1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-19 16:55:37 +01:00

Richards sweep test

This commit is contained in:
paboyle 2016-08-05 10:51:57 +01:00
parent 32bc7a6ab8
commit 5a68715be3

View File

@ -0,0 +1,117 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_wilson.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Richard Rollins <rprollins@users.noreply.github.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::GammaMatrix Gmu [] = {
Gamma::GammaX,
Gamma::GammaY,
Gamma::GammaZ,
Gamma::GammaT
};
bool overlapComms = false;
void bench_wilson (
LatticeFermion & src,
LatticeFermion & result,
WilsonFermionR & Dw,
double const volume,
int const dag );
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
if( GridCmdOptionExists(argv,argv+argc,"--asynch") ){ overlapComms = true; }
typename WilsonFermionR::ImplParams params;
params.overlapCommsCompute = overlapComms;
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<int> seeds({1,2,3,4});
RealD mass = 0.1;
std::cout<<GridLogMessage << "============================================================================="<< std::endl;
std::cout<<GridLogMessage << "= Benchmarking Wilson" << std::endl;
std::cout<<GridLogMessage << "============================================================================="<< std::endl;
std::cout<<GridLogMessage << "Volume\t\t\tWilson/MFLOPs\tWilsonDag/MFLOPs" << std::endl;
std::cout<<GridLogMessage << "============================================================================="<< std::endl;
int Lmax = 32;
int dmin = 0;
if ( getenv("LMAX") ) Lmax=atoi(getenv("LMAX"));
if ( getenv("DMIN") ) dmin=atoi(getenv("DMIN"));
for (int L=8; L<=Lmax; L*=2)
{
std::vector<int> latt_size = std::vector<int>(4,L);
for(int d=4; d>dmin; d--)
{
if ( d<=3 ) { latt_size[d] *= 2; }
std::cout << GridLogMessage;
std::copy( latt_size.begin(), --latt_size.end(), std::ostream_iterator<int>( std::cout, std::string("x").c_str() ) );
std::cout << latt_size.back() << "\t\t";
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeGaugeField Umu(&Grid); random(pRNG,Umu);
LatticeFermion src(&Grid); random(pRNG,src);
LatticeFermion result(&Grid); result=zero;
double volume = std::accumulate(latt_size.begin(),latt_size.end(),1,std::multiplies<int>());
WilsonFermionR Dw(Umu,Grid,RBGrid,mass,params);
bench_wilson(src,result,Dw,volume,DaggerNo);
bench_wilson(src,result,Dw,volume,DaggerYes);
std::cout << std::endl;
}
}
std::cout<<GridLogMessage << "============================================================================="<< std::endl;
Grid_finalize();
}
void bench_wilson (
LatticeFermion & src,
LatticeFermion & result,
WilsonFermionR & Dw,
double const volume,
int const dag )
{
int ncall = 1000;
double t0 = usecond();
for(int i=0; i<ncall; i++) { Dw.Dhop(src,result,dag); }
double t1 = usecond();
double flops = 1344 * volume * ncall;
std::cout << flops/(t1-t0) << "\t\t";
}