1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Corrected bug in integer multiplications for SSE4 and AVX2

Merge remote-tracking branch 'upstream/master'

Conflicts:
	tests/Make.inc
This commit is contained in:
neo 2015-06-16 23:34:45 +09:00
commit 6e5db0b1da
37 changed files with 1341 additions and 515 deletions

10
TODO
View File

@ -1,11 +1,15 @@
================================================================
*** Hacks and bug fixes to clean up and Audits
================================================================
* Base class to share common code between vRealF, VComplexF etc... done
- Performance check on Guido's reimplementation strategy - (GUIDO) tested and no difference was found, merged
* Extract/merge/set cleanup ; too many variants; rationalise and call simpler ones
* Used #define repetitive sequences to minimise code.
* Rewrite core tensor arithmetic support to be more systematic
* Ensure we ET as much as possible; move unop functions into ET framework.
- tests with expression args to all functions
* FIXME audit
* const audit
Insert/Extract

View File

@ -33,7 +33,7 @@ public:
~alignedAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
const_pointer address(const_reference __x) const { return &__x; }
// const_pointer address(const_reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }

View File

@ -1,4 +1,4 @@
HFILES=./Cshift.h ./simd/Grid_avx.h ./simd/Grid_vector_types.h ./simd/Grid_sse4.h ./simd/Grid_avx512.h ./simd/Grid_empty.h ./simd/Grid_vector_unops.h ./simd/Grid_neon.h ./simd/Grid_qpx.h ./Tensors.h ./Algorithms.h ./communicator/Communicator_base.h ./lattice/Lattice_rng.h ./lattice/Lattice_reduction.h ./lattice/Lattice_transfer.h ./lattice/Lattice_unary.h ./lattice/Lattice_peekpoke.h ./lattice/Lattice_coordinate.h ./lattice/Lattice_comparison.h ./lattice/Lattice_overload.h ./lattice/Lattice_reality.h ./lattice/Lattice_local.h ./lattice/Lattice_conformable.h ./lattice/Lattice_where.h ./lattice/Lattice_comparison_utils.h ./lattice/Lattice_arith.h ./lattice/Lattice_base.h ./lattice/Lattice_ET.h ./lattice/Lattice_transpose.h ./lattice/Lattice_trace.h ./Stencil.h ./tensors/Tensor_arith_sub.h ./tensors/Tensor_poke.h ./tensors/Tensor_arith_mul.h ./tensors/Tensor_class.h ./tensors/Tensor_transpose.h ./tensors/Tensor_arith_mac.h ./tensors/Tensor_arith_scalar.h ./tensors/Tensor_reality.h ./tensors/Tensor_trace.h ./tensors/Tensor_arith_add.h ./tensors/Tensor_outer.h ./tensors/Tensor_inner.h ./tensors/Tensor_traits.h ./tensors/Tensor_Ta.h ./tensors/Tensor_unary.h ./tensors/Tensor_peek.h ./tensors/Tensor_arith.h ./tensors/Tensor_extract_merge.h ./Communicator.h ./Cartesian.h ./parallelIO/NerscIO.h ./qcd/QCD.h ./qcd/utils/SpaceTimeGrid.h ./qcd/utils/LinalgUtils.h ./qcd/utils/CovariantCshift.h ./qcd/utils/WilsonLoops.h ./qcd/action/gauge/WilsonGaugeAction.h ./qcd/action/gauge/GaugeActionBase.h ./qcd/action/Actions.h ./qcd/action/fermion/CayleyFermion5D.h ./qcd/action/fermion/ScaledShamirFermion.h ./qcd/action/fermion/MobiusFermion.h ./qcd/action/fermion/OverlapWilsonContfracTanhFermion.h ./qcd/action/fermion/PartialFractionFermion5D.h ./qcd/action/fermion/ShamirZolotarevFermion.h ./qcd/action/fermion/FermionOperator.h ./qcd/action/fermion/WilsonFermion5D.h ./qcd/action/fermion/WilsonCompressor.h ./qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h ./qcd/action/fermion/WilsonKernels.h ./qcd/action/fermion/DomainWallFermion.h ./qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h ./qcd/action/fermion/OverlapWilsonContfracZolotarevFermion.h ./qcd/action/fermion/MobiusZolotarevFermion.h ./qcd/action/fermion/g5HermitianLinop.h ./qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h ./qcd/action/fermion/WilsonFermion.h ./qcd/action/fermion/ContinuedFractionFermion5D.h ./qcd/action/fermion/OverlapWilsonCayleyZolotarevFermion.h ./qcd/spin/TwoSpinor.h ./qcd/spin/Dirac.h ./cshift/Cshift_common.h ./cshift/Cshift_none.h ./cshift/Cshift_mpi.h ./Simd.h ./GridConfig.h ./cartesian/Cartesian_base.h ./cartesian/Cartesian_red_black.h ./cartesian/Cartesian_full.h ./AlignedAllocator.h ./Lattice.h ./Threads.h ./Grid.h ./algorithms/iterative/ConjugateResidual.h ./algorithms/iterative/ConjugateGradientMultiShift.h ./algorithms/iterative/SchurRedBlack.h ./algorithms/iterative/NormalEquations.h ./algorithms/iterative/ConjugateGradient.h ./algorithms/approx/Chebyshev.h ./algorithms/approx/Zolotarev.h ./algorithms/approx/MultiShiftFunction.h ./algorithms/approx/bigfloat.h ./algorithms/approx/bigfloat_double.h ./algorithms/approx/Remez.h ./algorithms/LinearOperator.h ./algorithms/SparseMatrix.h ./algorithms/CoarsenedMatrix.h ./stencil/Lebesgue.h
HFILES=./Cshift.h ./simd/Grid_avx.h ./simd/Grid_vector_types.h ./simd/Grid_sse4.h ./simd/Grid_avx512.h ./simd/Grid_empty.h ./simd/Grid_vector_unops.h ./simd/Grid_neon.h ./simd/Grid_qpx.h ./Tensors.h ./Algorithms.h ./communicator/Communicator_base.h ./lattice/Lattice_rng.h ./lattice/Lattice_reduction.h ./lattice/Lattice_transfer.h ./lattice/Lattice_unary.h ./lattice/Lattice_peekpoke.h ./lattice/Lattice_coordinate.h ./lattice/Lattice_comparison.h ./lattice/Lattice_overload.h ./lattice/Lattice_reality.h ./lattice/Lattice_local.h ./lattice/Lattice_conformable.h ./lattice/Lattice_where.h ./lattice/Lattice_comparison_utils.h ./lattice/Lattice_arith.h ./lattice/Lattice_base.h ./lattice/Lattice_ET.h ./lattice/Lattice_transpose.h ./lattice/Lattice_trace.h ./Stencil.h ./tensors/Tensor_arith_sub.h ./tensors/Tensor_poke.h ./tensors/Tensor_arith_mul.h ./tensors/Tensor_class.h ./tensors/Tensor_logical.h ./tensors/Tensor_transpose.h ./tensors/Tensor_arith_mac.h ./tensors/Tensor_arith_scalar.h ./tensors/Tensor_reality.h ./tensors/Tensor_trace.h ./tensors/Tensor_arith_add.h ./tensors/Tensor_outer.h ./tensors/Tensor_inner.h ./tensors/Tensor_traits.h ./tensors/Tensor_Ta.h ./tensors/Tensor_unary.h ./tensors/Tensor_peek.h ./tensors/Tensor_arith.h ./tensors/Tensor_extract_merge.h ./Communicator.h ./Cartesian.h ./parallelIO/NerscIO.h ./qcd/QCD.h ./qcd/utils/SpaceTimeGrid.h ./qcd/utils/SUn.h ./qcd/utils/LinalgUtils.h ./qcd/utils/CovariantCshift.h ./qcd/utils/WilsonLoops.h ./qcd/action/gauge/WilsonGaugeAction.h ./qcd/action/gauge/GaugeActionBase.h ./qcd/action/Actions.h ./qcd/action/fermion/CayleyFermion5D.h ./qcd/action/fermion/ScaledShamirFermion.h ./qcd/action/fermion/MobiusFermion.h ./qcd/action/fermion/OverlapWilsonContfracTanhFermion.h ./qcd/action/fermion/PartialFractionFermion5D.h ./qcd/action/fermion/ShamirZolotarevFermion.h ./qcd/action/fermion/FermionOperator.h ./qcd/action/fermion/WilsonFermion5D.h ./qcd/action/fermion/WilsonCompressor.h ./qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h ./qcd/action/fermion/WilsonKernels.h ./qcd/action/fermion/DomainWallFermion.h ./qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h ./qcd/action/fermion/OverlapWilsonContfracZolotarevFermion.h ./qcd/action/fermion/MobiusZolotarevFermion.h ./qcd/action/fermion/g5HermitianLinop.h ./qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h ./qcd/action/fermion/WilsonFermion.h ./qcd/action/fermion/ContinuedFractionFermion5D.h ./qcd/action/fermion/OverlapWilsonCayleyZolotarevFermion.h ./qcd/spin/TwoSpinor.h ./qcd/spin/Dirac.h ./cshift/Cshift_common.h ./cshift/Cshift_none.h ./cshift/Cshift_mpi.h ./Simd.h ./GridConfig.h ./cartesian/Cartesian_base.h ./cartesian/Cartesian_red_black.h ./cartesian/Cartesian_full.h ./AlignedAllocator.h ./Lattice.h ./Threads.h ./Grid.h ./algorithms/iterative/ConjugateResidual.h ./algorithms/iterative/ConjugateGradientMultiShift.h ./algorithms/iterative/SchurRedBlack.h ./algorithms/iterative/NormalEquations.h ./algorithms/iterative/ConjugateGradient.h ./algorithms/approx/Chebyshev.h ./algorithms/approx/Zolotarev.h ./algorithms/approx/MultiShiftFunction.h ./algorithms/approx/bigfloat.h ./algorithms/approx/bigfloat_double.h ./algorithms/approx/Remez.h ./algorithms/LinearOperator.h ./algorithms/SparseMatrix.h ./algorithms/CoarsenedMatrix.h ./stencil/Lebesgue.h
CCFILES=./qcd/utils/SpaceTimeGrid.cc ./qcd/action/fermion/WilsonKernels.cc ./qcd/action/fermion/PartialFractionFermion5D.cc ./qcd/action/fermion/CayleyFermion5D.cc ./qcd/action/fermion/WilsonKernelsHand.cc ./qcd/action/fermion/WilsonFermion.cc ./qcd/action/fermion/ContinuedFractionFermion5D.cc ./qcd/action/fermion/WilsonFermion5D.cc ./qcd/spin/Dirac.cc ./GridInit.cc ./algorithms/approx/MultiShiftFunction.cc ./algorithms/approx/Remez.cc ./algorithms/approx/Zolotarev.cc ./stencil/Lebesgue.cc ./stencil/Stencil_common.cc

View File

@ -14,5 +14,6 @@
#include <tensors/Tensor_reality.h>
#include <tensors/Tensor_unary.h>
#include <tensors/Tensor_extract_merge.h>
#include <tensors/Tensor_logical.h>
#endif

View File

@ -183,7 +183,7 @@ namespace Grid {
int dir = geom.directions[p];
int disp = geom.displacements[p];
int block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
LatticeCoordinate(coor,dir);
@ -204,8 +204,8 @@ namespace Grid {
oblock = where(mod(coor,block)==(block-1),Mphi,zz);
iblock = where(mod(coor,block)!=(block-1),Mphi,zz);
} else if ( disp==-1 ) {
oblock = where(mod(coor,block)==0,Mphi,zz);
iblock = where(mod(coor,block)!=0,Mphi,zz);
oblock = where(mod(coor,block)==(Integer)0,Mphi,zz);
iblock = where(mod(coor,block)!=(Integer)0,Mphi,zz);
} else {
assert(0);
}

View File

@ -9,6 +9,37 @@
namespace Grid {
////////////////////////////////////////////////////
// Predicated where support
////////////////////////////////////////////////////
template<class iobj,class vobj,class robj>
inline vobj predicatedWhere(const iobj &predicate,const vobj &iftrue,const robj &iffalse) {
typename std::remove_const<vobj>::type ret;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
const int Nsimd = vobj::vector_type::Nsimd();
const int words = sizeof(vobj)/sizeof(vector_type);
std::vector<Integer> mask(Nsimd);
std::vector<scalar_object> truevals (Nsimd);
std::vector<scalar_object> falsevals(Nsimd);
extract(iftrue ,truevals);
extract(iffalse ,falsevals);
extract<vInteger,Integer>(TensorRemove(predicate),mask);
for(int s=0;s<Nsimd;s++){
if (mask[s]) falsevals[s]=truevals[s];
}
merge(ret,falsevals);
return ret;
}
////////////////////////////////////////////
// recursive evaluation of expressions; Could
// switch to generic approach with variadics, a la
@ -142,10 +173,23 @@ template <class arg> struct name\
};
GridUnopClass(UnarySub,-a);
GridUnopClass(UnaryNot,Not(a));
GridUnopClass(UnaryAdj,adj(a));
GridUnopClass(UnaryConj,conjugate(a));
GridUnopClass(UnaryTrace,trace(a));
GridUnopClass(UnaryTranspose,transpose(a));
GridUnopClass(UnaryTa,Ta(a));
GridUnopClass(UnaryReal,real(a));
GridUnopClass(UnaryImag,imag(a));
GridUnopClass(UnaryToReal,toReal(a));
GridUnopClass(UnaryToComplex,toComplex(a));
GridUnopClass(UnaryAbs,abs(a));
GridUnopClass(UnarySqrt,sqrt(a));
GridUnopClass(UnaryRsqrt,rsqrt(a));
GridUnopClass(UnarySin,sin(a));
GridUnopClass(UnaryCos,cos(a));
GridUnopClass(UnaryLog,log(a));
GridUnopClass(UnaryExp,exp(a));
////////////////////////////////////////////
// Binary operators
@ -163,6 +207,28 @@ GridBinOpClass(BinaryAdd,lhs+rhs);
GridBinOpClass(BinarySub,lhs-rhs);
GridBinOpClass(BinaryMul,lhs*rhs);
GridBinOpClass(BinaryAnd ,lhs&rhs);
GridBinOpClass(BinaryOr ,lhs|rhs);
GridBinOpClass(BinaryAndAnd,lhs&&rhs);
GridBinOpClass(BinaryOrOr ,lhs||rhs);
////////////////////////////////////////////////////
// Trinary conditional op
////////////////////////////////////////////////////
#define GridTrinOpClass(name,combination)\
template <class predicate,class left, class right> \
struct name\
{\
static auto inline func(const predicate &pred,const left &lhs,const right &rhs)-> decltype(combination) const \
{\
return combination;\
}\
}
GridTrinOpClass(TrinaryWhere,(predicatedWhere<predicate, \
typename std::remove_reference<left>::type, \
typename std::remove_reference<right>::type> (pred,lhs,rhs)));
////////////////////////////////////////////
// Operator syntactical glue
////////////////////////////////////////////
@ -218,15 +284,67 @@ template <typename T1,typename T2,typename T3> inline auto op(const T1 &pred,con
////////////////////////
GRID_DEF_UNOP(operator -,UnarySub);
GRID_DEF_UNOP(Not,UnaryNot);
GRID_DEF_UNOP(operator !,UnaryNot);
GRID_DEF_UNOP(adj,UnaryAdj);
GRID_DEF_UNOP(conjugate,UnaryConj);
GRID_DEF_UNOP(trace,UnaryTrace);
GRID_DEF_UNOP(transpose,UnaryTranspose);
GRID_DEF_UNOP(Ta,UnaryTa);
GRID_DEF_UNOP(real,UnaryReal);
GRID_DEF_UNOP(imag,UnaryImag);
GRID_DEF_UNOP(toReal,UnaryToReal);
GRID_DEF_UNOP(toComplex,UnaryToComplex);
GRID_DEF_UNOP(abs ,UnaryAbs); //abs overloaded in cmath C++98; DON'T do the abs-fabs-dabs-labs thing
GRID_DEF_UNOP(sqrt ,UnarySqrt);
GRID_DEF_UNOP(rsqrt,UnarySqrt);
GRID_DEF_UNOP(sin ,UnarySin);
GRID_DEF_UNOP(cos ,UnaryCos);
GRID_DEF_UNOP(log ,UnaryLog);
GRID_DEF_UNOP(exp ,UnaryExp);
GRID_DEF_BINOP(operator+,BinaryAdd);
GRID_DEF_BINOP(operator-,BinarySub);
GRID_DEF_BINOP(operator*,BinaryMul);
GRID_DEF_BINOP(operator&,BinaryAnd);
GRID_DEF_BINOP(operator|,BinaryOr);
GRID_DEF_BINOP(operator&&,BinaryAndAnd);
GRID_DEF_BINOP(operator||,BinaryOrOr);
GRID_DEF_TRINOP(where,TrinaryWhere);
/////////////////////////////////////////////////////////////
// Closure convenience to force expression to evaluate
/////////////////////////////////////////////////////////////
template<class Op,class T1>
auto closure(const LatticeUnaryExpression<Op,T1> & expr)
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second))))>
{
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second))))> ret(expr);
return ret;
}
template<class Op,class T1, class T2>
auto closure(const LatticeBinaryExpression<Op,T1,T2> & expr)
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second))))>
{
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second))))> ret(expr);
return ret;
}
template<class Op,class T1, class T2, class T3>
auto closure(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
-> Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))))>
{
Lattice<decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))))> ret(expr);
return ret;
}
#undef GRID_UNOP
#undef GRID_BINOP
#undef GRID_TRINOP

View File

@ -93,7 +93,7 @@ PARALLEL_FOR_LOOP
}
return *this;
}
template <typename Op, typename T1,typename T2> strong_inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
template <typename Op, typename T1,typename T2> strong_inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
{
GridBase *egrid(nullptr);
GridFromExpression(egrid,expr);
@ -131,8 +131,8 @@ PARALLEL_FOR_LOOP
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
//vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,eval(ss,expr));
#else
_odata[ss] = eval(ss,expr);
#endif
@ -196,12 +196,7 @@ PARALLEL_FOR_LOOP
_odata.resize(_grid->oSites());
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
#ifdef STREAMING_STORES
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=eval(ss,expr);
#endif
}
};
@ -254,7 +249,7 @@ PARALLEL_FOR_LOOP
Lattice<vobj> ret(lhs._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<lhs._grid->oSites();ss++){
ret._odata[ss] = lhs._odata[ss]/rhs._odata[ss];
ret._odata[ss] = lhs._odata[ss]*pow(rhs._odata[ss],-1.0);
}
return ret;
};

View File

@ -11,7 +11,11 @@ namespace Grid {
//Query supporting bitwise &, |, ^, !
//Query supporting logical &&, ||,
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
//////////////////////////////////////////////////////////////////////////
// compare lattice to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
{
Lattice<vInteger> ret(rhs._grid);
@ -21,6 +25,9 @@ PARALLEL_FOR_LOOP
}
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare lattice to scalar
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
{
@ -31,6 +38,9 @@ PARALLEL_FOR_LOOP
}
return ret;
}
//////////////////////////////////////////////////////////////////////////
// compare scalar to lattice
//////////////////////////////////////////////////////////////////////////
template<class vfunctor,class lobj,class robj>
inline Lattice<vInteger> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
{
@ -42,6 +52,9 @@ PARALLEL_FOR_LOOP
return ret;
}
//////////////////////////////////////////////////////////////////////////
// Map to functors
//////////////////////////////////////////////////////////////////////////
// Less than
template<class lobj,class robj>
inline Lattice<vInteger> operator < (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {
@ -99,7 +112,6 @@ PARALLEL_FOR_LOOP
return SLComparison(vge<lobj,robj>(),lhs,rhs);
}
// equal
template<class lobj,class robj>
inline Lattice<vInteger> operator == (const Lattice<lobj> & lhs, const Lattice<robj> & rhs) {

View File

@ -5,140 +5,197 @@ namespace Grid {
/////////////////////////////////////////
// This implementation is a bit poor.
// Only support logical operations (== etc)
// on scalar objects. Strip any tensor structures.
//
// Only support relational logical operations (<, > etc)
// on scalar objects. Therefore can strip any tensor structures.
//
// Should guard this with isGridTensor<> enable if?
/////////////////////////////////////////
// Generic list of functors
template<class lobj,class robj> class veq {
//
// Generic list of functors
//
template<class lobj,class robj> class veq {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class vne {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class vlt {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class vle {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class vgt {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class vge {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) == TensorRemove(rhs);
}
};
template<class lobj,class robj> class vne {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) != TensorRemove(rhs);
}
};
template<class lobj,class robj> class vlt {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) < TensorRemove(rhs);
}
};
template<class lobj,class robj> class vle {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) <= TensorRemove(rhs);
}
};
template<class lobj,class robj> class vgt {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) > TensorRemove(rhs);
}
};
template<class lobj,class robj> class vge {
public:
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) >= TensorRemove(rhs);
}
};
vInteger operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
};
// Generic list of functors
template<class lobj,class robj> class seq {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) == (rhs);
}
};
template<class lobj,class robj> class sne {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) != (rhs);
}
};
template<class lobj,class robj> class slt {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) < (rhs);
}
};
template<class lobj,class robj> class sle {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) <= (rhs);
}
};
template<class lobj,class robj> class sgt {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) > (rhs);
}
};
template<class lobj,class robj> class sge {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return (lhs) >= (rhs);
}
};
// Generic list of functors
template<class lobj,class robj> class seq {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) == TensorRemove(rhs);
}
};
template<class lobj,class robj> class sne {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) != TensorRemove(rhs);
}
};
template<class lobj,class robj> class slt {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) < TensorRemove(rhs);
}
};
template<class lobj,class robj> class sle {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) <= TensorRemove(rhs);
}
};
template<class lobj,class robj> class sgt {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) > TensorRemove(rhs);
}
};
template<class lobj,class robj> class sge {
public:
Integer operator()(const lobj &lhs, const robj &rhs)
{
return TensorRemove(lhs) >= TensorRemove(rhs);
}
};
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Integer gets extra relational functions. Could also implement these for RealF, RealD etc..
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class sfunctor>
inline vInteger Comparison(sfunctor sop,const vInteger & lhs, const vInteger & rhs)
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Integer and real get extra relational functions.
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const vsimd & rhs)
{
std::vector<Integer> vlhs(vInteger::Nsimd()); // Use functors to reduce this to single implementation
std::vector<Integer> vrhs(vInteger::Nsimd());
typedef typename vsimd::scalar_type scalar;
std::vector<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<scalar> vrhs(vsimd::Nsimd());
std::vector<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vInteger,Integer>(lhs,vlhs);
extract<vInteger,Integer>(rhs,vrhs);
for(int s=0;s<vInteger::Nsimd();s++){
vlhs[s] = sop(vlhs[s],vrhs[s]);
extract<vsimd,scalar>(lhs,vlhs);
extract<vsimd,scalar>(rhs,vrhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(vlhs[s],vrhs[s]);
}
merge<vInteger,Integer>(ret,vlhs);
merge<vInteger,Integer>(ret,vpred);
return ret;
}
inline vInteger operator < (const vInteger & lhs, const vInteger & rhs)
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const vsimd & lhs, const typename vsimd::scalar_type & rhs)
{
return Comparison(slt<Integer,Integer>(),lhs,rhs);
typedef typename vsimd::scalar_type scalar;
std::vector<scalar> vlhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(lhs,vlhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(vlhs[s],rhs);
}
merge<vInteger,Integer>(ret,vpred);
return ret;
}
inline vInteger operator <= (const vInteger & lhs, const vInteger & rhs)
template<class sfunctor, class vsimd,IfNotComplex<vsimd> = 0>
inline vInteger Comparison(sfunctor sop,const typename vsimd::scalar_type & lhs, const vsimd & rhs)
{
return Comparison(sle<Integer,Integer>(),lhs,rhs);
}
inline vInteger operator > (const vInteger & lhs, const vInteger & rhs)
{
return Comparison(sgt<Integer,Integer>(),lhs,rhs);
}
inline vInteger operator >= (const vInteger & lhs, const vInteger & rhs)
{
return Comparison(sge<Integer,Integer>(),lhs,rhs);
}
inline vInteger operator == (const vInteger & lhs, const vInteger & rhs)
{
return Comparison(seq<Integer,Integer>(),lhs,rhs);
}
inline vInteger operator != (const vInteger & lhs, const vInteger & rhs)
{
return Comparison(sne<Integer,Integer>(),lhs,rhs);
typedef typename vsimd::scalar_type scalar;
std::vector<scalar> vrhs(vsimd::Nsimd()); // Use functors to reduce this to single implementation
std::vector<Integer> vpred(vsimd::Nsimd());
vInteger ret;
extract<vsimd,scalar>(rhs,vrhs);
for(int s=0;s<vsimd::Nsimd();s++){
vpred[s] = sop(lhs,vrhs[s]);
}
merge<vInteger,Integer>(ret,vpred);
return ret;
}
#define DECLARE_RELATIONAL(op,functor) \
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const vsimd & lhs, const vsimd & rhs)\
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const vsimd & lhs, const typename vsimd::scalar_type & rhs) \
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd,IfSimd<vsimd> = 0>\
inline vInteger operator op (const typename vsimd::scalar_type & lhs, const vsimd & rhs) \
{\
typedef typename vsimd::scalar_type scalar;\
return Comparison(functor<scalar,scalar>(),lhs,rhs);\
}\
template<class vsimd>\
inline vInteger operator op(const iScalar<vsimd> &lhs,const iScalar<vsimd> &rhs)\
{ \
return lhs._internal op rhs._internal; \
} \
template<class vsimd>\
inline vInteger operator op(const iScalar<vsimd> &lhs,const typename vsimd::scalar_type &rhs) \
{ \
return lhs._internal op rhs; \
} \
template<class vsimd>\
inline vInteger operator op(const typename vsimd::scalar_type &lhs,const iScalar<vsimd> &rhs) \
{ \
return lhs op rhs._internal; \
}
DECLARE_RELATIONAL(<,slt);
DECLARE_RELATIONAL(<=,sle);
DECLARE_RELATIONAL(>,sgt);
DECLARE_RELATIONAL(>=,sge);
DECLARE_RELATIONAL(==,seq);
DECLARE_RELATIONAL(!=,sne);
#undef DECLARE_RELATIONAL
}

View File

@ -117,7 +117,9 @@ PARALLEL_FOR_LOOP
int Nsimd = grid->Nsimd();
assert( l.checkerboard == l._grid->CheckerBoard(site));
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
// FIXME
// assert( sizeof(sobj)*Nsimd == sizeof(vobj));
int rank,odx,idx;
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
@ -132,6 +134,7 @@ PARALLEL_FOR_LOOP
return;
};
//////////////////////////////////////////////////////////
// Peek a scalar object from the SIMD array
//////////////////////////////////////////////////////////

View File

@ -27,37 +27,6 @@ PARALLEL_FOR_LOOP
return ret;
};
template<class vobj> inline auto real(const Lattice<vobj> &z) -> Lattice<vobj>
{
Lattice<vobj> ret(z._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<z._grid->oSites();ss++){
ret._odata[ss] = real(z._odata[ss]);
}
return ret;
}
template<class vobj> inline auto imag(const Lattice<vobj> &z) -> Lattice<vobj>
{
Lattice<vobj> ret(z._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<z._grid->oSites();ss++){
ret._odata[ss] = imag(z._odata[ss]);
}
return ret;
}
template<class vobj> inline auto Ta(const Lattice<vobj> &z) -> Lattice<decltype(Ta(z._odata[0]))>
{
Lattice<decltype(Ta(z._odata[0]))> ret(z._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<z._grid->oSites();ss++){
ret._odata[ss] = Ta(z._odata[ss]);
}
return ret;
}
}
#endif

View File

@ -51,6 +51,31 @@ PARALLEL_FOR_LOOP
return nrm;
}
template<class Op,class T1>
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2>
inline auto sum(const LatticeBinaryExpression<Op,T1,T2> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),eval(0,std::get<1>(expr.second))))::scalar_object
{
return sum(closure(expr));
}
template<class Op,class T1,class T2,class T3>
inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
->typename decltype(expr.first.func(eval(0,std::get<0>(expr.second)),
eval(0,std::get<1>(expr.second)),
eval(0,std::get<2>(expr.second))
))::scalar_object
{
return sum(closure(expr));
}
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg){

View File

@ -24,8 +24,7 @@ PARALLEL_FOR_LOOP
// Index level dependent transpose
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Index,class vobj>
inline auto transposeIndex(const Lattice<vobj> &lhs)
-> Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))>
inline auto transposeIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))>
{
Lattice<decltype(transposeIndex<Index>(lhs._odata[0]))> ret(lhs._grid);
PARALLEL_FOR_LOOP

View File

@ -3,51 +3,6 @@
namespace Grid {
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj> Lattice<obj> sqrt(const Lattice<obj> &rhs){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=sqrt(rhs._odata[ss]);
}
return ret;
}
template<class obj> Lattice<obj> rsqrt(const Lattice<obj> &rhs){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=rsqrt(rhs._odata[ss]);
}
return ret;
}
template<class obj> Lattice<obj> sin(const Lattice<obj> &rhs){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=sin(rhs._odata[ss]);
}
return ret;
}
template<class obj> Lattice<obj> cos(const Lattice<obj> &rhs){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=cos(rhs._odata[ss]);
}
return ret;
}
template<class obj> Lattice<obj> pow(const Lattice<obj> &rhs,RealD y){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;

View File

@ -8,13 +8,14 @@ namespace Grid {
// and blow away the tensor structures.
//
template<class vobj,class iobj>
inline void where(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse)
inline void whereWolf(Lattice<vobj> &ret,const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse)
{
conformable(iftrue,iffalse);
conformable(iftrue,predicate);
conformable(iftrue,ret);
GridBase *grid=iftrue._grid;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
@ -43,7 +44,7 @@ PARALLEL_FOR_LOOP
}
template<class vobj,class iobj>
inline Lattice<vobj> where(const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse)
inline Lattice<vobj> whereWolf(const Lattice<iobj> &predicate,Lattice<vobj> &iftrue,Lattice<vobj> &iffalse)
{
conformable(iftrue,iffalse);
conformable(iftrue,predicate);

View File

@ -250,6 +250,7 @@ namespace QCD {
//////////////////////////////////////////////////////////////////////////////
// Peek and Poke named after physics attributes
//////////////////////////////////////////////////////////////////////////////
//spin
template<class vobj> auto peekSpin(const vobj &rhs,int i) -> decltype(peekIndex<SpinIndex>(rhs,0))
{
@ -289,20 +290,117 @@ namespace QCD {
{
return peekIndex<LorentzIndex>(rhs,i);
}
template<class vobj> auto peekLorentz(const vobj &rhs,int i,int j) -> decltype(peekIndex<LorentzIndex>(rhs,0,0))
{
return peekIndex<LorentzIndex>(rhs,i,j);
}
template<class vobj> auto peekLorentz(const Lattice<vobj> &rhs,int i) -> decltype(peekIndex<LorentzIndex>(rhs,0))
{
return peekIndex<LorentzIndex>(rhs,i);
}
template<class vobj> auto peekLorentz(const Lattice<vobj> &rhs,int i,int j) -> decltype(peekIndex<LorentzIndex>(rhs,0,0))
//////////////////////////////////////////////
// Poke lattice
//////////////////////////////////////////////
template<class vobj>
void pokeColour(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<ColourIndex>(lhs._odata[0],0))> & rhs,
int i)
{
return peekIndex<LorentzIndex>(rhs,i,j);
pokeIndex<ColourIndex>(lhs,rhs,i);
}
template<class vobj>
void pokeColour(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<ColourIndex>(lhs._odata[0],0,0))> & rhs,
int i,int j)
{
pokeIndex<ColourIndex>(lhs,rhs,i,j);
}
template<class vobj>
void pokeSpin(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<SpinIndex>(lhs._odata[0],0))> & rhs,
int i)
{
pokeIndex<SpinIndex>(lhs,rhs,i);
}
template<class vobj>
void pokeSpin(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<SpinIndex>(lhs._odata[0],0,0))> & rhs,
int i,int j)
{
pokeIndex<SpinIndex>(lhs,rhs,i,j);
}
template<class vobj>
void pokeLorentz(Lattice<vobj> &lhs,
const Lattice<decltype(peekIndex<LorentzIndex>(lhs._odata[0],0))> & rhs,
int i)
{
pokeIndex<LorentzIndex>(lhs,rhs,i);
}
// FIXME transpose Colour, transpose Spin, traceColour traceSpin
//////////////////////////////////////////////
// Poke scalars
//////////////////////////////////////////////
template<class vobj> void pokeSpin(vobj &lhs,const decltype(peekIndex<SpinIndex>(lhs,0)) & rhs,int i)
{
pokeIndex<SpinIndex>(lhs,rhs,i);
}
template<class vobj> void pokeSpin(vobj &lhs,const decltype(peekIndex<SpinIndex>(lhs,0,0)) & rhs,int i,int j)
{
pokeIndex<SpinIndex>(lhs,rhs,i,j);
}
template<class vobj> void pokeColour(vobj &lhs,const decltype(peekIndex<ColourIndex>(lhs,0)) & rhs,int i)
{
pokeIndex<ColourIndex>(lhs,rhs,i);
}
template<class vobj> void pokeColour(vobj &lhs,const decltype(peekIndex<ColourIndex>(lhs,0,0)) & rhs,int i,int j)
{
pokeIndex<ColourIndex>(lhs,rhs,i,j);
}
template<class vobj> void pokeLorentz(vobj &lhs,const decltype(peekIndex<LorentzIndex>(lhs,0)) & rhs,int i)
{
pokeIndex<LorentzIndex>(lhs,rhs,i);
}
//////////////////////////////////////////////
// transpose array and scalar
//////////////////////////////////////////////
template<int Index,class vobj> inline Lattice<vobj> transposeSpin(const Lattice<vobj> &lhs){
return transposeIndex<SpinIndex>(lhs);
}
template<int Index,class vobj> inline Lattice<vobj> transposeColour(const Lattice<vobj> &lhs){
return transposeIndex<ColourIndex>(lhs);
}
template<int Index,class vobj> inline vobj transposeSpin(const vobj &lhs){
return transposeIndex<SpinIndex>(lhs);
}
template<int Index,class vobj> inline vobj transposeColour(const vobj &lhs){
return transposeIndex<ColourIndex>(lhs);
}
//////////////////////////////////////////
// Trace lattice and non-lattice
//////////////////////////////////////////
template<int Index,class vobj>
inline auto traceSpin(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(lhs._odata[0]))>
{
return traceIndex<SpinIndex>(lhs);
}
template<int Index,class vobj>
inline auto traceColour(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(lhs._odata[0]))>
{
return traceIndex<ColourIndex>(lhs);
}
template<int Index,class vobj>
inline auto traceSpin(const vobj &lhs) -> Lattice<decltype(traceIndex<SpinIndex>(lhs))>
{
return traceIndex<SpinIndex>(lhs);
}
template<int Index,class vobj>
inline auto traceColour(const vobj &lhs) -> Lattice<decltype(traceIndex<ColourIndex>(lhs))>
{
return traceIndex<ColourIndex>(lhs);
}
} //namespace QCD
} // Grid

414
lib/qcd/utils/SUn.h Normal file
View File

@ -0,0 +1,414 @@
#ifndef QCD_UTIL_SUN_H
#define QCD_UTIL_SUN_H
namespace Grid {
namespace QCD {
template<int ncolour>
class SU {
public:
static int generators(void) { return ncolour*ncolour-1; }
static int su2subgroups(void) { return (ncolour*(ncolour-1))/2; }
template<typename vtype> using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > > ;
//////////////////////////////////////////////////////////////////////////////////////////////////
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix, SU<2>::LatticeMatrix etc...
//////////////////////////////////////////////////////////////////////////////////////////////////
typedef iSUnMatrix<Complex> Matrix;
typedef iSUnMatrix<ComplexF> MatrixF;
typedef iSUnMatrix<ComplexD> MatrixD;
typedef iSUnMatrix<vComplex> vMatrix;
typedef iSUnMatrix<vComplexF> vMatrixF;
typedef iSUnMatrix<vComplexD> vMatrixD;
typedef Lattice<vMatrix> LatticeMatrix;
typedef Lattice<vMatrixF> LatticeMatrixF;
typedef Lattice<vMatrixD> LatticeMatrixD;
////////////////////////////////////////////////////////////////////////
// There are N^2-1 generators for SU(N).
//
// We take a traceless hermitian generator basis as follows
//
// * Normalisation: trace ta tb = 1/2 delta_ab
//
// * Off diagonal
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
//
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
// direct count off each row
//
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
//
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
// 1+ 2+ + + Nc-1
//
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
//
// - We enumerate the row-col pairs.
// - for each row col pair there is a (sigma_x) and a (sigma_y) like generator
//
//
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => delta_{i,i1} delta_{j,i2} + delta_{i,i1} delta_{j,i2}
// t^a_ij = { in Nc(Nc-1)/2 ... Nc^(Nc-1) -1} => i delta_{i,i1} delta_{j,i2} - i delta_{i,i1} delta_{j,i2}
//
// * Diagonal; must be traceless and normalised
// - Sequence is
// N (1,-1,0,0...)
// N (1, 1,-2,0...)
// N (1, 1, 1,-3,0...)
// N (1, 1, 1, 1,-4,0...)
//
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
// NB this gives the famous SU3 result for su2 index 8
//
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
//
// ( 1 )
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
// ( -2)
////////////////////////////////////////////////////////////////////////
template<class cplx>
static void generator(int lieIndex,iSUnMatrix<cplx> &ta){
// map lie index to which type of generator
int diagIndex;
int su2Index;
int sigxy;
int NNm1 = ncolour*(ncolour-1);
if ( lieIndex>= NNm1 ) {
diagIndex = lieIndex -NNm1;
generatorDiagonal(diagIndex,ta);
return;
}
sigxy = lieIndex&0x1;
su2Index= lieIndex>>1;
if ( sigxy ) generatorSigmaY(su2Index,ta);
else generatorSigmaX(su2Index,ta);
}
template<class cplx>
static void generatorSigmaX(int su2Index,iSUnMatrix<cplx> &ta){
ta=zero;
int i1,i2;
su2SubGroupIndex(i1,i2,su2Index);
ta()()(i1,i2)=1.0;
ta()()(i2,i1)=1.0;
ta= ta *0.5;
}
template<class cplx>
static void generatorSigmaY(int su2Index,iSUnMatrix<cplx> &ta){
ta=zero;
cplx i(0.0,1.0);
int i1,i2;
su2SubGroupIndex(i1,i2,su2Index);
ta()()(i1,i2)=-i;
ta()()(i2,i1)= i;
ta= ta *0.5;
}
template<class cplx>
static void generatorDiagonal(int diagIndex,iSUnMatrix<cplx> &ta){
ta=zero;
int trsq=0;
int last=diagIndex+1;
for(int i=0;i<=diagIndex;i++){
ta()()(i,i) = 1.0;
trsq++;
}
ta()()(last,last) = -last;
trsq+=last*last;
RealD nrm = 1.0/std::sqrt(2.0*trsq);
ta = ta *nrm;
}
////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero
////////////////////////////////////////////////////////////////////////
static void su2SubGroupIndex(int &i1,int &i2,int su2_index){
assert( (su2_index>=0) && (su2_index< (ncolour*(ncolour-1))/2) );
int spare=su2_index;
for(i1=0;spare >= (ncolour-1-i1);i1++ ){
spare = spare - (ncolour-1-i1); // remove the Nc-1-i1 terms
}
i2=i1+1+spare;
}
template<class vreal,class vcplx>
static void su2Extract(std::vector<Lattice<iSinglet <vreal> > > &r,
const Lattice<iSUnMatrix<vcplx> > &source,
int su2_index)
{
GridBase *grid(source._grid);
assert(r.size() == 4); // store in 4 real parts
for(int i=0;i<4;i++){
conformable(r[i],source);
}
int i1,i2;
su2SubGroupIndex(i1,i2,su2_index);
/* Compute the b(k) of A_SU(2) = b0 + i sum_k bk sigma_k */
// r[0] = toReal(real(peekColour(source,i1,i1)) + real(peekColour(source,i2,i2)));
// r[1] = toReal(imag(peekColour(source,i1,i2)) + imag(peekColour(source,i2,i1)));
// r[2] = toReal(real(peekColour(source,i1,i2)) - real(peekColour(source,i2,i1)));
// r[3] = toReal(imag(peekColour(source,i1,i1)) - imag(peekColour(source,i2,i2)));
r[0] = toReal(real(peekColour(source,i1,i1)) + real(peekColour(source,i2,i2)));
r[1] = toReal(imag(peekColour(source,i1,i2)) + imag(peekColour(source,i2,i1)));
r[2] = toReal(real(peekColour(source,i1,i2)) - real(peekColour(source,i2,i1)));
r[3] = toReal(imag(peekColour(source,i1,i1)) - imag(peekColour(source,i2,i2)));
}
template<class vreal,class vcplx>
static void su2Insert(const std::vector<Lattice<iSinglet<vreal> > > &r,
Lattice<iSUnMatrix<vcplx> > &dest,
int su2_index)
{
typedef typename Lattice<iSUnMatrix<vcplx> >::scalar_type cplx;
typedef Lattice<iSinglet<vcplx> > Lcomplex;
GridBase * grid = dest._grid;
assert(r.size() == 4); // store in 4 real parts
Lcomplex tmp(grid);
std::vector<Lcomplex > cr(4,grid);
for(int i=0;i<r.size();i++){
conformable(r[i],dest);
cr[i]=toComplex(r[i]);
}
int i1,i2;
su2SubGroupIndex(i1,i2,su2_index);
cplx one (1.0,0.0);
cplx cplx_i(0.0,1.0);
tmp = cr[0]*one+ cr[3]*cplx_i; pokeColour(dest,tmp,i1,i2);
tmp = cr[2]*one+ cr[1]*cplx_i; pokeColour(dest,tmp,i1,i2);
tmp = -cr[2]*one+ cr[1]*cplx_i; pokeColour(dest,tmp,i2,i1);
tmp = cr[0]*one- cr[3]*cplx_i; pokeColour(dest,tmp,i2,i2);
}
static void SubGroupHeatBath( GridSerialRNG &sRNG,
GridParallelRNG &pRNG,
RealD beta,
LatticeMatrix &link,
const LatticeMatrix &staple,
int su2_subgroup,
int nheatbath,
int& ntrials,
int& nfails,
LatticeInteger &wheremask)
{
GridBase *grid = link._grid;
LatticeMatrix V(grid);
V = link*staple;
std::vector<LatticeReal> r(4,grid);
std::vector<LatticeReal> a(4,grid);
su2Extract(r,V,su2_subgroup); // HERE
LatticeReal r_l(grid);
r_l = r[0]*r[0]+r[1]*r[1]+r[2]*r[2]+r[3]*r[3];
r_l = sqrt(r_l);
LatticeReal ftmp(grid);
LatticeReal ftmp1(grid);
LatticeReal ftmp2(grid);
LatticeReal one (grid); one = 1.0;
LatticeReal zz (grid); zz = zero;
LatticeReal recip(grid); recip = one/r_l;
Real machine_epsilon= 1.0e-14;
ftmp = where(r_l>machine_epsilon,recip,one);
a[0] = where(r_l>machine_epsilon, r[0] * ftmp , one);
a[1] = where(r_l>machine_epsilon, -(r[1] * ftmp), zz);
a[2] = where(r_l>machine_epsilon, -(r[2] * ftmp), zz);
a[3] = where(r_l>machine_epsilon, -(r[3] * ftmp), zz);
r_l *= beta / ncolour;
ftmp1 = where(wheremask,one,zz);
Real num_sites = TensorRemove(sum(ftmp1));
Integer itrials = (Integer)num_sites;
ntrials = 0;
nfails = 0;
LatticeInteger lupdate(grid);
LatticeInteger lbtmp(grid);
LatticeInteger lbtmp2(grid); lbtmp2=zero;
int n_done = 0;
int nhb = 0;
r[0] = a[0];
lupdate = 1;
LatticeReal ones (grid); ones = 1.0;
LatticeReal zeros(grid); zeros=zero;
const RealD twopi=2.0*M_PI;
while ( nhb < nheatbath && n_done < num_sites ) {
ntrials += itrials;
random(pRNG,r[1]);
std::cout<<"RANDOM SPARSE FLOAT r[1]"<<std::endl;
std::cout<<r[1]<<std::endl;
random(pRNG,r[2]);
random(pRNG,ftmp);
r[1] = log(r[1]);
r[2] = log(r[2]);
ftmp = ftmp*twopi;
r[3] = cos(ftmp);
r[3] = r[3]*r[3];
r[1] += r[2] * r[3];
r[2] = r[1] / r_l;
random(pRNG,ftmp);
r[1] = ftmp*ftmp;
{
LatticeInteger mask_true (grid); mask_true = 1;
LatticeInteger mask_false(grid); mask_false= 0;
LatticeReal thresh(grid); thresh = (1.0 + 0.5*r[2]);
lbtmp = where(r[1] <= thresh,mask_true,mask_false);
}
lbtmp2= lbtmp && lupdate;
r[0] = where(lbtmp2, 1.0+r[2], r[0]);
ftmp1 = where(lbtmp2,ones,zeros);
RealD sitesum = sum(ftmp1);
Integer itmp = sitesum;
n_done += itmp;
itrials -= itmp;
nfails += itrials;
lbtmp = !lbtmp;
lupdate = lupdate & lbtmp;
++nhb;
}
// Now create r[1], r[2] and r[3] according to the spherical measure
// Take absolute value to guard against round-off
random(pRNG,ftmp1);
r[2] = 1.0 - 2.0*ftmp1;
ftmp1 = abs(1.0 - r[0]*r[0]);
r[3] = -(sqrt(ftmp1) * r[2]);
// Take absolute value to guard against round-off
r_l = sqrt(abs(ftmp1 - r[3]*r[3]));
random(pRNG,ftmp1);
ftmp1 *= twopi;
r[1] = r_l * cos(ftmp1);
r[2] = r_l * sin(ftmp1);
// Update matrix is B = R * A, with B, R and A given by b_i, r_i and a_i
std::vector<LatticeReal> b(4,grid);
b[0] = r[0]*a[0] - r[1]*a[1] - r[2]*a[2] - r[3]*a[3];
b[1] = r[0]*a[1] + r[1]*a[0] - r[2]*a[3] + r[3]*a[2];
b[2] = r[0]*a[2] + r[2]*a[0] - r[3]*a[1] + r[1]*a[3];
b[3] = r[0]*a[3] + r[3]*a[0] - r[1]*a[2] + r[2]*a[1];
//
// Now fill an SU(3) matrix V with the SU(2) submatrix su2_index
// parametrized by a_k in the sigma matrix basis.
//
su2Insert(b,V,su2_subgroup);
// U = V*U
LatticeMatrix tmp(grid);
tmp = V * link;
//mask the assignment back
link = where(wheremask,tmp,link);
}
static void printGenerators(void)
{
for(int gen=0;gen<generators();gen++){
Matrix ta;
generator(gen,ta);
std::cout<< "Nc = "<<ncolour<<" t_"<<gen<<std::endl;
std::cout<<ta<<std::endl;
}
}
static void testGenerators(void){
Matrix ta;
Matrix tb;
std::cout<<"Checking trace ta tb is 0.5 delta_ab"<<std::endl;
for(int a=0;a<generators();a++){
for(int b=0;b<generators();b++){
generator(a,ta);
generator(b,tb);
Complex tr =TensorRemove(trace(ta*tb));
std::cout<<tr<<" ";
if(a==b) assert(abs(tr-Complex(0.5))<1.0e-6);
if(a!=b) assert(abs(tr)<1.0e-6);
}
std::cout<<std::endl;
}
std::cout<<"Checking hermitian"<<std::endl;
for(int a=0;a<generators();a++){
generator(a,ta);
std::cout<<a<<" ";
assert(norm2(ta-adj(ta))<1.0e-6);
}
std::cout<<std::endl;
std::cout<<"Checking traceless"<<std::endl;
for(int a=0;a<generators();a++){
generator(a,ta);
Complex tr =TensorRemove(trace(ta));
std::cout<<a<<" ";
assert(abs(tr)<1.0e-6);
}
std::cout<<std::endl;
}
// reunitarise??
static void taProj( const LatticeMatrix &in, LatticeMatrix &out){
out = Ta(in);
}
static void taExp( const LatticeMatrix &x, LatticeMatrix &ex){
LatticeMatrix xn = x;
RealD nfac = 1.0;
ex = 1+x; // 1+x
// Do a 12th order exponentiation
for(int i= 2; i <= 12; ++i)
{
nfac = nfac/i;
xn = xn * x; // x2, x3,x4....
ex += xn*nfac;// x2/2!, x3/3!....
}
}
};
typedef SU<2> SU2;
typedef SU<3> SU3;
typedef SU<4> SU4;
typedef SU<5> SU5;
}
}
#endif

View File

@ -70,7 +70,7 @@ public:
//////////////////////////////////////////////////
// the sum over all staples on each site
//////////////////////////////////////////////////
static void Staple(GaugeMat &staple,GaugeLorentz &Umu,int mu){
static void Staple(GaugeMat &staple,const GaugeLorentz &Umu,int mu){
std::vector<GaugeMat> U(4,Umu._grid);
for(int d=0;d<Nd;d++){
@ -123,12 +123,10 @@ void siteRectangle(GaugeMat &plaq,const std::vector<GaugeMat> &U, const int mu,
typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> ColourWilsonLoops;
typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> U1WilsonLoops;
typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> SU2WilsonLoops;
typedef WilsonLoops<LatticeColourMatrix,LatticeGaugeField> SU3WilsonLoops;
}}
#endif

View File

@ -4,7 +4,7 @@
Using intrinsics
*/
// Time-stamp: <2015-06-09 14:26:59 neo>
// Time-stamp: <2015-06-16 23:30:41 neo>
//----------------------------------------------------------------------
#include <immintrin.h>
@ -248,7 +248,7 @@ namespace Optimization {
return _mm256_set_m128i(a1,a0);
#endif
#if defined (AVX2)
return _mm256_mul_epi32(a,b);
return _mm256_mullo_epi32(a,b);
#endif
}

View File

@ -4,7 +4,7 @@
Using intrinsics
*/
// Time-stamp: <2015-06-09 14:24:01 neo>
// Time-stamp: <2015-06-16 23:27:54 neo>
//----------------------------------------------------------------------
#include <pmmintrin.h>
@ -97,7 +97,7 @@ namespace Optimization {
}
// Integer
inline __m128i operator()(Integer *a){
return _mm_set_epi32(a[0],a[1],a[2],a[3]);
return _mm_set_epi32(a[3],a[2],a[1],a[0]);
}
@ -181,7 +181,7 @@ namespace Optimization {
}
// Integer
inline __m128i operator()(__m128i a, __m128i b){
return _mm_mul_epi32(a,b);
return _mm_mullo_epi32(a,b);
}
};

View File

@ -28,13 +28,19 @@
namespace Grid {
//////////////////////////////////////
// To take the floating point type of real/complex type
//////////////////////////////////////
template <typename T> struct RealPart {
typedef T type;
};
template <typename T> struct RealPart< std::complex<T> >{
typedef T type;
};
//////////////////////////////////////
// demote a vector to real type
//////////////////////////////////////
// type alias used to simplify the syntax of std::enable_if
template <typename T> using Invoke = typename T::type;
@ -90,7 +96,7 @@ namespace Grid {
Vector_type v;
Scalar_type s[sizeof(Vector_type)/sizeof(Scalar_type)];
conv_t_union(){};
} conv_t;
} conv_t;
Vector_type v;
@ -205,7 +211,6 @@ namespace Grid {
return *this;
}
///////////////////////////////////////
// Not all functions are supported
// through SIMD and must breakout to
@ -214,7 +219,6 @@ namespace Grid {
///////////////////////////////////////
template<class functor> friend inline Grid_simd SimdApply (const functor &func,const Grid_simd &v) {
Grid_simd ret;
Grid_simd::conv_t conv;
@ -225,6 +229,19 @@ namespace Grid {
ret.v = conv.v;
return ret;
}
template<class functor> friend inline Grid_simd SimdApplyBinop (const functor &func,const Grid_simd &x,const Grid_simd &y) {
Grid_simd ret;
Grid_simd::conv_t cx;
Grid_simd::conv_t cy;
cx.v = x.v;
cy.v = y.v;
for(int i=0;i<Nsimd();i++){
cx.s[i]=func(cx.s[i],cy.s[i]);
}
ret.v = cx.v;
return ret;
}
////////////////////////////////////////////////////////////////////
// General permute; assumes vector length is same across
@ -235,6 +252,7 @@ namespace Grid {
{
Gpermute<Grid_simd>(y,b,perm);
}
};// end of Grid_simd class definition
@ -383,7 +401,6 @@ namespace Grid {
return in;
}
/////////////////////
// Inner, outer
/////////////////////
@ -405,6 +422,46 @@ namespace Grid {
return arg;
}
////////////////////////////////////////////////////////////
// copy/splat complex real parts into real;
// insert real into complex and zero imag;
////////////////////////////////////////////////////////////
//real = toReal( complex )
template<class S,class V,IfReal<S> = 0>
inline Grid_simd<S,V> toReal(const Grid_simd<std::complex<S>,V> &in)
{
typedef Grid_simd<S,V> simd;
simd ret;
typename simd::conv_t conv;
conv.v = in.v;
for(int i=0;i<simd::Nsimd();i+=2){
conv.s[i+1]=conv.s[i]; // duplicate (r,r);(r,r);(r,r); etc...
}
ret.v = conv.v;
return ret;
}
//complex = toComplex( real )
template<class R,class V,IfReal<R> = 0 > // must be a real arg
inline Grid_simd<std::complex<R>,V> toComplex (const Grid_simd<R,V> &in)
{
typedef Grid_simd<R,V> Rsimd;
typedef Grid_simd<std::complex<R>,V> Csimd;
typename Rsimd::conv_t conv;// address as real
conv.v = in.v;
for(int i=0;i<Rsimd::Nsimd();i+=2){
assert(conv.s[i+1]==conv.s[i]); // trap any cases where real was not duplicated
// indicating the SIMD grids of real and imag assignment did not correctly match
conv.s[i+1]=0.0; // zero imaginary parts
}
Csimd ret;
ret.v = conv.v;
return ret;
}
///////////////////////////////
// Define available types
///////////////////////////////
@ -413,6 +470,20 @@ namespace Grid {
typedef Grid_simd< std::complex< float > , SIMD_Ftype > vComplexF;
typedef Grid_simd< std::complex< double >, SIMD_Dtype > vComplexD;
typedef Grid_simd< Integer , SIMD_Itype > vInteger;
/////////////////////////////////////////
// Some traits to recognise the types
/////////////////////////////////////////
template <typename T> struct is_simd : public std::false_type{};
template <> struct is_simd<vRealF> : public std::true_type {};
template <> struct is_simd<vRealD> : public std::true_type {};
template <> struct is_simd<vComplexF>: public std::true_type {};
template <> struct is_simd<vComplexD>: public std::true_type {};
template <> struct is_simd<vInteger> : public std::true_type {};
template <typename T> using IfSimd = Invoke<std::enable_if< is_simd<T>::value,int> > ;
template <typename T> using IfNotSimd = Invoke<std::enable_if<!is_simd<T>::value,unsigned> > ;
}
#endif

View File

@ -1,6 +1,8 @@
#ifndef GRID_VECTOR_UNOPS
#define GRID_VECTOR_UNOPS
#include <cmath>
namespace Grid {
template<class scalar> struct SqrtRealFunctor {
@ -27,6 +29,28 @@ namespace Grid {
}
};
template<class scalar> struct LogRealFunctor {
scalar operator()(const scalar &a) const {
return log(real(a));
}
};
template<class scalar> struct ExpRealFunctor {
scalar operator()(const scalar &a) const {
return exp(real(a));
}
};
template<class scalar> struct NotFunctor {
scalar operator()(const scalar &a) const {
return (!a);
}
};
template<class scalar> struct AbsRealFunctor {
scalar operator()(const scalar &a) const {
return std::abs(real(a));
}
};
template<class scalar> struct PowRealFunctor {
double y;
PowRealFunctor(double _y) : y(_y) {};
@ -43,6 +67,25 @@ namespace Grid {
}
};
template<class scalar> struct RealFunctor {
scalar operator()(const scalar &a) const {
return real(a);
}
};
template<class scalar> struct ImagFunctor {
scalar operator()(const scalar &a) const {
return imag(a);
}
};
template < class S, class V >
inline Grid_simd<S,V> real(const Grid_simd<S,V> &r) {
return SimdApply(RealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> imag(const Grid_simd<S,V> &r) {
return SimdApply(ImagFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> sqrt(const Grid_simd<S,V> &r) {
return SimdApply(SqrtRealFunctor<S>(),r);
@ -60,6 +103,22 @@ namespace Grid {
return SimdApply(CosRealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> log(const Grid_simd<S,V> &r) {
return SimdApply(LogRealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> abs(const Grid_simd<S,V> &r) {
return SimdApply(AbsRealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> exp(const Grid_simd<S,V> &r) {
return SimdApply(ExpRealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> Not(const Grid_simd<S,V> &r) {
return SimdApply(NotFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> pow(const Grid_simd<S,V> &r,double y) {
return SimdApply(PowRealFunctor<S>(y),r);
}
@ -67,6 +126,55 @@ namespace Grid {
inline Grid_simd<S,V> mod(const Grid_simd<S,V> &r,Integer y) {
return SimdApply(ModIntFunctor<S>(y),r);
}
////////////////////////////////////////////////////////////////////////////
// Allows us to assign into **conformable** real vectors from complex
////////////////////////////////////////////////////////////////////////////
// template < class S, class V >
// inline auto ComplexRemove(const Grid_simd<S,V> &c) -> Grid_simd<Grid_simd<S,V>::Real,V> {
// Grid_simd<Grid_simd<S,V>::Real,V> ret;
// ret.v = c.v;
// return ret;
// }
template<class scalar> struct AndFunctor {
scalar operator()(const scalar &x, const scalar &y) const {
return x & y;
}
};
template<class scalar> struct OrFunctor {
scalar operator()(const scalar &x, const scalar &y) const {
return x | y;
}
};
template<class scalar> struct AndAndFunctor {
scalar operator()(const scalar &x, const scalar &y) const {
return x && y;
}
};
template<class scalar> struct OrOrFunctor {
scalar operator()(const scalar &x, const scalar &y) const {
return x || y;
}
};
////////////////////////////////
// Calls to simd binop functors
////////////////////////////////
template < class S, class V >
inline Grid_simd<S,V> operator &(const Grid_simd<S,V> &x,const Grid_simd<S,V> &y) {
return SimdApplyBinop(AndFunctor<S>(),x,y);
}
template < class S, class V >
inline Grid_simd<S,V> operator &&(const Grid_simd<S,V> &x,const Grid_simd<S,V> &y) {
return SimdApplyBinop(AndAndFunctor<S>(),x,y);
}
template < class S, class V >
inline Grid_simd<S,V> operator |(const Grid_simd<S,V> &x,const Grid_simd<S,V> &y) {
return SimdApplyBinop(OrFunctor<S>(),x,y);
}
template < class S, class V >
inline Grid_simd<S,V> operator ||(const Grid_simd<S,V> &x,const Grid_simd<S,V> &y) {
return SimdApplyBinop(OrOrFunctor<S>(),x,y);
}
}
#endif

View File

@ -102,10 +102,10 @@ namespace Grid {
}
template<class vtype,int N, typename std::enable_if< GridTypeMapper<vtype>::TensorLevel == 0 >::type * =nullptr>
inline auto Determinant(const iMatrix<vtype,N> &arg)-> iScalar<decltype(Determinant(arg._internal[0][0]))>
inline iScalar<vtype> Determinant(const iMatrix<vtype,N> &arg)
{
iMatrix<vtype,N> ret(arg);
iScalar<decltype(Determinant(arg._internal[0][0]))> det = 1.0;
iScalar<vtype> det = vtype(1.0);
/* Conversion of matrix to upper triangular */
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){

View File

@ -9,12 +9,12 @@ namespace Grid {
//////////////////////////////////////////////////////////////////////////////////////////
// multiplication by fundamental scalar type
template<class l,int N> strong_inline iScalar<l> operator * (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
template<class l> strong_inline iScalar<l> operator * (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
{
typename iScalar<l>::tensor_reduced srhs; srhs=rhs;
return lhs*srhs;
}
template<class l,int N> strong_inline iScalar<l> operator * (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) { return rhs*lhs; }
template<class l> strong_inline iScalar<l> operator * (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) { return rhs*lhs; }
template<class l,int N> strong_inline iVector<l,N> operator * (const iVector<l,N>& lhs,const typename iScalar<l>::scalar_type rhs)
{
@ -118,12 +118,12 @@ template<class l,int N> strong_inline iMatrix<l,N> operator * (Integer lhs,const
///////////////////////////////////////////////////////////////////////////////////////////////
// addition by fundamental scalar type applies to matrix(down diag) and scalar
///////////////////////////////////////////////////////////////////////////////////////////////
template<class l,int N> strong_inline iScalar<l> operator + (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
template<class l> strong_inline iScalar<l> operator + (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
{
typename iScalar<l>::tensor_reduced srhs; srhs=rhs;
return lhs+srhs;
}
template<class l,int N> strong_inline iScalar<l> operator + (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) { return rhs+lhs; }
template<class l> strong_inline iScalar<l> operator + (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs) { return rhs+lhs; }
template<class l,int N> strong_inline iMatrix<l,N> operator + (const iMatrix<l,N>& lhs,const typename iScalar<l>::scalar_type rhs)
{
@ -176,12 +176,12 @@ template<class l,int N> strong_inline iMatrix<l,N> operator + (Integer lhs,const
///////////////////////////////////////////////////////////////////////////////////////////////
// subtraction of fundamental scalar type applies to matrix(down diag) and scalar
///////////////////////////////////////////////////////////////////////////////////////////////
template<class l,int N> strong_inline iScalar<l> operator - (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
template<class l> strong_inline iScalar<l> operator - (const iScalar<l>& lhs,const typename iScalar<l>::scalar_type rhs)
{
typename iScalar<l>::tensor_reduced srhs; srhs=rhs;
return lhs-srhs;
}
template<class l,int N> strong_inline iScalar<l> operator - (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs)
template<class l> strong_inline iScalar<l> operator - (const typename iScalar<l>::scalar_type lhs,const iScalar<l>& rhs)
{
typename iScalar<l>::tensor_reduced slhs;slhs=lhs;
return slhs-rhs;

View File

@ -23,13 +23,17 @@ template<class vtype> class iScalar
public:
vtype _internal;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
typedef iScalar<recurse_scalar_object> scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iScalar<typename GridTypeMapper<vtype>::Complexified > Complexified;
typedef iScalar<typename GridTypeMapper<vtype>::Realified > Realified;
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1};
// Scalar no action
@ -86,9 +90,19 @@ public:
strong_inline const vtype & operator ()(void) const {
return _internal;
}
operator ComplexD () const { return(TensorRemove(_internal)); };
operator RealD () const { return(real(TensorRemove(_internal))); }
// Type casts meta programmed
template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0>
operator ComplexF () const { return(TensorRemove(_internal)); };
template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0>
operator ComplexD () const { return(TensorRemove(_internal)); };
template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> = 0>
operator RealD () const { return(real(TensorRemove(_internal))); }
template<class U=vtype,class V=scalar_type,IfReal<V> = 0,IfNotSimd<U> = 0>
operator RealD () const { return TensorRemove(_internal); }
template<class U=vtype,class V=scalar_type,IfInteger<V> = 0,IfNotSimd<U> = 0>
operator Integer () const { return Integer(TensorRemove(_internal)); }
// convert from a something to a scalar via constructor of something arg
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline iScalar<vtype> operator = (T arg)
@ -123,6 +137,10 @@ public:
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iVector<recurse_scalar_object,N> scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iVector<typename GridTypeMapper<vtype>::Complexified,N > Complexified;
typedef iVector<typename GridTypeMapper<vtype>::Realified,N > Realified;
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline auto operator = (T arg) -> iVector<vtype,N>
{
zeroit(*this);
@ -211,6 +229,12 @@ public:
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iMatrix<typename GridTypeMapper<vtype>::Complexified,N > Complexified;
typedef iMatrix<typename GridTypeMapper<vtype>::Realified,N > Realified;
// Tensure removal
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iMatrix<recurse_scalar_object,N> scalar_object;

View File

@ -31,18 +31,17 @@ inline void merge(typename std::enable_if<!isGridTensor<vsimd>::value, vsimd >::
std::vector<scalar *> &extracted,int offset){
int Nextr=extracted.size();
int Nsimd=vsimd::Nsimd();
int s=Nsimd/Nextr;
int s=Nsimd/Nextr; // can have sparse occupation of simd vector if simd_layout does not fill it
// replicate n-fold. Use to allow Integer masks to
// predicate floating point of various width assignments and maintain conformable.
scalar *buf =(scalar *) y;
for(int i=0;i<Nextr;i++){
for(int ii=0;ii<s;ii++){
buf[i*s+ii]=extracted[i][offset];
}
}
};
////////////////////////////////////////////////////////////////////////////////////////////////
// Extract a fundamental vector type to scalar array
////////////////////////////////////////////////////////////////////////////////////////////////
@ -55,8 +54,17 @@ inline void extract(typename std::enable_if<!isGridTensor<vsimd>::value, const v
scalar *buf = (scalar *)&y;
for(int i=0;i<Nextr;i++){
for(int ii=0;ii<s;ii++){
extracted[i]=buf[i*s+ii];
extracted[i]=buf[i*s];
for(int ii=1;ii<s;ii++){
if ( buf[i*s]!=buf[i*s+ii] ){
std::cout << " SIMD extract failure splat = "<<s<<" ii "<<ii<<" " <<Nextr<<" "<< Nsimd<<" "<<std::endl;
for(int vv=0;vv<Nsimd;vv++) {
std::cout<< buf[vv]<<" ";
}
std::cout<<std::endl;
assert(0);
}
assert(buf[i*s]==buf[i*s+ii]);
}
}
@ -74,21 +82,7 @@ inline void merge(typename std::enable_if<!isGridTensor<vsimd>::value, vsimd >::
for(int i=0;i<Nextr;i++){
for(int ii=0;ii<s;ii++){
buf[i*s+ii]=extracted[i];
}
}
};
template<class vsimd,class scalar>
inline void AmergeA(typename std::enable_if<!isGridTensor<vsimd>::value, vsimd >::type &y,std::vector<scalar> &extracted){
int Nextr=extracted.size();
int Nsimd=vsimd::Nsimd();
int s=Nsimd/Nextr;
scalar *buf = (scalar *)&y;
for(int i=0;i<Nextr;i++){
for(int ii=0;ii<s;ii++){
buf[i*s+ii]=extracted[i];
buf[i*s+ii]=extracted[i]; // replicates value
}
}
};
@ -102,12 +96,12 @@ template<class vobj> inline void extract(const vobj &vec,std::vector<typename vo
typedef typename vobj::vector_type vector_type ;
const int Nsimd=vobj::vector_type::Nsimd();
int Nextr=extracted.size();
const int words=sizeof(vobj)/sizeof(vector_type);
int s=Nsimd/Nextr;
extracted.resize(Nsimd);
std::vector<scalar_type *> pointers(Nsimd);
for(int i=0;i<Nsimd;i++)
std::vector<scalar_type *> pointers(Nextr);
for(int i=0;i<Nextr;i++)
pointers[i] =(scalar_type *)& extracted[i];
vector_type *vp = (vector_type *)&vec;
@ -127,11 +121,11 @@ void extract(const vobj &vec,std::vector<typename vobj::scalar_object *> &extrac
const int words=sizeof(vobj)/sizeof(vector_type);
const int Nsimd=vobj::vector_type::Nsimd();
assert(extracted.size()==Nsimd);
int Nextr=extracted.size();
int s = Nsimd/Nextr;
std::vector<scalar_type *> pointers(Nsimd);
for(int i=0;i<Nsimd;i++) {
for(int i=0;i<Nextr;i++) {
pointers[i] =(scalar_type *)& extracted[i][offset];
}
@ -153,10 +147,11 @@ void merge(vobj &vec,std::vector<typename vobj::scalar_object> &extracted)
const int Nsimd=vobj::vector_type::Nsimd();
const int words=sizeof(vobj)/sizeof(vector_type);
assert(extracted.size()==Nsimd);
int Nextr = extracted.size();
int splat=Nsimd/Nextr;
std::vector<scalar_type *> pointers(Nsimd);
for(int i=0;i<Nsimd;i++)
std::vector<scalar_type *> pointers(Nextr);
for(int i=0;i<Nextr;i++)
pointers[i] =(scalar_type *)& extracted[i];
vector_type *vp = (vector_type *)&vec;
@ -177,14 +172,14 @@ void merge(vobj &vec,std::vector<typename vobj::scalar_object *> &extracted,int
const int Nsimd=vobj::vector_type::Nsimd();
const int words=sizeof(vobj)/sizeof(vector_type);
assert(extracted.size()==Nsimd);
int Nextr=extracted.size();
std::vector<scalar_type *> pointers(Nsimd);
for(int i=0;i<Nsimd;i++)
std::vector<scalar_type *> pointers(Nextr);
for(int i=0;i<Nextr;i++)
pointers[i] =(scalar_type *)& extracted[i][offset];
vector_type *vp = (vector_type *)&vec;
assert((void *)vp!=NULL);
for(int w=0;w<words;w++){
merge<vector_type,scalar_type>(&vp[w],pointers,w);
}

View File

@ -10,7 +10,8 @@ namespace Grid {
typedef typename sobj::scalar_type scalar;
decltype(innerProduct(arg,arg)) nrm;
nrm = innerProduct(arg,arg);
return real(nrm);
RealD ret = real(nrm);
return ret;
}
template<class l,class r,int N> inline

View File

@ -0,0 +1,32 @@
#ifndef GRID_TENSOR_LOGICAL_H
#define GRID_TENSOR_LOGICAL_H
namespace Grid {
#define LOGICAL_BINOP(Op)\
template<class v> strong_inline iScalar<v> operator Op (const iScalar<v>& lhs,const iScalar<v>& rhs) \
{\
iScalar<v> ret;\
ret._internal = lhs._internal Op rhs._internal ;\
return ret;\
}\
template<class l> strong_inline iScalar<l> operator Op (const iScalar<l>& lhs,Integer rhs) \
{\
typename iScalar<l>::scalar_type t; t=rhs;\
typename iScalar<l>::tensor_reduced srhs; srhs=t;\
return lhs Op srhs;\
}\
template<class l> strong_inline iScalar<l> operator Op (Integer lhs,const iScalar<l>& rhs) \
{\
typename iScalar<l>::scalar_type t;t=lhs;\
typename iScalar<l>::tensor_reduced slhs;slhs=t;\
return slhs Op rhs;\
}
LOGICAL_BINOP(|);
LOGICAL_BINOP(&);
LOGICAL_BINOP(||);
LOGICAL_BINOP(&&);
}
#endif

View File

@ -26,6 +26,8 @@ namespace Grid {
typedef typename T::vector_type vector_type;
typedef typename T::tensor_reduced tensor_reduced;
typedef typename T::scalar_object scalar_object;
typedef typename T::Complexified Complexified;
typedef typename T::Realified Realified;
enum { TensorLevel = T::TensorLevel };
};
@ -38,6 +40,8 @@ namespace Grid {
typedef RealF vector_type;
typedef RealF tensor_reduced ;
typedef RealF scalar_object;
typedef ComplexF Complexified;
typedef RealF Realified;
enum { TensorLevel = 0 };
};
template<> class GridTypeMapper<RealD> {
@ -46,6 +50,8 @@ namespace Grid {
typedef RealD vector_type;
typedef RealD tensor_reduced;
typedef RealD scalar_object;
typedef ComplexD Complexified;
typedef RealD Realified;
enum { TensorLevel = 0 };
};
template<> class GridTypeMapper<ComplexF> {
@ -54,6 +60,8 @@ namespace Grid {
typedef ComplexF vector_type;
typedef ComplexF tensor_reduced;
typedef ComplexF scalar_object;
typedef ComplexF Complexified;
typedef RealF Realified;
enum { TensorLevel = 0 };
};
template<> class GridTypeMapper<ComplexD> {
@ -62,6 +70,8 @@ namespace Grid {
typedef ComplexD vector_type;
typedef ComplexD tensor_reduced;
typedef ComplexD scalar_object;
typedef ComplexD Complexified;
typedef RealD Realified;
enum { TensorLevel = 0 };
};
template<> class GridTypeMapper<Integer> {
@ -70,6 +80,8 @@ namespace Grid {
typedef Integer vector_type;
typedef Integer tensor_reduced;
typedef Integer scalar_object;
typedef void Complexified;
typedef void Realified;
enum { TensorLevel = 0 };
};
@ -79,6 +91,8 @@ namespace Grid {
typedef vRealF vector_type;
typedef vRealF tensor_reduced;
typedef RealF scalar_object;
typedef vComplexF Complexified;
typedef vRealF Realified;
enum { TensorLevel = 0 };
};
template<> class GridTypeMapper<vRealD> {
@ -87,6 +101,8 @@ namespace Grid {
typedef vRealD vector_type;
typedef vRealD tensor_reduced;
typedef RealD scalar_object;
typedef vComplexD Complexified;
typedef vRealD Realified;
enum { TensorLevel = 0 };
};
template<> class GridTypeMapper<vComplexF> {
@ -95,6 +111,8 @@ namespace Grid {
typedef vComplexF vector_type;
typedef vComplexF tensor_reduced;
typedef ComplexF scalar_object;
typedef vComplexF Complexified;
typedef vRealF Realified;
enum { TensorLevel = 0 };
};
template<> class GridTypeMapper<vComplexD> {
@ -103,6 +121,8 @@ namespace Grid {
typedef vComplexD vector_type;
typedef vComplexD tensor_reduced;
typedef ComplexD scalar_object;
typedef vComplexD Complexified;
typedef vRealD Realified;
enum { TensorLevel = 0 };
};
template<> class GridTypeMapper<vInteger> {
@ -111,6 +131,8 @@ namespace Grid {
typedef vInteger vector_type;
typedef vInteger tensor_reduced;
typedef Integer scalar_object;
typedef void Complexified;
typedef void Realified;
enum { TensorLevel = 0 };
};

View File

@ -2,7 +2,7 @@
#define GRID_TENSOR_UNARY_H
namespace Grid {
#define UNARY_REAL(func)\
#define UNARY(func)\
template<class obj> inline auto func(const iScalar<obj> &z) -> iScalar<obj>\
{\
iScalar<obj> ret;\
@ -53,14 +53,71 @@ template<class obj> inline iScalar<obj> func(const iScalar<obj> &z,scal y) \
return ret;\
}
UNARY_REAL(sqrt);
UNARY_REAL(rsqrt);
UNARY_REAL(sin);
UNARY_REAL(cos);
UNARY(sqrt);
UNARY(rsqrt);
UNARY(sin);
UNARY(cos);
UNARY(log);
UNARY(exp);
UNARY(abs);
UNARY(Not);
template<class obj> inline auto toReal(const iScalar<obj> &z) -> typename iScalar<obj>::Realified
{
typename iScalar<obj>::Realified ret;
ret._internal = toReal(z._internal);
return ret;
}
template<class obj,int N> inline auto toReal(const iVector<obj,N> &z) -> typename iVector<obj,N>::Realified
{
typename iVector<obj,N>::Realified ret;
for(int c1=0;c1<N;c1++){
ret._internal[c1] = toReal(z._internal[c1]);
}
return ret;
}
template<class obj,int N> inline auto toReal(const iMatrix<obj,N> &z) -> typename iMatrix<obj,N>::Realified
{
typename iMatrix<obj,N>::Realified ret;
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal[c1][c2] = toReal(z._internal[c1][c2]);
}}
return ret;
}
template<class obj> inline auto toComplex(const iScalar<obj> &z) -> typename iScalar<obj>::Complexified
{
typename iScalar<obj>::Complexified ret;
ret._internal = toComplex(z._internal);
return ret;
}
template<class obj,int N> inline auto toComplex(const iVector<obj,N> &z) -> typename iVector<obj,N>::Complexified
{
typename iVector<obj,N>::Complexified ret;
for(int c1=0;c1<N;c1++){
ret._internal[c1] = toComplex(z._internal[c1]);
}
return ret;
}
template<class obj,int N> inline auto toComplex(const iMatrix<obj,N> &z) -> typename iMatrix<obj,N>::Complexified
{
typename iMatrix<obj,N>::Complexified ret;
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal[c1][c2] = toComplex(z._internal[c1][c2]);
}}
return ret;
}
BINARY_RSCALAR(mod,Integer);
BINARY_RSCALAR(pow,RealD);
#undef UNARY
#undef BINARY_RSCALAR
}
#endif

View File

@ -27,6 +27,7 @@ public:
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);

View File

@ -102,16 +102,11 @@ int main (int argc, char ** argv)
CoarseVector c_res (Coarse5d);
CoarseVector c_proj(Coarse5d);
// TODO
// -- promote from subspace, check we get the vector we wanted
// -- apply ldop; check we get the same as inner product of M times big vec
// -- pick blocks one by one. Evaluate matrix elements.
Complex one(1.0);
c_src = one; // 1 in every element for vector 1.
blockPromote(c_src,err,subspace);
prom=zero;
for(int b=0;b<nbasis;b++){
prom=prom+subspace[b];

View File

@ -66,7 +66,8 @@ int main (int argc, char ** argv)
nrm = abs(scm-cm()()());
std::vector<int> peer(4);
int index=real(cm);
Complex tmp =cm;
Integer index=real(tmp);
Fine.CoorFromIndex(peer,index,latt_size);
if (nrm > 0){

View File

@ -100,7 +100,8 @@ int main (int argc, char ** argv)
double nrm = abs(scm-cm()()());
std::vector<int> peer(4);
int index=real(cm);
Complex ctmp = cm;
Integer index=real(ctmp);
Fine.CoorFromIndex(peer,index,latt_size);
if (nrm > 0){
@ -138,7 +139,8 @@ int main (int argc, char ** argv)
nrm = abs(scm-cm()()());
std::vector<int> peer(4);
int index=real(cm);
Complex ctmp=cm;
Integer index=real(ctmp);
Fine.CoorFromIndex(peer,index,latt_size);
if (nrm > 0){

View File

@ -95,7 +95,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<6;mu++){
result = Gamma(g[mu])* ident * Gamma(g[mu]);
result = result - ident;
double mag = TensorRemove(norm2(result));
RealD mag = norm2(result);
std::cout << list[mu]<<" " << mag<<std::endl;
}
@ -103,7 +103,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<6;mu++){
result = rnd * Gamma(g[mu]);
result = result + rnd * Gamma(g[mu+6]);
double mag = TensorRemove(norm2(result));
RealD mag = norm2(result);
std::cout << list[mu]<<" " << mag<<std::endl;
}
@ -111,7 +111,7 @@ int main (int argc, char ** argv)
for(int mu=0;mu<6;mu++){
result = Gamma(g[mu]) *rnd;
result = result + Gamma(g[mu+6])*rnd;
double mag = TensorRemove(norm2(result));
RealD mag = norm2(result);
std::cout << list[mu]<<" " << mag<<std::endl;
}

View File

@ -2,226 +2,91 @@
#include <qcd/utils/CovariantCshift.h>
#include <qcd/utils/WilsonLoops.h>
#include <qcd/utils/SUn.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
class suN {
public:
static int generators(int ncolour) { return ncolour*ncolour-1; }
static int su2subgroups(int ncolour) { return (ncolour*(ncolour-1))/2; }
template<typename CComplex,int N> using suNmatrix = iScalar<iScalar<iMatrix<CComplex,N> > > ;
////////////////////////////////////////////////////////////////////////
// There are N^2-1 generators for SU(N).
//
// We take a traceless hermitian generator basis as follows
//
// * Normalisation: trace ta tb = 1/2 delta_ab
//
// * Off diagonal
// - pairs of rows i1,i2 behaving like pauli matrices signma_x, sigma_y
//
// - there are (Nc-1-i1) slots for i2 on each row [ x 0 x ]
// direct count off each row
//
// - Sum of all pairs is Nc(Nc-1)/2: proof arithmetic series
//
// (Nc-1) + (Nc-2)+... 1 ==> Nc*(Nc-1)/2
// 1+ 2+ + + Nc-1
//
// - There are 2 x Nc (Nc-1)/ 2 of these = Nc^2 - Nc
//
// - We enumerate the row-col pairs.
// - for each row col pair there is a (sigma_x) and a (sigma_y) like generator
//
//
// t^a_ij = { in 0.. Nc(Nc-1)/2 -1} => delta_{i,i1} delta_{j,i2} + delta_{i,i1} delta_{j,i2}
// t^a_ij = { in Nc(Nc-1)/2 ... Nc^(Nc-1) -1} => i delta_{i,i1} delta_{j,i2} - i delta_{i,i1} delta_{j,i2}
//
// * Diagonal; must be traceless and normalised
// - Sequence is
// N (1,-1,0,0...)
// N (1, 1,-2,0...)
// N (1, 1, 1,-3,0...)
// N (1, 1, 1, 1,-4,0...)
//
// where 1/2 = N^2 (1+.. m^2)etc.... for the m-th diagonal generator
// NB this gives the famous SU3 result for su2 index 8
//
// N= sqrt(1/2 . 1/6 ) = 1/2 . 1/sqrt(3)
//
// ( 1 )
// ( 1 ) / sqrt(3) /2 = 1/2 lambda_8
// ( -2)
////////////////////////////////////////////////////////////////////////
template<class CComplex,int Ncolour>
static void suNgenerator(int lieIndex,suNmatrix<CComplex,Ncolour> &ta){
// map lie index to which type of generator
int diagIndex;
int su2Index;
int sigxy;
int NNm1 = Ncolour*(Ncolour-1);
if ( lieIndex>= NNm1 ) {
diagIndex = lieIndex -NNm1;
suNgeneratorDiagonal(diagIndex,ta);
return;
}
sigxy = lieIndex&0x1;
su2Index= lieIndex>>1;
if ( sigxy ) suNgeneratorSigmaY(su2Index,ta);
else suNgeneratorSigmaX(su2Index,ta);
}
template<class CComplex,int Ncolour>
static void suNgeneratorSigmaX(int su2Index,suNmatrix<CComplex,Ncolour> &ta){
ta=zero;
int i1,i2;
su2SubGroupIndex<Ncolour>(i1,i2,su2Index);
ta()()(i1,i2)=1.0;
ta()()(i2,i1)=1.0;
ta= ta *0.5;
}
template<class CComplex,int Ncolour>
static void suNgeneratorSigmaY(int su2Index,suNmatrix<CComplex,Ncolour> &ta){
ta=zero;
Complex i(0.0,1.0);
int i1,i2;
su2SubGroupIndex<Ncolour>(i1,i2,su2Index);
ta()()(i1,i2)=-i;
ta()()(i2,i1)= i;
ta= ta *0.5;
}
template<class CComplex,int Ncolour>
static void suNgeneratorDiagonal(int diagIndex,suNmatrix<CComplex,Ncolour> &ta){
ta=zero;
int trsq=0;
int last=diagIndex+1;
for(int i=0;i<=diagIndex;i++){
ta()()(i,i) = 1.0;
trsq++;
}
ta()()(last,last) = -last;
trsq+=last*last;
RealD nrm = 1.0/std::sqrt(2.0*trsq);
ta = ta *nrm;
}
////////////////////////////////////////////////////////////////////////
// Map a
//
////////////////////////////////////////////////////////////////////////
template<int Ncolour>
static void su2SubGroupIndex(int &i1,int &i2,int su2_index){
assert( (su2_index>=0) && (su2_index< (Ncolour*(Ncolour-1))/2) );
int spare=su2_index;
for(i1=0;spare >= (Ncolour-1-i1);i1++ ){
spare = spare - (Ncolour-1-i1); // remove the Nc-1-i1 terms
}
i2=i1+1+spare;
}
template<class CComplex,int Ncolour>
static void su2Extract(std::vector<LatticeComplex> &r,const Lattice<suNmatrix<CComplex,Ncolour> > &source, int su2_index)
{
assert(r.size() == 4); // store in 4 real parts
for(int i=0;i<4;i++){
conformable(r[i],source);
}
int i1,i2;
su2SubGroupIndex<Ncolour>(i1,i2,su2_index);
/* Compute the b(k) of A_SU(2) = b0 + i sum_k bk sigma_k */
r[0] = real(source()()(i1,i1) + source()()(i2,i2));
r[1] = imag(source()()(i1,i2) + source()()(i2,i1));
r[2] = real(source()()(i1,i2) - source()()(i2,i1));
r[3] = imag(source()()(i1,i1) - source()()(i2,i2));
}
template<int Ncolour> static void printGenerators(void)
{
for(int gen=0;gen<suN::generators(Ncolour);gen++){
suN::suNmatrix<Complex,Ncolour> ta;
suN::suNgenerator(gen,ta);
std::cout<< "Nc = "<<Ncolour<<" t_"<<gen<<std::endl;
std::cout<<ta<<std::endl;
}
}
template<int Ncolour> static void testGenerators(void){
suNmatrix<Complex,Ncolour> ta;
suNmatrix<Complex,Ncolour> tb;
std::cout<<"Checking trace ta tb is 0.5 delta_ab"<<std::endl;
for(int a=0;a<generators(Ncolour);a++){
for(int b=0;b<generators(Ncolour);b++){
suNgenerator(a,ta);
suNgenerator(b,tb);
Complex tr =TensorRemove(trace(ta*tb));
std::cout<<tr<<" ";
if(a==b) assert(abs(tr-Complex(0.5))<1.0e-6);
if(a!=b) assert(abs(tr)<1.0e-6);
}
std::cout<<std::endl;
}
std::cout<<"Checking hermitian"<<std::endl;
for(int a=0;a<generators(Ncolour);a++){
suNgenerator(a,ta);
std::cout<<a<<" ";
assert(norm2(ta-adj(ta))<1.0e-6);
}
std::cout<<std::endl;
std::cout<<"Checking traceless"<<std::endl;
for(int a=0;a<generators(Ncolour);a++){
suNgenerator(a,ta);
Complex tr =TensorRemove(trace(ta));
std::cout<<a<<" ";
assert(abs(tr)<1.0e-6);
}
std::cout<<std::endl;
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> simd_layout = GridDefaultSimd(4,vComplexF::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<int> latt_size ({4,4,4,4});
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
LatticeGaugeField Umu(&Fine);
std::vector<int> latt({4,4,4,8});
GridCartesian * grid = SpaceTimeGrid::makeFourDimGrid(latt,
GridDefaultSimd(Nd,vComplexF::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * rbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(grid);
std::cout<<"*********************************************"<<std::endl;
std::cout<<"* Generators for SU(2)"<<std::endl;
std::cout<<"*********************************************"<<std::endl;
suN::printGenerators<2>();
suN::testGenerators<2>();
SU2::printGenerators();
SU2::testGenerators();
std::cout<<"*********************************************"<<std::endl;
std::cout<<"* Generators for SU(3)"<<std::endl;
std::cout<<"*********************************************"<<std::endl;
suN::printGenerators<3>();
suN::testGenerators<3>();
std::cout<<"*********************************************"<<std::endl;
std::cout<<"* Generators for SU(4)"<<std::endl;
std::cout<<"*********************************************"<<std::endl;
suN::printGenerators<4>();
suN::testGenerators<4>();
std::cout<<"*********************************************"<<std::endl;
std::cout<<"* Generators for SU(5)"<<std::endl;
std::cout<<"*********************************************"<<std::endl;
suN::printGenerators<5>();
suN::testGenerators<5>();
SU3::printGenerators();
SU3::testGenerators();
// std::cout<<"*********************************************"<<std::endl;
// std::cout<<"* Generators for SU(4)"<<std::endl;
// std::cout<<"*********************************************"<<std::endl;
// SU4::printGenerators();
// SU4::testGenerators();
// std::cout<<"*********************************************"<<std::endl;
// std::cout<<"* Generators for SU(5)"<<std::endl;
// std::cout<<"*********************************************"<<std::endl;
// SU5::printGenerators();
// SU5::testGenerators();
///////////////////////////////
// Configuration of known size
///////////////////////////////
NerscField header;
std::string file("./ckpoint_lat.400");
LatticeGaugeField Umu(grid);
// readNerscConfiguration(Umu,header,file);
Umu=1.0; // Cold start
// RNG set up for test
std::vector<int> pseeds({1,2,3,4,5}); // once I caught a fish alive
std::vector<int> sseeds({6,7,8,9,10});// then i let it go again
GridParallelRNG pRNG(grid); pRNG.SeedFixedIntegers(pseeds);
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(sseeds);
// SU3 colour operatoions
LatticeColourMatrix link(grid);
LatticeColourMatrix staple(grid);
int mu=0;
// Get Staple
ColourWilsonLoops::Staple(staple,Umu,mu);
// Get Link
link = peekIndex<LorentzIndex>(Umu,mu);
// Apply heatbath to the link
RealD beta=6.0;
int subgroup=0;
int nhb=1;
int trials=0;
int fails=0;
LatticeInteger one(rbGrid); one = 1; // fill with ones
LatticeInteger mask(grid); mask= zero;
one.checkerboard=Even;
setCheckerboard(mask,one);
// update Even checkerboard
SU3::SubGroupHeatBath(sRNG,pRNG,beta,link,staple,subgroup,
nhb,trials,fails,mask);
Grid_finalize();
}

View File

@ -248,7 +248,7 @@ int main (int argc, char ** argv)
{ // Peek-ology and Poke-ology, with a little app-ology
TComplex c;
Complex c;
ColourMatrix c_m;
SpinMatrix s_m;
SpinColourMatrix sc_m;
@ -302,10 +302,12 @@ int main (int argc, char ** argv)
LatticeInteger coor(&Fine);
LatticeCoordinate(coor,d);
lex = lex + coor*mm[d];
}
Bar = zero;
Bar = where(lex<10,Foo,Bar);
Bar = where(lex<Integer(10),Foo,Bar);
cout << "peeking sites..\n";
{
std::vector<int> coor(4);
for(coor[3]=0;coor[3]<latt_size[3]/mpi_layout[3];coor[3]++){
@ -473,7 +475,8 @@ int main (int argc, char ** argv)
mdiff = shifted1-shifted2;
amdiff=adj(mdiff);
ColourMatrix prod = amdiff*mdiff;
Real Ttr=real(trace(prod));
Complex trprod = trace(prod);
Real Ttr=real(trprod);
double nn=Ttr;
if ( nn > 0 )
cout<<"Shift real trace fail "<<coor[0]<<coor[1]<<coor[2]<<coor[3] <<endl;