1=0;s1<Ns;s1++){
for(int s2=0;s2<Ns;s2++){
vv()(s1,s2)() = two_j()(s2)(0) * three_k()(s1)(0) //make this a colorMatrix for the diquark???
+ two_j()(s2)(1) * three_k()(s1)(1)
+ two_j()(s2)(2) * three_k()(s1)(2);
}}
// After getting the sitewise product do the mom phase loop
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
for ( int m=0;m<Nmom;m++){
int idx = m+base;
auto phase = mom[m]._odata[ss];
mac(&lvSum[idx],&vv,&phase);
}
}
}
}
}
}
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt=0;rt<rd;rt++){
std::vector<int> icoor(Nd);
std::vector<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int m=0;m<Nmom;m++){
int ij_rdx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}}}
}
if (t_kernel) *t_kernel += usecond();
assert(mat.dimension(0) == Nmom);
assert(mat.dimension(1) == Ngamma);
assert(mat.dimension(2) == Nt);
// ld loop and local only??
int pd = grid->_processors[orthogdim];
int pc = grid->_processor_coor[orthogdim];
parallel_for_nest2(int lt=0;lt<ld;lt++)
{
for(int pt=0;pt<pd;pt++){
int t = lt + pt*ld;
if (pt == pc){
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int m=0;m<Nmom;m++){
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
for(int mu=0;mu<Ngamma;mu++){
// this is a bit slow
mat(m,mu,t,i,j) = trace(lsSum[ij_dx]*Gamma(gammas[mu]));
}
}
}
}
} else {
const scalar_type zz(0.0);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int mu=0;mu<Ngamma;mu++){
for(int m=0;m<Nmom;m++){
mat(m,mu,t,i,j) =zz;
}
}
}
}
}
}
}
////////////////////////////////////////////////////////////////////
// This global sum is taking as much as 50% of time on 16 nodes
// Vector size is 7 x 16 x 32 x 16 x 16 x sizeof(complex) = 2MB - 60MB depending on volume
// Healthy size that should suffice
////////////////////////////////////////////////////////////////////
if (t_gsum) *t_gsum = -usecond();
grid->GlobalSumVector(&mat(0,0,0,0,0),Nmom*Ngamma*Nt*Lblock*Rblock);
if (t_gsum) *t_gsum += usecond();
}
*/
template <class FImpl>
template <typename TensorType>
void A2Autils<FImpl>::MesonField(TensorType &mat,

View File

@ -172,7 +172,7 @@ namespace Grid {
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_scalar<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank_non_trivial> &MyIndex)
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank> &MyIndex)
{
lambda( scalar, Seq++, MyIndex );
}
@ -180,8 +180,8 @@ namespace Grid {
// for_all helper function to call the lambda
template <typename ETensor, typename Lambda>
typename std::enable_if<EigenIO::is_tensor_of_container<ETensor>::value, void>::type
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index Seq,
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank_non_trivial> &MyIndex)
for_all_do_lambda( Lambda lambda, typename ETensor::Scalar &scalar, typename ETensor::Index &Seq,
std::array<std::size_t, ETensor::NumIndices + EigenIO::Traits<typename ETensor::Scalar>::rank> &MyIndex)
{
using Scalar = typename ETensor::Scalar; // This could be a Container - we'll check later
const auto InnerRank = EigenIO::Traits<Scalar>::rank_non_trivial;
@ -190,7 +190,7 @@ namespace Grid {
lambda(Source, Seq++, MyIndex );
// Now increment SubIndex
for( auto i = InnerRank - 1; i != -1 && ++MyIndex[rank + i] == EigenIO::Traits<Scalar>::DimensionNT(i); i-- )
MyIndex[i] = 0;
MyIndex[rank + i] = 0;
}
}
@ -206,7 +206,7 @@ namespace Grid {
assert( NumScalars > 0 );
using Index = typename ETensor::Index;
Index ScalarElementCount{1};
const auto InnerRank = EigenIO::Traits<Scalar>::rank_non_trivial;
const auto InnerRank = EigenIO::Traits<Scalar>::rank;
const auto rank{ETensor::NumIndices};
std::array<std::size_t, rank + InnerRank> Dims;
for(auto i = 0; i < rank; i++ ) {
@ -218,11 +218,11 @@ namespace Grid {
}
// Check that the number of containers is correct ... and we didn't lose anything in conversions
assert( NumScalars == ScalarElementCount );
// If the Scalar is actually a container, add the inner Scalar's non-trivial dimensions
// If the Scalar is actually a container, add the inner Scalar's dimensions
size_t InnerScalarCount{1};
for(auto i = 0; i < InnerRank; i++ ) {
auto dim = EigenIO::Traits<Scalar>::DimensionNT(i);
assert( dim > 1 );
auto dim = EigenIO::Traits<Scalar>::Dimension(i);
assert( dim > 0 );
Dims[rank + i] = static_cast<std::size_t>(dim);
assert( Dims[rank + i] == dim ); // check we didn't lose anything in the conversion
InnerScalarCount *= dim;
@ -242,11 +242,12 @@ namespace Grid {
} else {
for( auto i = 0; i < rank && ++MyIndex[i] == Dims[i]; i++ )
MyIndex[i] = 0;
Seq = 0;
size_t NewSeq = 0;
for( auto i = 0; i < rank + InnerRank ; i++ ) {
Seq *= Dims[i];
Seq += MyIndex[i];
NewSeq *= Dims[i];
NewSeq += MyIndex[i];
}
Seq = static_cast<Index>( NewSeq );
}
pScalar++;
}
@ -271,7 +272,7 @@ namespace Grid {
{
using Traits = EigenIO::Traits<typename ETensor::Scalar>;
using scalar_type = typename Traits::scalar_type;
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank_non_trivial> &Dims ) {
for_all( ET, [&](scalar_type &c, typename ETensor::Index n, const std::array<size_t, ETensor::NumIndices + Traits::rank> &Dims ) {
c = Inc * static_cast<typename RealType<scalar_type>::type>(n);
} );
}
@ -291,7 +292,7 @@ namespace Grid {
std::cout << pName;
for( auto i = 0 ; i < rank; i++ ) std::cout << "[" << dims[i] << "]";
std::cout << " in memory order:" << std::endl;
for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::array<size_t, T::NumIndices + Traits::rank_non_trivial> &Dims ){
for_all( t, [&](typename Traits::scalar_type &c, typename T::Index index, const std::array<size_t, T::NumIndices + Traits::rank> &Dims ){
std::cout << " ";
for( auto dim : Dims )
std::cout << "[" << dim << "]";

View File

@ -51,6 +51,8 @@ namespace Grid
void writeDefault(const std::string &s, const U &x);
template <typename U>
void writeDefault(const std::string &s, const std::vector<U> &x);
template <typename U>
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
private:
void indent(void);
private:
@ -69,6 +71,8 @@ namespace Grid
void readDefault(const std::string &s, U &output);
template <typename U>
void readDefault(const std::string &s, std::vector<U> &output);
template <typename U>
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
private:
void checkIndent(void);
private:
@ -95,7 +99,18 @@ namespace Grid
write(s, x[i]);
}
}
template <typename U>
void TextWriter::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
{
uint64_t Rank = Dimensions.size();
write(s, Rank);
for( uint64_t d : Dimensions )
write(s, d);
while( NumElements-- )
write(s, *pDataRowMajor++);
}
// Reader template implementation ////////////////////////////////////////////
template <typename U>
void TextReader::readDefault(const std::string &s, U &output)
@ -121,6 +136,23 @@ namespace Grid
read("", output[i]);
}
}
template <typename U>
void TextReader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
{
const char sz[] = "";
uint64_t Rank;
read(sz, Rank);
dim.resize( Rank );
size_t NumElements = 1;
for( auto &d : dim ) {
read(sz, d);
NumElements *= d;
}
buf.resize( NumElements );
for( auto &x : buf )
read(s, x);
}
}
#endif

View File

@ -57,6 +57,8 @@ namespace Grid
void writeDefault(const std::string &s, const U &x);
template <typename U>
void writeDefault(const std::string &s, const std::vector<U> &x);
template <typename U>
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
std::string docString(void);
std::string string(void);
private:
@ -79,6 +81,8 @@ namespace Grid
void readDefault(const std::string &s, U &output);
template <typename U>
void readDefault(const std::string &s, std::vector<U> &output);
template <typename U>
void readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim);
void readCurrentSubtree(std::string &s);
private:
void checkParse(const pugi::xml_parse_result &result, const std::string name);
@ -122,13 +126,30 @@ namespace Grid
void XmlWriter::writeDefault(const std::string &s, const std::vector<U> &x)
{
push(s);
for (auto &x_i: x)
for( auto &u : x )
{
write("elem", x_i);
write("elem", u);
}
pop();
}
template <typename U>
void XmlWriter::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
{
push(s);
size_t count = 1;
const size_t Rank = Dimensions.size();
write("rank", Rank );
for( auto d : Dimensions ) {
write("dim", d);
count *= d;
}
assert( count == NumElements && "XmlIO : element count doesn't match dimensions" );
while (NumElements--)
write("elem", *pDataRowMajor++);
pop();
}
// Reader template implementation ////////////////////////////////////////////
template <typename U>
void XmlReader::readDefault(const std::string &s, U &output)
@ -145,25 +166,47 @@ namespace Grid
template <typename U>
void XmlReader::readDefault(const std::string &s, std::vector<U> &output)
{
std::string buf;
unsigned int i = 0;
if (!push(s))
{
std::cout << GridLogWarning << "XML: cannot open node '" << s << "'";
std::cout << std::endl;
return;
} else {
for(unsigned int i = 0; node_.child("elem"); )
{
output.resize(i + 1);
read("elem", output[i++]);
node_.child("elem").set_name("elem-done");
}
pop();
}
}
template <typename U>
void XmlReader::readMultiDim(const std::string &s, std::vector<U> &buf, std::vector<size_t> &dim)
{
if (!push(s))
{
std::cout << GridLogWarning << "XML: cannot open node '" << s << "'";
std::cout << std::endl;
} else {
size_t Rank;
read("rank", Rank);
dim.resize( Rank );
size_t NumElements = 1;
for( auto &d : dim )
{
read("dim", d);
node_.child("dim").set_name("dim-done");
NumElements *= d;
}
buf.resize( NumElements );
for( auto &x : buf )
{
read("elem", x);
node_.child("elem").set_name("elem-done");
}
pop();
}
while (node_.child("elem"))
{
output.resize(i + 1);
read("elem", output[i]);
node_.child("elem").set_name("elem-done");
i++;
}
pop();
}
}
#endif

View File

@ -86,7 +86,7 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam
// writer needs to be destroyed so that writing physically happens
{
W writer(filename);
writer.setPrecision(std::numeric_limits<double>::digits10 + 1);
write(writer, tag , object);
}
@ -113,7 +113,7 @@ typedef Eigen::Tensor<TestScalar, 3, Eigen::StorageOptions::RowMajor> TensorRank
typedef Eigen::TensorFixedSize<TestScalar, Eigen::Sizes<9,4,2>, Eigen::StorageOptions::RowMajor> Tensor_9_4_2;
typedef std::vector<Tensor_9_4_2> aTensor_9_4_2;
typedef Eigen::TensorFixedSize<SpinColourVector, Eigen::Sizes<6,5>> LSCTensor;
#ifdef DEBUG
#ifndef DEBUG
typedef Eigen::TensorFixedSize<iMatrix<iVector<iMatrix<iVector<LorentzColourMatrix,5>,2>,7>,3>, Eigen::Sizes<2,4,11,10,9>, Eigen::StorageOptions::RowMajor> LCMTensor;
#endif
@ -141,14 +141,14 @@ public:
, tensorRank3(7,3,2)
, atensor_9_4_2(3)
{
Grid_complex<double> Flag{1,-3.1415927};
//Grid_complex<double> Flag{1,-3.1415927}; // Gives errors on readback for text types
Grid_complex<double> Flag{1,-1};
SequentialInit(Perambulator, Flag);
SequentialInit(Perambulator2, Flag);
SequentialInit(tensorRank5UShort);
SequentialInit(tensorRank3, Flag);
SequentialInit(tensor_9_4_2, Flag);
for( auto &t : atensor_9_4_2 )
SequentialInit(t, Flag);
for( auto &t : atensor_9_4_2 ) SequentialInit(t, Flag);
SequentialInit( MyLSCTensor );
}
};
@ -193,7 +193,7 @@ void EigenHdf5IOTest(const char * pszExtension)
}
TensorWriteRead ( LSCTensor )
TensorWriteReadLarge( PerambIOTestClass )
#ifdef DEBUG
#ifndef DEBUG
std::cout << "sizeof( LCMTensor ) = " << sizeof( LCMTensor ) / 1024 / 1024 << " MB" << std::endl;
TensorWriteReadLarge ( LCMTensor )
// Also write > 4GB of complex numbers (I suspect this will fail inside Hdf5)
@ -297,6 +297,10 @@ int main(int argc,char **argv)
#endif
std::cout << "\n==== detailed binary tensor tests (Grid::EigenIO)" << std::endl;
EigenHdf5IOTest<BinaryWriter, BinaryReader>(".bin");
std::cout << "\n==== detailed text tensor tests (Grid::EigenIO)" << std::endl;
EigenHdf5IOTest<TextWriter, TextReader>(".dat");
std::cout << "\n==== detailed xml tensor tests (Grid::EigenIO)" << std::endl;
EigenHdf5IOTest<XmlWriter, XmlReader>(".xml");
std::cout << "\n==== vector flattening/reconstruction" << std::endl;
typedef std::vector<std::vector<std::vector<double>>> vec3d;