1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-04 19:25:56 +01:00

Hadrons: genetic scheduler improvement

This commit is contained in:
Antonin Portelli 2016-12-07 09:00:45 +09:00
parent 49c3eeb378
commit 51322da6f8
2 changed files with 102 additions and 52 deletions

View File

@ -61,10 +61,12 @@ public:
friend std::ostream & operator<<(std::ostream &out,
const GeneticScheduler<T> &s)
{
out << "[";
for (auto &p: s.population_)
{
out << p.second << ": " << p.first << std::endl;
out << p.first << ", ";
}
out << "\b\b]";
return out;
}
@ -72,10 +74,10 @@ private:
// randomly initialize population
void initPopulation(void);
// genetic operators
const std::vector<T> & selection(void);
void crossover(const std::vector<T> &c1,
const std::vector<T> &c2);
void mutation(std::vector<T> &c);
std::vector<T> * select1(void);
std::pair<std::vector<T> *, std::vector<T> *> select2(void);
void crossover(void);
void mutation(void);
private:
Graph<T> &graph_;
const ObjFunc &func_;
@ -115,38 +117,35 @@ int GeneticScheduler<T>::getMinValue(void)
template <typename T>
void GeneticScheduler<T>::nextGeneration(void)
{
std::uniform_real_distribution<double> dis(0., 1.);
// random initialization of the population if necessary
if (population_.size() != par_.popSize)
{
initPopulation();
}
// mating
for (unsigned int i = 0; i < par_.popSize/2; ++i)
{
auto &p1 = selection(), &p2 = selection();
crossover(p1, p2);
}
LOG(Debug) << "Starting population:\n" << *this << std::endl;
// random mutations
auto buf = population_;
population_.clear();
for (auto &c: buf)
PARALLEL_FOR_LOOP
for (unsigned int i = 0; i < par_.popSize; ++i)
{
if (dis(gen_) < par_.mutationRate)
{
mutation(c.second);
}
population_.emplace(func_(c.second), c.second);
mutation();
}
LOG(Debug) << "After mutations:\n" << *this << std::endl;
// mating
PARALLEL_FOR_LOOP
for (unsigned int i = 0; i < par_.popSize/2; ++i)
{
crossover();
}
LOG(Debug) << "After mating:\n" << *this << std::endl;
// grim reaper
auto it = population_.begin();
std::advance(it, par_.popSize);
population_.erase(it, population_.end());
LOG(Debug) << "After grim reaper:\n" << *this << std::endl;
}
// randomly initialize population //////////////////////////////////////////////
@ -164,37 +163,66 @@ void GeneticScheduler<T>::initPopulation(void)
// genetic operators ///////////////////////////////////////////////////////////
template <typename T>
const std::vector<T> & GeneticScheduler<T>::selection(void)
std::vector<T> * GeneticScheduler<T>::select1(void)
{
std::uniform_int_distribution<unsigned int> pdis(0, population_.size() - 1);
auto it = population_.begin();
std::advance(it, pdis(gen_));
return &(it->second);
}
template <typename T>
std::pair<std::vector<T> *, std::vector<T> *> GeneticScheduler<T>::select2(void)
{
std::vector<double> prob;
unsigned int ind;
std::vector<T> *p1, *p2;
for (auto &c: population_)
{
prob.push_back(1./c.first);
}
std::discrete_distribution<unsigned int> dis(prob.begin(), prob.end());
auto rIt = population_.begin();
std::advance(rIt, dis(gen_));
do
{
double probCpy;
std::discrete_distribution<unsigned int> dis1(prob.begin(), prob.end());
auto rIt = population_.begin();
ind = dis1(gen_);
std::advance(rIt, ind);
p1 = &(rIt->second);
probCpy = prob[ind];
prob[ind] = 0.;
std::discrete_distribution<unsigned int> dis2(prob.begin(), prob.end());
rIt = population_.begin();
std::advance(rIt, dis2(gen_));
p2 = &(rIt->second);
prob[ind] = probCpy;
} while (p1 == p2);
return rIt->second;
return std::make_pair(p1, p2);
}
template <typename T>
void GeneticScheduler<T>::crossover(const std::vector<T> &p1,
const std::vector<T> &p2)
void GeneticScheduler<T>::crossover(void)
{
std::uniform_int_distribution<unsigned int> dis(0, p1.size() - 1);
unsigned int cut = dis(gen_);
auto p = select2();
auto &p1 = *(p.first),
&p2 = *(p.second);
std::uniform_int_distribution<unsigned int> dis2(0, p1.size() - 1);
unsigned int cut = dis2(gen_);
std::vector<T> c1, c2, buf;
auto cross = [&buf, cut](std::vector<T> &c, const std::vector<T> &p1,
const std::vector<T> &p2)
{
buf = p2;
buf = p1;
for (unsigned int i = 0; i < cut; ++i)
{
c.push_back(p1[i]);
buf.erase(std::find(buf.begin(), buf.end(), p1[i]));
c.push_back(p2[i]);
buf.erase(std::find(buf.begin(), buf.end(), p2[i]));
}
for (unsigned int i = 0; i < buf.size(); ++i)
{
@ -204,31 +232,51 @@ void GeneticScheduler<T>::crossover(const std::vector<T> &p1,
cross(c1, p1, p2);
cross(c2, p2, p1);
population_.emplace(func_(c1), c1);
population_.emplace(func_(c2), c2);
PARALLEL_CRITICAL
{
population_.emplace(func_(c1), c1);
population_.emplace(func_(c2), c2);
}
}
template <typename T>
void GeneticScheduler<T>::mutation(std::vector<T> &c)
void GeneticScheduler<T>::mutation(void)
{
std::uniform_int_distribution<unsigned int> dis(0, c.size() - 1);
unsigned int cut = dis(gen_);
Graph<T> g = graph_;
std::vector<T> buf;
std::uniform_real_distribution<double> mdis(0., 1.);
for (unsigned int i = cut; i < c.size(); ++i)
if (mdis(gen_) < par_.mutationRate)
{
g.removeVertex(c[i]);
auto &c = *select1();
std::uniform_int_distribution<unsigned int> cdis(0, c.size() - 1);
unsigned int cut = cdis(gen_);
std::vector<T> buf1, buf2;
Graph<T> g1 = graph_, g2 = graph_;
for (unsigned int i = 0; i < cut; ++i)
{
g1.removeVertex(c[i]);
}
for (unsigned int i = cut; i < c.size(); ++i)
{
g2.removeVertex(c[i]);
}
if (g1.size() > 0)
{
buf1 = g1.topoSort(gen_);
}
if (g2.size() > 0)
{
buf2 = g2.topoSort(gen_);
}
for (unsigned int i = cut; i < c.size(); ++i)
{
buf2.push_back(buf1[i - cut]);
}
PARALLEL_CRITICAL
{
population_.emplace(func_(buf2), buf2);
}
}
if (g.size() > 0)
{
buf = g.topoSort(gen_);
}
for (unsigned int i = cut; i < c.size(); ++i)
{
buf.push_back(c[i]);
}
c = buf;
}
END_HADRONS_NAMESPACE

View File

@ -46,11 +46,13 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#endif
#define PARALLEL_NESTED_LOOP2 _Pragma("omp parallel for collapse(2)")
#define PARALLEL_REGION _Pragma("omp parallel")
#define PARALLEL_CRITICAL _Pragma("omp critical")
#else
#define PARALLEL_FOR_LOOP
#define PARALLEL_FOR_LOOP_INTERN
#define PARALLEL_NESTED_LOOP2
#define PARALLEL_REGION
#define PARALLEL_CRITICAL
#endif
namespace Grid {