1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-06 20:25:56 +01:00

Merge branch 'feature/hadrons' into feature/qed-fvol

This commit is contained in:
James Harrison 2018-03-20 20:19:18 +00:00
commit 58c2f60b69
44 changed files with 1695 additions and 782 deletions

1
.gitignore vendored
View File

@ -123,6 +123,7 @@ make-bin-BUCK.sh
#####################
lib/qcd/spin/gamma-gen/*.h
lib/qcd/spin/gamma-gen/*.cc
lib/version.h
# vs code editor files #
########################

View File

@ -5,6 +5,10 @@ include $(top_srcdir)/doxygen.inc
bin_SCRIPTS=grid-config
BUILT_SOURCES = version.h
version.h:
echo "`git log -n 1 --format=format:"#define GITHASH \\"%H:%d\\"%n" HEAD`" > $(srcdir)/lib/version.h
.PHONY: bench check tests doxygen-run doxygen-doc $(DX_PS_GOAL) $(DX_PDF_GOAL)

View File

@ -340,7 +340,7 @@ case ${ac_PRECISION} in
esac
###################### Shared memory allocation technique under MPI3
AC_ARG_ENABLE([shm],[AC_HELP_STRING([--enable-shm=shmopen|hugetlbfs],
AC_ARG_ENABLE([shm],[AC_HELP_STRING([--enable-shm=shmopen|hugetlbfs|shmnone],
[Select SHM allocation technique])],[ac_SHM=${enable_shm}],[ac_SHM=shmopen])
case ${ac_SHM} in
@ -349,6 +349,10 @@ case ${ac_SHM} in
AC_DEFINE([GRID_MPI3_SHMOPEN],[1],[GRID_MPI3_SHMOPEN] )
;;
shmnone)
AC_DEFINE([GRID_MPI3_SHM_NONE],[1],[GRID_MPI3_SHM_NONE] )
;;
hugetlbfs)
AC_DEFINE([GRID_MPI3_SHMMMAP],[1],[GRID_MPI3_SHMMMAP] )
;;

View File

@ -0,0 +1,218 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/EigenPack.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_EigenPack_hpp_
#define Hadrons_EigenPack_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/algorithms/iterative/Deflation.h>
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
BEGIN_HADRONS_NAMESPACE
// Lanczos type
#ifndef HADRONS_DEFAULT_LANCZOS_NBASIS
#define HADRONS_DEFAULT_LANCZOS_NBASIS 60
#endif
template <typename F>
class EigenPack
{
public:
typedef F Field;
public:
std::vector<RealD> eval;
std::vector<F> evec;
public:
EigenPack(void) = default;
virtual ~EigenPack(void) = default;
EigenPack(const size_t size, GridBase *grid)
{
resize(size, grid);
}
void resize(const size_t size, GridBase *grid)
{
eval.resize(size);
evec.resize(size, grid);
}
virtual void read(const std::string fileStem, const int traj = -1)
{
std::string evecFilename, evalFilename;
makeFilenames(evecFilename, evalFilename, fileStem, traj);
XmlReader xmlReader(evalFilename);
basicRead(evec, evecFilename, evec.size());
LOG(Message) << "Reading " << eval.size() << " eigenvalues from '"
<< evalFilename << "'" << std::endl;
Grid::read(xmlReader, "evals", eval);
}
virtual void write(const std::string fileStem, const int traj = -1)
{
std::string evecFilename, evalFilename;
makeFilenames(evecFilename, evalFilename, fileStem, traj);
XmlWriter xmlWriter(evalFilename);
basicWrite(evecFilename, evec, evec.size());
LOG(Message) << "Writing " << eval.size() << " eigenvalues to '"
<< evalFilename << "'" << std::endl;
Grid::write(xmlWriter, "evals", eval);
}
protected:
void makeFilenames(std::string &evecFilename, std::string &evalFilename,
const std::string stem, const int traj = -1)
{
std::string t = (traj < 0) ? "" : ("." + std::to_string(traj));
evecFilename = stem + "_evec" + t + ".bin";
evalFilename = stem + "_eval" + t + ".xml";
}
template <typename T>
static void basicRead(std::vector<T> &evec, const std::string filename,
const unsigned int size)
{
emptyUserRecord record;
ScidacReader binReader;
binReader.open(filename);
for(int k = 0; k < size; ++k)
{
binReader.readScidacFieldRecord(evec[k], record);
}
binReader.close();
}
template <typename T>
static void basicWrite(const std::string filename, std::vector<T> &evec,
const unsigned int size)
{
emptyUserRecord record;
ScidacWriter binWriter;
binWriter.open(filename);
for(int k = 0; k < size; ++k)
{
binWriter.writeScidacFieldRecord(evec[k], record);
}
binWriter.close();
}
};
template <typename FineF, typename CoarseF>
class CoarseEigenPack: public EigenPack<FineF>
{
public:
typedef CoarseF CoarseField;
public:
std::vector<RealD> evalCoarse;
std::vector<CoarseF> evecCoarse;
public:
CoarseEigenPack(void) = default;
virtual ~CoarseEigenPack(void) = default;
CoarseEigenPack(const size_t sizeFine, const size_t sizeCoarse,
GridBase *gridFine, GridBase *gridCoarse)
{
resize(sizeFine, sizeCoarse, gridFine, gridCoarse);
}
void resize(const size_t sizeFine, const size_t sizeCoarse,
GridBase *gridFine, GridBase *gridCoarse)
{
EigenPack<FineF>::resize(sizeFine, gridFine);
evalCoarse.resize(sizeCoarse);
evecCoarse.resize(sizeCoarse, gridCoarse);
}
virtual void read(const std::string fileStem, const int traj = -1)
{
std::string evecFineFilename, evalFineFilename;
std::string evecCoarseFilename, evalCoarseFilename;
this->makeFilenames(evecFineFilename, evalFineFilename,
fileStem + "_fine", traj);
this->makeFilenames(evecCoarseFilename, evalCoarseFilename,
fileStem + "_coarse", traj);
XmlReader xmlFineReader(evalFineFilename);
XmlReader xmlCoarseReader(evalCoarseFilename);
LOG(Message) << "Reading " << this->evec.size() << " fine eigenvectors from '"
<< evecFineFilename << "'" << std::endl;
this->basicRead(this->evec, evecFineFilename, this->evec.size());
LOG(Message) << "Reading " << evecCoarse.size() << " coarse eigenvectors from '"
<< evecCoarseFilename << "'" << std::endl;
this->basicRead(evecCoarse, evecCoarseFilename, evecCoarse.size());
LOG(Message) << "Reading " << this->eval.size() << " fine eigenvalues from '"
<< evalFineFilename << "'" << std::endl;
Grid::read(xmlFineReader, "evals", this->eval);
LOG(Message) << "Reading " << evalCoarse.size() << " coarse eigenvalues from '"
<< evalCoarseFilename << "'" << std::endl;
Grid::read(xmlCoarseReader, "evals", evalCoarse);
}
virtual void write(const std::string fileStem, const int traj = -1)
{
std::string evecFineFilename, evalFineFilename;
std::string evecCoarseFilename, evalCoarseFilename;
this->makeFilenames(evecFineFilename, evalFineFilename,
fileStem + "_fine", traj);
this->makeFilenames(evecCoarseFilename, evalCoarseFilename,
fileStem + "_coarse", traj);
XmlWriter xmlFineWriter(evalFineFilename);
XmlWriter xmlCoarseWriter(evalCoarseFilename);
LOG(Message) << "Writing " << this->evec.size() << " fine eigenvectors to '"
<< evecFineFilename << "'" << std::endl;
this->basicWrite(evecFineFilename, this->evec, this->evec.size());
LOG(Message) << "Writing " << evecCoarse.size() << " coarse eigenvectors to '"
<< evecCoarseFilename << "'" << std::endl;
this->basicWrite(evecCoarseFilename, evecCoarse, evecCoarse.size());
LOG(Message) << "Writing " << this->eval.size() << " fine eigenvalues to '"
<< evalFineFilename << "'" << std::endl;
Grid::write(xmlFineWriter, "evals", this->eval);
LOG(Message) << "Writing " << evalCoarse.size() << " coarse eigenvalues to '"
<< evalCoarseFilename << "'" << std::endl;
Grid::write(xmlCoarseWriter, "evals", evalCoarse);
}
};
template <typename FImpl>
using FermionEigenPack = EigenPack<typename FImpl::FermionField>;
template <typename FImpl, int nBasis>
using CoarseFermionEigenPack = CoarseEigenPack<
typename FImpl::FermionField,
typename LocalCoherenceLanczos<typename FImpl::SiteSpinor,
typename FImpl::SiteComplex,
nBasis>::CoarseField>;
END_HADRONS_NAMESPACE
#endif // Hadrons_EigenPack_hpp_

View File

@ -61,7 +61,7 @@ Environment::Environment(void)
// grids ///////////////////////////////////////////////////////////////////////
void Environment::createGrid(const unsigned int Ls)
{
if (grid5d_.find(Ls) == grid5d_.end())
if ((Ls > 1) and (grid5d_.find(Ls) == grid5d_.end()))
{
auto g = getGrid();
@ -70,6 +70,53 @@ void Environment::createGrid(const unsigned int Ls)
}
}
void Environment::createCoarseGrid(const std::vector<int> &blockSize,
const unsigned int Ls)
{
int nd = getNd();
std::vector<int> fineDim = getDim(), coarseDim;
unsigned int cLs;
auto key4d = blockSize, key5d = blockSize;
createGrid(Ls);
coarseDim.resize(nd);
for (int d = 0; d < coarseDim.size(); d++)
{
coarseDim[d] = fineDim[d]/blockSize[d];
if (coarseDim[d]*blockSize[d] != fineDim[d])
{
HADRON_ERROR(Size, "Fine dimension " + std::to_string(d)
+ " (" + std::to_string(fineDim[d])
+ ") not divisible by coarse dimension ("
+ std::to_string(coarseDim[d]) + ")");
}
}
if (blockSize.size() > nd)
{
cLs = Ls/blockSize[nd];
if (cLs*blockSize[nd] != Ls)
{
HADRON_ERROR(Size, "Fine Ls (" + std::to_string(Ls)
+ ") not divisible by coarse Ls ("
+ std::to_string(cLs) + ")");
}
key4d.resize(nd);
key5d.push_back(Ls);
}
gridCoarse4d_[key4d].reset(
SpaceTimeGrid::makeFourDimGrid(coarseDim,
GridDefaultSimd(nd, vComplex::Nsimd()), GridDefaultMpi()));
gridCoarseRb4d_[key4d].reset(
SpaceTimeGrid::makeFourDimRedBlackGrid(gridCoarse4d_[key4d].get()));
if (Ls > 1)
{
gridCoarse5d_[key5d].reset(
SpaceTimeGrid::makeFiveDimGrid(cLs, gridCoarse4d_[key4d].get()));
gridCoarseRb5d_[key5d].reset(
SpaceTimeGrid::makeFiveDimRedBlackGrid(cLs, gridCoarse4d_[key4d].get()));
}
}
GridCartesian * Environment::getGrid(const unsigned int Ls) const
{
try
@ -104,7 +151,55 @@ GridRedBlackCartesian * Environment::getRbGrid(const unsigned int Ls) const
}
catch(std::out_of_range &)
{
HADRON_ERROR(Definition, "no red-black 5D grid with Ls= " + std::to_string(Ls));
HADRON_ERROR(Definition, "no red-black grid with Ls= " + std::to_string(Ls));
}
}
GridCartesian * Environment::getCoarseGrid(
const std::vector<int> &blockSize, const unsigned int Ls) const
{
auto key = blockSize;
try
{
if (Ls == 1)
{
key.resize(getNd());
return gridCoarse4d_.at(key).get();
}
else
{
key.push_back(Ls);
return gridCoarse5d_.at(key).get();
}
}
catch(std::out_of_range &)
{
HADRON_ERROR(Definition, "no coarse grid with Ls= " + std::to_string(Ls));
}
}
GridRedBlackCartesian * Environment::getRbCoarseGrid(
const std::vector<int> &blockSize, const unsigned int Ls) const
{
auto key = blockSize;
try
{
if (Ls == 1)
{
key.resize(getNd());
return gridCoarseRb4d_.at(key).get();
}
else
{
key.push_back(Ls);
return gridCoarseRb5d_.at(key).get();
}
}
catch(std::out_of_range &)
{
HADRON_ERROR(Definition, "no coarse red-black grid with Ls= " + std::to_string(Ls));
}
}

View File

@ -78,7 +78,7 @@ private:
Size size{0};
Storage storage{Storage::object};
unsigned int Ls{0};
const std::type_info *type{nullptr};
const std::type_info *type{nullptr}, *derivedType{nullptr};
std::string name;
int module{-1};
std::unique_ptr<Object> data{nullptr};
@ -86,8 +86,14 @@ private:
public:
// grids
void createGrid(const unsigned int Ls);
void createCoarseGrid(const std::vector<int> &blockSize,
const unsigned int Ls = 1);
GridCartesian * getGrid(const unsigned int Ls = 1) const;
GridRedBlackCartesian * getRbGrid(const unsigned int Ls = 1) const;
GridCartesian * getCoarseGrid(const std::vector<int> &blockSize,
const unsigned int Ls = 1) const;
GridRedBlackCartesian * getRbCoarseGrid(const std::vector<int> &blockSize,
const unsigned int Ls = 1) const;
std::vector<int> getDim(void) const;
int getDim(const unsigned int mu) const;
unsigned long int getLocalVolume(void) const;
@ -110,6 +116,10 @@ public:
Ts && ... args);
void setObjectModule(const unsigned int objAddress,
const int modAddress);
template <typename B, typename T>
T * getDerivedObject(const unsigned int address) const;
template <typename B, typename T>
T * getDerivedObject(const std::string name) const;
template <typename T>
T * getObject(const unsigned int address) const;
template <typename T>
@ -155,6 +165,10 @@ private:
std::map<unsigned int, GridPt> grid5d_;
GridRbPt gridRb4d_;
std::map<unsigned int, GridRbPt> gridRb5d_;
std::map<std::vector<int>, GridPt> gridCoarse4d_;
std::map<std::vector<int>, GridRbPt> gridCoarseRb4d_;
std::map<std::vector<int>, GridPt> gridCoarse5d_;
std::map<std::vector<int>, GridRbPt> gridCoarseRb5d_;
unsigned int nd_;
// random number generator
RngPt rng4d_;
@ -176,7 +190,7 @@ Holder<T>::Holder(T *pt)
template <typename T>
T & Holder<T>::get(void) const
{
return &objPt_.get();
return *objPt_.get();
}
template <typename T>
@ -216,22 +230,24 @@ void Environment::createDerivedObject(const std::string name,
{
MemoryProfiler::stats = &memStats;
}
size_t initMem = MemoryProfiler::stats->currentlyAllocated;
object_[address].storage = storage;
object_[address].Ls = Ls;
size_t initMem = MemoryProfiler::stats->currentlyAllocated;
object_[address].storage = storage;
object_[address].Ls = Ls;
object_[address].data.reset(new Holder<B>(new T(std::forward<Ts>(args)...)));
object_[address].size = MemoryProfiler::stats->maxAllocated - initMem;
object_[address].type = &typeid(T);
object_[address].size = MemoryProfiler::stats->maxAllocated - initMem;
object_[address].type = &typeid(B);
object_[address].derivedType = &typeid(T);
if (MemoryProfiler::stats == &memStats)
{
MemoryProfiler::stats = nullptr;
}
}
// object already exists, no error if it is a cache, error otherwise
else if ((object_[address].storage != Storage::cache) or
(object_[address].storage != storage) or
(object_[address].name != name) or
(object_[address].type != &typeid(T)))
else if ((object_[address].storage != Storage::cache) or
(object_[address].storage != storage) or
(object_[address].name != name) or
(object_[address].type != &typeid(B)) or
(object_[address].derivedType != &typeid(T)))
{
HADRON_ERROR(Definition, "object '" + name + "' already allocated");
}
@ -246,21 +262,37 @@ void Environment::createObject(const std::string name,
createDerivedObject<T, T>(name, storage, Ls, std::forward<Ts>(args)...);
}
template <typename T>
T * Environment::getObject(const unsigned int address) const
template <typename B, typename T>
T * Environment::getDerivedObject(const unsigned int address) const
{
if (hasObject(address))
{
if (hasCreatedObject(address))
{
if (auto h = dynamic_cast<Holder<T> *>(object_[address].data.get()))
if (auto h = dynamic_cast<Holder<B> *>(object_[address].data.get()))
{
return h->getPt();
if (&typeid(T) == &typeid(B))
{
return dynamic_cast<T *>(h->getPt());
}
else
{
if (auto hder = dynamic_cast<T *>(h->getPt()))
{
return hder;
}
else
{
HADRON_ERROR(Definition, "object with address " + std::to_string(address) +
" cannot be casted to '" + typeName(&typeid(T)) +
"' (has type '" + typeName(&typeid(h->get())) + "')");
}
}
}
else
{
HADRON_ERROR(Definition, "object with address " + std::to_string(address) +
" does not have type '" + typeName(&typeid(T)) +
" does not have type '" + typeName(&typeid(B)) +
"' (has type '" + getObjectType(address) + "')");
}
}
@ -276,6 +308,18 @@ T * Environment::getObject(const unsigned int address) const
}
}
template <typename B, typename T>
T * Environment::getDerivedObject(const std::string name) const
{
return getDerivedObject<B, T>(getObjectAddress(name));
}
template <typename T>
T * Environment::getObject(const unsigned int address) const
{
return getDerivedObject<T, T>(address);
}
template <typename T>
T * Environment::getObject(const std::string name) const
{

View File

@ -43,12 +43,15 @@ See the full license in the file "LICENSE" in the top level distribution directo
namespace Grid {\
using namespace QCD;\
namespace Hadrons {\
using Grid::operator<<;
using Grid::operator<<;\
using Grid::operator>>;
#define END_HADRONS_NAMESPACE }}
#define BEGIN_MODULE_NAMESPACE(name)\
namespace name {\
using Grid::operator<<;
using Grid::operator<<;\
using Grid::operator>>;
#define END_MODULE_NAMESPACE }
/* the 'using Grid::operator<<;' statement prevents a very nasty compilation
@ -187,7 +190,7 @@ name + "." + std::to_string(vm().getTrajectory()) + "." + resultFileExt
// default Schur convention
#ifndef HADRONS_DEFAULT_SCHUR
#define HADRONS_DEFAULT_SCHUR DiagMooee
#define HADRONS_DEFAULT_SCHUR DiagTwo
#endif
#define _HADRONS_SCHUR_OP_(conv) Schur##conv##Operator
#define HADRONS_SCHUR_OP(conv) _HADRONS_SCHUR_OP_(conv)

View File

@ -1,115 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/LanczosUtils.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_LanczosUtils_hpp_
#define Hadrons_LanczosUtils_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
BEGIN_HADRONS_NAMESPACE
// Lanczos type
#ifndef HADRONS_DEFAULT_LANCZOS_NBASIS
#define HADRONS_DEFAULT_LANCZOS_NBASIS 60
#endif
template <typename T>
struct EigenPack
{
typedef T VectorType;
std::vector<RealD> eval;
std::vector<T> evec;
EigenPack(void) = default;
EigenPack(const size_t size, GridBase *grid)
{
resize(size, grid);
}
void resize(const size_t size, GridBase *grid)
{
eval.resize(size);
evec.resize(size, grid);
}
void read(const std::string fileStem)
{
std::string evecFilename = fileStem + "_evec.bin";
std::string evalFilename = fileStem + "_eval.xml";
emptyUserRecord record;
ScidacReader binReader;
XmlReader xmlReader(evalFilename);
LOG(Message) << "Reading " << evec.size() << " eigenvectors from '"
<< evecFilename << "'" << std::endl;
binReader.open(evecFilename);
for(int k = 0; k < evec.size(); ++k)
{
binReader.readScidacFieldRecord(evec[k], record);
}
binReader.close();
LOG(Message) << "Reading " << eval.size() << " eigenvalues from '"
<< evalFilename << "'" << std::endl;
Grid::read(xmlReader, "evals", eval);
}
void write(const std::string fileStem)
{
std::string evecFilename = fileStem + "_evec.bin";
std::string evalFilename = fileStem + "_eval.xml";
emptyUserRecord record;
ScidacWriter binWriter;
XmlWriter xmlWriter(evalFilename);
LOG(Message) << "Writing " << evec.size() << " eigenvectors to '"
<< evecFilename << "'" << std::endl;
binWriter.open(fileStem + "_evec.bin");
for(int k = 0; k < evec.size(); ++k)
{
binWriter.writeScidacFieldRecord(evec[k], record);
}
binWriter.close();
LOG(Message) << "Writing " << eval.size() << " eigenvalues to '"
<< evalFilename << "'" << std::endl;
Grid::write(xmlWriter, "evals", eval);
}
};
template <typename FImpl>
using FineEigenPack = EigenPack<typename FImpl::FermionField>;
template <typename FImpl, int nBasis>
using CoarseEigenPack = EigenPack<
typename LocalCoherenceLanczos<typename FImpl::SiteSpinor,
typename FImpl::SiteComplex,
nBasis>::CoarseField>;
END_HADRONS_NAMESPACE
#endif // Hadrons_LanczosUtils_hpp_

View File

@ -21,7 +21,7 @@ nobase_libHadrons_a_HEADERS = \
GeneticScheduler.hpp \
Global.hpp \
Graph.hpp \
LanczosUtils.hpp \
EigenPack.hpp \
Module.hpp \
Modules.hpp \
ModuleFactory.hpp \

View File

@ -91,6 +91,9 @@ static ns##mod##ModuleRegistrar ns##mod##ModuleRegistrarInstance;
#define envGet(type, name)\
*env().template getObject<type>(name)
#define envGetDerived(base, type, name)\
*env().template getDerivedObject<base, type>(name)
#define envGetTmp(type, var)\
type &var = *env().template getObject<type>(getName() + "_tmp_" + #var)

View File

@ -64,6 +64,7 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
#include <Grid/Hadrons/Modules/MAction/WilsonClover.hpp>
#include <Grid/Hadrons/Modules/MAction/ZMobiusDWF.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/ShiftProbe.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Div.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrMag.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/EMT.hpp>
@ -72,5 +73,7 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <Grid/Hadrons/Modules/MScalarSUN/Utils.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TransProj.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrKinetic.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadEigenPack.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadNersc.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadBinary.hpp>

View File

@ -42,7 +42,8 @@ TFundtoHirep<Rep>::TFundtoHirep(const std::string name)
template <class Rep>
std::vector<std::string> TFundtoHirep<Rep>::getInput(void)
{
std::vector<std::string> in;
std::vector<std::string> in = {par().gaugeconf};
return in;
}
@ -50,6 +51,7 @@ template <class Rep>
std::vector<std::string> TFundtoHirep<Rep>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
@ -57,19 +59,19 @@ std::vector<std::string> TFundtoHirep<Rep>::getOutput(void)
template <typename Rep>
void TFundtoHirep<Rep>::setup(void)
{
envCreateLat(typename Rep::LatticeField, getName());
envCreateLat(Rep::LatticeField, getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <class Rep>
void TFundtoHirep<Rep>::execute(void)
{
auto &U = *env().template getObject<LatticeGaugeField>(par().gaugeconf);
LOG(Message) << "Transforming Representation" << std::endl;
auto &U = envGet(LatticeGaugeField, par().gaugeconf);
auto &URep = envGet(Rep::LatticeField, getName());
Rep TargetRepresentation(U._grid);
TargetRepresentation.update_representation(U);
auto &URep = envGet(typename Rep::LatticeField, getName());
URep = TargetRepresentation.U;
}

View File

@ -0,0 +1,126 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MIO_LoadCoarseEigenPack_hpp_
#define Hadrons_MIO_LoadCoarseEigenPack_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/EigenPack.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Load local coherence eigen vectors/values package *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MIO)
class LoadCoarseEigenPackPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LoadCoarseEigenPackPar,
std::string, filestem,
unsigned int, sizeFine,
unsigned int, sizeCoarse,
unsigned int, Ls,
std::vector<int>, blockSize);
};
template <typename Pack>
class TLoadCoarseEigenPack: public Module<LoadCoarseEigenPackPar>
{
public:
typedef CoarseEigenPack<typename Pack::Field, typename Pack::CoarseField> BasePack;
public:
// constructor
TLoadCoarseEigenPack(const std::string name);
// destructor
virtual ~TLoadCoarseEigenPack(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(LoadCoarseFermionEigenPack,
ARG(TLoadCoarseEigenPack<CoarseFermionEigenPack<FIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>>), MIO);
/******************************************************************************
* TLoadCoarseEigenPack implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename Pack>
TLoadCoarseEigenPack<Pack>::TLoadCoarseEigenPack(const std::string name)
: Module<LoadCoarseEigenPackPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename Pack>
std::vector<std::string> TLoadCoarseEigenPack<Pack>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename Pack>
std::vector<std::string> TLoadCoarseEigenPack<Pack>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename Pack>
void TLoadCoarseEigenPack<Pack>::setup(void)
{
env().createGrid(par().Ls);
env().createCoarseGrid(par().blockSize, par().Ls);
envCreateDerived(BasePack, Pack, getName(), par().Ls, par().sizeFine,
par().sizeCoarse, env().getRbGrid(par().Ls),
env().getCoarseGrid(par().blockSize, par().Ls));
}
// execution ///////////////////////////////////////////////////////////////////
template <typename Pack>
void TLoadCoarseEigenPack<Pack>::execute(void)
{
auto &epack = envGetDerived(BasePack, Pack, getName());
epack.read(par().filestem, vm().getTrajectory());
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MIO_LoadCoarseEigenPack_hpp_

View File

@ -0,0 +1,121 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MIO/LoadEigenPack.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MIO_LoadEigenPack_hpp_
#define Hadrons_MIO_LoadEigenPack_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/EigenPack.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Load eigen vectors/values package *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MIO)
class LoadEigenPackPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LoadEigenPackPar,
std::string, filestem,
unsigned int, size,
unsigned int, Ls);
};
template <typename Pack>
class TLoadEigenPack: public Module<LoadEigenPackPar>
{
public:
typedef EigenPack<typename Pack::Field> BasePack;
public:
// constructor
TLoadEigenPack(const std::string name);
// destructor
virtual ~TLoadEigenPack(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(LoadFermionEigenPack, TLoadEigenPack<FermionEigenPack<FIMPL>>, MIO);
/******************************************************************************
* TLoadEigenPack implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename Pack>
TLoadEigenPack<Pack>::TLoadEigenPack(const std::string name)
: Module<LoadEigenPackPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename Pack>
std::vector<std::string> TLoadEigenPack<Pack>::getInput(void)
{
std::vector<std::string> in;
return in;
}
template <typename Pack>
std::vector<std::string> TLoadEigenPack<Pack>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename Pack>
void TLoadEigenPack<Pack>::setup(void)
{
env().createGrid(par().Ls);
envCreateDerived(BasePack, Pack, getName(), par().Ls, par().size,
env().getRbGrid(par().Ls));
}
// execution ///////////////////////////////////////////////////////////////////
template <typename Pack>
void TLoadEigenPack<Pack>::execute(void)
{
auto &epack = envGetDerived(BasePack, Pack, getName());
epack.read(par().filestem, vm().getTrajectory());
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MIO_LoadEigenPack_hpp_

View File

@ -0,0 +1,169 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MScalarSUN/ShiftProbe.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MScalarSUN_ShiftProbe_hpp_
#define Hadrons_MScalarSUN_ShiftProbe_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Utils.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Ward identity phi^n probe with fields at different positions *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MScalarSUN)
typedef std::pair<unsigned int, unsigned int> ShiftPair;
class ShiftProbePar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ShiftProbePar,
std::string, field,
std::string, shifts,
std::string, output);
};
template <typename SImpl>
class TShiftProbe: public Module<ShiftProbePar>
{
public:
typedef typename SImpl::Field Field;
typedef typename SImpl::ComplexField ComplexField;
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::string, op,
Complex , value);
};
public:
// constructor
TShiftProbe(const std::string name);
// destructor
virtual ~TShiftProbe(void) = default;
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_NS(ShiftProbeSU2, TShiftProbe<ScalarNxNAdjImplR<2>>, MScalarSUN);
MODULE_REGISTER_NS(ShiftProbeSU3, TShiftProbe<ScalarNxNAdjImplR<3>>, MScalarSUN);
MODULE_REGISTER_NS(ShiftProbeSU4, TShiftProbe<ScalarNxNAdjImplR<4>>, MScalarSUN);
MODULE_REGISTER_NS(ShiftProbeSU5, TShiftProbe<ScalarNxNAdjImplR<5>>, MScalarSUN);
MODULE_REGISTER_NS(ShiftProbeSU6, TShiftProbe<ScalarNxNAdjImplR<6>>, MScalarSUN);
/******************************************************************************
* TShiftProbe implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename SImpl>
TShiftProbe<SImpl>::TShiftProbe(const std::string name)
: Module<ShiftProbePar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename SImpl>
std::vector<std::string> TShiftProbe<SImpl>::getInput(void)
{
std::vector<std::string> in = {par().field};
return in;
}
template <typename SImpl>
std::vector<std::string> TShiftProbe<SImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename SImpl>
void TShiftProbe<SImpl>::setup(void)
{
envTmpLat(Field, "acc");
envCreateLat(ComplexField, getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <typename SImpl>
void TShiftProbe<SImpl>::execute(void)
{
LOG(Message) << "Creating shift probe for shifts " << par().shifts
<< std::endl;
std::vector<ShiftPair> shift;
unsigned int sign;
auto &phi = envGet(Field, par().field);
auto &probe = envGet(ComplexField, getName());
shift = strToVec<ShiftPair>(par().shifts);
if (shift.size() % 2 != 0)
{
HADRON_ERROR(Size, "the number of shifts is odd");
}
sign = (shift.size() % 4 == 0) ? 1 : -1;
for (auto &s: shift)
{
if (s.first >= env().getNd())
{
HADRON_ERROR(Size, "dimension to large for shift <"
+ std::to_string(s.first) + " "
+ std::to_string(s.second) + ">" );
}
}
envGetTmp(Field, acc);
acc = 1.;
for (unsigned int i = 0; i < shift.size(); ++i)
{
if (shift[i].second == 0)
{
acc *= phi;
}
else
{
acc *= Cshift(phi, shift[i].first, shift[i].second);
}
}
probe = sign*trace(acc);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MScalarSUN_ShiftProbe_hpp_

View File

@ -128,7 +128,7 @@ void TPoint<FImpl>::execute(void)
envGetTmp(LatticeComplex, coor);
p = strToVec<Real>(par().mom);
ph = zero;
for(unsigned int mu = 0; mu < env().getNd(); mu++)
for(unsigned int mu = 0; mu < p.size(); mu++)
{
LatticeCoordinate(coor, mu);
ph = ph + (p[mu]/env().getGrid()->_fdimensions[mu])*coor;

View File

@ -31,7 +31,7 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/LanczosUtils.hpp>
#include <Grid/Hadrons/EigenPack.hpp>
BEGIN_HADRONS_NAMESPACE
@ -45,8 +45,7 @@ class LocalCoherenceLanczosPar: Serializable
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosPar,
std::string, action,
int, doFine,
int, doCoarse,
bool, doCoarse,
LanczosParams, fineParams,
LanczosParams, coarseParams,
ChebyParams, smoother,
@ -63,8 +62,8 @@ public:
typedef LocalCoherenceLanczos<typename FImpl::SiteSpinor,
typename FImpl::SiteComplex,
nBasis> LCL;
typedef FineEigenPack<FImpl> FinePack;
typedef CoarseEigenPack<FImpl, nBasis> CoarsePack;
typedef FermionEigenPack<FImpl> BasePack;
typedef CoarseFermionEigenPack<FImpl, nBasis> CoarsePack;
typedef HADRONS_DEFAULT_SCHUR_OP<FMat, FermionField> SchurFMat;
public:
// constructor
@ -78,16 +77,6 @@ public:
virtual void setup(void);
// execution
virtual void execute(void);
private:
void makeCoarseGrid(void);
private:
std::vector<int> coarseDim_;
int Ls_, cLs_{1};
std::unique_ptr<GridCartesian> coarseGrid4_{nullptr};
std::unique_ptr<GridCartesian> coarseGrid_{nullptr};
std::unique_ptr<GridRedBlackCartesian> coarseGrid4Rb_{nullptr};
std::unique_ptr<GridRedBlackCartesian> coarseGridRb_{nullptr};
std::string fineName_, coarseName_;
};
MODULE_REGISTER_NS(LocalCoherenceLanczos,
@ -104,10 +93,7 @@ MODULE_REGISTER_NS(ZLocalCoherenceLanczos,
template <typename FImpl, int nBasis>
TLocalCoherenceLanczos<FImpl, nBasis>::TLocalCoherenceLanczos(const std::string name)
: Module<LocalCoherenceLanczosPar>(name)
{
fineName_ = getName() + "_fine";
coarseName_ = getName() + "_coarse";
}
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl, int nBasis>
@ -121,61 +107,12 @@ std::vector<std::string> TLocalCoherenceLanczos<FImpl, nBasis>::getInput(void)
template <typename FImpl, int nBasis>
std::vector<std::string> TLocalCoherenceLanczos<FImpl, nBasis>::getOutput(void)
{
std::vector<std::string> out = {fineName_, coarseName_};
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl, int nBasis>
void TLocalCoherenceLanczos<FImpl, nBasis>::makeCoarseGrid(void)
{
int nd = env().getNd();
std::vector<int> blockSize = strToVec<int>(par().blockSize);
auto fineDim = env().getDim();
Ls_ = env().getObjectLs(par().action);
env().createGrid(Ls_);
coarseDim_.resize(nd);
for (int d = 0; d < coarseDim_.size(); d++)
{
coarseDim_[d] = fineDim[d]/blockSize[d];
if (coarseDim_[d]*blockSize[d] != fineDim[d])
{
HADRON_ERROR(Size, "Fine dimension " + std::to_string(d)
+ " (" + std::to_string(fineDim[d])
+ ") not divisible by coarse dimension ("
+ std::to_string(coarseDim_[d]) + ")");
}
}
if (blockSize.size() > nd)
{
cLs_ = Ls_/blockSize[nd];
if (cLs_*blockSize[nd] != Ls_)
{
HADRON_ERROR(Size, "Fine Ls (" + std::to_string(Ls_)
+ ") not divisible by coarse Ls ("
+ std::to_string(cLs_) + ")");
}
}
if (Ls_ > 1)
{
coarseGrid4_.reset(SpaceTimeGrid::makeFourDimGrid(
coarseDim_, GridDefaultSimd(nd, vComplex::Nsimd()),
GridDefaultMpi()));
coarseGrid4Rb_.reset(SpaceTimeGrid::makeFourDimRedBlackGrid(coarseGrid4_.get()));
coarseGrid_.reset(SpaceTimeGrid::makeFiveDimGrid(cLs_, coarseGrid4_.get()));
coarseGridRb_.reset(SpaceTimeGrid::makeFiveDimRedBlackGrid(cLs_, coarseGrid4_.get()));
}
else
{
coarseGrid_.reset(SpaceTimeGrid::makeFourDimGrid(
coarseDim_, GridDefaultSimd(nd, vComplex::Nsimd()),
GridDefaultMpi()));
coarseGridRb_.reset(SpaceTimeGrid::makeFourDimRedBlackGrid(coarseGrid_.get()));
}
}
template <typename FImpl, int nBasis>
void TLocalCoherenceLanczos<FImpl, nBasis>::setup(void)
{
@ -183,19 +120,25 @@ void TLocalCoherenceLanczos<FImpl, nBasis>::setup(void)
<< " action '" << par().action << "' (" << nBasis
<< " eigenvectors)..." << std::endl;
if (!coarseGrid_)
{
makeCoarseGrid();
}
LOG(Message) << "Coarse grid: " << coarseGrid_->GlobalDimensions() << std::endl;
envCreate(FinePack, fineName_, Ls_, par().fineParams.Nm, env().getRbGrid(Ls_));
envCreate(CoarsePack, coarseName_, Ls_, par().coarseParams.Nm, coarseGridRb_.get());
auto &fine = envGet(FinePack, fineName_);
auto &coarse = envGet(CoarsePack, coarseName_);
envTmp(SchurFMat, "mat", Ls_, envGet(FMat, par().action));
unsigned int Ls = env().getObjectLs(par().action);
auto blockSize = strToVec<int>(par().blockSize);
env().createCoarseGrid(blockSize, Ls);
auto cg = env().getCoarseGrid(blockSize, Ls);
auto cgrb = env().getRbCoarseGrid(blockSize, Ls);
int cNm = (par().doCoarse) ? par().coarseParams.Nm : 0;
LOG(Message) << "Coarse grid: " << cg->GlobalDimensions() << std::endl;
envCreateDerived(BasePack, CoarsePack, getName(), Ls,
par().fineParams.Nm, cNm, env().getRbGrid(Ls), cgrb);
auto &epack = envGetDerived(BasePack, CoarsePack, getName());
envTmp(SchurFMat, "mat", Ls, envGet(FMat, par().action));
envGetTmp(SchurFMat, mat);
envTmp(LCL, "solver", Ls_, env().getRbGrid(Ls_), coarseGridRb_.get(), mat,
Odd, fine.evec, coarse.evec, fine.eval, coarse.eval);
envTmp(LCL, "solver", Ls, env().getRbGrid(Ls), cgrb, mat,
Odd, epack.evec, epack.evecCoarse, epack.eval, epack.evalCoarse);
}
// execution ///////////////////////////////////////////////////////////////////
@ -204,41 +147,33 @@ void TLocalCoherenceLanczos<FImpl, nBasis>::execute(void)
{
auto &finePar = par().fineParams;
auto &coarsePar = par().coarseParams;
auto &fine = envGet(FinePack, fineName_);
auto &coarse = envGet(CoarsePack, coarseName_);
auto &epack = envGetDerived(BasePack, CoarsePack, getName());
envGetTmp(LCL, solver);
if (par().doFine)
{
LOG(Message) << "Performing fine grid IRL -- Nstop= "
<< finePar.Nstop << ", Nk= " << finePar.Nk << ", Nm= "
<< finePar.Nm << std::endl;
solver.calcFine(finePar.Cheby, finePar.Nstop, finePar.Nk, finePar.Nm,
finePar.resid,finePar.MaxIt, finePar.betastp,
finePar.MinRes);
solver.testFine(finePar.resid*100.0);
LOG(Message) << "Orthogonalising" << std::endl;
solver.Orthogonalise();
if (!par().output.empty())
{
fine.write(par().output + "_fine");
}
}
LOG(Message) << "Performing fine grid IRL -- Nstop= "
<< finePar.Nstop << ", Nk= " << finePar.Nk << ", Nm= "
<< finePar.Nm << std::endl;
solver.calcFine(finePar.Cheby, finePar.Nstop, finePar.Nk, finePar.Nm,
finePar.resid,finePar.MaxIt, finePar.betastp,
finePar.MinRes);
solver.testFine(finePar.resid*100.0);
if (par().doCoarse)
{
LOG(Message) << "Orthogonalising" << std::endl;
solver.Orthogonalise();
LOG(Message) << "Performing coarse grid IRL -- Nstop= "
<< coarsePar.Nstop << ", Nk= " << coarsePar.Nk << ", Nm= "
<< coarsePar.Nm << std::endl;
<< coarsePar.Nstop << ", Nk= " << coarsePar.Nk << ", Nm= "
<< coarsePar.Nm << std::endl;
solver.calcCoarse(coarsePar.Cheby, par().smoother, par().coarseRelaxTol,
coarsePar.Nstop, coarsePar.Nk, coarsePar.Nm,
coarsePar.Nstop, coarsePar.Nk, coarsePar.Nm,
coarsePar.resid, coarsePar.MaxIt, coarsePar.betastp,
coarsePar.MinRes);
solver.testCoarse(coarsePar.resid*100.0, par().smoother,
par().coarseRelaxTol);
if (!par().output.empty())
{
coarse.write(par().output + "_coarse");
}
par().coarseRelaxTol);
}
if (!par().output.empty())
{
epack.write(par().output, vm().getTrajectory());
}
}

View File

@ -32,6 +32,7 @@ See the full license in the file "LICENSE" in the top level distribution directo
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/EigenPack.hpp>
BEGIN_HADRONS_NAMESPACE
@ -44,16 +45,24 @@ class RBPrecCGPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(RBPrecCGPar ,
std::string , action,
unsigned int , maxIteration,
double , residual);
std::string , action,
unsigned int, maxIteration,
double , residual,
std::string , eigenPack);
};
template <typename FImpl>
template <typename FImpl, int nBasis>
class TRBPrecCG: public Module<RBPrecCGPar>
{
public:
FGS_TYPE_ALIASES(FImpl,);
typedef FermionEigenPack<FImpl> EPack;
typedef CoarseFermionEigenPack<FImpl, nBasis> CoarseEPack;
typedef std::shared_ptr<Guesser<FermionField>> GuesserPt;
typedef DeflatedGuesser<typename FImpl::FermionField> FineGuesser;
typedef LocalCoherenceDeflatedGuesser<
typename FImpl::FermionField,
typename CoarseEPack::CoarseField> CoarseGuesser;
public:
// constructor
TRBPrecCG(const std::string name);
@ -70,37 +79,39 @@ protected:
virtual void execute(void);
};
MODULE_REGISTER_NS(RBPrecCG, TRBPrecCG<FIMPL>, MSolver);
MODULE_REGISTER_NS(ZRBPrecCG, TRBPrecCG<ZFIMPL>, MSolver);
MODULE_REGISTER_NS(RBPrecCG,
ARG(TRBPrecCG<FIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>), MSolver);
MODULE_REGISTER_NS(ZRBPrecCG,
ARG(TRBPrecCG<ZFIMPL, HADRONS_DEFAULT_LANCZOS_NBASIS>), MSolver);
/******************************************************************************
* TRBPrecCG template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TRBPrecCG<FImpl>::TRBPrecCG(const std::string name)
template <typename FImpl, int nBasis>
TRBPrecCG<FImpl, nBasis>::TRBPrecCG(const std::string name)
: Module(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TRBPrecCG<FImpl>::getInput(void)
template <typename FImpl, int nBasis>
std::vector<std::string> TRBPrecCG<FImpl, nBasis>::getInput(void)
{
std::vector<std::string> in = {};
return in;
}
template <typename FImpl>
std::vector<std::string> TRBPrecCG<FImpl>::getReference(void)
template <typename FImpl, int nBasis>
std::vector<std::string> TRBPrecCG<FImpl, nBasis>::getReference(void)
{
std::vector<std::string> ref = {par().action};
return ref;
}
template <typename FImpl>
std::vector<std::string> TRBPrecCG<FImpl>::getOutput(void)
template <typename FImpl, int nBasis>
std::vector<std::string> TRBPrecCG<FImpl, nBasis>::getOutput(void)
{
std::vector<std::string> out = {getName()};
@ -108,30 +119,60 @@ std::vector<std::string> TRBPrecCG<FImpl>::getOutput(void)
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TRBPrecCG<FImpl>::setup(void)
template <typename FImpl, int nBasis>
void TRBPrecCG<FImpl, nBasis>::setup(void)
{
if (par().maxIteration == 0)
{
HADRON_ERROR(Argument, "zero maximum iteration");
}
LOG(Message) << "setting up Schur red-black preconditioned CG for"
<< " action '" << par().action << "' with residual "
<< par().residual << std::endl;
<< par().residual << ", maximum iteration "
<< par().maxIteration << std::endl;
auto Ls = env().getObjectLs(par().action);
auto &mat = envGet(FMat, par().action);
auto solver = [&mat, this](FermionField &sol, const FermionField &source)
auto Ls = env().getObjectLs(par().action);
auto &mat = envGet(FMat, par().action);
std::string guesserName = getName() + "_guesser";
GuesserPt guesser{nullptr};
if (par().eigenPack.empty())
{
guesser.reset(new ZeroGuesser<FermionField>());
}
else
{
try
{
auto &epack = envGetDerived(EPack, CoarseEPack, par().eigenPack);
guesser.reset(new CoarseGuesser(epack.evec, epack.evecCoarse,
epack.evalCoarse));
}
catch (Exceptions::Definition &e)
{
auto &epack = envGet(EPack, par().eigenPack);
guesser.reset(new FineGuesser(epack.evec, epack.eval));
}
}
auto solver = [&mat, guesser, this](FermionField &sol,
const FermionField &source)
{
ConjugateGradient<FermionField> cg(par().residual,
par().maxIteration);
HADRONS_DEFAULT_SCHUR_SOLVE<FermionField> schurSolver(cg);
schurSolver(mat, source, sol);
schurSolver(mat, source, sol, *guesser);
};
envCreate(SolverFn, getName(), Ls, solver);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TRBPrecCG<FImpl>::execute(void)
template <typename FImpl, int nBasis>
void TRBPrecCG<FImpl, nBasis>::execute(void)
{}
END_MODULE_NAMESPACE

View File

@ -381,7 +381,6 @@ void VirtualMachine::makeMemoryProfile(void)
env().protectObjects(false);
GridLogMessage.Active(false);
HadronsLogMessage.Active(false);
HadronsLogError.Active(false);
for (auto it = program.rbegin(); it != program.rend(); ++it)
{
auto a = *it;
@ -397,7 +396,6 @@ void VirtualMachine::makeMemoryProfile(void)
env().protectObjects(protect);
GridLogMessage.Active(gmsg);
HadronsLogMessage.Active(hmsg);
HadronsLogError.Active(err);
LOG(Debug) << "Memory profile:" << std::endl;
LOG(Debug) << "----------------" << std::endl;
for (unsigned int a = 0; a < profile_.module.size(); ++a)
@ -632,6 +630,17 @@ void VirtualMachine::executeProgram(const Program &p) const
// build garbage collection schedule
LOG(Debug) << "Building garbage collection schedule..." << std::endl;
freeProg = makeGarbageSchedule(p);
for (unsigned int i = 0; i < freeProg.size(); ++i)
{
std::string msg = "";
for (auto &a: freeProg[i])
{
msg += env().getObjectName(a) + " ";
}
msg += "]";
LOG(Debug) << std::setw(4) << i + 1 << ": [" << msg << std::endl;
}
// program execution
LOG(Debug) << "Executing program..." << std::endl;

View File

@ -50,6 +50,7 @@ modules_hpp =\
Modules/MAction/Wilson.hpp \
Modules/MAction/WilsonClover.hpp \
Modules/MAction/ZMobiusDWF.hpp \
Modules/MScalarSUN/ShiftProbe.hpp \
Modules/MScalarSUN/Div.hpp \
Modules/MScalarSUN/TrMag.hpp \
Modules/MScalarSUN/EMT.hpp \
@ -58,6 +59,8 @@ modules_hpp =\
Modules/MScalarSUN/Utils.hpp \
Modules/MScalarSUN/TransProj.hpp \
Modules/MScalarSUN/TrKinetic.hpp \
Modules/MIO/LoadEigenPack.hpp \
Modules/MIO/LoadNersc.hpp \
Modules/MIO/LoadCoarseEigenPack.hpp \
Modules/MIO/LoadBinary.hpp

View File

@ -30,22 +30,31 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
namespace Grid {
struct ZeroGuesser {
template<class Field>
class Guesser {
public:
template<class Field>
void operator()(const Field &src,Field &guess) { guess = Zero(); };
Guesser(void) = default;
virtual ~Guesser(void) = default;
virtual void operator()(const Field &src, Field &guess) = 0;
};
struct SourceGuesser {
template<class Field>
class ZeroGuesser: public Guesser<Field> {
public:
template<class Field>
void operator()(const Field &src,Field &guess) { guess = src; };
virtual void operator()(const Field &src, Field &guess) { guess = zero; };
};
template<class Field>
class SourceGuesser: public Guesser<Field> {
public:
virtual void operator()(const Field &src, Field &guess) { guess = src; };
};
////////////////////////////////
// Fine grid deflation
////////////////////////////////
template<class Field>
struct DeflatedGuesser {
class DeflatedGuesser: public Guesser<Field> {
private:
const std::vector<Field> &evec;
const std::vector<RealD> &eval;
@ -54,7 +63,7 @@ public:
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {};
void operator()(const Field &src,Field &guess) {
virtual void operator()(const Field &src,Field &guess) {
guess = zero;
assert(evec.size()==eval.size());
auto N = evec.size();
@ -66,7 +75,7 @@ public:
};
template<class FineField, class CoarseField>
class LocalCoherenceDeflatedGuesser {
class LocalCoherenceDeflatedGuesser: public Guesser<FineField> {
private:
const std::vector<FineField> &subspace;
const std::vector<CoarseField> &evec_coarse;

View File

@ -108,7 +108,7 @@ namespace Grid {
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser guess;
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix, class Guesser>
@ -195,7 +195,7 @@ namespace Grid {
};
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser guess;
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix, class Guesser>
@ -280,7 +280,7 @@ namespace Grid {
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser guess;
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix,class Guesser>
@ -365,7 +365,7 @@ namespace Grid {
template<class Matrix>
void operator() (Matrix & _Matrix,const Field &in, Field &out){
ZeroGuesser guess;
ZeroGuesser<Field> guess;
(*this)(_Matrix,in,out,guess);
}
template<class Matrix, class Guesser>

View File

@ -226,6 +226,48 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
};
#endif // MMAP
#ifdef GRID_MPI3_SHM_NONE
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// allocate the shared windows for our group
//////////////////////////////////////////////////////////////////////////////////////////////////////////
MPI_Barrier(WorldShmComm);
WorldShmCommBufs.resize(WorldShmSize);
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbf and others map filesystems as mappable huge pages
////////////////////////////////////////////////////////////////////////////////////////////
char shm_name [NAME_MAX];
assert(WorldShmSize == 1);
for(int r=0;r<WorldShmSize;r++){
int fd=-1;
int mmap_flag = MAP_SHARED |MAP_ANONYMOUS ;
#ifdef MAP_POPULATE
mmap_flag|=MAP_POPULATE;
#endif
#ifdef MAP_HUGETLB
if ( flags ) mmap_flag |= MAP_HUGETLB;
#endif
void *ptr = (void *) mmap(NULL, bytes, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
if ( ptr == (void *)MAP_FAILED ) {
printf("mmap %s failed\n",shm_name);
perror("failed mmap"); assert(0);
}
assert(((uint64_t)ptr&0x3F)==0);
close(fd);
WorldShmCommBufs[r] =ptr;
std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
}
_ShmAlloc=1;
_ShmAllocBytes = bytes;
};
#endif // MMAP
#ifdef GRID_MPI3_SHMOPEN
////////////////////////////////////////////////////////////////////////////////////////////
// POSIX SHMOPEN ; as far as I know Linux does not allow EXPLICIT HugePages with this case
@ -246,7 +288,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
size_t size = bytes;
sprintf(shm_name,"/Grid_mpi3_shm_%d_%d",WorldNode,r);
sprintf(shm_name,"/myGrid_mpi3_shm_%d_%d",WorldNode,r);
shm_unlink(shm_name);
int fd=shm_open(shm_name,O_RDWR|O_CREAT,0666);
@ -401,7 +443,10 @@ void *SharedMemory::ShmBufferTranslate(int rank,void * local_p)
}
SharedMemory::~SharedMemory()
{
MPI_Comm_free(&ShmComm);
int MPI_is_finalised; MPI_Finalized(&MPI_is_finalised);
if ( !MPI_is_finalised ) {
MPI_Comm_free(&ShmComm);
}
};
}

View File

@ -198,7 +198,7 @@ namespace Grid {
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd>\
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\
{ \
return lhs._internal op rhs._internal; \

View File

@ -91,7 +91,7 @@ class BinaryIO {
typedef typename vobj::scalar_object sobj;
GridBase *grid = lat._grid;
int lsites = grid->lSites();
uint64_t lsites = grid->lSites();
std::vector<sobj> scalardata(lsites);
unvectorizeToLexOrdArray(scalardata,lat);
@ -160,7 +160,9 @@ class BinaryIO {
/*
* Scidac csum is rather more heavyweight
* FIXME -- 128^3 x 256 x 16 will overflow.
*/
int global_site;
Lexicographic::CoorFromIndex(coor,local_site,local_vol);
@ -261,7 +263,7 @@ class BinaryIO {
GridBase *grid,
std::vector<fobj> &iodata,
std::string file,
Integer offset,
uint64_t offset,
const std::string &format, int control,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
@ -523,7 +525,7 @@ class BinaryIO {
static inline void readLatticeObject(Lattice<vobj> &Umu,
std::string file,
munger munge,
Integer offset,
uint64_t offset,
const std::string &format,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
@ -533,7 +535,7 @@ class BinaryIO {
typedef typename vobj::Realified::scalar_type word; word w=0;
GridBase *grid = Umu._grid;
int lsites = grid->lSites();
uint64_t lsites = grid->lSites();
std::vector<sobj> scalardata(lsites);
std::vector<fobj> iodata(lsites); // Munge, checksum, byte order in here
@ -544,7 +546,7 @@ class BinaryIO {
GridStopWatch timer;
timer.Start();
parallel_for(int x=0;x<lsites;x++) munge(iodata[x], scalardata[x]);
parallel_for(uint64_t x=0;x<lsites;x++) munge(iodata[x], scalardata[x]);
vectorizeFromLexOrdArray(scalardata,Umu);
grid->Barrier();
@ -560,7 +562,7 @@ class BinaryIO {
static inline void writeLatticeObject(Lattice<vobj> &Umu,
std::string file,
munger munge,
Integer offset,
uint64_t offset,
const std::string &format,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
@ -569,7 +571,7 @@ class BinaryIO {
typedef typename vobj::scalar_object sobj;
typedef typename vobj::Realified::scalar_type word; word w=0;
GridBase *grid = Umu._grid;
int lsites = grid->lSites();
uint64_t lsites = grid->lSites();
std::vector<sobj> scalardata(lsites);
std::vector<fobj> iodata(lsites); // Munge, checksum, byte order in here
@ -580,7 +582,7 @@ class BinaryIO {
GridStopWatch timer; timer.Start();
unvectorizeToLexOrdArray(scalardata,Umu);
parallel_for(int x=0;x<lsites;x++) munge(scalardata[x],iodata[x]);
parallel_for(uint64_t x=0;x<lsites;x++) munge(scalardata[x],iodata[x]);
grid->Barrier();
timer.Stop();
@ -597,7 +599,7 @@ class BinaryIO {
static inline void readRNG(GridSerialRNG &serial,
GridParallelRNG &parallel,
std::string file,
Integer offset,
uint64_t offset,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
uint32_t &scidac_csumb)
@ -610,8 +612,8 @@ class BinaryIO {
std::string format = "IEEE32BIG";
GridBase *grid = parallel._grid;
int gsites = grid->gSites();
int lsites = grid->lSites();
uint64_t gsites = grid->gSites();
uint64_t lsites = grid->lSites();
uint32_t nersc_csum_tmp = 0;
uint32_t scidac_csuma_tmp = 0;
@ -626,7 +628,7 @@ class BinaryIO {
nersc_csum,scidac_csuma,scidac_csumb);
timer.Start();
parallel_for(int lidx=0;lidx<lsites;lidx++){
parallel_for(uint64_t lidx=0;lidx<lsites;lidx++){
std::vector<RngStateType> tmp(RngStateCount);
std::copy(iodata[lidx].begin(),iodata[lidx].end(),tmp.begin());
parallel.SetState(tmp,lidx);
@ -659,7 +661,7 @@ class BinaryIO {
static inline void writeRNG(GridSerialRNG &serial,
GridParallelRNG &parallel,
std::string file,
Integer offset,
uint64_t offset,
uint32_t &nersc_csum,
uint32_t &scidac_csuma,
uint32_t &scidac_csumb)
@ -670,8 +672,8 @@ class BinaryIO {
typedef std::array<RngStateType,RngStateCount> RNGstate;
GridBase *grid = parallel._grid;
int gsites = grid->gSites();
int lsites = grid->lSites();
uint64_t gsites = grid->gSites();
uint64_t lsites = grid->lSites();
uint32_t nersc_csum_tmp;
uint32_t scidac_csuma_tmp;
@ -684,7 +686,7 @@ class BinaryIO {
timer.Start();
std::vector<RNGstate> iodata(lsites);
parallel_for(int lidx=0;lidx<lsites;lidx++){
parallel_for(uint64_t lidx=0;lidx<lsites;lidx++){
std::vector<RngStateType> tmp(RngStateCount);
parallel.GetState(tmp,lidx);
std::copy(tmp.begin(),tmp.end(),iodata[lidx].begin());

View File

@ -337,6 +337,20 @@ class GridLimeWriter : public BinaryIO {
template<class vobj>
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
{
////////////////////////////////////////////////////////////////////
// NB: FILE and iostream are jointly writing disjoint sequences in the
// the same file through different file handles (integer units).
//
// These are both buffered, so why I think this code is right is as follows.
//
// i) write record header to FILE *File, telegraphing the size; flush
// ii) ftello reads the offset from FILE *File .
// iii) iostream / MPI Open independently seek this offset. Write sequence direct to disk.
// Closes iostream and flushes.
// iv) fseek on FILE * to end of this disjoint section.
// v) Continue writing scidac record.
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////
// Create record header
////////////////////////////////////////////
@ -350,25 +364,24 @@ class GridLimeWriter : public BinaryIO {
// std::cout << "W Gsites " <<field._grid->_gsites<<std::endl;
// std::cout << "W Payload expected " <<PayloadSize<<std::endl;
////////////////////////////////////////////////////////////////////
// NB: FILE and iostream are jointly writing disjoint sequences in the
// the same file through different file handles (integer units).
//
// These are both buffered, so why I think this code is right is as follows.
//
// i) write record header to FILE *File, telegraphing the size.
// ii) ftello reads the offset from FILE *File .
// iii) iostream / MPI Open independently seek this offset. Write sequence direct to disk.
// Closes iostream and flushes.
// iv) fseek on FILE * to end of this disjoint section.
// v) Continue writing scidac record.
////////////////////////////////////////////////////////////////////
uint64_t offset = ftello(File);
// std::cout << " Writing to offset "<<offset << std::endl;
fflush(File);
///////////////////////////////////////////
// Write by other means into the binary record
///////////////////////////////////////////
uint64_t offset1 = ftello(File); // std::cout << " Writing to offset "<<offset1 << std::endl;
std::string format = getFormatString<vobj>();
BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
// fseek(File,0,SEEK_END); offset = ftello(File);std::cout << " offset now "<<offset << std::endl;
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb);
///////////////////////////////////////////
// Wind forward and close the record
///////////////////////////////////////////
fseek(File,0,SEEK_END);
uint64_t offset2 = ftello(File); // std::cout << " now at offset "<<offset2 << std::endl;
assert((offset2-offset1) == PayloadSize);
err=limeWriterCloseRecord(LimeW); assert(err>=0);
////////////////////////////////////////
@ -568,7 +581,6 @@ class IldgWriter : public ScidacWriter {
writeLimeIldgLFN(header.ildg_lfn); // rec
writeLimeLatticeBinaryObject(Umu,std::string(ILDG_BINARY_DATA)); // Closes message with checksum
// limeDestroyWriter(LimeW);
fclose(File);
}
};

View File

@ -57,7 +57,7 @@ namespace Grid {
// for the header-reader
static inline int readHeader(std::string file,GridBase *grid, FieldMetaData &field)
{
int offset=0;
uint64_t offset=0;
std::map<std::string,std::string> header;
std::string line;
@ -139,7 +139,7 @@ namespace Grid {
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
GridBase *grid = Umu._grid;
int offset = readHeader(file,Umu._grid,header);
uint64_t offset = readHeader(file,Umu._grid,header);
FieldMetaData clone(header);
@ -236,7 +236,7 @@ namespace Grid {
GaugeStatistics(Umu,header);
MachineCharacteristics(header);
int offset;
uint64_t offset;
truncate(file);
@ -278,7 +278,7 @@ namespace Grid {
header.plaquette=0.0;
MachineCharacteristics(header);
int offset;
uint64_t offset;
#ifdef RNG_RANLUX
header.floating_point = std::string("UINT64");
@ -313,7 +313,7 @@ namespace Grid {
GridBase *grid = parallel._grid;
int offset = readHeader(file,grid,header);
uint64_t offset = readHeader(file,grid,header);
FieldMetaData clone(header);

View File

@ -71,18 +71,14 @@ class WilsonGaugeAction : public Action<typename Gimpl::GaugeField> {
RealD factor = 0.5 * beta / RealD(Nc);
//GaugeLinkField Umu(U._grid);
GaugeLinkField Umu(U._grid);
GaugeLinkField dSdU_mu(U._grid);
for (int mu = 0; mu < Nd; mu++) {
//Umu = PeekIndex<LorentzIndex>(U, mu);
Umu = PeekIndex<LorentzIndex>(U, mu);
// Staple in direction mu
//WilsonLoops<Gimpl>::Staple(dSdU_mu, U, mu);
//dSdU_mu = Ta(Umu * dSdU_mu) * factor;
WilsonLoops<Gimpl>::StapleMult(dSdU_mu, U, mu);
dSdU_mu = Ta(dSdU_mu) * factor;
WilsonLoops<Gimpl>::Staple(dSdU_mu, U, mu);
dSdU_mu = Ta(Umu * dSdU_mu) * factor;
PokeIndex<LorentzIndex>(dSdU, dSdU_mu, mu);
}

View File

@ -212,6 +212,7 @@ public:
// For the force term
/*
static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
GridBase *grid = Umu._grid;
std::vector<GaugeMat> U(Nd, grid);
@ -225,7 +226,7 @@ static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
for (int nu = 0; nu < Nd; nu++) {
if (nu != mu) {
// this is ~10% faster than the Staple
// this is ~10% faster than the Staple -- PAB: so what it gives the WRONG answers for other BC's!
tmp1 = Cshift(U[nu], mu, 1);
tmp2 = Cshift(U[mu], nu, 1);
staple += tmp1* adj(U[nu]*tmp2);
@ -235,7 +236,7 @@ static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
}
staple = U[mu]*staple;
}
*/
//////////////////////////////////////////////////
// the sum over all staples on each site
//////////////////////////////////////////////////

View File

@ -31,161 +31,10 @@ Author: Guido Cossu <guido.cossu@ed.ac.uk>
#define GRID_SERIALISATION_ABSTRACT_READER_H
#include <type_traits>
#include <Grid/tensors/Tensors.h>
#include <Grid/serialisation/VectorUtils.h>
namespace Grid {
// Vector IO utilities ///////////////////////////////////////////////////////
// helper function to read space-separated values
template <typename T>
std::vector<T> strToVec(const std::string s)
{
std::istringstream sstr(s);
T buf;
std::vector<T> v;
while(!sstr.eof())
{
sstr >> buf;
v.push_back(buf);
}
return v;
}
// output to streams for vectors
template < class T >
inline std::ostream & operator<<(std::ostream &os, const std::vector<T> &v)
{
os << "[";
for (auto &x: v)
{
os << x << " ";
}
if (v.size() > 0)
{
os << "\b";
}
os << "]";
return os;
}
// Vector element trait //////////////////////////////////////////////////////
template <typename T>
struct element
{
typedef T type;
static constexpr bool is_number = false;
};
template <typename T>
struct element<std::vector<T>>
{
typedef typename element<T>::type type;
static constexpr bool is_number = std::is_arithmetic<T>::value
or is_complex<T>::value
or element<T>::is_number;
};
// Vector flattening utility class ////////////////////////////////////////////
// Class to flatten a multidimensional std::vector
template <typename V>
class Flatten
{
public:
typedef typename element<V>::type Element;
public:
explicit Flatten(const V &vector);
const V & getVector(void);
const std::vector<Element> & getFlatVector(void);
const std::vector<size_t> & getDim(void);
private:
void accumulate(const Element &e);
template <typename W>
void accumulate(const W &v);
void accumulateDim(const Element &e);
template <typename W>
void accumulateDim(const W &v);
private:
const V &vector_;
std::vector<Element> flatVector_;
std::vector<size_t> dim_;
};
// Class to reconstruct a multidimensional std::vector
template <typename V>
class Reconstruct
{
public:
typedef typename element<V>::type Element;
public:
Reconstruct(const std::vector<Element> &flatVector,
const std::vector<size_t> &dim);
const V & getVector(void);
const std::vector<Element> & getFlatVector(void);
const std::vector<size_t> & getDim(void);
private:
void fill(std::vector<Element> &v);
template <typename W>
void fill(W &v);
void resize(std::vector<Element> &v, const unsigned int dim);
template <typename W>
void resize(W &v, const unsigned int dim);
private:
V vector_;
const std::vector<Element> &flatVector_;
std::vector<size_t> dim_;
size_t ind_{0};
unsigned int dimInd_{0};
};
// Pair IO utilities /////////////////////////////////////////////////////////
// helper function to parse input in the format "<obj1 obj2>"
template <typename T1, typename T2>
inline std::istream & operator>>(std::istream &is, std::pair<T1, T2> &buf)
{
T1 buf1;
T2 buf2;
char c;
// Search for "pair" delimiters.
do
{
is.get(c);
} while (c != '<' && !is.eof());
if (c == '<')
{
int start = is.tellg();
do
{
is.get(c);
} while (c != '>' && !is.eof());
if (c == '>')
{
int end = is.tellg();
int psize = end - start - 1;
// Only read data between pair limiters.
is.seekg(start);
std::string tmpstr(psize, ' ');
is.read(&tmpstr[0], psize);
std::istringstream temp(tmpstr);
temp >> buf1 >> buf2;
buf = std::make_pair(buf1, buf2);
is.seekg(end);
}
}
is.peek();
return is;
}
// output to streams for pairs
template <class T1, class T2>
inline std::ostream & operator<<(std::ostream &os, const std::pair<T1, T2> &p)
{
os << "<" << p.first << " " << p.second << ">";
return os;
}
// Abstract writer/reader classes ////////////////////////////////////////////
// static polymorphism implemented using CRTP idiom
class Serializable;
@ -205,6 +54,12 @@ namespace Grid {
template <typename U>
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
write(const std::string& s, const U &output);
template <typename U>
void write(const std::string &s, const iScalar<U> &output);
template <typename U, int N>
void write(const std::string &s, const iVector<U, N> &output);
template <typename U, int N>
void write(const std::string &s, const iMatrix<U, N> &output);
private:
T *upcast;
};
@ -224,6 +79,12 @@ namespace Grid {
template <typename U>
typename std::enable_if<!std::is_base_of<Serializable, U>::value, void>::type
read(const std::string& s, U &output);
template <typename U>
void read(const std::string &s, iScalar<U> &output);
template <typename U, int N>
void read(const std::string &s, iVector<U, N> &output);
template <typename U, int N>
void read(const std::string &s, iMatrix<U, N> &output);
protected:
template <typename U>
void fromString(U &output, const std::string &s);
@ -237,203 +98,9 @@ namespace Grid {
};
template<typename T> struct isWriter {
static const bool value = false;
};
// Generic writer interface
// serializable base class
class Serializable
{
public:
template <typename T>
static inline void write(Writer<T> &WR,const std::string &s,
const Serializable &obj)
{}
template <typename T>
static inline void read(Reader<T> &RD,const std::string &s,
Serializable &obj)
{}
friend inline std::ostream & operator<<(std::ostream &os,
const Serializable &obj)
{
return os;
}
};
// Flatten class template implementation /////////////////////////////////////
template <typename V>
void Flatten<V>::accumulate(const Element &e)
{
flatVector_.push_back(e);
}
template <typename V>
template <typename W>
void Flatten<V>::accumulate(const W &v)
{
for (auto &e: v)
{
accumulate(e);
}
}
template <typename V>
void Flatten<V>::accumulateDim(const Element &e) {};
template <typename V>
template <typename W>
void Flatten<V>::accumulateDim(const W &v)
{
dim_.push_back(v.size());
accumulateDim(v[0]);
}
template <typename V>
Flatten<V>::Flatten(const V &vector)
: vector_(vector)
{
accumulate(vector_);
accumulateDim(vector_);
}
template <typename V>
const V & Flatten<V>::getVector(void)
{
return vector_;
}
template <typename V>
const std::vector<typename Flatten<V>::Element> &
Flatten<V>::getFlatVector(void)
{
return flatVector_;
}
template <typename V>
const std::vector<size_t> & Flatten<V>::getDim(void)
{
return dim_;
}
// Reconstruct class template implementation /////////////////////////////////
template <typename V>
void Reconstruct<V>::fill(std::vector<Element> &v)
{
for (auto &e: v)
{
e = flatVector_[ind_++];
}
}
template <typename V>
template <typename W>
void Reconstruct<V>::fill(W &v)
{
for (auto &e: v)
{
fill(e);
}
}
template <typename V>
void Reconstruct<V>::resize(std::vector<Element> &v, const unsigned int dim)
{
v.resize(dim_[dim]);
}
template <typename V>
template <typename W>
void Reconstruct<V>::resize(W &v, const unsigned int dim)
{
v.resize(dim_[dim]);
for (auto &e: v)
{
resize(e, dim + 1);
}
}
template <typename V>
Reconstruct<V>::Reconstruct(const std::vector<Element> &flatVector,
const std::vector<size_t> &dim)
: flatVector_(flatVector)
, dim_(dim)
{
resize(vector_, 0);
fill(vector_);
}
template <typename V>
const V & Reconstruct<V>::getVector(void)
{
return vector_;
}
template <typename V>
const std::vector<typename Reconstruct<V>::Element> &
Reconstruct<V>::getFlatVector(void)
{
return flatVector_;
}
template <typename V>
const std::vector<size_t> & Reconstruct<V>::getDim(void)
{
return dim_;
}
// Generic writer interface //////////////////////////////////////////////////
template <typename T>
inline void push(Writer<T> &w, const std::string &s) {
w.push(s);
}
template <typename T>
inline void push(Writer<T> &w, const char *s)
{
w.push(std::string(s));
}
template <typename T>
inline void pop(Writer<T> &w)
{
w.pop();
}
template <typename T, typename U>
inline void write(Writer<T> &w, const std::string& s, const U &output)
{
w.write(s, output);
}
// Generic reader interface
template <typename T>
inline bool push(Reader<T> &r, const std::string &s)
{
return r.push(s);
}
template <typename T>
inline bool push(Reader<T> &r, const char *s)
{
return r.push(std::string(s));
}
template <typename T>
inline void pop(Reader<T> &r)
{
r.pop();
}
template <typename T, typename U>
inline void read(Reader<T> &r, const std::string &s, U &output)
{
r.read(s, output);
}
// Writer template implementation ////////////////////////////////////////////
// Writer template implementation
template <typename T>
Writer<T>::Writer(void)
{
@ -467,6 +134,27 @@ namespace Grid {
{
upcast->writeDefault(s, output);
}
template <typename T>
template <typename U>
void Writer<T>::write(const std::string &s, const iScalar<U> &output)
{
upcast->writeDefault(s, tensorToVec(output));
}
template <typename T>
template <typename U, int N>
void Writer<T>::write(const std::string &s, const iVector<U, N> &output)
{
upcast->writeDefault(s, tensorToVec(output));
}
template <typename T>
template <typename U, int N>
void Writer<T>::write(const std::string &s, const iMatrix<U, N> &output)
{
upcast->writeDefault(s, tensorToVec(output));
}
// Reader template implementation
template <typename T>
@ -502,7 +190,37 @@ namespace Grid {
{
upcast->readDefault(s, output);
}
template <typename T>
template <typename U>
void Reader<T>::read(const std::string &s, iScalar<U> &output)
{
typename TensorToVec<iScalar<U>>::type v;
upcast->readDefault(s, v);
vecToTensor(output, v);
}
template <typename T>
template <typename U, int N>
void Reader<T>::read(const std::string &s, iVector<U, N> &output)
{
typename TensorToVec<iVector<U, N>>::type v;
upcast->readDefault(s, v);
vecToTensor(output, v);
}
template <typename T>
template <typename U, int N>
void Reader<T>::read(const std::string &s, iMatrix<U, N> &output)
{
typename TensorToVec<iMatrix<U, N>>::type v;
upcast->readDefault(s, v);
vecToTensor(output, v);
}
template <typename T>
template <typename U>
void Reader<T>::fromString(U &output, const std::string &s)
@ -514,13 +232,83 @@ namespace Grid {
{
is >> std::boolalpha >> output;
}
catch(std::istringstream::failure &e)
catch(std::ios_base::failure &e)
{
std::cerr << "numerical conversion failure on '" << s << "' ";
std::cerr << "(typeid: " << typeid(U).name() << ")" << std::endl;
abort();
}
}
// serializable base class ///////////////////////////////////////////////////
class Serializable
{
public:
template <typename T>
static inline void write(Writer<T> &WR,const std::string &s,
const Serializable &obj)
{}
template <typename T>
static inline void read(Reader<T> &RD,const std::string &s,
Serializable &obj)
{}
friend inline std::ostream & operator<<(std::ostream &os,
const Serializable &obj)
{
return os;
}
};
// Generic writer interface //////////////////////////////////////////////////
template <typename T>
inline void push(Writer<T> &w, const std::string &s) {
w.push(s);
}
template <typename T>
inline void push(Writer<T> &w, const char *s)
{
w.push(std::string(s));
}
template <typename T>
inline void pop(Writer<T> &w)
{
w.pop();
}
template <typename T, typename U>
inline void write(Writer<T> &w, const std::string& s, const U &output)
{
w.write(s, output);
}
// Generic reader interface //////////////////////////////////////////////////
template <typename T>
inline bool push(Reader<T> &r, const std::string &s)
{
return r.push(s);
}
template <typename T>
inline bool push(Reader<T> &r, const char *s)
{
return r.push(std::string(s));
}
template <typename T>
inline void pop(Reader<T> &r)
{
r.pop();
}
template <typename T, typename U>
inline void read(Reader<T> &r, const std::string &s, U &output)
{
r.read(s, output);
}
}
#endif

View File

@ -5,6 +5,7 @@
#include <string>
#include <vector>
#include <H5Cpp.h>
#include <Grid/tensors/Tensors.h>
#include "Hdf5Type.h"
#ifndef H5_NO_NAMESPACE

View File

@ -0,0 +1,384 @@
#ifndef GRID_SERIALISATION_VECTORUTILS_H
#define GRID_SERIALISATION_VECTORUTILS_H
#include <type_traits>
#include <Grid/tensors/Tensors.h>
namespace Grid {
// Pair IO utilities /////////////////////////////////////////////////////////
// helper function to parse input in the format "<obj1 obj2>"
template <typename T1, typename T2>
inline std::istream & operator>>(std::istream &is, std::pair<T1, T2> &buf)
{
T1 buf1;
T2 buf2;
char c;
// Search for "pair" delimiters.
do
{
is.get(c);
} while (c != '(' && !is.eof());
if (c == '(')
{
int start = is.tellg();
do
{
is.get(c);
} while (c != ')' && !is.eof());
if (c == ')')
{
int end = is.tellg();
int psize = end - start - 1;
// Only read data between pair limiters.
is.seekg(start);
std::string tmpstr(psize, ' ');
is.read(&tmpstr[0], psize);
std::istringstream temp(tmpstr);
temp >> buf1 >> buf2;
buf = std::make_pair(buf1, buf2);
is.seekg(end);
}
}
is.peek();
return is;
}
// output to streams for pairs
template <class T1, class T2>
inline std::ostream & operator<<(std::ostream &os, const std::pair<T1, T2> &p)
{
os << "(" << p.first << " " << p.second << ")";
return os;
}
// Grid scalar tensors to nested std::vectors //////////////////////////////////
template <typename T>
struct TensorToVec
{
typedef T type;
};
template <typename T>
struct TensorToVec<iScalar<T>>
{
typedef typename TensorToVec<T>::type type;
};
template <typename T, int N>
struct TensorToVec<iVector<T, N>>
{
typedef typename std::vector<typename TensorToVec<T>::type> type;
};
template <typename T, int N>
struct TensorToVec<iMatrix<T, N>>
{
typedef typename std::vector<std::vector<typename TensorToVec<T>::type>> type;
};
template <typename T>
typename TensorToVec<T>::type tensorToVec(const T &t)
{
return t;
}
template <typename T>
typename TensorToVec<iScalar<T>>::type tensorToVec(const iScalar<T>& t)
{
return tensorToVec(t._internal);
}
template <typename T, int N>
typename TensorToVec<iVector<T, N>>::type tensorToVec(const iVector<T, N>& t)
{
typename TensorToVec<iVector<T, N>>::type v;
v.resize(N);
for (unsigned int i = 0; i < N; i++)
{
v[i] = tensorToVec(t._internal[i]);
}
return v;
}
template <typename T, int N>
typename TensorToVec<iMatrix<T, N>>::type tensorToVec(const iMatrix<T, N>& t)
{
typename TensorToVec<iMatrix<T, N>>::type v;
v.resize(N);
for (unsigned int i = 0; i < N; i++)
{
v[i].resize(N);
for (unsigned int j = 0; j < N; j++)
{
v[i][j] = tensorToVec(t._internal[i][j]);
}
}
return v;
}
template <typename T>
void vecToTensor(T &t, const typename TensorToVec<T>::type &v)
{
t = v;
}
template <typename T>
void vecToTensor(iScalar<T> &t, const typename TensorToVec<iScalar<T>>::type &v)
{
vecToTensor(t._internal, v);
}
template <typename T, int N>
void vecToTensor(iVector<T, N> &t, const typename TensorToVec<iVector<T, N>>::type &v)
{
for (unsigned int i = 0; i < N; i++)
{
vecToTensor(t._internal[i], v[i]);
}
}
template <typename T, int N>
void vecToTensor(iMatrix<T, N> &t, const typename TensorToVec<iMatrix<T, N>>::type &v)
{
for (unsigned int i = 0; i < N; i++)
for (unsigned int j = 0; j < N; j++)
{
vecToTensor(t._internal[i][j], v[i][j]);
}
}
// Vector element trait //////////////////////////////////////////////////////
template <typename T>
struct element
{
typedef T type;
static constexpr bool is_number = false;
};
template <typename T>
struct element<std::vector<T>>
{
typedef typename element<T>::type type;
static constexpr bool is_number = std::is_arithmetic<T>::value
or is_complex<T>::value
or element<T>::is_number;
};
// Vector flattening utility class ////////////////////////////////////////////
// Class to flatten a multidimensional std::vector
template <typename V>
class Flatten
{
public:
typedef typename element<V>::type Element;
public:
explicit Flatten(const V &vector);
const V & getVector(void);
const std::vector<Element> & getFlatVector(void);
const std::vector<size_t> & getDim(void);
private:
void accumulate(const Element &e);
template <typename W>
void accumulate(const W &v);
void accumulateDim(const Element &e);
template <typename W>
void accumulateDim(const W &v);
private:
const V &vector_;
std::vector<Element> flatVector_;
std::vector<size_t> dim_;
};
// Class to reconstruct a multidimensional std::vector
template <typename V>
class Reconstruct
{
public:
typedef typename element<V>::type Element;
public:
Reconstruct(const std::vector<Element> &flatVector,
const std::vector<size_t> &dim);
const V & getVector(void);
const std::vector<Element> & getFlatVector(void);
const std::vector<size_t> & getDim(void);
private:
void fill(std::vector<Element> &v);
template <typename W>
void fill(W &v);
void resize(std::vector<Element> &v, const unsigned int dim);
template <typename W>
void resize(W &v, const unsigned int dim);
private:
V vector_;
const std::vector<Element> &flatVector_;
std::vector<size_t> dim_;
size_t ind_{0};
unsigned int dimInd_{0};
};
// Flatten class template implementation
template <typename V>
void Flatten<V>::accumulate(const Element &e)
{
flatVector_.push_back(e);
}
template <typename V>
template <typename W>
void Flatten<V>::accumulate(const W &v)
{
for (auto &e: v)
{
accumulate(e);
}
}
template <typename V>
void Flatten<V>::accumulateDim(const Element &e) {};
template <typename V>
template <typename W>
void Flatten<V>::accumulateDim(const W &v)
{
dim_.push_back(v.size());
accumulateDim(v[0]);
}
template <typename V>
Flatten<V>::Flatten(const V &vector)
: vector_(vector)
{
accumulate(vector_);
accumulateDim(vector_);
}
template <typename V>
const V & Flatten<V>::getVector(void)
{
return vector_;
}
template <typename V>
const std::vector<typename Flatten<V>::Element> &
Flatten<V>::getFlatVector(void)
{
return flatVector_;
}
template <typename V>
const std::vector<size_t> & Flatten<V>::getDim(void)
{
return dim_;
}
// Reconstruct class template implementation
template <typename V>
void Reconstruct<V>::fill(std::vector<Element> &v)
{
for (auto &e: v)
{
e = flatVector_[ind_++];
}
}
template <typename V>
template <typename W>
void Reconstruct<V>::fill(W &v)
{
for (auto &e: v)
{
fill(e);
}
}
template <typename V>
void Reconstruct<V>::resize(std::vector<Element> &v, const unsigned int dim)
{
v.resize(dim_[dim]);
}
template <typename V>
template <typename W>
void Reconstruct<V>::resize(W &v, const unsigned int dim)
{
v.resize(dim_[dim]);
for (auto &e: v)
{
resize(e, dim + 1);
}
}
template <typename V>
Reconstruct<V>::Reconstruct(const std::vector<Element> &flatVector,
const std::vector<size_t> &dim)
: flatVector_(flatVector)
, dim_(dim)
{
resize(vector_, 0);
fill(vector_);
}
template <typename V>
const V & Reconstruct<V>::getVector(void)
{
return vector_;
}
template <typename V>
const std::vector<typename Reconstruct<V>::Element> &
Reconstruct<V>::getFlatVector(void)
{
return flatVector_;
}
template <typename V>
const std::vector<size_t> & Reconstruct<V>::getDim(void)
{
return dim_;
}
// Vector IO utilities ///////////////////////////////////////////////////////
// helper function to read space-separated values
template <typename T>
std::vector<T> strToVec(const std::string s)
{
std::istringstream sstr(s);
T buf;
std::vector<T> v;
while(!sstr.eof())
{
sstr >> buf;
v.push_back(buf);
}
return v;
}
// output to streams for vectors
template < class T >
inline std::ostream & operator<<(std::ostream &os, const std::vector<T> &v)
{
os << "[";
for (auto &x: v)
{
os << x << " ";
}
if (v.size() > 0)
{
os << "\b";
}
os << "]";
return os;
}
}
#endif

View File

@ -55,5 +55,38 @@ LOGICAL_BINOP(&);
LOGICAL_BINOP(||);
LOGICAL_BINOP(&&);
template <class T>
strong_inline bool operator==(const iScalar<T> &t1, const iScalar<T> &t2)
{
return (t1._internal == t2._internal);
}
template <class T, int N>
strong_inline bool operator==(const iVector<T, N> &t1, const iVector<T, N> &t2)
{
bool res = true;
for (unsigned int i = 0; i < N; ++i)
{
res = (res && (t1._internal[i] == t2._internal[i]));
}
return res;
}
template <class T, int N>
strong_inline bool operator==(const iMatrix<T, N> &t1, const iMatrix<T, N> &t2)
{
bool res = true;
for (unsigned int i = 0; i < N; ++i)
for (unsigned int j = 0; j < N; ++j)
{
res = (res && (t1._internal[i][j] == t2._internal[i][j]));
}
return res;
}
}
#endif

View File

@ -49,6 +49,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/Grid.h>
#include <Grid/util/CompilerCompatible.h>
#include <version.h>
#include <fenv.h>
@ -288,6 +289,12 @@ void Grid_init(int *argc,char ***argv)
std::cout << "but WITHOUT ANY WARRANTY; without even the implied warranty of"<<std::endl;
std::cout << "MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the"<<std::endl;
std::cout << "GNU General Public License for more details."<<std::endl;
#ifdef GITHASH
std::cout << "Current Grid git commit hash=" << GITHASH << std::endl;
#else
std::cout << "Current Grid git commit hash is undefined. Check makefile." << std::endl;
#endif
#undef GITHASH
std::cout << std::endl;
}

View File

@ -45,7 +45,8 @@ public:
bool , b,
std::vector<double>, array,
std::vector<std::vector<double> >, twodimarray,
std::vector<std::vector<std::vector<Complex> > >, cmplx3darray
std::vector<std::vector<std::vector<Complex> > >, cmplx3darray,
SpinColourMatrix, scm
);
myclass() {}
myclass(int i)
@ -59,6 +60,12 @@ public:
y=2*i;
b=true;
name="bother said pooh";
scm()(0, 1)(2, 1) = 2.356;
scm()(3, 0)(1, 1) = 1.323;
scm()(2, 1)(0, 1) = 5.3336;
scm()(0, 2)(1, 1) = 6.336;
scm()(2, 1)(2, 2) = 7.344;
scm()(1, 1)(2, 0) = 8.3534;
}
};
@ -93,8 +100,30 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam
if (!good) exit(EXIT_FAILURE);
}
template <typename T>
void tensorConvTestFn(GridSerialRNG &rng, const std::string label)
{
T t, ft;
Real n;
bool good;
random(rng, t);
auto tv = tensorToVec(t);
vecToTensor(ft, tv);
n = norm2(t - ft);
good = (n == 0);
std::cout << label << " norm 2 diff: " << n << " -- "
<< (good ? "success" : "failure") << std::endl;
}
#define tensorConvTest(rng, type) tensorConvTestFn<type>(rng, #type)
int main(int argc,char **argv)
{
GridSerialRNG rng;
rng.SeedFixedIntegers(std::vector<int>({42,10,81,9}));
std::cout << "==== basic IO" << std::endl;
XmlWriter WR("bother.xml");
@ -120,7 +149,7 @@ int main(int argc,char **argv)
std::cout << "-- serialisable class writing to 'bother.xml'..." << std::endl;
write(WR,"obj",obj);
WR.write("obj2", obj);
vec.push_back(myclass(1234));
vec.push_back(obj);
vec.push_back(myclass(5678));
vec.push_back(myclass(3838));
pair = std::make_pair(myenum::red, myenum::blue);
@ -131,8 +160,6 @@ int main(int argc,char **argv)
std::cout << "-- serialisable class comparison:" << std::endl;
std::cout << "vec[0] == obj: " << ((vec[0] == obj) ? "true" : "false") << std::endl;
std::cout << "vec[1] == obj: " << ((vec[1] == obj) ? "true" : "false") << std::endl;
write(WR, "objpair", pair);
std::cout << "-- pair writing to std::cout:" << std::endl;
std::cout << pair << std::endl;
@ -141,26 +168,20 @@ int main(int argc,char **argv)
//// XML
ioTest<XmlWriter, XmlReader>("iotest.xml", obj, "XML (object) ");
ioTest<XmlWriter, XmlReader>("iotest.xml", vec, "XML (vector of objects)");
ioTest<XmlWriter, XmlReader>("iotest.xml", pair, "XML (pair of objects)");
//// binary
ioTest<BinaryWriter, BinaryReader>("iotest.bin", obj, "binary (object) ");
ioTest<BinaryWriter, BinaryReader>("iotest.bin", vec, "binary (vector of objects)");
ioTest<BinaryWriter, BinaryReader>("iotest.bin", pair, "binary (pair of objects)");
//// text
ioTest<TextWriter, TextReader>("iotest.dat", obj, "text (object) ");
ioTest<TextWriter, TextReader>("iotest.dat", vec, "text (vector of objects)");
ioTest<TextWriter, TextReader>("iotest.dat", pair, "text (pair of objects)");
//// text
ioTest<JSONWriter, JSONReader>("iotest.json", obj, "JSON (object) ");
ioTest<JSONWriter, JSONReader>("iotest.json", vec, "JSON (vector of objects)");
ioTest<JSONWriter, JSONReader>("iotest.json", pair, "JSON (pair of objects)");
//// HDF5
#undef HAVE_HDF5
#ifdef HAVE_HDF5
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", obj, "HDF5 (object) ");
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)");
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", pair, "HDF5 (pair of objects)");
#endif
std::cout << "\n==== vector flattening/reconstruction" << std::endl;
@ -197,68 +218,11 @@ int main(int argc,char **argv)
std::cout << flatdv.getVector() << std::endl;
std::cout << std::endl;
std::cout << ".:::::: Testing JSON classes "<< std::endl;
{
JSONWriter JW("bother.json");
// test basic type writing
myenum a = myenum::red;
push(JW,"BasicTypes");
write(JW,std::string("i16"),i16);
write(JW,"myenum",a);
write(JW,"u16",u16);
write(JW,"i32",i32);
write(JW,"u32",u32);
write(JW,"i64",i64);
write(JW,"u64",u64);
write(JW,"f",f);
write(JW,"d",d);
write(JW,"b",b);
pop(JW);
// test serializable class writing
myclass obj(1234); // non-trivial constructor
std::cout << obj << std::endl;
std::cout << "-- serialisable class writing to 'bother.json'..." << std::endl;
write(JW,"obj",obj);
JW.write("obj2", obj);
std::vector<myclass> vec;
vec.push_back(myclass(1234));
vec.push_back(myclass(5678));
vec.push_back(myclass(3838));
write(JW, "objvec", vec);
}
{
JSONReader RD("bother.json");
myclass jcopy1;
std::vector<myclass> jveccopy1;
read(RD,"obj",jcopy1);
read(RD,"objvec", jveccopy1);
std::cout << "Loaded (JSON) -----------------" << std::endl;
std::cout << jcopy1 << std::endl << jveccopy1 << std::endl;
}
/*
// This is still work in progress
{
// Testing the next element function
JSONReader RD("test.json");
RD.push("grid");
RD.push("Observable");
std::string name;
read(RD,"name", name);
}
*/
std::cout << "==== Grid tensor to vector test" << std::endl;
tensorConvTest(rng, SpinColourMatrix);
tensorConvTest(rng, SpinColourVector);
tensorConvTest(rng, ColourMatrix);
tensorConvTest(rng, ColourVector);
tensorConvTest(rng, SpinMatrix);
tensorConvTest(rng, SpinVector);
}

View File

@ -59,8 +59,8 @@ int main (int argc, char ** argv)
double beta = 1.0;
double c1 = 0.331;
//GparityPlaqPlusRectangleActionR Action(beta,c1);
ConjugateWilsonGaugeActionR Action(beta);
ConjugatePlaqPlusRectangleActionR Action(beta,c1);
// ConjugateWilsonGaugeActionR Action(beta);
//WilsonGaugeActionR Action(beta);
ComplexD S = Action.S(U);

View File

@ -91,7 +91,7 @@ int main (int argc, char ** argv)
////////////////////////////////////
// Modify the gauge field a little
////////////////////////////////////
RealD dt = 0.0001;
RealD dt = 0.01;
LatticeColourMatrix mommu(UGrid);
LatticeColourMatrix forcemu(UGrid);

View File

@ -93,8 +93,9 @@ int main(int argc, char *argv[])
// solvers
MSolver::RBPrecCG::Par solverPar;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>("CG_" + flavour[i],
solverPar);

View File

@ -176,8 +176,9 @@ inline void makeRBPrecCGSolver(Application &application, std::string &solverName
if (!(VirtualMachine::getInstance().hasModule(solverName)))
{
MSolver::RBPrecCG::Par solverPar;
solverPar.action = actionName;
solverPar.residual = residual;
solverPar.action = actionName;
solverPar.residual = residual;
solverPar.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>(solverName,
solverPar);
}

View File

@ -106,8 +106,9 @@ int main(int argc, char *argv[])
// solvers
MSolver::RBPrecCG2AS::Par solverPar;
solverPar.action = "WilsonClover2AS_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.action = "WilsonClover2AS_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG2AS>("CG_" + flavour[i],
solverPar);

View File

@ -82,8 +82,9 @@ int main(int argc, char *argv[])
// solvers
MSolver::RBPrecCG::Par solverPar;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>("CG_" + flavour[i],
solverPar);
}

View File

@ -84,8 +84,9 @@ int main(int argc, char *argv[])
// solvers
MSolver::RBPrecCG::Par solverPar;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>("CG_" + flavour[i],
solverPar);

View File

@ -96,8 +96,9 @@ int main(int argc, char *argv[])
// solvers
MSolver::RBPrecCG::Par solverPar;
solverPar.action = "WilsonClover_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.action = "WilsonClover_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>("CG_" + flavour[i],
solverPar);

View File

@ -180,7 +180,6 @@ int main (int argc, char ** argv) {
GridCartesian * CoarseGrid4 = SpaceTimeGrid::makeFourDimGrid(coarseLatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * CoarseGrid4rb = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid4);
GridCartesian * CoarseGrid5 = SpaceTimeGrid::makeFiveDimGrid(cLs,CoarseGrid4);
GridRedBlackCartesian * CoarseGrid5rb = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseGrid5);
// Gauge field
LatticeGaugeField Umu(UGrid);
@ -206,7 +205,7 @@ int main (int argc, char ** argv) {
const int nbasis= 60;
assert(nbasis==Ns1);
LocalCoherenceLanczosScidac<vSpinColourVector,vTComplex,nbasis> _LocalCoherenceLanczos(FrbGrid,CoarseGrid5rb,HermOp,Odd);
LocalCoherenceLanczosScidac<vSpinColourVector,vTComplex,nbasis> _LocalCoherenceLanczos(FrbGrid,CoarseGrid5,HermOp,Odd);
std::cout << GridLogMessage << "Constructed LocalCoherenceLanczos" << std::endl;
assert( (Params.doFine)||(Params.doFineRead));