mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-09 23:45:36 +00:00
Merge pull request #412 from giltirn/patch/adaptive-wflow
Patch/adaptive wflow
This commit is contained in:
commit
584a3ee45c
@ -31,15 +31,16 @@ directory
|
|||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
|
||||||
struct TopologySmearingParameters : Serializable {
|
struct TopologySmearingParameters : Serializable {
|
||||||
GRID_SERIALIZABLE_CLASS_MEMBERS(TopologySmearingParameters,
|
GRID_SERIALIZABLE_CLASS_MEMBERS(TopologySmearingParameters,
|
||||||
int, steps,
|
|
||||||
float, step_size,
|
|
||||||
int, meas_interval,
|
int, meas_interval,
|
||||||
float, maxTau);
|
float, init_step_size,
|
||||||
|
float, maxTau,
|
||||||
|
float, tolerance);
|
||||||
|
|
||||||
TopologySmearingParameters(int s = 0, float ss = 0.0f, int mi = 0, float mT = 0.0f):
|
TopologySmearingParameters(float ss = 0.0f, int mi = 0, float mT = 0.0f, float tol = 1e-4):
|
||||||
steps(s), step_size(ss), meas_interval(mi), maxTau(mT){}
|
init_step_size(ss), meas_interval(mi), maxTau(mT), tolerance(tol){}
|
||||||
|
|
||||||
template < class ReaderClass >
|
template < class ReaderClass >
|
||||||
TopologySmearingParameters(Reader<ReaderClass>& Reader){
|
TopologySmearingParameters(Reader<ReaderClass>& Reader){
|
||||||
@ -97,8 +98,8 @@ public:
|
|||||||
|
|
||||||
if (Pars.do_smearing){
|
if (Pars.do_smearing){
|
||||||
// using wilson flow by default here
|
// using wilson flow by default here
|
||||||
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
|
WilsonFlowAdaptive<PeriodicGimplR> WF(Pars.Smearing.init_step_size, Pars.Smearing.maxTau, Pars.Smearing.tolerance, Pars.Smearing.meas_interval);
|
||||||
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
|
WF.smear(Usmear, U);
|
||||||
Real T0 = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
|
Real T0 = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
|
||||||
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
|
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
|
||||||
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
|
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
|
||||||
|
@ -33,27 +33,25 @@ directory
|
|||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
class WilsonFlow: public Smear<Gimpl>{
|
class WilsonFlowBase: public Smear<Gimpl>{
|
||||||
public:
|
public:
|
||||||
//Store generic measurements to take during smearing process using std::function
|
//Store generic measurements to take during smearing process using std::function
|
||||||
typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType; //int: step, RealD: flow time, GaugeField : the gauge field
|
typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType; //int: step, RealD: flow time, GaugeField : the gauge field
|
||||||
|
|
||||||
private:
|
protected:
|
||||||
unsigned int Nstep;
|
|
||||||
RealD epsilon; //for regular smearing this is the time step, for adaptive it is the initial time step
|
|
||||||
|
|
||||||
std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
|
std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
|
||||||
|
|
||||||
mutable WilsonGaugeAction<Gimpl> SG;
|
mutable WilsonGaugeAction<Gimpl> SG;
|
||||||
|
|
||||||
//Evolve the gauge field by 1 step and update tau
|
|
||||||
void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
|
|
||||||
//Evolve the gauge field by 1 step and update tau and the current time step eps
|
|
||||||
void evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps, RealD maxTau) const;
|
|
||||||
|
|
||||||
public:
|
public:
|
||||||
INHERIT_GIMPL_TYPES(Gimpl)
|
INHERIT_GIMPL_TYPES(Gimpl)
|
||||||
|
|
||||||
|
explicit WilsonFlowBase(unsigned int meas_interval =1):
|
||||||
|
SG(WilsonGaugeAction<Gimpl>(3.0)) {
|
||||||
|
// WilsonGaugeAction with beta 3.0
|
||||||
|
setDefaultMeasurements(meas_interval);
|
||||||
|
}
|
||||||
|
|
||||||
void resetActions(){ functions.clear(); }
|
void resetActions(){ functions.clear(); }
|
||||||
|
|
||||||
void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
|
void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
|
||||||
@ -64,34 +62,11 @@ public:
|
|||||||
//and output to stdout
|
//and output to stdout
|
||||||
void setDefaultMeasurements(int topq_meas_interval = 1);
|
void setDefaultMeasurements(int topq_meas_interval = 1);
|
||||||
|
|
||||||
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
|
void derivative(GaugeField&, const GaugeField&, const GaugeField&) const override{
|
||||||
Nstep(Nstep),
|
|
||||||
epsilon(epsilon),
|
|
||||||
SG(WilsonGaugeAction<Gimpl>(3.0)) {
|
|
||||||
// WilsonGaugeAction with beta 3.0
|
|
||||||
assert(epsilon > 0.0);
|
|
||||||
LogMessage();
|
|
||||||
setDefaultMeasurements(interval);
|
|
||||||
}
|
|
||||||
|
|
||||||
void LogMessage() {
|
|
||||||
std::cout << GridLogMessage
|
|
||||||
<< "[WilsonFlow] Nstep : " << Nstep << std::endl;
|
|
||||||
std::cout << GridLogMessage
|
|
||||||
<< "[WilsonFlow] epsilon : " << epsilon << std::endl;
|
|
||||||
std::cout << GridLogMessage
|
|
||||||
<< "[WilsonFlow] full trajectory : " << Nstep * epsilon << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void smear(GaugeField&, const GaugeField&) const;
|
|
||||||
|
|
||||||
virtual void derivative(GaugeField&, const GaugeField&, const GaugeField&) const {
|
|
||||||
assert(0);
|
assert(0);
|
||||||
// undefined for WilsonFlow
|
// undefined for WilsonFlow
|
||||||
}
|
}
|
||||||
|
|
||||||
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau) const;
|
|
||||||
|
|
||||||
//Compute t^2 <E(t)> for time t from the plaquette
|
//Compute t^2 <E(t)> for time t from the plaquette
|
||||||
static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
|
static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
|
||||||
|
|
||||||
@ -115,82 +90,63 @@ public:
|
|||||||
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
|
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
//Basic iterative Wilson flow
|
||||||
|
template <class Gimpl>
|
||||||
|
class WilsonFlow: public WilsonFlowBase<Gimpl>{
|
||||||
|
private:
|
||||||
|
int Nstep; //number of steps
|
||||||
|
RealD epsilon; //step size
|
||||||
|
|
||||||
|
//Evolve the gauge field by 1 step of size eps and update tau
|
||||||
|
void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
|
||||||
|
|
||||||
|
public:
|
||||||
|
INHERIT_GIMPL_TYPES(Gimpl)
|
||||||
|
|
||||||
|
//Integrate the Wilson flow for Nstep steps of size epsilon
|
||||||
|
WilsonFlow(const RealD epsilon, const int Nstep, unsigned int meas_interval = 1): WilsonFlowBase<Gimpl>(meas_interval), Nstep(Nstep), epsilon(epsilon){}
|
||||||
|
|
||||||
|
void smear(GaugeField& out, const GaugeField& in) const override;
|
||||||
|
};
|
||||||
|
|
||||||
|
//Wilson flow with adaptive step size
|
||||||
|
template <class Gimpl>
|
||||||
|
class WilsonFlowAdaptive: public WilsonFlowBase<Gimpl>{
|
||||||
|
private:
|
||||||
|
RealD init_epsilon; //initial step size
|
||||||
|
RealD maxTau; //integrate to t=maxTau
|
||||||
|
RealD tolerance; //integration error tolerance
|
||||||
|
|
||||||
|
//Evolve the gauge field by 1 step and update tau and the current time step eps
|
||||||
|
//
|
||||||
|
//If the step size eps is too large that a significant integration error results,
|
||||||
|
//the gauge field (U) and tau will not be updated and the function will return 0; eps will be adjusted to a smaller
|
||||||
|
//value for the next iteration.
|
||||||
|
//
|
||||||
|
//For a successful integration step the function will return 1
|
||||||
|
int evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps) const;
|
||||||
|
|
||||||
|
public:
|
||||||
|
INHERIT_GIMPL_TYPES(Gimpl)
|
||||||
|
|
||||||
|
WilsonFlowAdaptive(const RealD init_epsilon, const RealD maxTau, const RealD tolerance, unsigned int meas_interval = 1):
|
||||||
|
WilsonFlowBase<Gimpl>(meas_interval), init_epsilon(init_epsilon), maxTau(maxTau), tolerance(tolerance){}
|
||||||
|
|
||||||
|
void smear(GaugeField& out, const GaugeField& in) const override;
|
||||||
|
};
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
// Implementations
|
// Implementations
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
|
RealD WilsonFlowBase<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
|
||||||
GaugeField Z(U.Grid());
|
|
||||||
GaugeField tmp(U.Grid());
|
|
||||||
SG.deriv(U, Z);
|
|
||||||
Z *= 0.25; // Z0 = 1/4 * F(U)
|
|
||||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
|
||||||
|
|
||||||
Z *= -17.0/8.0;
|
|
||||||
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
|
||||||
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
|
||||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
|
||||||
|
|
||||||
Z *= -4.0/3.0;
|
|
||||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
|
||||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
|
||||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
|
||||||
tau += epsilon;
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class Gimpl>
|
|
||||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps, RealD maxTau) const{
|
|
||||||
if (maxTau - tau < eps){
|
|
||||||
eps = maxTau-tau;
|
|
||||||
}
|
|
||||||
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
|
||||||
GaugeField Z(U.Grid());
|
|
||||||
GaugeField Zprime(U.Grid());
|
|
||||||
GaugeField tmp(U.Grid()), Uprime(U.Grid());
|
|
||||||
Uprime = U;
|
|
||||||
SG.deriv(U, Z);
|
|
||||||
Zprime = -Z;
|
|
||||||
Z *= 0.25; // Z0 = 1/4 * F(U)
|
|
||||||
Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
|
|
||||||
|
|
||||||
Z *= -17.0/8.0;
|
|
||||||
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
|
||||||
Zprime += 2.0*tmp;
|
|
||||||
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
|
||||||
Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
|
|
||||||
|
|
||||||
|
|
||||||
Z *= -4.0/3.0;
|
|
||||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
|
||||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
|
||||||
Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
|
|
||||||
|
|
||||||
// Ramos
|
|
||||||
Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
|
|
||||||
// Compute distance as norm^2 of the difference
|
|
||||||
GaugeField diffU = U - Uprime;
|
|
||||||
RealD diff = norm2(diffU);
|
|
||||||
// adjust integration step
|
|
||||||
|
|
||||||
tau += eps;
|
|
||||||
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
|
|
||||||
|
|
||||||
eps = eps*0.95*std::pow(1e-4/diff,1./3.);
|
|
||||||
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template <class Gimpl>
|
|
||||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
|
|
||||||
static WilsonGaugeAction<Gimpl> SG(3.0);
|
static WilsonGaugeAction<Gimpl> SG(3.0);
|
||||||
return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
|
return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
|
||||||
}
|
}
|
||||||
|
|
||||||
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
|
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
|
RealD WilsonFlowBase<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
|
||||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||||
|
|
||||||
@ -215,7 +171,7 @@ RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField
|
|||||||
|
|
||||||
|
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
|
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||||
std::vector<RealD> out;
|
std::vector<RealD> out;
|
||||||
resetActions();
|
resetActions();
|
||||||
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||||
@ -227,13 +183,13 @@ std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeFie
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
|
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
|
||||||
GaugeField V(U);
|
GaugeField V(U);
|
||||||
return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
|
return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
|
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||||
std::vector<RealD> out;
|
std::vector<RealD> out;
|
||||||
resetActions();
|
resetActions();
|
||||||
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||||
@ -245,16 +201,52 @@ std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeFi
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
|
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
|
||||||
GaugeField V(U);
|
GaugeField V(U);
|
||||||
return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
|
return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <class Gimpl>
|
||||||
|
void WilsonFlowBase<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
|
||||||
|
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||||
|
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
|
||||||
|
});
|
||||||
|
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||||
|
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
//#define WF_TIMING
|
|
||||||
|
template <class Gimpl>
|
||||||
|
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
|
||||||
|
GaugeField Z(U.Grid());
|
||||||
|
GaugeField tmp(U.Grid());
|
||||||
|
this->SG.deriv(U, Z);
|
||||||
|
Z *= 0.25; // Z0 = 1/4 * F(U)
|
||||||
|
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
||||||
|
|
||||||
|
Z *= -17.0/8.0;
|
||||||
|
this->SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
||||||
|
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
||||||
|
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
||||||
|
|
||||||
|
Z *= -4.0/3.0;
|
||||||
|
this->SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||||
|
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||||
|
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
||||||
|
tau += epsilon;
|
||||||
|
}
|
||||||
|
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
||||||
|
std::cout << GridLogMessage
|
||||||
|
<< "[WilsonFlow] Nstep : " << Nstep << std::endl;
|
||||||
|
std::cout << GridLogMessage
|
||||||
|
<< "[WilsonFlow] epsilon : " << epsilon << std::endl;
|
||||||
|
std::cout << GridLogMessage
|
||||||
|
<< "[WilsonFlow] full trajectory : " << Nstep * epsilon << std::endl;
|
||||||
|
|
||||||
out = in;
|
out = in;
|
||||||
RealD taus = 0.;
|
RealD taus = 0.;
|
||||||
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
|
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
|
||||||
@ -266,37 +258,93 @@ void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
|||||||
std::cout << "Time to evolve " << diff.count() << " s\n";
|
std::cout << "Time to evolve " << diff.count() << " s\n";
|
||||||
#endif
|
#endif
|
||||||
//Perform measurements
|
//Perform measurements
|
||||||
for(auto const &meas : functions)
|
for(auto const &meas : this->functions)
|
||||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau) const{
|
int WilsonFlowAdaptive<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps) const{
|
||||||
out = in;
|
if (maxTau - tau < eps){
|
||||||
RealD taus = 0.;
|
eps = maxTau-tau;
|
||||||
RealD eps = epsilon;
|
}
|
||||||
unsigned int step = 0;
|
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
||||||
do{
|
GaugeField Z(U.Grid());
|
||||||
step++;
|
GaugeField Zprime(U.Grid());
|
||||||
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
|
GaugeField tmp(U.Grid()), Uprime(U.Grid()), Usave(U.Grid());
|
||||||
evolve_step_adaptive(out, taus, eps, maxTau);
|
Uprime = U;
|
||||||
//Perform measurements
|
Usave = U;
|
||||||
for(auto const &meas : functions)
|
|
||||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
this->SG.deriv(U, Z);
|
||||||
} while (taus < maxTau);
|
Zprime = -Z;
|
||||||
|
Z *= 0.25; // Z0 = 1/4 * F(U)
|
||||||
|
Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
|
||||||
|
|
||||||
|
Z *= -17.0/8.0;
|
||||||
|
this->SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
||||||
|
Zprime += 2.0*tmp;
|
||||||
|
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
||||||
|
Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
|
||||||
|
|
||||||
|
|
||||||
|
Z *= -4.0/3.0;
|
||||||
|
this->SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||||
|
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||||
|
Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
|
||||||
|
|
||||||
|
// Ramos arXiv:1301.4388
|
||||||
|
Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
|
||||||
|
|
||||||
|
// Compute distance using Ramos' definition
|
||||||
|
GaugeField diffU = U - Uprime;
|
||||||
|
RealD max_dist = 0;
|
||||||
|
|
||||||
|
for(int mu=0;mu<Nd;mu++){
|
||||||
|
typename Gimpl::GaugeLinkField diffU_mu = PeekIndex<LorentzIndex>(diffU, mu);
|
||||||
|
RealD dist_mu = sqrt( maxLocalNorm2(diffU_mu) ) /Nc/Nc; //maximize over sites
|
||||||
|
max_dist = std::max(max_dist, dist_mu); //maximize over mu
|
||||||
|
}
|
||||||
|
|
||||||
|
int ret;
|
||||||
|
if(max_dist < tolerance) {
|
||||||
|
tau += eps;
|
||||||
|
ret = 1;
|
||||||
|
} else {
|
||||||
|
U = Usave;
|
||||||
|
ret = 0;
|
||||||
|
}
|
||||||
|
eps = eps*0.95*std::pow(tolerance/max_dist,1./3.);
|
||||||
|
std::cout << GridLogMessage << "Adaptive smearing : Distance: "<< max_dist <<" Step successful: " << ret << " New epsilon: " << eps << std::endl;
|
||||||
|
|
||||||
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
void WilsonFlow<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
|
void WilsonFlowAdaptive<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
||||||
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
std::cout << GridLogMessage
|
||||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
|
<< "[WilsonFlow] initial epsilon : " << init_epsilon << std::endl;
|
||||||
});
|
std::cout << GridLogMessage
|
||||||
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
<< "[WilsonFlow] full trajectory : " << maxTau << std::endl;
|
||||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
|
std::cout << GridLogMessage
|
||||||
});
|
<< "[WilsonFlow] tolerance : " << tolerance << std::endl;
|
||||||
|
out = in;
|
||||||
|
RealD taus = 0.;
|
||||||
|
RealD eps = init_epsilon;
|
||||||
|
unsigned int step = 0;
|
||||||
|
do{
|
||||||
|
int step_success = evolve_step_adaptive(out, taus, eps);
|
||||||
|
step += step_success; //step will not be incremented if the integration step fails
|
||||||
|
|
||||||
|
//Perform measurements
|
||||||
|
if(step_success)
|
||||||
|
for(auto const &meas : this->functions)
|
||||||
|
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||||
|
} while (taus < maxTau);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
153
tests/smearing/Test_WilsonFlow_adaptive.cc
Normal file
153
tests/smearing/Test_WilsonFlow_adaptive.cc
Normal file
@ -0,0 +1,153 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./tests/hmc/Test_WilsonFlow_adaptive.cc
|
||||||
|
|
||||||
|
Copyright (C) 2017
|
||||||
|
|
||||||
|
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution
|
||||||
|
directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#include <Grid/Grid.h>
|
||||||
|
|
||||||
|
using namespace Grid;
|
||||||
|
|
||||||
|
//Linearly interpolate between two nearest times
|
||||||
|
RealD interpolate(const RealD t_int, const std::vector<std::pair<RealD,RealD> > &data){
|
||||||
|
RealD tdiff1=1e32; int t1_idx=-1;
|
||||||
|
RealD tdiff2=1e32; int t2_idx=-1;
|
||||||
|
|
||||||
|
for(int i=0;i<data.size();i++){
|
||||||
|
RealD diff = fabs(data[i].first-t_int);
|
||||||
|
//std::cout << "targ " << t_int << " cur " << data[i].first << " diff " << diff << " best diff1 " << tdiff1 << " diff2 " << tdiff2 << std::endl;
|
||||||
|
|
||||||
|
if(diff < tdiff1){
|
||||||
|
if(tdiff1 < tdiff2){ //swap out tdiff2
|
||||||
|
tdiff2 = tdiff1; t2_idx = t1_idx;
|
||||||
|
}
|
||||||
|
tdiff1 = diff; t1_idx = i;
|
||||||
|
}
|
||||||
|
else if(diff < tdiff2){ tdiff2 = diff; t2_idx = i; }
|
||||||
|
}
|
||||||
|
assert(t1_idx != -1 && t2_idx != -1);
|
||||||
|
|
||||||
|
RealD t2 = data[t2_idx].first, v2 = data[t2_idx].second;
|
||||||
|
RealD t1 = data[t1_idx].first, v1 = data[t1_idx].second;
|
||||||
|
|
||||||
|
//v = a + bt
|
||||||
|
//v2-v1 = b(t2-t1)
|
||||||
|
RealD b = (v2-v1)/(t2-t1);
|
||||||
|
RealD a = v1 - b*t1;
|
||||||
|
RealD vout = a + b*t_int;
|
||||||
|
|
||||||
|
//std::cout << "Interpolate to " << t_int << " two closest points " << t1 << " " << t2
|
||||||
|
//<< " with values " << v1 << " "<< v2 << " : got " << vout << std::endl;
|
||||||
|
return vout;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int main(int argc, char **argv) {
|
||||||
|
Grid_init(&argc, &argv);
|
||||||
|
GridLogLayout();
|
||||||
|
|
||||||
|
auto latt_size = GridDefaultLatt();
|
||||||
|
auto simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
|
||||||
|
auto mpi_layout = GridDefaultMpi();
|
||||||
|
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
|
||||||
|
GridRedBlackCartesian RBGrid(&Grid);
|
||||||
|
|
||||||
|
std::vector<int> seeds({1, 2, 3, 4, 5});
|
||||||
|
GridSerialRNG sRNG;
|
||||||
|
GridParallelRNG pRNG(&Grid);
|
||||||
|
pRNG.SeedFixedIntegers(seeds);
|
||||||
|
|
||||||
|
LatticeGaugeField U(&Grid);
|
||||||
|
SU<Nc>::HotConfiguration(pRNG, U);
|
||||||
|
|
||||||
|
int Nstep = 300;
|
||||||
|
RealD epsilon = 0.01;
|
||||||
|
RealD maxTau = Nstep*epsilon;
|
||||||
|
RealD tolerance = 1e-4;
|
||||||
|
|
||||||
|
for(int i=1;i<argc;i++){
|
||||||
|
std::string sarg(argv[i]);
|
||||||
|
if(sarg == "--tolerance"){
|
||||||
|
std::stringstream ss; ss << argv[i+1]; ss >> tolerance;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::cout << "Adaptive smear tolerance " << tolerance << std::endl;
|
||||||
|
|
||||||
|
//Setup iterative Wilson flow
|
||||||
|
WilsonFlow<PeriodicGimplD> wflow(epsilon,Nstep);
|
||||||
|
wflow.resetActions();
|
||||||
|
|
||||||
|
std::vector<std::pair<RealD, RealD> > meas_orig;
|
||||||
|
|
||||||
|
wflow.addMeasurement(1, [&wflow,&meas_orig](int step, RealD t, const LatticeGaugeField &U){
|
||||||
|
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
|
||||||
|
meas_orig.push_back( {t, wflow.energyDensityCloverleaf(t,U)} );
|
||||||
|
});
|
||||||
|
|
||||||
|
//Setup adaptive Wilson flow
|
||||||
|
WilsonFlowAdaptive<PeriodicGimplD> wflow_ad(epsilon,maxTau,tolerance);
|
||||||
|
wflow_ad.resetActions();
|
||||||
|
|
||||||
|
std::vector<std::pair<RealD, RealD> > meas_adaptive;
|
||||||
|
|
||||||
|
wflow_ad.addMeasurement(1, [&wflow_ad,&meas_adaptive](int step, RealD t, const LatticeGaugeField &U){
|
||||||
|
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
|
||||||
|
meas_adaptive.push_back( {t, wflow_ad.energyDensityCloverleaf(t,U)} );
|
||||||
|
});
|
||||||
|
|
||||||
|
//Run
|
||||||
|
LatticeGaugeFieldD Vtmp(U.Grid());
|
||||||
|
wflow.smear(Vtmp, U); //basic smear
|
||||||
|
|
||||||
|
Vtmp = Zero();
|
||||||
|
wflow_ad.smear(Vtmp, U);
|
||||||
|
|
||||||
|
//Output values for plotting
|
||||||
|
{
|
||||||
|
std::ofstream out("wflow_t2E_orig.dat");
|
||||||
|
out.precision(16);
|
||||||
|
for(auto const &e: meas_orig){
|
||||||
|
out << e.first << " " << e.second << std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
std::ofstream out("wflow_t2E_adaptive.dat");
|
||||||
|
out.precision(16);
|
||||||
|
for(auto const &e: meas_adaptive){
|
||||||
|
out << e.first << " " << e.second << std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//Compare at times available with adaptive smearing
|
||||||
|
for(int i=0;i<meas_adaptive.size();i++){
|
||||||
|
RealD t = meas_adaptive[i].first;
|
||||||
|
RealD v_adaptive = meas_adaptive[i].second;
|
||||||
|
RealD v_orig = interpolate(t, meas_orig); //should be very precise due to fine timestep
|
||||||
|
std::cout << t << " orig: " << v_orig << " adaptive: " << v_adaptive << " reldiff: " << (v_adaptive-v_orig)/v_orig << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "Done" << std::endl;
|
||||||
|
Grid_finalize();
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user