1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Save current state

This commit is contained in:
Daniel Richtmann 2017-07-17 21:02:10 +02:00 committed by Daniel Richtmann
parent 27936900e6
commit 53cfa44d7a
No known key found for this signature in database
GPG Key ID: B33C490AF0772057
3 changed files with 281 additions and 0 deletions

View File

@ -47,6 +47,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h> #include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h> #include <Grid/algorithms/iterative/BlockConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h> #include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
#include <Grid/algorithms/iterative/GeneralisedMinimalResidual.h>
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h> #include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
#include <Grid/algorithms/CoarsenedMatrix.h> #include <Grid/algorithms/CoarsenedMatrix.h>
#include <Grid/algorithms/FFT.h> #include <Grid/algorithms/FFT.h>

View File

@ -0,0 +1,202 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: lib/algorithms/iterative/GeneralisedMinimalResidual.h
Copyright (C) 2015
Copyright (C) 2016
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H
#define GRID_GENERALISED_MINIMAL_RESIDUAL_H
///////////////////////////////////////////////////////////////////////////////////////////////////////
// from Y. Saad - Iterative Methods for Sparse Linear Systems, PP 172
// Compute r0 = b Ax0 , β := ||r0||2 , and v1 := r0 /β
// For j = 1, 2, ..., m Do:
// Compute wj := Avj
// For i = 1, ..., j Do:
// hij := (wj , vi)
// wj := wj hij vi
// EndDo
// hj+1,j = ||wj||2 . If hj+1,j = 0 set m := j and go to HERE
// vj+1 = wj /hj+1,j
// EndDo
// Define the (m + 1) × m Hessenberg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m. [HERE]
// Compute ym the minimizer of ||βe1 H̄m y||2 and xm = x0 + Vm ym.
///////////////////////////////////////////////////////////////////////////////////////////////////////
// want to solve Ax = b -> A = LinOp, psi = x, b = src
namespace Grid
{
template< class Field >
class GeneralisedMinimalResidual : public OperatorFunction< Field >
{
public:
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
// defaults to True.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; // Number of iterations the GMRES took to
// finish. Filled in upon completion
GeneralisedMinimalResidual( RealD tol,
Integer maxit,
bool err_on_no_conv = true )
: Tolerance( tol )
, MaxIterations( maxit )
, ErrorOnNoConverge( err_on_no_conv ){};
// want to solve Ax = b -> A = LinOp, psi = x, b = src
void operator()( LinearOperatorBase< Field > &LinOp,
const Field & src,
Field & psi )
{
std::cout << GridLogMessage
<< "GeneralisedMinimalResidual: Start of operator()"
<< std::endl;
psi.checkerboard = src.checkerboard;
conformable( psi, src );
Field r( src );
Field mmv( src );
std::vector< Field > v( MaxIterations + 1, src );
RealD beta{};
RealD b{};
RealD d{};
Eigen::MatrixXcd H
= Eigen::MatrixXcd::Zero( MaxIterations + 1, MaxIterations );
// Compute r0 = b Ax0 , β := ||r0||2 , and v1 := r0 /β
LinOp.Op( psi, mmv );
r = src - mmv;
beta = norm2( r );
V[ 0 ] = ( 1 / beta ) * r;
for( auto j = 0; j < MaxIterations; ++j )
{
LinOp.Op( V[ j ], mmv );
for( auto i = 0; i < j; ++i )
{
std::cout
<< GridLogMessage
<< "GeneralisedMinimalResidual: End of inner iteration "
<< i << std::endl;
H( i, j ) = innerProduct( mmv, v[ i ] );
mmv = mmv - H( i, j ) * V[ i ];
}
H( j + 1, j ) = norm2( mmv );
std::cout << GridLogMessage << "GeneralisedMinimalResidual: H"
<< j + 1 << "," << j << "= " << H( j + 1, j )
<< std::endl;
if( H( j + 1, j ) == 0. )
{
IterationsToComplete = j;
break;
}
V[ j + 1 ] = ( 1. / H( j + 1, j ) ) * mmv;
std::cout << GridLogMessage
<< "GeneralisedMinimalResidual: End of outer iteration "
<< j << std::endl;
}
std::cout << GridLogMessage
<< "GeneralisedMinimalResidual: End of operator()"
<< std::endl;
}
};
}
#endif
// Note: The DD-αAMG codebase turns around the Hessenberg matrix
void arnoldiStep()
{
w = D * V[ j ];
for( auto i = 0; i <= j; ++i )
H( i, j ) = innerProduct( V[ j + 1 ], w );
w = w - H( i, j ) * V[ i ];
H( j + 1, j ) = norm2( w );
V[ j + 1 ] = w / H( j + 1, j );
}
void qr_update_PRECISION()
{
// update QR factorization
// apply previous Givens rotation
for( auto i = 0; i < j; i++ )
{
beta = -s[ i ] * H( i, j ) + c[ i ] * H( i + 1, j );
H( i, j ) = std::conj( c[ i ] ) * H( i, j )
+ std::conj( s[ i ] ) * H( i + 1, j );
H( i + 1, j ) = beta;
}
// compute current Givens rotation
beta = sqrt( std::norm( H( j, j ) ) + std::norm( H( j, j + 1 ) ) );
s[ j ] = H( j + 1, j ) / beta;
c[ j ] = H( j, j ) / beta;
// update right column
gamma[ j + 1 ] = -s[ j ] * gamma[ j ];
gamma[ j ] = std::conj( c[ j ] ) * gamma[ j ];
// apply current Givens rotation
H( j, j ) = beta;
H( j + 1, j ) = 0;
}
// check
void compute_solution_PRECISION()
{
for( auto i = j; i >= 0; i-- )
{
y[ i ] = gamma[ i ];
for( auto k = i + 1; k <= j; k++ )
y[ i ] -= H( i, k ) * y[ k ];
y[ i ] /= H( i, i );
}
if( true ) // TODO ???
{
for( i = 0; i <= j; i++ )
x = x + V[ i ] * y[ i ];
}
else
{
x = y[ 0 ] * V[ 0 ];
for( i = 1; i <= j; i++ )
x = x + V[ i ] * y[ i ];
}
}

View File

@ -0,0 +1,78 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_wilson_cg_unprec.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeFermion src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
LatticeFermion result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.5;
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
MdagMLinearOperator<WilsonFermionR,LatticeFermion> HermOp(Dw);
GeneralisedMinimalResidual<LatticeFermion> GMRES(1.0e-8,10000);
GMRES(HermOp,src,result);
Grid_finalize();
}