mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-13 04:37:05 +01:00
Merge commit 'bf58557fb1ec710c766e19c9a8809b0a352de239' into feature/scalar_adjointFT
This commit is contained in:
@ -162,15 +162,10 @@ namespace Grid {
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
ComplexD dot;
|
||||
|
||||
_Mat.M(in,out);
|
||||
|
||||
dot= innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
|
||||
dot = innerProduct(out,out);
|
||||
n2=real(dot);
|
||||
ComplexD dot= innerProduct(in,out); n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
_Mat.M(in,out);
|
||||
@ -192,10 +187,10 @@ namespace Grid {
|
||||
ni=Mpc(in,tmp);
|
||||
no=MpcDag(tmp,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
MpcDagMpc(in,out,n1,n2);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
RealD n1,n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
}
|
||||
@ -212,7 +207,6 @@ namespace Grid {
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
|
||||
@ -270,7 +264,6 @@ namespace Grid {
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
@ -299,6 +292,45 @@ namespace Grid {
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
|
||||
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo ) Moo^-1 phi=eta ; psi = Moo^-1 phi
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
|
||||
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Staggered use
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field>
|
||||
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){};
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
n2 = Mpc(in,out);
|
||||
ComplexD dot= innerProduct(in,out);
|
||||
n1 = real(dot);
|
||||
}
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
Mpc(in,out);
|
||||
}
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in._grid);
|
||||
_Mat.Meooe(in,tmp);
|
||||
_Mat.MooeeInv(tmp,out);
|
||||
_Mat.MeooeDag(out,tmp);
|
||||
_Mat.Mooee(in,out);
|
||||
return axpy_norm(out,-1.0,tmp,out);
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
return Mpc(in,out);
|
||||
}
|
||||
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
assert(0);// Never need with staggered
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
@ -8,6 +8,7 @@
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -193,6 +194,47 @@ namespace Grid {
|
||||
return sum;
|
||||
};
|
||||
|
||||
RealD approxD(RealD x)
|
||||
{
|
||||
RealD Un;
|
||||
RealD Unm;
|
||||
RealD Unp;
|
||||
|
||||
RealD y=( x-0.5*(hi+lo))/(0.5*(hi-lo));
|
||||
|
||||
RealD U0=1;
|
||||
RealD U1=2*y;
|
||||
|
||||
RealD sum;
|
||||
sum = Coeffs[1]*U0;
|
||||
sum+= Coeffs[2]*U1*2.0;
|
||||
|
||||
Un =U1;
|
||||
Unm=U0;
|
||||
for(int i=2;i<order-1;i++){
|
||||
Unp=2*y*Un-Unm;
|
||||
Unm=Un;
|
||||
Un =Unp;
|
||||
sum+= Un*Coeffs[i+1]*(i+1.0);
|
||||
}
|
||||
return sum/(0.5*(hi-lo));
|
||||
};
|
||||
|
||||
RealD approxInv(RealD z, RealD x0, int maxiter, RealD resid) {
|
||||
RealD x = x0;
|
||||
RealD eps;
|
||||
|
||||
int i;
|
||||
for (i=0;i<maxiter;i++) {
|
||||
eps = approx(x) - z;
|
||||
if (fabs(eps / z) < resid)
|
||||
return x;
|
||||
x = x - eps / approxD(x);
|
||||
}
|
||||
|
||||
return std::numeric_limits<double>::quiet_NaN();
|
||||
}
|
||||
|
||||
// Implement the required interface
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) {
|
||||
|
||||
|
@ -0,0 +1,754 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ImplicitlyRestartedLanczos.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Chulwoo Jung <chulwoo@bnl.gov>
|
||||
Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_BIRL_H
|
||||
#define GRID_BIRL_H
|
||||
|
||||
#include <string.h> //memset
|
||||
|
||||
#include <zlib.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockedGrid.h>
|
||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldBasisVector.h>
|
||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/BlockProjector.h>
|
||||
#include <Grid/algorithms/iterative/BlockImplicitlyRestartedLanczos/FieldVectorIO.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field>
|
||||
class BlockImplicitlyRestartedLanczos {
|
||||
|
||||
const RealD small = 1.0e-16;
|
||||
public:
|
||||
int lock;
|
||||
int get;
|
||||
int Niter;
|
||||
int converged;
|
||||
|
||||
int Nminres; // Minimum number of restarts; only check for convergence after
|
||||
int Nstop; // Number of evecs checked for convergence
|
||||
int Nk; // Number of converged sought
|
||||
int Np; // Np -- Number of spare vecs in kryloc space
|
||||
int Nm; // Nm -- total number of vectors
|
||||
|
||||
int orth_period;
|
||||
|
||||
RealD OrthoTime;
|
||||
|
||||
RealD eresid, betastp;
|
||||
SortEigen<Field> _sort;
|
||||
LinearFunction<Field> &_HermOp;
|
||||
LinearFunction<Field> &_HermOpTest;
|
||||
/////////////////////////
|
||||
// Constructor
|
||||
/////////////////////////
|
||||
|
||||
BlockImplicitlyRestartedLanczos(
|
||||
LinearFunction<Field> & HermOp,
|
||||
LinearFunction<Field> & HermOpTest,
|
||||
int _Nstop, // sought vecs
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
RealD _betastp, // if beta(k) < betastp: converged
|
||||
int _Niter, // Max iterations
|
||||
int _Nminres, int _orth_period = 1) :
|
||||
_HermOp(HermOp),
|
||||
_HermOpTest(HermOpTest),
|
||||
Nstop(_Nstop),
|
||||
Nk(_Nk),
|
||||
Nm(_Nm),
|
||||
eresid(_eresid),
|
||||
betastp(_betastp),
|
||||
Niter(_Niter),
|
||||
Nminres(_Nminres),
|
||||
orth_period(_orth_period)
|
||||
{
|
||||
Np = Nm-Nk; assert(Np>0);
|
||||
};
|
||||
|
||||
BlockImplicitlyRestartedLanczos(
|
||||
LinearFunction<Field> & HermOp,
|
||||
LinearFunction<Field> & HermOpTest,
|
||||
int _Nk, // sought vecs
|
||||
int _Nm, // spare vecs
|
||||
RealD _eresid, // resid in lmdue deficit
|
||||
RealD _betastp, // if beta(k) < betastp: converged
|
||||
int _Niter, // Max iterations
|
||||
int _Nminres,
|
||||
int _orth_period = 1) :
|
||||
_HermOp(HermOp),
|
||||
_HermOpTest(HermOpTest),
|
||||
Nstop(_Nk),
|
||||
Nk(_Nk),
|
||||
Nm(_Nm),
|
||||
eresid(_eresid),
|
||||
betastp(_betastp),
|
||||
Niter(_Niter),
|
||||
Nminres(_Nminres),
|
||||
orth_period(_orth_period)
|
||||
{
|
||||
Np = Nm-Nk; assert(Np>0);
|
||||
};
|
||||
|
||||
|
||||
/* Saad PP. 195
|
||||
1. Choose an initial vector v1 of 2-norm unity. Set β1 ≡ 0, v0 ≡ 0
|
||||
2. For k = 1,2,...,m Do:
|
||||
3. wk:=Avk−βkv_{k−1}
|
||||
4. αk:=(wk,vk) //
|
||||
5. wk:=wk−αkvk // wk orthog vk
|
||||
6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
7. vk+1 := wk/βk+1
|
||||
8. EndDo
|
||||
*/
|
||||
void step(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
BasisFieldVector<Field>& evec,
|
||||
Field& w,int Nm,int k)
|
||||
{
|
||||
assert( k< Nm );
|
||||
|
||||
GridStopWatch gsw_op,gsw_o;
|
||||
|
||||
Field& evec_k = evec[k];
|
||||
|
||||
gsw_op.Start();
|
||||
_HermOp(evec_k,w);
|
||||
gsw_op.Stop();
|
||||
|
||||
if(k>0){
|
||||
w -= lme[k-1] * evec[k-1];
|
||||
}
|
||||
|
||||
ComplexD zalph = innerProduct(evec_k,w); // 4. αk:=(wk,vk)
|
||||
RealD alph = real(zalph);
|
||||
|
||||
w = w - alph * evec_k;// 5. wk:=wk−αkvk
|
||||
|
||||
RealD beta = normalise(w); // 6. βk+1 := ∥wk∥2. If βk+1 = 0 then Stop
|
||||
// 7. vk+1 := wk/βk+1
|
||||
|
||||
std::cout<<GridLogMessage << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
const RealD tiny = 1.0e-20;
|
||||
if ( beta < tiny ) {
|
||||
std::cout<<GridLogMessage << " beta is tiny "<<beta<<std::endl;
|
||||
}
|
||||
lmd[k] = alph;
|
||||
lme[k] = beta;
|
||||
|
||||
gsw_o.Start();
|
||||
if (k>0 && k % orth_period == 0) {
|
||||
orthogonalize(w,evec,k); // orthonormalise
|
||||
}
|
||||
gsw_o.Stop();
|
||||
|
||||
if(k < Nm-1) {
|
||||
evec[k+1] = w;
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "Timing: operator=" << gsw_op.Elapsed() <<
|
||||
" orth=" << gsw_o.Elapsed() << std::endl;
|
||||
|
||||
}
|
||||
|
||||
void qr_decomp(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
int Nk,
|
||||
int Nm,
|
||||
std::vector<RealD>& Qt,
|
||||
RealD Dsh,
|
||||
int kmin,
|
||||
int kmax)
|
||||
{
|
||||
int k = kmin-1;
|
||||
RealD x;
|
||||
|
||||
RealD Fden = 1.0/hypot(lmd[k]-Dsh,lme[k]);
|
||||
RealD c = ( lmd[k] -Dsh) *Fden;
|
||||
RealD s = -lme[k] *Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k+1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||||
x =-s*lme[k+1];
|
||||
lme[k+1] = c*lme[k+1];
|
||||
|
||||
for(int i=0; i<Nk; ++i){
|
||||
RealD Qtmp1 = Qt[i+Nm*k ];
|
||||
RealD Qtmp2 = Qt[i+Nm*(k+1)];
|
||||
Qt[i+Nm*k ] = c*Qtmp1 - s*Qtmp2;
|
||||
Qt[i+Nm*(k+1)] = s*Qtmp1 + c*Qtmp2;
|
||||
}
|
||||
|
||||
// Givens transformations
|
||||
for(int k = kmin; k < kmax-1; ++k){
|
||||
|
||||
RealD Fden = 1.0/hypot(x,lme[k-1]);
|
||||
RealD c = lme[k-1]*Fden;
|
||||
RealD s = - x*Fden;
|
||||
|
||||
RealD tmpa1 = lmd[k];
|
||||
RealD tmpa2 = lmd[k+1];
|
||||
RealD tmpb = lme[k];
|
||||
|
||||
lmd[k] = c*c*tmpa1 +s*s*tmpa2 -2.0*c*s*tmpb;
|
||||
lmd[k+1] = s*s*tmpa1 +c*c*tmpa2 +2.0*c*s*tmpb;
|
||||
lme[k] = c*s*(tmpa1-tmpa2) +(c*c-s*s)*tmpb;
|
||||
lme[k-1] = c*lme[k-1] -s*x;
|
||||
|
||||
if(k != kmax-2){
|
||||
x = -s*lme[k+1];
|
||||
lme[k+1] = c*lme[k+1];
|
||||
}
|
||||
|
||||
for(int i=0; i<Nk; ++i){
|
||||
RealD Qtmp1 = Qt[i+Nm*k ];
|
||||
RealD Qtmp2 = Qt[i+Nm*(k+1)];
|
||||
Qt[i+Nm*k ] = c*Qtmp1 -s*Qtmp2;
|
||||
Qt[i+Nm*(k+1)] = s*Qtmp1 +c*Qtmp2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_LAPACK_IRL
|
||||
#define LAPACK_INT int
|
||||
//long long
|
||||
void diagonalize_lapack(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
int N1,
|
||||
int N2,
|
||||
std::vector<RealD>& Qt,
|
||||
GridBase *grid){
|
||||
|
||||
std::cout << GridLogMessage << "diagonalize_lapack start\n";
|
||||
GridStopWatch gsw;
|
||||
|
||||
const int size = Nm;
|
||||
// tevals.resize(size);
|
||||
// tevecs.resize(size);
|
||||
LAPACK_INT NN = N1;
|
||||
std::vector<double> evals_tmp(NN);
|
||||
std::vector<double> evec_tmp(NN*NN);
|
||||
memset(&evec_tmp[0],0,sizeof(double)*NN*NN);
|
||||
// double AA[NN][NN];
|
||||
std::vector<double> DD(NN);
|
||||
std::vector<double> EE(NN);
|
||||
for (int i = 0; i< NN; i++)
|
||||
for (int j = i - 1; j <= i + 1; j++)
|
||||
if ( j < NN && j >= 0 ) {
|
||||
if (i==j) DD[i] = lmd[i];
|
||||
if (i==j) evals_tmp[i] = lmd[i];
|
||||
if (j==(i-1)) EE[j] = lme[j];
|
||||
}
|
||||
LAPACK_INT evals_found;
|
||||
LAPACK_INT lwork = ( (18*NN) > (1+4*NN+NN*NN)? (18*NN):(1+4*NN+NN*NN)) ;
|
||||
LAPACK_INT liwork = 3+NN*10 ;
|
||||
std::vector<LAPACK_INT> iwork(liwork);
|
||||
std::vector<double> work(lwork);
|
||||
std::vector<LAPACK_INT> isuppz(2*NN);
|
||||
char jobz = 'V'; // calculate evals & evecs
|
||||
char range = 'I'; // calculate all evals
|
||||
// char range = 'A'; // calculate all evals
|
||||
char uplo = 'U'; // refer to upper half of original matrix
|
||||
char compz = 'I'; // Compute eigenvectors of tridiagonal matrix
|
||||
std::vector<int> ifail(NN);
|
||||
LAPACK_INT info;
|
||||
// int total = QMP_get_number_of_nodes();
|
||||
// int node = QMP_get_node_number();
|
||||
// GridBase *grid = evec[0]._grid;
|
||||
int total = grid->_Nprocessors;
|
||||
int node = grid->_processor;
|
||||
int interval = (NN/total)+1;
|
||||
double vl = 0.0, vu = 0.0;
|
||||
LAPACK_INT il = interval*node+1 , iu = interval*(node+1);
|
||||
if (iu > NN) iu=NN;
|
||||
double tol = 0.0;
|
||||
if (1) {
|
||||
memset(&evals_tmp[0],0,sizeof(double)*NN);
|
||||
if ( il <= NN){
|
||||
std::cout << GridLogMessage << "dstegr started" << std::endl;
|
||||
gsw.Start();
|
||||
dstegr(&jobz, &range, &NN,
|
||||
(double*)&DD[0], (double*)&EE[0],
|
||||
&vl, &vu, &il, &iu, // these four are ignored if second parameteris 'A'
|
||||
&tol, // tolerance
|
||||
&evals_found, &evals_tmp[0], (double*)&evec_tmp[0], &NN,
|
||||
&isuppz[0],
|
||||
&work[0], &lwork, &iwork[0], &liwork,
|
||||
&info);
|
||||
gsw.Stop();
|
||||
std::cout << GridLogMessage << "dstegr completed in " << gsw.Elapsed() << std::endl;
|
||||
for (int i = iu-1; i>= il-1; i--){
|
||||
evals_tmp[i] = evals_tmp[i - (il-1)];
|
||||
if (il>1) evals_tmp[i-(il-1)]=0.;
|
||||
for (int j = 0; j< NN; j++){
|
||||
evec_tmp[i*NN + j] = evec_tmp[(i - (il-1)) * NN + j];
|
||||
if (il>1) evec_tmp[(i-(il-1)) * NN + j]=0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
// QMP_sum_double_array(evals_tmp,NN);
|
||||
// QMP_sum_double_array((double *)evec_tmp,NN*NN);
|
||||
grid->GlobalSumVector(&evals_tmp[0],NN);
|
||||
grid->GlobalSumVector(&evec_tmp[0],NN*NN);
|
||||
}
|
||||
}
|
||||
// cheating a bit. It is better to sort instead of just reversing it, but the document of the routine says evals are sorted in increasing order. qr gives evals in decreasing order.
|
||||
for(int i=0;i<NN;i++){
|
||||
for(int j=0;j<NN;j++)
|
||||
Qt[(NN-1-i)*N2+j]=evec_tmp[i*NN + j];
|
||||
lmd [NN-1-i]=evals_tmp[i];
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "diagonalize_lapack complete\n";
|
||||
}
|
||||
#undef LAPACK_INT
|
||||
#endif
|
||||
|
||||
|
||||
void diagonalize(std::vector<RealD>& lmd,
|
||||
std::vector<RealD>& lme,
|
||||
int N2,
|
||||
int N1,
|
||||
std::vector<RealD>& Qt,
|
||||
GridBase *grid)
|
||||
{
|
||||
|
||||
#ifdef USE_LAPACK_IRL
|
||||
const int check_lapack=0; // just use lapack if 0, check against lapack if 1
|
||||
|
||||
if(!check_lapack)
|
||||
return diagonalize_lapack(lmd,lme,N2,N1,Qt,grid);
|
||||
|
||||
std::vector <RealD> lmd2(N1);
|
||||
std::vector <RealD> lme2(N1);
|
||||
std::vector<RealD> Qt2(N1*N1);
|
||||
for(int k=0; k<N1; ++k){
|
||||
lmd2[k] = lmd[k];
|
||||
lme2[k] = lme[k];
|
||||
}
|
||||
for(int k=0; k<N1*N1; ++k)
|
||||
Qt2[k] = Qt[k];
|
||||
|
||||
// diagonalize_lapack(lmd2,lme2,Nm2,Nm,Qt,grid);
|
||||
#endif
|
||||
|
||||
int Niter = 10000*N1;
|
||||
int kmin = 1;
|
||||
int kmax = N2;
|
||||
// (this should be more sophisticated)
|
||||
|
||||
for(int iter=0; ; ++iter){
|
||||
if ( (iter+1)%(100*N1)==0)
|
||||
std::cout<<GridLogMessage << "[QL method] Not converged - iteration "<<iter+1<<"\n";
|
||||
|
||||
// determination of 2x2 leading submatrix
|
||||
RealD dsub = lmd[kmax-1]-lmd[kmax-2];
|
||||
RealD dd = sqrt(dsub*dsub + 4.0*lme[kmax-2]*lme[kmax-2]);
|
||||
RealD Dsh = 0.5*(lmd[kmax-2]+lmd[kmax-1] +dd*(dsub/fabs(dsub)));
|
||||
// (Dsh: shift)
|
||||
|
||||
// transformation
|
||||
qr_decomp(lmd,lme,N2,N1,Qt,Dsh,kmin,kmax);
|
||||
|
||||
// Convergence criterion (redef of kmin and kamx)
|
||||
for(int j=kmax-1; j>= kmin; --j){
|
||||
RealD dds = fabs(lmd[j-1])+fabs(lmd[j]);
|
||||
if(fabs(lme[j-1])+dds > dds){
|
||||
kmax = j+1;
|
||||
goto continued;
|
||||
}
|
||||
}
|
||||
Niter = iter;
|
||||
#ifdef USE_LAPACK_IRL
|
||||
if(check_lapack){
|
||||
const double SMALL=1e-8;
|
||||
diagonalize_lapack(lmd2,lme2,N2,N1,Qt2,grid);
|
||||
std::vector <RealD> lmd3(N2);
|
||||
for(int k=0; k<N2; ++k) lmd3[k]=lmd[k];
|
||||
_sort.push(lmd3,N2);
|
||||
_sort.push(lmd2,N2);
|
||||
for(int k=0; k<N2; ++k){
|
||||
if (fabs(lmd2[k] - lmd3[k]) >SMALL) std::cout<<GridLogMessage <<"lmd(qr) lmd(lapack) "<< k << ": " << lmd2[k] <<" "<< lmd3[k] <<std::endl;
|
||||
// if (fabs(lme2[k] - lme[k]) >SMALL) std::cout<<GridLogMessage <<"lme(qr)-lme(lapack) "<< k << ": " << lme2[k] - lme[k] <<std::endl;
|
||||
}
|
||||
for(int k=0; k<N1*N1; ++k){
|
||||
// if (fabs(Qt2[k] - Qt[k]) >SMALL) std::cout<<GridLogMessage <<"Qt(qr)-Qt(lapack) "<< k << ": " << Qt2[k] - Qt[k] <<std::endl;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return;
|
||||
|
||||
continued:
|
||||
for(int j=0; j<kmax-1; ++j){
|
||||
RealD dds = fabs(lmd[j])+fabs(lmd[j+1]);
|
||||
if(fabs(lme[j])+dds > dds){
|
||||
kmin = j+1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::cout<<GridLogMessage << "[QL method] Error - Too many iteration: "<<Niter<<"\n";
|
||||
abort();
|
||||
}
|
||||
|
||||
#if 1
|
||||
template<typename T>
|
||||
static RealD normalise(T& v)
|
||||
{
|
||||
RealD nn = norm2(v);
|
||||
nn = sqrt(nn);
|
||||
v = v * (1.0/nn);
|
||||
return nn;
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w,
|
||||
BasisFieldVector<Field>& evec,
|
||||
int k)
|
||||
{
|
||||
double t0=-usecond()/1e6;
|
||||
|
||||
evec.orthogonalize(w,k);
|
||||
|
||||
normalise(w);
|
||||
t0+=usecond()/1e6;
|
||||
OrthoTime +=t0;
|
||||
}
|
||||
|
||||
void setUnit_Qt(int Nm, std::vector<RealD> &Qt) {
|
||||
for(int i=0; i<Qt.size(); ++i) Qt[i] = 0.0;
|
||||
for(int k=0; k<Nm; ++k) Qt[k + k*Nm] = 1.0;
|
||||
}
|
||||
|
||||
/* Rudy Arthur's thesis pp.137
|
||||
------------------------
|
||||
Require: M > K P = M − K †
|
||||
Compute the factorization AVM = VM HM + fM eM
|
||||
repeat
|
||||
Q=I
|
||||
for i = 1,...,P do
|
||||
QiRi =HM −θiI Q = QQi
|
||||
H M = Q †i H M Q i
|
||||
end for
|
||||
βK =HM(K+1,K) σK =Q(M,K)
|
||||
r=vK+1βK +rσK
|
||||
VK =VM(1:M)Q(1:M,1:K)
|
||||
HK =HM(1:K,1:K)
|
||||
→AVK =VKHK +fKe†K † Extend to an M = K + P step factorization AVM = VMHM + fMeM
|
||||
until convergence
|
||||
*/
|
||||
|
||||
void calc(std::vector<RealD>& eval,
|
||||
BasisFieldVector<Field>& evec,
|
||||
const Field& src,
|
||||
int& Nconv,
|
||||
bool reverse,
|
||||
int SkipTest)
|
||||
{
|
||||
|
||||
GridBase *grid = evec._v[0]._grid;//evec.get(0 + evec_offset)._grid;
|
||||
assert(grid == src._grid);
|
||||
|
||||
std::cout<<GridLogMessage << " -- Nk = " << Nk << " Np = "<< Np << std::endl;
|
||||
std::cout<<GridLogMessage << " -- Nm = " << Nm << std::endl;
|
||||
std::cout<<GridLogMessage << " -- size of eval = " << eval.size() << std::endl;
|
||||
std::cout<<GridLogMessage << " -- size of evec = " << evec.size() << std::endl;
|
||||
|
||||
assert(Nm <= evec.size() && Nm <= eval.size());
|
||||
|
||||
// quickly get an idea of the largest eigenvalue to more properly normalize the residuum
|
||||
RealD evalMaxApprox = 0.0;
|
||||
{
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_IRL_MEVAPP_ = 50;
|
||||
for (int i=0;i<_MAX_ITER_IRL_MEVAPP_;i++) {
|
||||
_HermOpTest(src_n,tmp);
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
if (fabs(evalMaxApprox/na - 1.0) < 0.05)
|
||||
i=_MAX_ITER_IRL_MEVAPP_;
|
||||
evalMaxApprox = na;
|
||||
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||
src_n = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<RealD> lme(Nm);
|
||||
std::vector<RealD> lme2(Nm);
|
||||
std::vector<RealD> eval2(Nm);
|
||||
std::vector<RealD> eval2_copy(Nm);
|
||||
std::vector<RealD> Qt(Nm*Nm);
|
||||
|
||||
|
||||
Field f(grid);
|
||||
Field v(grid);
|
||||
|
||||
int k1 = 1;
|
||||
int k2 = Nk;
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
RealD beta_k;
|
||||
|
||||
// Set initial vector
|
||||
evec[0] = src;
|
||||
normalise(evec[0]);
|
||||
std:: cout<<GridLogMessage <<"norm2(evec[0])= " << norm2(evec[0])<<std::endl;
|
||||
|
||||
// Initial Nk steps
|
||||
OrthoTime=0.;
|
||||
double t0=usecond()/1e6;
|
||||
for(int k=0; k<Nk; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
double t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL::Initial steps: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
std::cout<<GridLogMessage <<"IRL::Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
t1=usecond()/1e6;
|
||||
|
||||
// Restarting loop begins
|
||||
for(int iter = 0; iter<Niter; ++iter){
|
||||
|
||||
std::cout<<GridLogMessage<<"\n Restart iteration = "<< iter << std::endl;
|
||||
|
||||
//
|
||||
// Rudy does a sort first which looks very different. Getting fed up with sorting out the algo defs.
|
||||
// We loop over
|
||||
//
|
||||
OrthoTime=0.;
|
||||
for(int k=Nk; k<Nm; ++k) step(eval,lme,evec,f,Nm,k);
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL:: "<<Np <<" steps: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
std::cout<<GridLogMessage <<"IRL::Initial steps:OrthoTime "<<OrthoTime<< "seconds"<<std::endl;
|
||||
f *= lme[Nm-1];
|
||||
|
||||
t1=usecond()/1e6;
|
||||
|
||||
|
||||
// getting eigenvalues
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k+k1-1];
|
||||
lme2[k] = lme[k+k1-1];
|
||||
}
|
||||
setUnit_Qt(Nm,Qt);
|
||||
diagonalize(eval2,lme2,Nm,Nm,Qt,grid);
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL:: diagonalize: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
|
||||
// sorting
|
||||
eval2_copy = eval2;
|
||||
|
||||
_sort.push(eval2,Nm);
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL:: eval sorting: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
|
||||
// Implicitly shifted QR transformations
|
||||
setUnit_Qt(Nm,Qt);
|
||||
for(int ip=0; ip<k2; ++ip){
|
||||
std::cout<<GridLogMessage << "eval "<< ip << " "<< eval2[ip] << std::endl;
|
||||
}
|
||||
|
||||
for(int ip=k2; ip<Nm; ++ip){
|
||||
std::cout<<GridLogMessage << "qr_decomp "<< ip << " "<< eval2[ip] << std::endl;
|
||||
qr_decomp(eval,lme,Nm,Nm,Qt,eval2[ip],k1,Nm);
|
||||
|
||||
}
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL::qr_decomp: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
assert(k2<Nm);
|
||||
|
||||
|
||||
assert(k2<Nm);
|
||||
assert(k1>0);
|
||||
evec.rotate(Qt,k1-1,k2+1,0,Nm,Nm);
|
||||
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL::QR rotation: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
fflush(stdout);
|
||||
|
||||
// Compressed vector f and beta(k2)
|
||||
f *= Qt[Nm-1+Nm*(k2-1)];
|
||||
f += lme[k2-1] * evec[k2];
|
||||
beta_k = norm2(f);
|
||||
beta_k = sqrt(beta_k);
|
||||
std::cout<<GridLogMessage<<" beta(k) = "<<beta_k<<std::endl;
|
||||
|
||||
RealD betar = 1.0/beta_k;
|
||||
evec[k2] = betar * f;
|
||||
lme[k2-1] = beta_k;
|
||||
|
||||
// Convergence test
|
||||
for(int k=0; k<Nm; ++k){
|
||||
eval2[k] = eval[k];
|
||||
lme2[k] = lme[k];
|
||||
|
||||
std::cout<<GridLogMessage << "eval2[" << k << "] = " << eval2[k] << std::endl;
|
||||
}
|
||||
setUnit_Qt(Nm,Qt);
|
||||
diagonalize(eval2,lme2,Nk,Nm,Qt,grid);
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL::diagonalize: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
|
||||
|
||||
Nconv = 0;
|
||||
|
||||
if (iter >= Nminres) {
|
||||
std::cout << GridLogMessage << "Rotation to test convergence " << std::endl;
|
||||
|
||||
Field ev0_orig(grid);
|
||||
ev0_orig = evec[0];
|
||||
|
||||
evec.rotate(Qt,0,Nk,0,Nk,Nm);
|
||||
|
||||
{
|
||||
std::cout << GridLogMessage << "Test convergence" << std::endl;
|
||||
Field B(grid);
|
||||
|
||||
for(int j = 0; j<Nk; j+=SkipTest){
|
||||
B=evec[j];
|
||||
//std::cout << "Checkerboard: " << evec[j].checkerboard << std::endl;
|
||||
B.checkerboard = evec[0].checkerboard;
|
||||
|
||||
_HermOpTest(B,v);
|
||||
|
||||
RealD vnum = real(innerProduct(B,v)); // HermOp.
|
||||
RealD vden = norm2(B);
|
||||
RealD vv0 = norm2(v);
|
||||
eval2[j] = vnum/vden;
|
||||
v -= eval2[j]*B;
|
||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogMessage << "[" << std::setw(3)<< std::setiosflags(std::ios_base::right) <<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< std::setiosflags(std::ios_base::left)<< eval2[j] << " (" << eval2_copy[j] << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25)<< std::setiosflags(std::ios_base::right)<< vv
|
||||
<<" "<< vnum/(sqrt(vden)*sqrt(vv0))
|
||||
<< " norm(B["<<j<<"])="<< vden <<std::endl;
|
||||
|
||||
// change the criteria as evals are supposed to be sorted, all evals smaller(larger) than Nstop should have converged
|
||||
if((vv<eresid*eresid) && (j == Nconv) ){
|
||||
Nconv+=SkipTest;
|
||||
}
|
||||
}
|
||||
|
||||
// test if we converged, if so, terminate
|
||||
t1=usecond()/1e6;
|
||||
std::cout<<GridLogMessage <<"IRL::convergence testing: "<<t1-t0<< "seconds"<<std::endl; t0=t1;
|
||||
|
||||
std::cout<<GridLogMessage<<" #modes converged: "<<Nconv<<std::endl;
|
||||
|
||||
if( Nconv>=Nstop || beta_k < betastp){
|
||||
goto converged;
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "Rotate back" << std::endl;
|
||||
//B[j] +=Qt[k+_Nm*j] * _v[k]._odata[ss];
|
||||
{
|
||||
Eigen::MatrixXd qm = Eigen::MatrixXd::Zero(Nk,Nk);
|
||||
for (int k=0;k<Nk;k++)
|
||||
for (int j=0;j<Nk;j++)
|
||||
qm(j,k) = Qt[k+Nm*j];
|
||||
GridStopWatch timeInv;
|
||||
timeInv.Start();
|
||||
Eigen::MatrixXd qmI = qm.inverse();
|
||||
timeInv.Stop();
|
||||
std::vector<RealD> QtI(Nm*Nm);
|
||||
for (int k=0;k<Nk;k++)
|
||||
for (int j=0;j<Nk;j++)
|
||||
QtI[k+Nm*j] = qmI(j,k);
|
||||
|
||||
RealD res_check_rotate_inverse = (qm*qmI - Eigen::MatrixXd::Identity(Nk,Nk)).norm(); // sqrt( |X|^2 )
|
||||
assert(res_check_rotate_inverse < 1e-7);
|
||||
evec.rotate(QtI,0,Nk,0,Nk,Nm);
|
||||
|
||||
axpy(ev0_orig,-1.0,evec[0],ev0_orig);
|
||||
std::cout << GridLogMessage << "Rotation done (in " << timeInv.Elapsed() << " = " << timeInv.useconds() << " us" <<
|
||||
", error = " << res_check_rotate_inverse <<
|
||||
"); | evec[0] - evec[0]_orig | = " << ::sqrt(norm2(ev0_orig)) << std::endl;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
std::cout << GridLogMessage << "iter < Nminres: do not yet test for convergence\n";
|
||||
} // end of iter loop
|
||||
}
|
||||
|
||||
std::cout<<GridLogMessage<<"\n NOT converged.\n";
|
||||
abort();
|
||||
|
||||
converged:
|
||||
|
||||
if (SkipTest == 1) {
|
||||
eval = eval2;
|
||||
} else {
|
||||
|
||||
// test quickly
|
||||
for (int j=0;j<Nstop;j+=SkipTest) {
|
||||
std::cout<<GridLogMessage << "Eigenvalue[" << j << "] = " << eval2[j] << " (" << eval2_copy[j] << ")" << std::endl;
|
||||
}
|
||||
|
||||
eval2_copy.resize(eval2.size());
|
||||
eval = eval2_copy;
|
||||
}
|
||||
|
||||
evec.sortInPlace(eval,reverse);
|
||||
|
||||
{
|
||||
|
||||
// test
|
||||
for (int j=0;j<Nstop;j++) {
|
||||
std::cout<<GridLogMessage << " |e[" << j << "]|^2 = " << norm2(evec[j]) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
//_sort.push(eval,evec,Nconv);
|
||||
//evec.sort(eval,Nconv);
|
||||
|
||||
std::cout<<GridLogMessage << "\n Converged\n Summary :\n";
|
||||
std::cout<<GridLogMessage << " -- Iterations = "<< Nconv << "\n";
|
||||
std::cout<<GridLogMessage << " -- beta(k) = "<< beta_k << "\n";
|
||||
std::cout<<GridLogMessage << " -- Nconv = "<< Nconv << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -0,0 +1,143 @@
|
||||
namespace Grid {
|
||||
|
||||
/*
|
||||
BlockProjector
|
||||
|
||||
If _HP_BLOCK_PROJECTORS_ is defined, we assume that _evec is a basis that is not
|
||||
fully orthonormalized (to the precision of the coarse field) and we allow for higher-precision
|
||||
coarse field than basis field.
|
||||
|
||||
*/
|
||||
//#define _HP_BLOCK_PROJECTORS_
|
||||
|
||||
template<typename Field>
|
||||
class BlockProjector {
|
||||
public:
|
||||
|
||||
BasisFieldVector<Field>& _evec;
|
||||
BlockedGrid<Field>& _bgrid;
|
||||
|
||||
BlockProjector(BasisFieldVector<Field>& evec, BlockedGrid<Field>& bgrid) : _evec(evec), _bgrid(bgrid) {
|
||||
}
|
||||
|
||||
void createOrthonormalBasis(RealD thres = 0.0) {
|
||||
|
||||
GridStopWatch sw;
|
||||
sw.Start();
|
||||
|
||||
int cnt = 0;
|
||||
|
||||
#pragma omp parallel shared(cnt)
|
||||
{
|
||||
int lcnt = 0;
|
||||
|
||||
#pragma omp for
|
||||
for (int b=0;b<_bgrid._o_blocks;b++) {
|
||||
|
||||
for (int i=0;i<_evec._Nm;i++) {
|
||||
|
||||
auto nrm0 = _bgrid.block_sp(b,_evec._v[i],_evec._v[i]);
|
||||
|
||||
// |i> -= <j|i> |j>
|
||||
for (int j=0;j<i;j++) {
|
||||
_bgrid.block_caxpy(b,_evec._v[i],-_bgrid.block_sp(b,_evec._v[j],_evec._v[i]),_evec._v[j],_evec._v[i]);
|
||||
}
|
||||
|
||||
auto nrm = _bgrid.block_sp(b,_evec._v[i],_evec._v[i]);
|
||||
|
||||
auto eps = nrm/nrm0;
|
||||
if (Reduce(eps).real() < thres) {
|
||||
lcnt++;
|
||||
}
|
||||
|
||||
// TODO: if norm is too small, remove this eigenvector/mark as not needed; in practice: set it to zero norm here and return a mask
|
||||
// that is then used later to decide not to write certain eigenvectors to disk (add a norm calculation before subtraction step and look at nrm/nrm0 < eps to decide)
|
||||
_bgrid.block_cscale(b,1.0 / sqrt(nrm),_evec._v[i]);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#pragma omp critical
|
||||
{
|
||||
cnt += lcnt;
|
||||
}
|
||||
}
|
||||
sw.Stop();
|
||||
std::cout << GridLogMessage << "Gram-Schmidt to create blocked basis took " << sw.Elapsed() << " (" << ((RealD)cnt / (RealD)_bgrid._o_blocks / (RealD)_evec._Nm)
|
||||
<< " below threshold)" << std::endl;
|
||||
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void coarseToFine(const CoarseField& in, Field& out) {
|
||||
|
||||
out = zero;
|
||||
out.checkerboard = _evec._v[0].checkerboard;
|
||||
|
||||
int Nbasis = sizeof(in._odata[0]._internal._internal) / sizeof(in._odata[0]._internal._internal[0]);
|
||||
assert(Nbasis == _evec._Nm);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int b=0;b<_bgrid._o_blocks;b++) {
|
||||
for (int j=0;j<_evec._Nm;j++) {
|
||||
_bgrid.block_caxpy(b,out,in._odata[b]._internal._internal[j],_evec._v[j],out);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void fineToCoarse(const Field& in, CoarseField& out) {
|
||||
|
||||
out = zero;
|
||||
|
||||
int Nbasis = sizeof(out._odata[0]._internal._internal) / sizeof(out._odata[0]._internal._internal[0]);
|
||||
assert(Nbasis == _evec._Nm);
|
||||
|
||||
|
||||
Field tmp(_bgrid._grid);
|
||||
tmp = in;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int b=0;b<_bgrid._o_blocks;b++) {
|
||||
for (int j=0;j<_evec._Nm;j++) {
|
||||
// |rhs> -= <j|rhs> |j>
|
||||
auto c = _bgrid.block_sp(b,_evec._v[j],tmp);
|
||||
_bgrid.block_caxpy(b,tmp,-c,_evec._v[j],tmp); // may make this more numerically stable
|
||||
out._odata[b]._internal._internal[j] = c;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void deflateFine(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
|
||||
result = zero;
|
||||
for (int i=0;i<N;i++) {
|
||||
Field tmp(result._grid);
|
||||
coarseToFine(_coef._v[i],tmp);
|
||||
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void deflateCoarse(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
|
||||
CoarseField src_coarse(_coef._v[0]._grid);
|
||||
CoarseField result_coarse = src_coarse;
|
||||
result_coarse = zero;
|
||||
fineToCoarse(src_orig,src_coarse);
|
||||
for (int i=0;i<N;i++) {
|
||||
axpy(result_coarse,TensorRemove(innerProduct(_coef._v[i],src_coarse)) / eval[i],_coef._v[i],result_coarse);
|
||||
}
|
||||
coarseToFine(result_coarse,result);
|
||||
}
|
||||
|
||||
template<typename CoarseField>
|
||||
void deflate(BasisFieldVector<CoarseField>& _coef,const std::vector<RealD>& eval,int N,const Field& src_orig,Field& result) {
|
||||
// Deflation on coarse Grid is much faster, so use it by default. Deflation on fine Grid is kept for legacy reasons for now.
|
||||
deflateCoarse(_coef,eval,N,src_orig,result);
|
||||
}
|
||||
|
||||
};
|
||||
}
|
@ -0,0 +1,401 @@
|
||||
namespace Grid {
|
||||
|
||||
template<typename Field>
|
||||
class BlockedGrid {
|
||||
public:
|
||||
GridBase* _grid;
|
||||
typedef typename Field::scalar_type Coeff_t;
|
||||
typedef typename Field::vector_type vCoeff_t;
|
||||
|
||||
std::vector<int> _bs; // block size
|
||||
std::vector<int> _nb; // number of blocks
|
||||
std::vector<int> _l; // local dimensions irrespective of cb
|
||||
std::vector<int> _l_cb; // local dimensions of checkerboarded vector
|
||||
std::vector<int> _l_cb_o; // local dimensions of inner checkerboarded vector
|
||||
std::vector<int> _bs_cb; // block size in checkerboarded vector
|
||||
std::vector<int> _nb_o; // number of blocks of simd o-sites
|
||||
|
||||
int _nd, _blocks, _cf_size, _cf_block_size, _cf_o_block_size, _o_blocks, _block_sites;
|
||||
|
||||
BlockedGrid(GridBase* grid, const std::vector<int>& block_size) :
|
||||
_grid(grid), _bs(block_size), _nd((int)_bs.size()),
|
||||
_nb(block_size), _l(block_size), _l_cb(block_size), _nb_o(block_size),
|
||||
_l_cb_o(block_size), _bs_cb(block_size) {
|
||||
|
||||
_blocks = 1;
|
||||
_o_blocks = 1;
|
||||
_l = grid->FullDimensions();
|
||||
_l_cb = grid->LocalDimensions();
|
||||
_l_cb_o = grid->_rdimensions;
|
||||
|
||||
_cf_size = 1;
|
||||
_block_sites = 1;
|
||||
for (int i=0;i<_nd;i++) {
|
||||
_l[i] /= grid->_processors[i];
|
||||
|
||||
assert(!(_l[i] % _bs[i])); // lattice must accommodate choice of blocksize
|
||||
|
||||
int r = _l[i] / _l_cb[i];
|
||||
assert(!(_bs[i] % r)); // checkerboarding must accommodate choice of blocksize
|
||||
_bs_cb[i] = _bs[i] / r;
|
||||
_block_sites *= _bs_cb[i];
|
||||
_nb[i] = _l[i] / _bs[i];
|
||||
_nb_o[i] = _nb[i] / _grid->_simd_layout[i];
|
||||
if (_nb[i] % _grid->_simd_layout[i]) { // simd must accommodate choice of blocksize
|
||||
std::cout << GridLogMessage << "Problem: _nb[" << i << "] = " << _nb[i] << " _grid->_simd_layout[" << i << "] = " << _grid->_simd_layout[i] << std::endl;
|
||||
assert(0);
|
||||
}
|
||||
_blocks *= _nb[i];
|
||||
_o_blocks *= _nb_o[i];
|
||||
_cf_size *= _l[i];
|
||||
}
|
||||
|
||||
_cf_size *= 12 / 2;
|
||||
_cf_block_size = _cf_size / _blocks;
|
||||
_cf_o_block_size = _cf_size / _o_blocks;
|
||||
|
||||
std::cout << GridLogMessage << "BlockedGrid:" << std::endl;
|
||||
std::cout << GridLogMessage << " _l = " << _l << std::endl;
|
||||
std::cout << GridLogMessage << " _l_cb = " << _l_cb << std::endl;
|
||||
std::cout << GridLogMessage << " _l_cb_o = " << _l_cb_o << std::endl;
|
||||
std::cout << GridLogMessage << " _bs = " << _bs << std::endl;
|
||||
std::cout << GridLogMessage << " _bs_cb = " << _bs_cb << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << " _nb = " << _nb << std::endl;
|
||||
std::cout << GridLogMessage << " _nb_o = " << _nb_o << std::endl;
|
||||
std::cout << GridLogMessage << " _blocks = " << _blocks << std::endl;
|
||||
std::cout << GridLogMessage << " _o_blocks = " << _o_blocks << std::endl;
|
||||
std::cout << GridLogMessage << " sizeof(vCoeff_t) = " << sizeof(vCoeff_t) << std::endl;
|
||||
std::cout << GridLogMessage << " _cf_size = " << _cf_size << std::endl;
|
||||
std::cout << GridLogMessage << " _cf_block_size = " << _cf_block_size << std::endl;
|
||||
std::cout << GridLogMessage << " _block_sites = " << _block_sites << std::endl;
|
||||
std::cout << GridLogMessage << " _grid->oSites() = " << _grid->oSites() << std::endl;
|
||||
|
||||
// _grid->Barrier();
|
||||
//abort();
|
||||
}
|
||||
|
||||
void block_to_coor(int b, std::vector<int>& x0) {
|
||||
|
||||
std::vector<int> bcoor;
|
||||
bcoor.resize(_nd);
|
||||
x0.resize(_nd);
|
||||
assert(b < _o_blocks);
|
||||
Lexicographic::CoorFromIndex(bcoor,b,_nb_o);
|
||||
int i;
|
||||
|
||||
for (i=0;i<_nd;i++) {
|
||||
x0[i] = bcoor[i]*_bs_cb[i];
|
||||
}
|
||||
|
||||
//std::cout << GridLogMessage << "Map block b -> " << x0 << std::endl;
|
||||
|
||||
}
|
||||
|
||||
void block_site_to_o_coor(const std::vector<int>& x0, std::vector<int>& coor, int i) {
|
||||
Lexicographic::CoorFromIndex(coor,i,_bs_cb);
|
||||
for (int j=0;j<_nd;j++)
|
||||
coor[j] += x0[j];
|
||||
}
|
||||
|
||||
int block_site_to_o_site(const std::vector<int>& x0, int i) {
|
||||
std::vector<int> coor; coor.resize(_nd);
|
||||
block_site_to_o_coor(x0,coor,i);
|
||||
Lexicographic::IndexFromCoor(coor,i,_l_cb_o);
|
||||
return i;
|
||||
}
|
||||
|
||||
vCoeff_t block_sp(int b, const Field& x, const Field& y) {
|
||||
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
vCoeff_t ret = 0.0;
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
ret += TensorRemove(innerProduct(x._odata[ss],y._odata[ss]));
|
||||
}
|
||||
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
vCoeff_t block_sp(int b, const Field& x, const std::vector< ComplexD >& y) {
|
||||
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
constexpr int nsimd = sizeof(vCoeff_t) / sizeof(Coeff_t);
|
||||
int lsize = _cf_o_block_size / _block_sites;
|
||||
|
||||
std::vector< ComplexD > ret(nsimd);
|
||||
for (int i=0;i<nsimd;i++)
|
||||
ret[i] = 0.0;
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
|
||||
int n = lsize / nsimd;
|
||||
for (int l=0;l<n;l++) {
|
||||
for (int j=0;j<nsimd;j++) {
|
||||
int t = lsize * i + l*nsimd + j;
|
||||
|
||||
ret[j] += conjugate(((Coeff_t*)&x._odata[ss]._internal)[l*nsimd + j]) * y[t];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
vCoeff_t vret;
|
||||
for (int i=0;i<nsimd;i++)
|
||||
((Coeff_t*)&vret)[i] = (Coeff_t)ret[i];
|
||||
|
||||
return vret;
|
||||
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void vcaxpy(iScalar<T>& r,const vCoeff_t& a,const iScalar<T>& x,const iScalar<T>& y) {
|
||||
vcaxpy(r._internal,a,x._internal,y._internal);
|
||||
}
|
||||
|
||||
template<class T,int N>
|
||||
void vcaxpy(iVector<T,N>& r,const vCoeff_t& a,const iVector<T,N>& x,const iVector<T,N>& y) {
|
||||
for (int i=0;i<N;i++)
|
||||
vcaxpy(r._internal[i],a,x._internal[i],y._internal[i]);
|
||||
}
|
||||
|
||||
void vcaxpy(vCoeff_t& r,const vCoeff_t& a,const vCoeff_t& x,const vCoeff_t& y) {
|
||||
r = a*x + y;
|
||||
}
|
||||
|
||||
void block_caxpy(int b, Field& ret, const vCoeff_t& a, const Field& x, const Field& y) {
|
||||
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
vcaxpy(ret._odata[ss],a,x._odata[ss],y._odata[ss]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void block_caxpy(int b, std::vector< ComplexD >& ret, const vCoeff_t& a, const Field& x, const std::vector< ComplexD >& y) {
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
constexpr int nsimd = sizeof(vCoeff_t) / sizeof(Coeff_t);
|
||||
int lsize = _cf_o_block_size / _block_sites;
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
|
||||
int n = lsize / nsimd;
|
||||
for (int l=0;l<n;l++) {
|
||||
vCoeff_t r = a* ((vCoeff_t*)&x._odata[ss]._internal)[l];
|
||||
|
||||
for (int j=0;j<nsimd;j++) {
|
||||
int t = lsize * i + l*nsimd + j;
|
||||
ret[t] = y[t] + ((Coeff_t*)&r)[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void block_set(int b, Field& ret, const std::vector< ComplexD >& x) {
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
int lsize = _cf_o_block_size / _block_sites;
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
|
||||
for (int l=0;l<lsize;l++)
|
||||
((Coeff_t*)&ret._odata[ss]._internal)[l] = (Coeff_t)x[lsize * i + l]; // convert precision
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void block_get(int b, const Field& ret, std::vector< ComplexD >& x) {
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
int lsize = _cf_o_block_size / _block_sites;
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
|
||||
for (int l=0;l<lsize;l++)
|
||||
x[lsize * i + l] = (ComplexD)((Coeff_t*)&ret._odata[ss]._internal)[l];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void vcscale(iScalar<T>& r,const vCoeff_t& a,const iScalar<T>& x) {
|
||||
vcscale(r._internal,a,x._internal);
|
||||
}
|
||||
|
||||
template<class T,int N>
|
||||
void vcscale(iVector<T,N>& r,const vCoeff_t& a,const iVector<T,N>& x) {
|
||||
for (int i=0;i<N;i++)
|
||||
vcscale(r._internal[i],a,x._internal[i]);
|
||||
}
|
||||
|
||||
void vcscale(vCoeff_t& r,const vCoeff_t& a,const vCoeff_t& x) {
|
||||
r = a*x;
|
||||
}
|
||||
|
||||
void block_cscale(int b, const vCoeff_t& a, Field& ret) {
|
||||
|
||||
std::vector<int> x0;
|
||||
block_to_coor(b,x0);
|
||||
|
||||
for (int i=0;i<_block_sites;i++) { // only odd sites
|
||||
int ss = block_site_to_o_site(x0,i);
|
||||
vcscale(ret._odata[ss],a,ret._odata[ss]);
|
||||
}
|
||||
}
|
||||
|
||||
void getCanonicalBlockOffset(int cb, std::vector<int>& x0) {
|
||||
const int ndim = 5;
|
||||
assert(_nb.size() == ndim);
|
||||
std::vector<int> _nbc = { _nb[1], _nb[2], _nb[3], _nb[4], _nb[0] };
|
||||
std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
|
||||
x0.resize(ndim);
|
||||
|
||||
assert(cb >= 0);
|
||||
assert(cb < _nbc[0]*_nbc[1]*_nbc[2]*_nbc[3]*_nbc[4]);
|
||||
|
||||
Lexicographic::CoorFromIndex(x0,cb,_nbc);
|
||||
int i;
|
||||
|
||||
for (i=0;i<ndim;i++) {
|
||||
x0[i] *= _bsc[i];
|
||||
}
|
||||
|
||||
//if (cb < 2)
|
||||
// std::cout << GridLogMessage << "Map: " << cb << " To: " << x0 << std::endl;
|
||||
}
|
||||
|
||||
void pokeBlockOfVectorCanonical(int cb,Field& v,const std::vector<float>& buf) {
|
||||
std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
|
||||
std::vector<int> ldim = v._grid->LocalDimensions();
|
||||
std::vector<int> cldim = { ldim[1], ldim[2], ldim[3], ldim[4], ldim[0] };
|
||||
const int _nbsc = _bs_cb[0]*_bs_cb[1]*_bs_cb[2]*_bs_cb[3]*_bs_cb[4];
|
||||
// take canonical block cb of v and put it in canonical ordering in buf
|
||||
std::vector<int> cx0;
|
||||
getCanonicalBlockOffset(cb,cx0);
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
std::vector<int> co0,cl0;
|
||||
co0=cx0; cl0=cx0;
|
||||
|
||||
#pragma omp for
|
||||
for (int i=0;i<_nbsc;i++) {
|
||||
Lexicographic::CoorFromIndex(co0,2*i,_bsc); // 2* for eo
|
||||
for (int j=0;j<(int)_bsc.size();j++)
|
||||
cl0[j] = cx0[j] + co0[j];
|
||||
|
||||
std::vector<int> l0 = { cl0[4], cl0[0], cl0[1], cl0[2], cl0[3] };
|
||||
int oi = v._grid->oIndex(l0);
|
||||
int ii = v._grid->iIndex(l0);
|
||||
int lti = i;
|
||||
|
||||
//if (cb < 2 && i<2)
|
||||
// std::cout << GridLogMessage << "Map: " << cb << ", " << i << " To: " << cl0 << ", " << cx0 << ", " << oi << ", " << ii << std::endl;
|
||||
|
||||
for (int s=0;s<4;s++)
|
||||
for (int c=0;c<3;c++) {
|
||||
Coeff_t& ld = ((Coeff_t*)&v._odata[oi]._internal._internal[s]._internal[c])[ii];
|
||||
int ti = 12*lti + 3*s + c;
|
||||
ld = Coeff_t(buf[2*ti+0], buf[2*ti+1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void peekBlockOfVectorCanonical(int cb,const Field& v,std::vector<float>& buf) {
|
||||
std::vector<int> _bsc = { _bs[1], _bs[2], _bs[3], _bs[4], _bs[0] };
|
||||
std::vector<int> ldim = v._grid->LocalDimensions();
|
||||
std::vector<int> cldim = { ldim[1], ldim[2], ldim[3], ldim[4], ldim[0] };
|
||||
const int _nbsc = _bs_cb[0]*_bs_cb[1]*_bs_cb[2]*_bs_cb[3]*_bs_cb[4];
|
||||
// take canonical block cb of v and put it in canonical ordering in buf
|
||||
std::vector<int> cx0;
|
||||
getCanonicalBlockOffset(cb,cx0);
|
||||
|
||||
buf.resize(_cf_block_size * 2);
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
std::vector<int> co0,cl0;
|
||||
co0=cx0; cl0=cx0;
|
||||
|
||||
#pragma omp for
|
||||
for (int i=0;i<_nbsc;i++) {
|
||||
Lexicographic::CoorFromIndex(co0,2*i,_bsc); // 2* for eo
|
||||
for (int j=0;j<(int)_bsc.size();j++)
|
||||
cl0[j] = cx0[j] + co0[j];
|
||||
|
||||
std::vector<int> l0 = { cl0[4], cl0[0], cl0[1], cl0[2], cl0[3] };
|
||||
int oi = v._grid->oIndex(l0);
|
||||
int ii = v._grid->iIndex(l0);
|
||||
int lti = i;
|
||||
|
||||
//if (cb < 2 && i<2)
|
||||
// std::cout << GridLogMessage << "Map: " << cb << ", " << i << " To: " << cl0 << ", " << cx0 << ", " << oi << ", " << ii << std::endl;
|
||||
|
||||
for (int s=0;s<4;s++)
|
||||
for (int c=0;c<3;c++) {
|
||||
Coeff_t& ld = ((Coeff_t*)&v._odata[oi]._internal._internal[s]._internal[c])[ii];
|
||||
int ti = 12*lti + 3*s + c;
|
||||
buf[2*ti+0] = ld.real();
|
||||
buf[2*ti+1] = ld.imag();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int globalToLocalCanonicalBlock(int slot,const std::vector<int>& src_nodes,int nb) {
|
||||
// processor coordinate
|
||||
int _nd = (int)src_nodes.size();
|
||||
std::vector<int> _src_nodes = src_nodes;
|
||||
std::vector<int> pco(_nd);
|
||||
Lexicographic::CoorFromIndex(pco,slot,_src_nodes);
|
||||
std::vector<int> cpco = { pco[1], pco[2], pco[3], pco[4], pco[0] };
|
||||
|
||||
// get local block
|
||||
std::vector<int> _nbc = { _nb[1], _nb[2], _nb[3], _nb[4], _nb[0] };
|
||||
assert(_nd == 5);
|
||||
std::vector<int> c_src_local_blocks(_nd);
|
||||
for (int i=0;i<_nd;i++) {
|
||||
assert(_grid->_fdimensions[i] % (src_nodes[i] * _bs[i]) == 0);
|
||||
c_src_local_blocks[(i+4) % 5] = _grid->_fdimensions[i] / src_nodes[i] / _bs[i];
|
||||
}
|
||||
std::vector<int> cbcoor(_nd); // coordinate of block in slot in canonical form
|
||||
Lexicographic::CoorFromIndex(cbcoor,nb,c_src_local_blocks);
|
||||
|
||||
// cpco, cbcoor
|
||||
std::vector<int> clbcoor(_nd);
|
||||
for (int i=0;i<_nd;i++) {
|
||||
int cgcoor = cpco[i] * c_src_local_blocks[i] + cbcoor[i]; // global block coordinate
|
||||
int pcoor = cgcoor / _nbc[i]; // processor coordinate in my Grid
|
||||
int tpcoor = _grid->_processor_coor[(i+1)%5];
|
||||
if (pcoor != tpcoor)
|
||||
return -1;
|
||||
clbcoor[i] = cgcoor - tpcoor * _nbc[i]; // canonical local block coordinate for canonical dimension i
|
||||
}
|
||||
|
||||
int lnb;
|
||||
Lexicographic::IndexFromCoor(clbcoor,lnb,_nbc);
|
||||
//std::cout << "Mapped slot = " << slot << " nb = " << nb << " to " << lnb << std::endl;
|
||||
return lnb;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
@ -0,0 +1,163 @@
|
||||
namespace Grid {
|
||||
|
||||
template<class Field>
|
||||
class BasisFieldVector {
|
||||
public:
|
||||
int _Nm;
|
||||
|
||||
typedef typename Field::scalar_type Coeff_t;
|
||||
typedef typename Field::vector_type vCoeff_t;
|
||||
typedef typename Field::vector_object vobj;
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
std::vector<Field> _v; // _Nfull vectors
|
||||
|
||||
void report(int n,GridBase* value) {
|
||||
|
||||
std::cout << GridLogMessage << "BasisFieldVector allocated:\n";
|
||||
std::cout << GridLogMessage << " Delta N = " << n << "\n";
|
||||
std::cout << GridLogMessage << " Size of full vectors (size) = " <<
|
||||
((double)n*sizeof(vobj)*value->oSites() / 1024./1024./1024.) << " GB\n";
|
||||
std::cout << GridLogMessage << " Size = " << _v.size() << " Capacity = " << _v.capacity() << std::endl;
|
||||
|
||||
value->Barrier();
|
||||
|
||||
if (value->IsBoss()) {
|
||||
system("cat /proc/meminfo");
|
||||
}
|
||||
|
||||
value->Barrier();
|
||||
|
||||
}
|
||||
|
||||
BasisFieldVector(int Nm,GridBase* value) : _Nm(Nm), _v(Nm,value) {
|
||||
report(Nm,value);
|
||||
}
|
||||
|
||||
~BasisFieldVector() {
|
||||
}
|
||||
|
||||
Field& operator[](int i) {
|
||||
return _v[i];
|
||||
}
|
||||
|
||||
void orthogonalize(Field& w, int k) {
|
||||
for(int j=0; j<k; ++j){
|
||||
Coeff_t ip = (Coeff_t)innerProduct(_v[j],w);
|
||||
w = w - ip*_v[j];
|
||||
}
|
||||
}
|
||||
|
||||
void rotate(std::vector<RealD>& Qt,int j0, int j1, int k0,int k1,int Nm) {
|
||||
|
||||
GridBase* grid = _v[0]._grid;
|
||||
|
||||
#pragma omp parallel
|
||||
{
|
||||
std::vector < vobj > B(Nm);
|
||||
|
||||
#pragma omp for
|
||||
for(int ss=0;ss < grid->oSites();ss++){
|
||||
for(int j=j0; j<j1; ++j) B[j]=0.;
|
||||
|
||||
for(int j=j0; j<j1; ++j){
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B[j] +=Qt[k+Nm*j] * _v[k]._odata[ss];
|
||||
}
|
||||
}
|
||||
for(int j=j0; j<j1; ++j){
|
||||
_v[j]._odata[ss] = B[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return _Nm;
|
||||
}
|
||||
|
||||
void resize(int n) {
|
||||
if (n > _Nm)
|
||||
_v.reserve(n);
|
||||
|
||||
_v.resize(n,_v[0]._grid);
|
||||
|
||||
if (n < _Nm)
|
||||
_v.shrink_to_fit();
|
||||
|
||||
report(n - _Nm,_v[0]._grid);
|
||||
|
||||
_Nm = n;
|
||||
}
|
||||
|
||||
std::vector<int> getIndex(std::vector<RealD>& sort_vals) {
|
||||
|
||||
std::vector<int> idx(sort_vals.size());
|
||||
iota(idx.begin(), idx.end(), 0);
|
||||
|
||||
// sort indexes based on comparing values in v
|
||||
sort(idx.begin(), idx.end(),
|
||||
[&sort_vals](int i1, int i2) {return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);});
|
||||
|
||||
return idx;
|
||||
}
|
||||
|
||||
void reorderInPlace(std::vector<RealD>& sort_vals, std::vector<int>& idx) {
|
||||
GridStopWatch gsw;
|
||||
gsw.Start();
|
||||
|
||||
int nswaps = 0;
|
||||
for (size_t i=0;i<idx.size();i++) {
|
||||
if (idx[i] != i) {
|
||||
|
||||
// find proper place (this could be done in logarithmic time, don't bother for now)
|
||||
size_t j;
|
||||
for (j=i;j<idx.size();j++)
|
||||
if (idx[j]==i)
|
||||
break;
|
||||
assert(j!=idx.size());
|
||||
|
||||
Field _t(_v[0]._grid);
|
||||
_t = _v[idx[j]];
|
||||
_v[idx[j]] = _v[idx[i]];
|
||||
_v[idx[i]] = _t;
|
||||
|
||||
RealD _td = sort_vals[idx[j]];
|
||||
sort_vals[idx[j]] = sort_vals[idx[i]];
|
||||
sort_vals[idx[i]] = _td;
|
||||
|
||||
int _tt = idx[i];
|
||||
idx[i] = idx[j];
|
||||
idx[j] = _tt;
|
||||
|
||||
nswaps++;
|
||||
}
|
||||
}
|
||||
|
||||
// sort values
|
||||
gsw.Stop();
|
||||
std::cout << GridLogMessage << "Sorted eigenspace in place in " << gsw.Elapsed() << " using " << nswaps << " swaps" << std::endl;
|
||||
}
|
||||
|
||||
void sortInPlace(std::vector<RealD>& sort_vals, bool reverse) {
|
||||
|
||||
std::vector<int> idx = getIndex(sort_vals);
|
||||
if (reverse)
|
||||
std::reverse(idx.begin(), idx.end());
|
||||
|
||||
reorderInPlace(sort_vals,idx);
|
||||
|
||||
}
|
||||
|
||||
void deflate(const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
|
||||
result = zero;
|
||||
int N = (int)_v.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
Field& tmp = _v[i];
|
||||
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -53,16 +53,110 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
* M psi = eta
|
||||
***********************
|
||||
*Odd
|
||||
* i) (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
|
||||
* i) D_oo psi_o = L^{-1} eta_o
|
||||
* eta_o' = (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
|
||||
* (D_oo)^{\dag} D_oo psi_o = (D_oo)^dag L^{-1} eta_o
|
||||
*Even
|
||||
* ii) Mee psi_e + Meo psi_o = src_e
|
||||
*
|
||||
* => sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
*
|
||||
*
|
||||
* TODO: Other options:
|
||||
*
|
||||
* a) change checkerboards for Schur e<->o
|
||||
*
|
||||
* Left precon by Moo^-1
|
||||
* b) Doo^{dag} M_oo^-dag Moo^-1 Doo psi_0 = (D_oo)^dag M_oo^-dag Moo^-1 L^{-1} eta_o
|
||||
* eta_o' = (D_oo)^dag M_oo^-dag Moo^-1 (eta_o - Moe Mee^{-1} eta_e)
|
||||
*
|
||||
* Right precon by Moo^-1
|
||||
* c) M_oo^-dag Doo^{dag} Doo Moo^-1 phi_0 = M_oo^-dag (D_oo)^dag L^{-1} eta_o
|
||||
* eta_o' = M_oo^-dag (D_oo)^dag (eta_o - Moe Mee^{-1} eta_e)
|
||||
* psi_o = M_oo^-1 phi_o
|
||||
* TODO: Deflation
|
||||
*/
|
||||
namespace Grid {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field> class SchurRedBlackStaggeredSolve {
|
||||
private:
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackStaggeredSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurStaggeredOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
_Matrix.Mooee(tmp,src_o); assert(src_o.checkerboard ==Odd);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
||||
_HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackStaggered solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
template<class Field> using SchurRedBlackStagSolve = SchurRedBlackStaggeredSolve<Field>;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
@ -76,12 +170,10 @@ namespace Grid {
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
SchurRedBlackDiagMooeeSolve(OperatorFunction<Field> &HermitianRBSolver,int cb=0) : _HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=cb;
|
||||
};
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
@ -141,5 +233,166 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagTwoSolve {
|
||||
private:
|
||||
OperatorFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagTwoSolve(OperatorFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
_HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form a Red Black solver calling a Herm solver
|
||||
// Use of RB info prevents making SchurRedBlackSolve conform to standard interface
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class SchurRedBlackDiagTwoMixed {
|
||||
private:
|
||||
LinearFunction<Field> & _HermitianRBSolver;
|
||||
int CBfactorise;
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
SchurRedBlackDiagTwoMixed(LinearFunction<Field> &HermitianRBSolver) :
|
||||
_HermitianRBSolver(HermitianRBSolver)
|
||||
{
|
||||
CBfactorise=0;
|
||||
};
|
||||
|
||||
template<class Matrix>
|
||||
void operator() (Matrix & _Matrix,const Field &in, Field &out){
|
||||
|
||||
// FIXME CGdiagonalMee not implemented virtual function
|
||||
// FIXME use CBfactorise to control schur decomp
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
GridBase *fgrid= _Matrix.Grid();
|
||||
|
||||
SchurDiagTwoOperator<Matrix,Field> _HermOpEO(_Matrix);
|
||||
|
||||
Field src_e(grid);
|
||||
Field src_o(grid);
|
||||
Field sol_e(grid);
|
||||
Field sol_o(grid);
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
Field resid(fgrid);
|
||||
|
||||
pickCheckerboard(Even,src_e,in);
|
||||
pickCheckerboard(Odd ,src_o,in);
|
||||
pickCheckerboard(Even,sol_e,out);
|
||||
pickCheckerboard(Odd ,sol_o,out);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e,tmp); assert( tmp.checkerboard ==Even);
|
||||
_Matrix.Meooe (tmp,Mtmp); assert( Mtmp.checkerboard ==Odd);
|
||||
tmp=src_o-Mtmp; assert( tmp.checkerboard ==Odd);
|
||||
|
||||
// get the right MpcDag
|
||||
_HermOpEO.MpcDag(tmp,src_o); assert(src_o.checkerboard ==Odd);
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the red-black solver
|
||||
//////////////////////////////////////////////////////////////
|
||||
std::cout<<GridLogMessage << "SchurRedBlack solver calling the MpcDagMp solver" <<std::endl;
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,sol_o); assert(sol_o.checkerboard==Odd);
|
||||
// _HermitianRBSolver(_HermOpEO,src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_HermitianRBSolver(src_o,tmp); assert(tmp.checkerboard==Odd);
|
||||
_Matrix.MooeeInv(tmp,sol_o); assert( sol_o.checkerboard ==Odd);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o,tmp); assert( tmp.checkerboard ==Even);
|
||||
src_e = src_e-tmp; assert( src_e.checkerboard ==Even);
|
||||
_Matrix.MooeeInv(src_e,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
|
||||
setCheckerboard(out,sol_e); assert( sol_e.checkerboard ==Even);
|
||||
setCheckerboard(out,sol_o); assert( sol_o.checkerboard ==Odd );
|
||||
|
||||
// Verify the unprec residual
|
||||
_Matrix.M(out,resid);
|
||||
resid = resid-in;
|
||||
RealD ns = norm2(in);
|
||||
RealD nr = norm2(resid);
|
||||
|
||||
std::cout<<GridLogMessage << "SchurRedBlackDiagTwo solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -117,32 +117,40 @@ CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors,
|
||||
int Nchild = Nparent/childsize;
|
||||
assert (childsize * Nchild == Nparent);
|
||||
|
||||
int prank; MPI_Comm_rank(parent.communicator,&prank);
|
||||
int crank = prank % childsize;
|
||||
int ccomm = prank / childsize;
|
||||
std::vector<int> ccoor(_ndimension); // coor within subcommunicator
|
||||
std::vector<int> scoor(_ndimension); // coor of split within parent
|
||||
std::vector<int> ssize(_ndimension); // coor of split within parent
|
||||
|
||||
for(int d=0;d<_ndimension;d++){
|
||||
ccoor[d] = parent._processor_coor[d] % processors[d];
|
||||
scoor[d] = parent._processor_coor[d] / processors[d];
|
||||
ssize[d] = parent._processors[d]/ processors[d];
|
||||
}
|
||||
int crank,srank; // rank within subcomm ; rank of subcomm within blocks of subcomms
|
||||
Lexicographic::IndexFromCoor(ccoor,crank,processors);
|
||||
Lexicographic::IndexFromCoor(scoor,srank,ssize);
|
||||
|
||||
MPI_Comm comm_split;
|
||||
if ( Nchild > 1 ) {
|
||||
|
||||
std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
|
||||
std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"] ";
|
||||
for(int d=0;d<parent._processors.size();d++) std::cout << parent._processors[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Child communicator of "<< std::hex << parent.communicator << std::dec<<std::endl;
|
||||
// std::cout << GridLogMessage<<" parent grid["<< parent._ndimension<<"] ";
|
||||
// for(int d=0;d<parent._processors.size();d++) std::cout << parent._processors[d] << " ";
|
||||
// std::cout<<std::endl;
|
||||
|
||||
std::cout << GridLogMessage<<" child grid["<< _ndimension <<"] ";
|
||||
for(int d=0;d<processors.size();d++) std::cout << processors[d] << " ";
|
||||
std::cout<<std::endl;
|
||||
// std::cout << GridLogMessage<<" child grid["<< _ndimension <<"] ";
|
||||
// for(int d=0;d<processors.size();d++) std::cout << processors[d] << " ";
|
||||
// std::cout<<std::endl;
|
||||
|
||||
int ierr= MPI_Comm_split(parent.communicator, ccomm,crank,&comm_split);
|
||||
int ierr= MPI_Comm_split(parent.communicator,srank,crank,&comm_split);
|
||||
assert(ierr==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Declare victory
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
|
||||
<<Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Divided communicator "<< parent._Nprocessors<<" into "
|
||||
// << Nchild <<" communicators with " << childsize << " ranks"<<std::endl;
|
||||
} else {
|
||||
comm_split=parent.communicator;
|
||||
// std::cout << "Passed parental communicator to a new communicator" <<std::endl;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -264,6 +264,23 @@ class CartesianCommunicator {
|
||||
// Broadcast a buffer and composite larger
|
||||
////////////////////////////////////////////////////////////
|
||||
void Broadcast(int root,void* data, int bytes);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// All2All down one dimension
|
||||
////////////////////////////////////////////////////////////
|
||||
template<class T> void AllToAll(int dim,std::vector<T> &in, std::vector<T> &out){
|
||||
assert(dim>=0);
|
||||
assert(dim<_ndimension);
|
||||
int numnode = _processors[dim];
|
||||
// std::cerr << " AllToAll in.size() "<<in.size()<<std::endl;
|
||||
// std::cerr << " AllToAll out.size() "<<out.size()<<std::endl;
|
||||
assert(in.size()==out.size());
|
||||
size_t bytes=(in.size()*sizeof(T))/numnode;
|
||||
assert((bytes*numnode) == in.size()*sizeof(T));
|
||||
AllToAll(dim,(void *)&in[0],(void *)&out[0],bytes);
|
||||
}
|
||||
void AllToAll(int dim ,void *in,void *out,int bytes);
|
||||
void AllToAll(void *in,void *out,int bytes);
|
||||
|
||||
template<class obj> void Broadcast(int root,obj &data)
|
||||
{
|
||||
|
@ -187,6 +187,21 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
|
||||
root,
|
||||
communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,int bytes)
|
||||
{
|
||||
std::vector<int> row(_ndimension,1);
|
||||
assert(dim>=0 && dim<_ndimension);
|
||||
|
||||
// Split the communicator
|
||||
row[dim] = _processors[dim];
|
||||
|
||||
CartesianCommunicator Comm(row,*this);
|
||||
Comm.AllToAll(in,out,bytes);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(void *in,void *out,int bytes)
|
||||
{
|
||||
MPI_Alltoall(in ,bytes,MPI_BYTE,out,bytes,MPI_BYTE,communicator);
|
||||
}
|
||||
///////////////////////////////////////////////////////
|
||||
// Should only be used prior to Grid Init finished.
|
||||
@ -207,5 +222,7 @@ void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
@ -101,6 +101,10 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,int bytes)
|
||||
{
|
||||
bcopy(in,out,bytes);
|
||||
}
|
||||
|
||||
int CartesianCommunicator::RankWorld(void){return 0;}
|
||||
void CartesianCommunicator::Barrier(void){}
|
||||
|
@ -684,6 +684,307 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
|
||||
merge(out._odata[out_oidx], ptrs, 0);
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Communicate between grids
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// All to all plan
|
||||
//
|
||||
// Subvolume on fine grid is v. Vectors a,b,c,d
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SIMPLEST CASE:
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Mesh of nodes (2) ; subdivide to 1 subdivisions
|
||||
//
|
||||
// Lex ord:
|
||||
// N0 va0 vb0 N1 va1 vb1
|
||||
//
|
||||
// For each dimension do an all to all
|
||||
//
|
||||
// full AllToAll(0)
|
||||
// N0 va0 va1 N1 vb0 vb1
|
||||
//
|
||||
// REARRANGE
|
||||
// N0 va01 N1 vb01
|
||||
//
|
||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
|
||||
// NB: Easiest to programme if keep in lex order.
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// SIMPLE CASE:
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Mesh of nodes (2x2) ; subdivide to 1x1 subdivisions
|
||||
//
|
||||
// Lex ord:
|
||||
// N0 va0 vb0 vc0 vd0 N1 va1 vb1 vc1 vd1
|
||||
// N2 va2 vb2 vc2 vd2 N3 va3 vb3 vc3 vd3
|
||||
//
|
||||
// Ratio = full[dim] / split[dim]
|
||||
//
|
||||
// For each dimension do an all to all; get Nvec -> Nvec / ratio
|
||||
// Ldim -> Ldim * ratio
|
||||
// LocalVol -> LocalVol * ratio
|
||||
// full AllToAll(0)
|
||||
// N0 va0 vb0 va1 vb1 N1 vc0 vd0 vc1 vd1
|
||||
// N2 va2 vb2 va3 vb3 N3 vc2 vd2 vc3 vd3
|
||||
//
|
||||
// REARRANGE
|
||||
// N0 va01 vb01 N1 vc01 vd01
|
||||
// N2 va23 vb23 N3 vc23 vd23
|
||||
//
|
||||
// full AllToAll(1) // Not what is wanted. FIXME
|
||||
// N0 va01 va23 N1 vc01 vc23
|
||||
// N2 vb01 vb23 N3 vd01 vd23
|
||||
//
|
||||
// REARRANGE
|
||||
// N0 va0123 N1 vc0123
|
||||
// N2 vb0123 N3 vd0123
|
||||
//
|
||||
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
|
||||
// NB: Easiest to programme if keep in lex order.
|
||||
//
|
||||
/////////////////////////////////////////////////////////
|
||||
template<class Vobj>
|
||||
void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
|
||||
{
|
||||
typedef typename Vobj::scalar_object Sobj;
|
||||
|
||||
int full_vecs = full.size();
|
||||
|
||||
assert(full_vecs>=1);
|
||||
|
||||
GridBase * full_grid = full[0]._grid;
|
||||
GridBase *split_grid = split._grid;
|
||||
|
||||
int ndim = full_grid->_ndimension;
|
||||
int full_nproc = full_grid->_Nprocessors;
|
||||
int split_nproc =split_grid->_Nprocessors;
|
||||
|
||||
////////////////////////////////
|
||||
// Checkerboard management
|
||||
////////////////////////////////
|
||||
int cb = full[0].checkerboard;
|
||||
split.checkerboard = cb;
|
||||
|
||||
//////////////////////////////
|
||||
// Checks
|
||||
//////////////////////////////
|
||||
assert(full_grid->_ndimension==split_grid->_ndimension);
|
||||
for(int n=0;n<full_vecs;n++){
|
||||
assert(full[n].checkerboard == cb);
|
||||
for(int d=0;d<ndim;d++){
|
||||
assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
|
||||
assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
int nvector =full_nproc/split_nproc;
|
||||
assert(nvector*split_nproc==full_nproc);
|
||||
assert(nvector == full_vecs);
|
||||
|
||||
std::vector<int> ratio(ndim);
|
||||
for(int d=0;d<ndim;d++){
|
||||
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
|
||||
}
|
||||
|
||||
int lsites = full_grid->lSites();
|
||||
Integer sz = lsites * nvector;
|
||||
std::vector<Sobj> tmpdata(sz);
|
||||
std::vector<Sobj> alldata(sz);
|
||||
std::vector<Sobj> scalardata(lsites);
|
||||
for(int v=0;v<nvector;v++){
|
||||
unvectorizeToLexOrdArray(scalardata,full[v]);
|
||||
parallel_for(int site=0;site<lsites;site++){
|
||||
alldata[v*lsites+site] = scalardata[site];
|
||||
}
|
||||
}
|
||||
|
||||
int nvec = nvector; // Counts down to 1 as we collapse dims
|
||||
std::vector<int> ldims = full_grid->_ldimensions;
|
||||
std::vector<int> lcoor(ndim);
|
||||
|
||||
for(int d=0;d<ndim;d++){
|
||||
|
||||
if ( ratio[d] != 1 ) {
|
||||
|
||||
full_grid ->AllToAll(d,alldata,tmpdata);
|
||||
|
||||
//////////////////////////////////////////
|
||||
//Local volume for this dimension is expanded by ratio of processor extents
|
||||
// Number of vectors is decreased by same factor
|
||||
// Rearrange to lexico for bigger volume
|
||||
//////////////////////////////////////////
|
||||
nvec /= ratio[d];
|
||||
auto rdims = ldims; rdims[d] *= ratio[d];
|
||||
auto rsites= lsites*ratio[d];
|
||||
for(int v=0;v<nvec;v++){
|
||||
|
||||
// For loop over each site within old subvol
|
||||
for(int lsite=0;lsite<lsites;lsite++){
|
||||
|
||||
Lexicographic::CoorFromIndex(lcoor, lsite, ldims);
|
||||
|
||||
for(int r=0;r<ratio[d];r++){ // ratio*nvec terms
|
||||
|
||||
auto rcoor = lcoor; rcoor[d] += r*ldims[d];
|
||||
|
||||
int rsite; Lexicographic::IndexFromCoor(rcoor, rsite, rdims);
|
||||
rsite += v * rsites;
|
||||
|
||||
int rmul=nvec*lsites;
|
||||
int vmul= lsites;
|
||||
alldata[rsite] = tmpdata[lsite+r*rmul+v*vmul];
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
ldims[d]*= ratio[d];
|
||||
lsites *= ratio[d];
|
||||
|
||||
if ( split_grid->_processors[d] > 1 ) {
|
||||
tmpdata = alldata;
|
||||
split_grid->AllToAll(d,tmpdata,alldata);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
vectorizeFromLexOrdArray(alldata,split);
|
||||
}
|
||||
|
||||
template<class Vobj>
|
||||
void Grid_split(Lattice<Vobj> &full,Lattice<Vobj> & split)
|
||||
{
|
||||
int nvector = full._grid->_Nprocessors / split._grid->_Nprocessors;
|
||||
std::vector<Lattice<Vobj> > full_v(nvector,full._grid);
|
||||
for(int n=0;n<nvector;n++){
|
||||
full_v[n] = full;
|
||||
}
|
||||
Grid_split(full_v,split);
|
||||
}
|
||||
|
||||
template<class Vobj>
|
||||
void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
|
||||
{
|
||||
typedef typename Vobj::scalar_object Sobj;
|
||||
|
||||
int full_vecs = full.size();
|
||||
|
||||
assert(full_vecs>=1);
|
||||
|
||||
GridBase * full_grid = full[0]._grid;
|
||||
GridBase *split_grid = split._grid;
|
||||
|
||||
int ndim = full_grid->_ndimension;
|
||||
int full_nproc = full_grid->_Nprocessors;
|
||||
int split_nproc =split_grid->_Nprocessors;
|
||||
|
||||
////////////////////////////////
|
||||
// Checkerboard management
|
||||
////////////////////////////////
|
||||
int cb = full[0].checkerboard;
|
||||
split.checkerboard = cb;
|
||||
|
||||
//////////////////////////////
|
||||
// Checks
|
||||
//////////////////////////////
|
||||
assert(full_grid->_ndimension==split_grid->_ndimension);
|
||||
for(int n=0;n<full_vecs;n++){
|
||||
assert(full[n].checkerboard == cb);
|
||||
for(int d=0;d<ndim;d++){
|
||||
assert(full[n]._grid->_gdimensions[d]==split._grid->_gdimensions[d]);
|
||||
assert(full[n]._grid->_fdimensions[d]==split._grid->_fdimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
int nvector =full_nproc/split_nproc;
|
||||
assert(nvector*split_nproc==full_nproc);
|
||||
assert(nvector == full_vecs);
|
||||
|
||||
std::vector<int> ratio(ndim);
|
||||
for(int d=0;d<ndim;d++){
|
||||
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
|
||||
}
|
||||
|
||||
int lsites = full_grid->lSites();
|
||||
Integer sz = lsites * nvector;
|
||||
std::vector<Sobj> tmpdata(sz);
|
||||
std::vector<Sobj> alldata(sz);
|
||||
std::vector<Sobj> scalardata(lsites);
|
||||
|
||||
unvectorizeToLexOrdArray(alldata,split);
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Start from split grid and work towards full grid
|
||||
/////////////////////////////////////////////////////////////////
|
||||
std::vector<int> lcoor(ndim);
|
||||
std::vector<int> rcoor(ndim);
|
||||
|
||||
int nvec = 1;
|
||||
lsites = split_grid->lSites();
|
||||
std::vector<int> ldims = split_grid->_ldimensions;
|
||||
|
||||
for(int d=ndim-1;d>=0;d--){
|
||||
|
||||
if ( ratio[d] != 1 ) {
|
||||
|
||||
if ( split_grid->_processors[d] > 1 ) {
|
||||
tmpdata = alldata;
|
||||
split_grid->AllToAll(d,tmpdata,alldata);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////
|
||||
//Local volume for this dimension is expanded by ratio of processor extents
|
||||
// Number of vectors is decreased by same factor
|
||||
// Rearrange to lexico for bigger volume
|
||||
//////////////////////////////////////////
|
||||
auto rsites= lsites/ratio[d];
|
||||
auto rdims = ldims; rdims[d]/=ratio[d];
|
||||
|
||||
for(int v=0;v<nvec;v++){
|
||||
|
||||
// rsite, rcoor --> smaller local volume
|
||||
// lsite, lcoor --> bigger original (single node?) volume
|
||||
// For loop over each site within smaller subvol
|
||||
for(int rsite=0;rsite<rsites;rsite++){
|
||||
|
||||
Lexicographic::CoorFromIndex(rcoor, rsite, rdims);
|
||||
int lsite;
|
||||
|
||||
for(int r=0;r<ratio[d];r++){
|
||||
|
||||
lcoor = rcoor; lcoor[d] += r*rdims[d];
|
||||
Lexicographic::IndexFromCoor(lcoor, lsite, ldims); lsite += v * lsites;
|
||||
|
||||
int rmul=nvec*rsites;
|
||||
int vmul= rsites;
|
||||
tmpdata[rsite+r*rmul+v*vmul]=alldata[lsite];
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
nvec *= ratio[d];
|
||||
ldims[d]=rdims[d];
|
||||
lsites =rsites;
|
||||
|
||||
full_grid ->AllToAll(d,tmpdata,alldata);
|
||||
}
|
||||
}
|
||||
|
||||
lsites = full_grid->lSites();
|
||||
for(int v=0;v<nvector;v++){
|
||||
parallel_for(int site=0;site<lsites;site++){
|
||||
scalardata[site] = alldata[v*lsites+site];
|
||||
}
|
||||
assert(v<full.size());
|
||||
|
||||
vectorizeFromLexOrdArray(scalardata,full[v]);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
@ -61,10 +61,10 @@ namespace QCD {
|
||||
}
|
||||
|
||||
/***************************************************************
|
||||
/* Additional EOFA operators only called outside the inverter.
|
||||
/* Since speed is not essential, simple axpby-style
|
||||
/* implementations should be fine.
|
||||
/***************************************************************/
|
||||
* Additional EOFA operators only called outside the inverter.
|
||||
* Since speed is not essential, simple axpby-style
|
||||
* implementations should be fine.
|
||||
***************************************************************/
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
|
||||
{
|
||||
@ -116,8 +116,8 @@ namespace QCD {
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
/* Performance critical fermion operators called inside the inverter
|
||||
/********************************************************************/
|
||||
* Performance critical fermion operators called inside the inverter
|
||||
********************************************************************/
|
||||
|
||||
template<class Impl>
|
||||
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
|
||||
|
@ -77,11 +77,11 @@ namespace QCD {
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************
|
||||
/* Additional EOFA operators only called outside the inverter.
|
||||
/* Since speed is not essential, simple axpby-style
|
||||
/* implementations should be fine.
|
||||
/***************************************************************/
|
||||
/****************************************************************
|
||||
* Additional EOFA operators only called outside the inverter.
|
||||
* Since speed is not essential, simple axpby-style
|
||||
* implementations should be fine.
|
||||
***************************************************************/
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
|
||||
{
|
||||
@ -194,8 +194,8 @@ namespace QCD {
|
||||
}
|
||||
|
||||
/********************************************************************
|
||||
/* Performance critical fermion operators called inside the inverter
|
||||
/********************************************************************/
|
||||
* Performance critical fermion operators called inside the inverter
|
||||
********************************************************************/
|
||||
|
||||
template<class Impl>
|
||||
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
|
||||
|
@ -243,6 +243,12 @@ void Grid_init(int *argc,char ***argv)
|
||||
fname<<CartesianCommunicator::RankWorld();
|
||||
fp=freopen(fname.str().c_str(),"w",stdout);
|
||||
assert(fp!=(FILE *)NULL);
|
||||
|
||||
std::ostringstream ename;
|
||||
ename<<"Grid.stderr.";
|
||||
ename<<CartesianCommunicator::RankWorld();
|
||||
fp=freopen(ename.str().c_str(),"w",stderr);
|
||||
assert(fp!=(FILE *)NULL);
|
||||
}
|
||||
|
||||
////////////////////////////////////
|
||||
|
Reference in New Issue
Block a user