1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Hadrons: meson fields code cleaning and momentum phases

This commit is contained in:
Antonin Portelli 2018-08-11 15:13:43 +01:00
parent ac69f042b1
commit 5be6a51044

View File

@ -51,20 +51,20 @@ class A2AMesonFieldPar : Serializable
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AMesonFieldPar,
int, cacheBlock,
int, schurBlock,
int, Nmom,
int, block,
std::string, v,
std::string, w,
std::string, output);
std::string, output,
std::vector<std::string>, mom);
};
template <typename FImpl>
class TA2AMesonField : public Module<A2AMesonFieldPar>
{
public:
public:
FERM_TYPE_ALIASES(FImpl, );
SOLVER_TYPE_ALIASES(FImpl, );
public:
public:
// constructor
TA2AMesonField(const std::string name);
// destructor
@ -76,18 +76,21 @@ class TA2AMesonField : public Module<A2AMesonFieldPar>
virtual void setup(void);
// execution
virtual void execute(void);
private:
// Arithmetic help. Move to Grid??
virtual void MesonField(Eigen::Tensor<ComplexD,5> &mat,
const LatticeFermion *lhs,
const LatticeFermion *rhs,
std::vector<Gamma::Algebra> gammas,
const std::vector<LatticeComplex > &mom,
int orthogdim,
double &t0,
double &t1,
double &t2,
double &t3);
virtual void makeBlock(Eigen::Tensor<ComplexD,5> &mat,
const LatticeFermion *lhs,
const LatticeFermion *rhs,
std::vector<Gamma::Algebra> gammas,
const std::vector<LatticeComplex> &mom,
int orthogdim,
double &t0,
double &t1,
double &t2,
double &t3);
private:
bool hasPhase_{false};
std::string momphName_;
};
MODULE_REGISTER(A2AMesonField, ARG(TA2AMesonField<FIMPL>), MContraction);
@ -99,7 +102,8 @@ MODULE_REGISTER(ZA2AMesonField, ARG(TA2AMesonField<ZFIMPL>), MContraction);
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2AMesonField<FImpl>::TA2AMesonField(const std::string name)
: Module<A2AMesonFieldPar>(name)
: Module<A2AMesonFieldPar>(name)
, momphName_(name + "_momph")
{
}
@ -120,18 +124,166 @@ std::vector<std::string> TA2AMesonField<FImpl>::getOutput(void)
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::setup(void)
{}
{
envCache(std::vector<LatticeComplex>, momphName_, 1,
par().mom.size(), env().getGrid());
envTmpLat(LatticeComplex, "coor");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::execute(void)
{
LOG(Message) << "Computing all-to-all meson fields" << std::endl;
auto &v = envGet(std::vector<FermionField>, par().v);
auto &w = envGet(std::vector<FermionField>, par().w);
// 2+6+4+4 = 16 gammas
// Ordering defined here
std::vector<Gamma::Algebra> gammas ( {
Gamma::Algebra::Gamma5,
Gamma::Algebra::Identity,
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
Gamma::Algebra::GammaXGamma5,
Gamma::Algebra::GammaYGamma5,
Gamma::Algebra::GammaZGamma5,
Gamma::Algebra::GammaTGamma5,
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::SigmaZT
});
int nt = env().getDim().back();
int N_i = w.size();
int N_j = v.size();
int ngamma = gammas.size();
int nmom = par().mom.size();
int block = par().block;
int cacheBlock = par().cacheBlock;
///////////////////////////////////////////////
// Momentum setup
///////////////////////////////////////////////
auto &ph = envGet(std::vector<LatticeComplex>, momphName_);
if (!hasPhase_)
{
MODULE_TIMER("Momentum phases");
for (unsigned int j = 0; j < nmom; ++j)
{
Complex i(0.0,1.0);
std::vector<Real> p;
envGetTmp(LatticeComplex, coor);
p = strToVec<Real>(par().mom[j]);
ph[j] = zero;
for(unsigned int mu = 0; mu < p.size(); mu++)
{
LatticeCoordinate(coor, mu);
ph[j] = ph[j] + (p[mu]/env().getDim(mu))*coor;
}
ph[j] = exp((Real)(2*M_PI)*i*ph[j]);
}
hasPhase_ = true;
}
LOG(Message) << "MesonField size " << N_i << "x" << N_j << "x" << nt << std::endl;
//////////////////////////////////////////////////////////////////////////
// i,j is first loop over SchurBlock factors reusing 5D matrices
// ii,jj is second loop over cacheBlock factors for high perf contractoin
// iii,jjj are loops within cacheBlock
// Total index is sum of these i+ii+iii etc...
//////////////////////////////////////////////////////////////////////////
double flops = 0.0;
double bytes = 0.0;
double vol = env().getVolume();
double t_schur=0;
double t_contr=0;
double t_int_0=0;
double t_int_1=0;
double t_int_2=0;
double t_int_3=0;
double t0 = usecond();
int NBlock_i = N_i/block + (((N_i % block) != 0) ? 1 : 0);
int NBlock_j = N_j/block + (((N_j % block) != 0) ? 1 : 0);
for(int i=0;i<N_i;i+=block)
for(int j=0;j<N_j;j+=block)
{
///////////////////////////////////////////////////////////////
// Get the W and V vectors for this block^2 set of terms
///////////////////////////////////////////////////////////////
int N_ii = MIN(N_i-i,block);
int N_jj = MIN(N_j-j,block);
t_schur-=usecond();
t_schur+=usecond();
LOG(Message) << "Meson field block "
<< j/block + NBlock_j*i/block + 1
<< "/" << NBlock_i*NBlock_j << " [" << i <<" .. "
<< i+N_ii-1 << ", " << j <<" .. " << j+N_jj-1 << "]"
<< std::endl;
Eigen::Tensor<ComplexD,5> mfBlock(nmom,ngamma,nt,N_ii,N_jj);
///////////////////////////////////////////////////////////////
// Series of cache blocked chunks of the contractions within this block
///////////////////////////////////////////////////////////////
for(int ii=0;ii<N_ii;ii+=cacheBlock)
for(int jj=0;jj<N_jj;jj+=cacheBlock)
{
int N_iii = MIN(N_ii-ii,cacheBlock);
int N_jjj = MIN(N_jj-jj,cacheBlock);
Eigen::Tensor<ComplexD,5> mfCache(nmom,ngamma,nt,N_iii,N_jjj);
t_contr-=usecond();
makeBlock(mfCache, &w[i+ii], &v[j+jj], gammas, ph,
env().getNd() - 1, t_int_0, t_int_1, t_int_2, t_int_3);
t_contr+=usecond();
// flops for general N_c & N_s
flops += vol * ( 2 * 8.0 + 6.0 + 8.0*nmom) * N_iii*N_jjj*ngamma;
bytes += vol * (12.0 * sizeof(Complex) ) * N_iii*N_jjj
+ vol * ( 2.0 * sizeof(Complex) *nmom ) * N_iii*N_jjj* ngamma;
MODULE_TIMER("Cache copy");
for(int iii=0;iii< N_iii;iii++)
for(int jjj=0;jjj< N_jjj;jjj++)
for(int m =0;m< nmom;m++)
for(int g =0;g< ngamma;g++)
for(int t =0;t< nt;t++)
{
mfBlock(m,g,t,ii+iii,jj+jjj) = mfCache(m,g,t,iii,jjj);
}
}
}
double nodes = env().getGrid()->NodeCount();
double t_kernel = t_int_0 + t_int_1;
LOG(Message) << "Perf " << flops/(t_kernel)/1.0e3/nodes << " Gflop/s/node " << std::endl;
LOG(Message) << "Perf " << bytes/(t_kernel)/1.0e3/nodes << " GB/s/node " << std::endl;
}
//////////////////////////////////////////////////////////////////////////////////
// Cache blocked arithmetic routine
// Could move to Grid ???
//////////////////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::MesonField(Eigen::Tensor<ComplexD,5> &mat,
void TA2AMesonField<FImpl>::makeBlock(Eigen::Tensor<ComplexD,5> &mat,
const LatticeFermion *lhs_wi,
const LatticeFermion *rhs_vj,
std::vector<Gamma::Algebra> gammas,
@ -142,315 +294,178 @@ void TA2AMesonField<FImpl>::MesonField(Eigen::Tensor<ComplexD,5> &mat,
double &t2,
double &t3)
{
typedef typename FImpl::SiteSpinor vobj;
typedef typename FImpl::SiteSpinor vobj;
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
int Lblock = mat.dimension(3);
int Rblock = mat.dimension(4);
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
int Lblock = mat.dimension(3);
int Rblock = mat.dimension(4);
GridBase *grid = lhs_wi[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
GridBase *grid = lhs_wi[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
int Nmom = mom.size();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
int Nmom = mom.size();
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock*Nmom;
int MFlvol = ld*Lblock*Rblock*Nmom;
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock*Nmom;
int MFlvol = ld*Lblock*Rblock*Nmom;
Vector<SpinMatrix_v > lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++)
{
lvSum[r] = zero;
}
Vector<SpinMatrix_s > lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[r]=scalar_type(0.0);
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
t0-=usecond();
MODULE_TIMER("Colour trace * mom.");
// Nested parallelism would be ok
// Wasting cores here. Test case r
parallel_for(int r=0;r<rd;r++)
{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++)
for(int b=0;b<e2;b++)
Vector<SpinMatrix_v > lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++)
{
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++)
{
auto left = conjugate(lhs_wi[i]._odata[ss]);
for(int j=0;j<Rblock;j++)
{
SpinMatrix_v vv;
auto right = rhs_vj[j]._odata[ss];
for(int s1=0;s1<Ns;s1++)
for(int s2=0;s2<Ns;s2++)
{
vv()(s1,s2)() = left()(s2)(0) * right()(s1)(0)
+ left()(s2)(1) * right()(s1)(1)
+ left()(s2)(2) * right()(s1)(2);
}
// After getting the sitewise product do the mom phase loop
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
for ( int m=0;m<Nmom;m++)
{
int idx = m+base;
auto phase = mom[m]._odata[ss];
mac(&lvSum[idx],&vv,&phase);
}
}
}
lvSum[r] = zero;
}
}
t0+=usecond();
// Sum across simd lanes in the plane, breaking out orthog dir.
MODULE_TIMER("Local space sum");
t1-=usecond();
parallel_for(int rt=0;rt<rd;rt++)
{
std::vector<int> icoor(Nd);
std::vector<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<Lblock;i++)
for(int j=0;j<Rblock;j++)
for(int m=0;m<Nmom;m++)
{
int ij_rdx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++)
{
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
Vector<SpinMatrix_s > lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[r]=scalar_type(0.0);
}
}
t1+=usecond();
assert(mat.dimension(0) == Nmom);
assert(mat.dimension(1) == Ngamma);
assert(mat.dimension(2) == Nt);
t2-=usecond();
// ld loop and local only??
MODULE_TIMER("Spin trace");
int pd = grid->_processors[orthogdim];
int pc = grid->_processor_coor[orthogdim];
parallel_for_nest2(int lt=0;lt<ld;lt++)
{
for(int pt=0;pt<pd;pt++)
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
t0-=usecond();
MODULE_TIMER("Colour trace * mom.");
// Nested parallelism would be ok
// Wasting cores here. Test case r
parallel_for(int r=0;r<rd;r++)
{
int t = lt + pt*ld;
if (pt == pc)
{
for(int i=0;i<Lblock;i++)
for(int j=0;j<Rblock;j++)
for(int m=0;m<Nmom;m++)
{
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int mu=0;mu<Ngamma;mu++)
{
// this is a bit slow
mat(m,mu,t,i,j) = trace(lsSum[ij_dx]*Gamma(gammas[mu]));
}
}
}
else
{
const scalar_type zz(0.0);
for(int n=0;n<e1;n++)
for(int b=0;b<e2;b++)
{
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++)
{
auto left = conjugate(lhs_wi[i]._odata[ss]);
for(int j=0;j<Rblock;j++)
{
SpinMatrix_v vv;
auto right = rhs_vj[j]._odata[ss];
for(int s1=0;s1<Ns;s1++)
for(int s2=0;s2<Ns;s2++)
{
vv()(s1,s2)() = left()(s2)(0) * right()(s1)(0)
+ left()(s2)(1) * right()(s1)(1)
+ left()(s2)(2) * right()(s1)(2);
}
// After getting the sitewise product do the mom phase loop
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
for ( int m=0;m<Nmom;m++)
{
int idx = m+base;
auto phase = mom[m]._odata[ss];
mac(&lvSum[idx],&vv,&phase);
}
}
}
}
}
t0+=usecond();
// Sum across simd lanes in the plane, breaking out orthog dir.
MODULE_TIMER("Local space sum");
t1-=usecond();
parallel_for(int rt=0;rt<rd;rt++)
{
std::vector<int> icoor(Nd);
std::vector<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<Lblock;i++)
for(int j=0;j<Rblock;j++)
for(int mu=0;mu<Ngamma;mu++)
for(int m=0;m<Nmom;m++)
{
mat(m,mu,t,i,j) =zz;
}
}
int ij_rdx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++)
{
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}
}
}
t2+=usecond();
////////////////////////////////////////////////////////////////////
// This global sum is taking as much as 50% of time on 16 nodes
// Vector size is 7 x 16 x 32 x 16 x 16 x sizeof(complex) = 2MB - 60MB depending on volume
// Healthy size that should suffice
////////////////////////////////////////////////////////////////////
t3-=usecond();
MODULE_TIMER("Global sum");
grid->GlobalSumVector(&mat(0,0,0,0,0),Nmom*Ngamma*Nt*Lblock*Rblock);
t3+=usecond();
}
t1+=usecond();
assert(mat.dimension(0) == Nmom);
assert(mat.dimension(1) == Ngamma);
assert(mat.dimension(2) == Nt);
t2-=usecond();
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::execute(void)
{
LOG(Message) << "Computing A2A meson field" << std::endl;
auto &v = envGet(std::vector<FermionField>, par().v);
auto &w = envGet(std::vector<FermionField>, par().w);
// 2+6+4+4 = 16 gammas
// Ordering defined here
std::vector<Gamma::Algebra> gammas ( {
Gamma::Algebra::Gamma5,
Gamma::Algebra::Identity,
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
Gamma::Algebra::GammaXGamma5,
Gamma::Algebra::GammaYGamma5,
Gamma::Algebra::GammaZGamma5,
Gamma::Algebra::GammaTGamma5,
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::SigmaZT
});
///////////////////////////////////////////////
// Square assumption for now Nl = Nr = N
///////////////////////////////////////////////
int nt = env().getDim(Tp);
int nx = env().getDim(Xp);
int ny = env().getDim(Yp);
int nz = env().getDim(Zp);
int N_i = w.size();
int N_j = v.size();
int ngamma = gammas.size();
int schurBlock = par().schurBlock;
int cacheBlock = par().cacheBlock;
int nmom = par().Nmom;
std::vector<ComplexD> corr(nt,ComplexD(0.0));
///////////////////////////////////////////////
// Momentum setup
///////////////////////////////////////////////
GridBase *grid = env().getGrid();
std::vector<LatticeComplex> phases(nmom,grid);
for(int m=0;m<nmom;m++)
{
phases[m] = Complex(1.0); // All zero momentum for now
}
LOG(Message) << "MesonField size " << N_i << "x" << N_j << "x" << nt << std::endl;
//////////////////////////////////////////////////////////////////////////
// i,j is first loop over SchurBlock factors reusing 5D matrices
// ii,jj is second loop over cacheBlock factors for high perf contractoin
// iii,jjj are loops within cacheBlock
// Total index is sum of these i+ii+iii etc...
//////////////////////////////////////////////////////////////////////////
double flops = 0.0;
double bytes = 0.0;
double vol = nx*ny*nz*nt;
double t_schur=0;
double t_contr=0;
double t_int_0=0;
double t_int_1=0;
double t_int_2=0;
double t_int_3=0;
double t0 = usecond();
int NBlock_i = N_i/schurBlock + (((N_i % schurBlock) != 0) ? 1 : 0);
int NBlock_j = N_j/schurBlock + (((N_j % schurBlock) != 0) ? 1 : 0);
for(int i=0;i<N_i;i+=schurBlock)
for(int j=0;j<N_j;j+=schurBlock)
{
///////////////////////////////////////////////////////////////
// Get the W and V vectors for this schurBlock^2 set of terms
///////////////////////////////////////////////////////////////
int N_ii = MIN(N_i-i,schurBlock);
int N_jj = MIN(N_j-j,schurBlock);
t_schur-=usecond();
t_schur+=usecond();
LOG(Message) << "Meson field block "
<< j/schurBlock + NBlock_j*i/schurBlock + 1
<< "/" << NBlock_i*NBlock_j << " [" << i <<" .. "
<< i+N_ii-1 << ", " << j <<" .. " << j+N_jj-1 << "]"
<< std::endl;
Eigen::Tensor<ComplexD,5> mesonFieldBlocked(nmom,ngamma,nt,N_ii,N_jj);
///////////////////////////////////////////////////////////////
// Series of cache blocked chunks of the contractions within this SchurBlock
///////////////////////////////////////////////////////////////
for(int ii=0;ii<N_ii;ii+=cacheBlock)
for(int jj=0;jj<N_jj;jj+=cacheBlock)
// ld loop and local only??
MODULE_TIMER("Spin trace");
int pd = grid->_processors[orthogdim];
int pc = grid->_processor_coor[orthogdim];
parallel_for_nest2(int lt=0;lt<ld;lt++)
{
int N_iii = MIN(N_ii-ii,cacheBlock);
int N_jjj = MIN(N_jj-jj,cacheBlock);
Eigen::Tensor<ComplexD,5> mesonFieldCache(nmom,ngamma,nt,N_iii,N_jjj);
for(int pt=0;pt<pd;pt++)
{
int t = lt + pt*ld;
if (pt == pc)
{
for(int i=0;i<Lblock;i++)
for(int j=0;j<Rblock;j++)
for(int m=0;m<Nmom;m++)
{
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
t_contr-=usecond();
MesonField(mesonFieldCache, &w[i+ii], &v[j+jj], gammas, phases,Tp,
t_int_0,t_int_1,t_int_2,t_int_3);
t_contr+=usecond();
// flops for general N_c & N_s
flops += vol * ( 2 * 8.0 + 6.0 + 8.0*nmom) * N_iii*N_jjj*ngamma;
bytes += vol * (12.0 * sizeof(Complex) ) * N_iii*N_jjj
+ vol * ( 2.0 * sizeof(Complex) *nmom ) * N_iii*N_jjj* ngamma;
for(int mu=0;mu<Ngamma;mu++)
{
// this is a bit slow
mat(m,mu,t,i,j) = trace(lsSum[ij_dx]*Gamma(gammas[mu]));
}
}
}
else
{
const scalar_type zz(0.0);
MODULE_TIMER("Cache copy");
for(int iii=0;iii< N_iii;iii++)
for(int jjj=0;jjj< N_jjj;jjj++)
for(int m =0;m< nmom;m++)
for(int g =0;g< ngamma;g++)
for(int t =0;t< nt;t++)
{
mesonFieldBlocked(m,g,t,ii+iii,jj+jjj) = mesonFieldCache(m,g,t,iii,jjj);
}
for(int i=0;i<Lblock;i++)
for(int j=0;j<Rblock;j++)
for(int mu=0;mu<Ngamma;mu++)
for(int m=0;m<Nmom;m++)
{
mat(m,mu,t,i,j) =zz;
}
}
}
}
}
double nodes=grid->NodeCount();
double t_kernel = t_int_0 + t_int_1;
LOG(Message) << "Perf " << flops/(t_kernel)/1.0e3/nodes << " Gflop/s/node " << std::endl;
LOG(Message) << "Perf " << bytes/(t_kernel)/1.0e3/nodes << " GB/s/node " << std::endl;
t2+=usecond();
////////////////////////////////////////////////////////////////////
// This global sum is taking as much as 50% of time on 16 nodes
// Vector size is 7 x 16 x 32 x 16 x 16 x sizeof(complex) = 2MB - 60MB depending on volume
// Healthy size that should suffice
////////////////////////////////////////////////////////////////////
t3-=usecond();
MODULE_TIMER("Global sum");
grid->GlobalSumVector(&mat(0,0,0,0,0),Nmom*Ngamma*Nt*Lblock*Rblock);
t3+=usecond();
}
END_MODULE_NAMESPACE