1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Simplified tests

This commit is contained in:
Michael Marshall 2019-01-24 18:50:18 +00:00
parent f92ed659a7
commit 577cdf1d72
2 changed files with 78 additions and 296 deletions

View File

@ -79,17 +79,17 @@ struct LanczosParameters: Serializable {
template <class ReaderClass> LanczosParameters(Reader<ReaderClass>& Reader){read(Reader,"Lanczos",*this);}
};
struct DistilParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(DistilParameters,
int, TI,
int, LI,
int, Nnoise,
int, Ls, // For makeFiveDimGrid
int, tSrc)
DistilParameters() = default;
template <class ReaderClass> DistilParameters(Reader<ReaderClass>& Reader){read(Reader,"Distil",*this);}
};
/*struct DistilParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(DistilParameters
,int, TI
,int, LI
,int, Nnoise
,int, tSrc
)//,int, Ls) // For makeFiveDimGrid
DistilParameters() = default;
template <class ReaderClass> DistilParameters(Reader<ReaderClass>& Reader){read(Reader,"Distil",*this);}
};
struct SolverParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(SolverParameters,
double, CGPrecision,
@ -98,21 +98,21 @@ struct SolverParameters: Serializable {
double, M5)
SolverParameters() = default;
template <class ReaderClass> SolverParameters(Reader<ReaderClass>& Reader){read(Reader,"Solver",*this);}
};
};*/
// These are the actual parameters passed to the module during construction
class LapEvecPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LapEvecPar,
std::string, gauge,
std::string, EigenPackName,
StoutParameters, Stout,
ChebyshevParameters, Cheby,
LanczosParameters, Lanczos,
DistilParameters, Distil,
SolverParameters, Solver);
GRID_SERIALIZABLE_CLASS_MEMBERS(LapEvecPar
,std::string, gauge
//,std::string, EigenPackName
,StoutParameters, Stout
,ChebyshevParameters, Cheby
,LanczosParameters, Lanczos
//,DistilParameters, Distil
)//,SolverParameters, Solver)
};
/******************************************************************************
@ -231,69 +231,69 @@ void TLapEvec<FImpl>::Cleanup(void)
template <typename FImpl>
void TLapEvec<FImpl>::execute(void)
{
LOG(Message) << "execute() : start" << std::endl;
LOG(Message) << "execute() : start for " << getName() << std::endl;
// Alii for parameters
const int &TI{par().Distil.TI};
const int &LI{par().Distil.LI};
const int &nnoise{par().Distil.Nnoise};
const int &tsrc{par().Distil.tSrc};
const LanczosParameters &LPar{par().Lanczos};
const int &nvec{LPar.Nvec};
const bool exact_distillation{TI==Nt && LI==nvec};
const bool full_tdil{TI==Nt};
const int &Nt_inv{full_tdil ? 1 : TI};
//const int &TI{par().Distil.TI};
//const int &LI{par().Distil.LI};
//const int &nnoise{par().Distil.Nnoise};
//const int &tsrc{par().Distil.tSrc};
const ChebyshevParameters &ChebPar{par().Cheby};
const LanczosParameters &LPar{par().Lanczos};
const int &nvec{LPar.Nvec};
//const bool exact_distillation{TI==Nt && LI==nvec};
//const bool full_tdil{TI==Nt};
//const int &Nt_inv{full_tdil ? 1 : TI};
// Assertions on the parameters we read
assert(TI>1);
assert(LI>1);
if(exact_distillation)
assert(nnoise==1);
else
assert(nnoise>1);
//assert(TI>1);
//assert(LI>1);
//if(exact_distillation)
//assert(nnoise==1);
//else
//assert(nnoise>1);
// Debugging only
//envGetTmp(GaugeField, Umu);
auto &Umu = envGet(GaugeField, par().gauge);
if((1)) {
const std::vector<int> seeds({1, 2, 3, 4, 5});
GridParallelRNG pRNG4d(gridHD);
pRNG4d.SeedFixedIntegers(seeds);
std::cout << GridLogMessage << "now hot config" << std::endl;
SU<Nc>::HotConfiguration(pRNG4d, Umu);
std::cout << GridLogMessage << "hot cfg done." << std::endl;
envGetTmp(GaugeField, Umu_smear);
if((0)) {
//const std::vector<int> seeds({1, 2, 3, 4, 5});
//GridParallelRNG pRNG4d(gridHD);
//pRNG4d.SeedFixedIntegers(seeds);
//std::cout << GridLogMessage << "now hot config" << std::endl;
//SU<Nc>::HotConfiguration(pRNG4d, Umu);
//std::cout << GridLogMessage << "hot cfg done." << std::endl;
// Set up the SAME gauge field on every time plane
// int Nt = grid4d->gDimensions()[Tdir];
Grid_unquiesce_nodes();
auto Usft = Umu;
Umu_smear = Umu;
Lattice<iScalar<vInteger> > coor(gridHD);
LatticeCoordinate(coor,Tdir);
for(int t=1;t<Nt;t++){
// t=1
// Umu Usft
// Umu Umu_smear
// 0,1,2,3,4,5,6,7 -> 7,0,1,2,3,4,5,6 t=1
// 0,0,2,3,4,5,6,7 6,7,0,1,2,3,4,5 t=2
// 0,0,0,3,4,5,6,7 5,6,7,0,1,2,3,4 t=3
//...
Usft = Cshift(Usft,Tdir,-1);
Umu = where(coor==t,Usft,Umu);
Umu_smear = Cshift(Umu_smear,Tdir,-1);
Umu = where(coor==t,Umu_smear,Umu);
}
// std::cout << "Umu is "<<Umu<<std::endl;
}
// Stout smearing
envGetTmp(GaugeField, Umu_smear);
Umu_smear = Umu;
LOG(Message) << "Initial plaquette: " << WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu) << std::endl;
{
const StoutParameters &Stout{par().Stout};
envGetTmp(GaugeField, Umu_stout);
const int &Steps{par().Stout.steps};
Smear_Stout<PeriodicGimplR> LS(par().Stout.parm);
for (int i = 0; i < Steps; i++) {
Smear_Stout<PeriodicGimplR> LS(Stout.parm);
for (int i = 0; i < Stout.steps; i++) {
LS.smear(Umu_stout, Umu_smear);
Umu_smear = Umu_stout;
}
@ -314,10 +314,9 @@ void TLapEvec<FImpl>::execute(void)
// Invert Peardon Nabla operator separately on each time-slice
////////////////////////////////////////////////////////////////////////
std::string sEigenPackName(par().EigenPackName);
std::string sEigenPackName(getName());
bool bReturnValue = true;
auto & eig4d = envGet(DistilEP, getName() );
eig4d.resize(nvec,gridHD);
envGetTmp(std::vector<DistilEP>, eig); // Eigenpack for each timeslice
envGetTmp(LatticeGaugeField, UmuNoTime); // Gauge field without time dimension
envGetTmp(LatticeColourVector, src);
@ -330,9 +329,7 @@ void TLapEvec<FImpl>::execute(void)
std::cout << GridLogMessage << " Compute eigenpack, Timeslice = " << t << std::endl;
std::cout << GridLogMessage << "------------------------------------------------------------" << std::endl;
LOG(Message) << "eig.size()=" << eig.size() << std::endl;
eig[t].resize(LPar.Nk+LPar.Np,gridLD);
LOG(Message) << "After eig[t].resize" << std::endl;
// Construct smearing operator
ExtractSliceLocal(UmuNoTime,Umu_smear,0,t-Ntfirst,Grid::QCD::Tdir); // switch to 3d/4d objects

View File

@ -34,19 +34,11 @@ using namespace Grid;
using namespace Hadrons;
/////////////////////////////////////////////////////////////
// This is copied from the free propagator test
// Just used as an example - will be deleted
// Test creation of laplacian eigenvectors
/////////////////////////////////////////////////////////////
void free_prop(Application &application)
void test_Global(Application &application)
{
std::vector<std::string> flavour = {"h"}; //{"l", "s", "c1", "c2", "c3"};
std::vector<double> mass = {.2}; //{.01, .04, .2 , .25 , .3 };
std::vector<std::string> lepton_flavour = {"mu"};
std::vector<double> lepton_mass = {.2};
unsigned int nt = GridDefaultLatt()[Tp];
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1500;
@ -54,168 +46,6 @@ void free_prop(Application &application)
globalPar.trajCounter.step = 20;
globalPar.runId = "test";
application.setPar(globalPar);
// gauge field
application.createModule<MGauge::Unit>("gauge");
// unit gauge field for lepton
application.createModule<MGauge::Unit>("free_gauge");
// pt source
MSource::Point::Par ptPar;
ptPar.position = "0 0 0 0";
application.createModule<MSource::Point>("pt", ptPar);
// sink
MSink::Point::Par sinkPar;
sinkPar.mom = "0 0 0";
application.createModule<MSink::ScalarPoint>("sink", sinkPar);
// set fermion boundary conditions to be periodic space, antiperiodic time.
std::string boundary = "1 1 1 -1";
//Propagators from FFT and Feynman rules
for (unsigned int i = 0; i < lepton_mass.size(); ++i)
{
//DWF actions
MAction::DWF::Par actionPar_lep;
actionPar_lep.gauge = "free_gauge";
actionPar_lep.Ls = 8;
actionPar_lep.M5 = 1.8;
actionPar_lep.mass = lepton_mass[i];
actionPar_lep.boundary = boundary;
application.createModule<MAction::DWF>("free_DWF_" + lepton_flavour[i], actionPar_lep);
//DWF free propagators
MFermion::FreeProp::Par freePar;
freePar.source = "pt";
freePar.action = "free_DWF_" + lepton_flavour[i];
freePar.twist = "0 0 0 0.5";
freePar.mass = lepton_mass[i];
application.createModule<MFermion::FreeProp>("Lpt_" + lepton_flavour[i],
freePar);
//Wilson actions
MAction::Wilson::Par actionPar_lep_W;
actionPar_lep_W.gauge = "free_gauge";
actionPar_lep_W.mass = lepton_mass[i];
actionPar_lep_W.boundary = boundary;
application.createModule<MAction::Wilson>("free_W_" + lepton_flavour[i], actionPar_lep_W);
//Wilson free propagators
MFermion::FreeProp::Par freePar_W;
freePar_W.source = "pt";
freePar_W.action = "free_W_" + lepton_flavour[i];
freePar_W.twist = "0 0 0 0.5";
freePar_W.mass = lepton_mass[i];
application.createModule<MFermion::FreeProp>("W_Lpt_" + lepton_flavour[i],
freePar_W);
}
//Propagators from inversion
for (unsigned int i = 0; i < flavour.size(); ++i)
{
//DWF actions
MAction::DWF::Par actionPar;
actionPar.gauge = "gauge";
actionPar.Ls = 8;
actionPar.M5 = 1.8;
actionPar.mass = mass[i];
actionPar.boundary = boundary;
application.createModule<MAction::DWF>("DWF_" + flavour[i], actionPar);
// solvers
MSolver::RBPrecCG::Par solverPar;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>("CG_" + flavour[i],
solverPar);
//DWF propagators
MFermion::GaugeProp::Par quarkPar;
quarkPar.solver = "CG_" + flavour[i];
quarkPar.source = "pt";
application.createModule<MFermion::GaugeProp>("Qpt_" + flavour[i],
quarkPar);
//Wilson actions
MAction::Wilson::Par actionPar_W;
actionPar_W.gauge = "gauge";
actionPar_W.mass = mass[i];
actionPar_W.boundary = boundary;
application.createModule<MAction::Wilson>("W_" + flavour[i], actionPar_W);
// solvers
MSolver::RBPrecCG::Par solverPar_W;
solverPar_W.action = "W_" + flavour[i];
solverPar_W.residual = 1.0e-8;
solverPar_W.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>("W_CG_" + flavour[i],
solverPar_W);
//Wilson propagators
MFermion::GaugeProp::Par quarkPar_W;
quarkPar_W.solver = "W_CG_" + flavour[i];
quarkPar_W.source = "pt";
application.createModule<MFermion::GaugeProp>("W_Qpt_" + flavour[i],
quarkPar_W);
}
//2pt contraction for Propagators from FFT and Feynman rules
for (unsigned int i = 0; i < lepton_flavour.size(); ++i)
for (unsigned int j = i; j < lepton_flavour.size(); ++j)
{
//2pt function contraction DWF
MContraction::Meson::Par freemesPar;
freemesPar.output = "2pt_free/DWF_L_pt_" + lepton_flavour[i] + lepton_flavour[j];
freemesPar.q1 = "Lpt_" + lepton_flavour[i];
freemesPar.q2 = "Lpt_" + lepton_flavour[j];
freemesPar.gammas = "(Gamma5 Gamma5)";
freemesPar.sink = "sink";
application.createModule<MContraction::Meson>("meson_L_pt_"
+ lepton_flavour[i] + lepton_flavour[j],
freemesPar);
//2pt function contraction Wilson
MContraction::Meson::Par freemesPar_W;
freemesPar_W.output = "2pt_free/W_L_pt_" + lepton_flavour[i] + lepton_flavour[j];
freemesPar_W.q1 = "W_Lpt_" + lepton_flavour[i];
freemesPar_W.q2 = "W_Lpt_" + lepton_flavour[j];
freemesPar_W.gammas = "(Gamma5 Gamma5)";
freemesPar_W.sink = "sink";
application.createModule<MContraction::Meson>("W_meson_L_pt_"
+ lepton_flavour[i] + lepton_flavour[j],
freemesPar_W);
}
//2pt contraction for Propagators from inverion
for (unsigned int i = 0; i < flavour.size(); ++i)
for (unsigned int j = i; j < flavour.size(); ++j)
{
//2pt function contraction DWF
MContraction::Meson::Par mesPar;
mesPar.output = "2pt_free/DWF_pt_" + flavour[i] + flavour[j];
mesPar.q1 = "Qpt_" + flavour[i];
mesPar.q2 = "Qpt_" + flavour[j];
mesPar.gammas = "(Gamma5 Gamma5)";
mesPar.sink = "sink";
application.createModule<MContraction::Meson>("meson_pt_"
+ flavour[i] + flavour[j],
mesPar);
//2pt function contraction Wilson
MContraction::Meson::Par mesPar_W;
mesPar_W.output = "2pt_free/W_pt_" + flavour[i] + flavour[j];
mesPar_W.q1 = "W_Qpt_" + flavour[i];
mesPar_W.q2 = "W_Qpt_" + flavour[j];
mesPar_W.gammas = "(Gamma5 Gamma5)";
mesPar_W.sink = "sink";
application.createModule<MContraction::Meson>("W_meson_pt_"
+ flavour[i] + flavour[j],
mesPar_W);
}
}
/////////////////////////////////////////////////////////////
@ -225,23 +55,16 @@ void free_prop(Application &application)
void test_LapEvec(Application &application)
{
const char szGaugeName[] = "gauge";
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1500;
globalPar.trajCounter.end = 1520;
globalPar.trajCounter.step = 20;
globalPar.runId = "test";
application.setPar(globalPar);
// gauge field
application.createModule<MGauge::Random>(szGaugeName);
// Now make an instance of the LapEvec object
MDistil::LapEvecPar p;
p.gauge = szGaugeName;
//p.EigenPackName = "ePack";
p.Distil.TI = 8;
p.Distil.LI = 3;
p.Distil.Nnoise = 2;
p.Distil.tSrc = 0;
//p.Distil.TI = 8;
//p.Distil.LI = 3;
//p.Distil.Nnoise = 2;
//p.Distil.tSrc = 0;
p.Stout.steps = 3;
p.Stout.parm = 0.2;
p.Cheby.PolyOrder = 11;
@ -261,60 +84,9 @@ void test_LapEvec(Application &application)
void test_Perambulators(Application &application)
{
const unsigned int nt = GridDefaultLatt()[Tp];
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 3000;
globalPar.trajCounter.end = 3040;
globalPar.trajCounter.step = 40;
globalPar.runId = "test";
application.setPar(globalPar);
// gauge field
application.createModule<MGauge::Unit>("gauge");
// Now make an instance of the LapEvec object
application.createModule<MDistil::PerambLight>("PerambulatorsInstance");
}
/////////////////////////////////////////////////////////////
// DistilVectors
/////////////////////////////////////////////////////////////
void test_DistilVectors(Application &application)
{
const unsigned int nt = GridDefaultLatt()[Tp];
const char szGaugeName[] = "gauge";
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1500;
globalPar.trajCounter.end = 1520;
globalPar.trajCounter.step = 20;
globalPar.runId = "test";
application.setPar(globalPar);
// gauge field
application.createModule<MGauge::Random>(szGaugeName);
// Now make an instance of the LapEvec object
MDistil::LapEvecPar p;
p.gauge = szGaugeName;
//p.EigenPackName = "eigenPack";
p.Distil.TI = 8;
p.Distil.LI = 3;
p.Distil.Nnoise = 2;
p.Distil.tSrc = 0;
p.Stout.steps = 3;
p.Stout.parm = 0.2;
p.Cheby.PolyOrder = 11;
p.Cheby.alpha = 0.3;
p.Cheby.beta = 12.5;
p.Lanczos.Nvec = 5;
p.Lanczos.Nk = 6;
p.Lanczos.Np = 2;
p.Lanczos.MaxIt = 1000;
p.Lanczos.resid = 1e-2;
application.createModule<MDistil::LapEvec>("LapEvec",p);
// PerambLight parameters
MDistil::PerambLight::Par PerambPar;
PerambPar.eigenPack="LapEvec_eigenPack";
PerambPar.eigenPack="LapEvec";
PerambPar.tsrc = 0;
PerambPar.nnoise = 1;
PerambPar.LI=6;
@ -330,6 +102,13 @@ void test_DistilVectors(Application &application)
PerambPar.CGPrecision=1e-8;
PerambPar.MaxIterations=10000;
application.createModule<MDistil::PerambLight>("Peramb",PerambPar);
}
/////////////////////////////////////////////////////////////
// DistilVectors
/////////////////////////////////////////////////////////////
void test_DistilVectors(Application &application)
{
// DistilVectors parameters
MDistil::DistilVectors::Par DistilVecPar;
DistilVecPar.noise="Peramb_noise";
@ -421,16 +200,22 @@ int main(int argc, char *argv[])
// For now perform free propagator test - replace this with distillation test(s)
LOG(Message) << "====== Creating xml for test " << iTestNum << " ======" << std::endl;
const unsigned int nt = GridDefaultLatt()[Tp];
//const unsigned int nt = GridDefaultLatt()[Tp];
switch(iTestNum) {
case 0:
free_prop( application );
break;
switch(iTestNum) {
case 1:
test_Global( application );
test_LapEvec( application );
break;
default: // 2
case 2:
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
break;
default: // 3
test_Global( application );
test_LapEvec( application );
test_Perambulators( application );
test_DistilVectors( application );
break;
}