1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Merge branch 'develop' into feature/hadrons

# Conflicts:
#	lib/qcd/action/scalar/ScalarImpl.h
This commit is contained in:
Antonin Portelli 2017-06-20 15:50:39 +01:00
commit 7587df831a
65 changed files with 3010 additions and 1710 deletions

7
TODO
View File

@ -2,9 +2,9 @@ TODO:
---------------
Peter's work list:
2)- Precision conversion and sort out localConvert <--
3)- Remove DenseVector, DenseMatrix; Use Eigen instead. <-- started
4)- Binary I/O speed up & x-strips
1)- Precision conversion and sort out localConvert <--
2)- Remove DenseVector, DenseMatrix; Use Eigen instead. <--
-- Profile CG, BlockCG, etc... Flop count/rate -- PARTIAL, time but no flop/s yet
-- Physical propagator interface
-- Conserved currents
@ -13,6 +13,7 @@ Peter's work list:
-- HDCR resume
Recent DONE
-- Binary I/O speed up & x-strips <-- DONE
-- Cut down the exterior overhead <-- DONE
-- Interior legs from SHM comms <-- DONE
-- Half-precision comms <-- DONE

View File

@ -66,7 +66,7 @@ int main (int argc, char ** argv)
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
int Nloop=500;
int Nloop=100;
int nmu=0;
int maxlat=24;
for(int mu=0;mu<Nd;mu++) if (mpi_layout[mu]>1) nmu++;
@ -88,6 +88,9 @@ int main (int argc, char ** argv)
lat*mpi_layout[3]});
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<std::vector<HalfSpinColourVectorD> > xbuf(8,std::vector<HalfSpinColourVectorD>(lat*lat*lat*Ls));
std::vector<std::vector<HalfSpinColourVectorD> > rbuf(8,std::vector<HalfSpinColourVectorD>(lat*lat*lat*Ls));
@ -132,13 +135,13 @@ int main (int argc, char ** argv)
}
Grid.SendToRecvFromComplete(requests);
Grid.Barrier();
double stop=usecond();
t_time[i] = stop-start; // microseconds
double stop=usecond();
t_time[i] = stop-start; // microseconds
}
timestat.statistics(t_time);
double dbytes = bytes;
double dbytes = bytes*ppn;
double xbytes = dbytes*2.0*ncomm;
double rbytes = xbytes;
double bidibytes = xbytes+rbytes;
@ -165,6 +168,9 @@ int main (int argc, char ** argv)
std::vector<int> latt_size ({lat,lat,lat,lat});
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<std::vector<HalfSpinColourVectorD> > xbuf(8,std::vector<HalfSpinColourVectorD>(lat*lat*lat*Ls));
std::vector<std::vector<HalfSpinColourVectorD> > rbuf(8,std::vector<HalfSpinColourVectorD>(lat*lat*lat*Ls));
@ -213,14 +219,14 @@ int main (int argc, char ** argv)
}
}
Grid.Barrier();
double stop=usecond();
t_time[i] = stop-start; // microseconds
double stop=usecond();
t_time[i] = stop-start; // microseconds
}
timestat.statistics(t_time);
double dbytes = bytes;
double dbytes = bytes*ppn;
double xbytes = dbytes*2.0*ncomm;
double rbytes = xbytes;
double bidibytes = xbytes+rbytes;
@ -251,6 +257,9 @@ int main (int argc, char ** argv)
lat*mpi_layout[3]});
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<HalfSpinColourVectorD *> xbuf(8);
std::vector<HalfSpinColourVectorD *> rbuf(8);
@ -258,59 +267,66 @@ int main (int argc, char ** argv)
for(int d=0;d<8;d++){
xbuf[d] = (HalfSpinColourVectorD *)Grid.ShmBufferMalloc(lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
rbuf[d] = (HalfSpinColourVectorD *)Grid.ShmBufferMalloc(lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
bzero((void *)xbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
bzero((void *)rbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
}
int ncomm;
int bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
double dbytes;
for(int i=0;i<Nloop;i++){
double start=usecond();
double start=usecond();
dbytes=0;
ncomm=0;
std::vector<CartesianCommunicator::CommsRequest_t> requests;
ncomm=0;
for(int mu=0;mu<4;mu++){
if (mpi_layout[mu]>1 ) {
ncomm++;
int comm_proc=1;
int xmit_to_rank;
int recv_from_rank;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu][0],
xmit_to_rank,
(void *)&rbuf[mu][0],
recv_from_rank,
bytes);
dbytes+=
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu][0],
xmit_to_rank,
(void *)&rbuf[mu][0],
recv_from_rank,
bytes);
comm_proc = mpi_layout[mu]-1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu+4][0],
xmit_to_rank,
(void *)&rbuf[mu+4][0],
recv_from_rank,
bytes);
dbytes+=
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu+4][0],
xmit_to_rank,
(void *)&rbuf[mu+4][0],
recv_from_rank,
bytes);
}
}
Grid.StencilSendToRecvFromComplete(requests);
Grid.Barrier();
double stop=usecond();
t_time[i] = stop-start; // microseconds
double stop=usecond();
t_time[i] = stop-start; // microseconds
}
timestat.statistics(t_time);
double dbytes = bytes;
double xbytes = dbytes*2.0*ncomm;
double rbytes = xbytes;
double bidibytes = xbytes+rbytes;
dbytes=dbytes*ppn;
double xbytes = dbytes*0.5;
double rbytes = dbytes*0.5;
double bidibytes = dbytes;
std::cout<<GridLogMessage << std::setw(4) << lat<<"\t"<<Ls<<"\t"
<<std::setw(11) << bytes<< std::fixed << std::setprecision(1) << std::setw(7)
@ -338,6 +354,9 @@ int main (int argc, char ** argv)
lat*mpi_layout[3]});
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<HalfSpinColourVectorD *> xbuf(8);
std::vector<HalfSpinColourVectorD *> rbuf(8);
@ -345,16 +364,18 @@ int main (int argc, char ** argv)
for(int d=0;d<8;d++){
xbuf[d] = (HalfSpinColourVectorD *)Grid.ShmBufferMalloc(lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
rbuf[d] = (HalfSpinColourVectorD *)Grid.ShmBufferMalloc(lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
bzero((void *)xbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
bzero((void *)rbuf[d],lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD));
}
int ncomm;
int bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
double dbytes;
for(int i=0;i<Nloop;i++){
double start=usecond();
double start=usecond();
std::vector<CartesianCommunicator::CommsRequest_t> requests;
dbytes=0;
ncomm=0;
for(int mu=0;mu<4;mu++){
@ -366,41 +387,43 @@ int main (int argc, char ** argv)
int recv_from_rank;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu][0],
xmit_to_rank,
(void *)&rbuf[mu][0],
recv_from_rank,
bytes);
dbytes+=
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu][0],
xmit_to_rank,
(void *)&rbuf[mu][0],
recv_from_rank,
bytes);
Grid.StencilSendToRecvFromComplete(requests);
requests.resize(0);
comm_proc = mpi_layout[mu]-1;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu+4][0],
xmit_to_rank,
(void *)&rbuf[mu+4][0],
recv_from_rank,
bytes);
dbytes+=
Grid.StencilSendToRecvFromBegin(requests,
(void *)&xbuf[mu+4][0],
xmit_to_rank,
(void *)&rbuf[mu+4][0],
recv_from_rank,
bytes);
Grid.StencilSendToRecvFromComplete(requests);
requests.resize(0);
}
}
Grid.Barrier();
double stop=usecond();
t_time[i] = stop-start; // microseconds
Grid.Barrier();
double stop=usecond();
t_time[i] = stop-start; // microseconds
}
timestat.statistics(t_time);
double dbytes = bytes;
double xbytes = dbytes*2.0*ncomm;
double rbytes = xbytes;
double bidibytes = xbytes+rbytes;
dbytes=dbytes*ppn;
double xbytes = dbytes*0.5;
double rbytes = dbytes*0.5;
double bidibytes = dbytes;
std::cout<<GridLogMessage << std::setw(4) << lat<<"\t"<<Ls<<"\t"

View File

@ -55,8 +55,8 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
uint64_t lmax=44;
#define NLOOP (1*lmax*lmax*lmax*lmax/vol)
uint64_t lmax=64;
#define NLOOP (100*lmax*lmax*lmax*lmax/vol)
for(int lat=4;lat<=lmax;lat+=4){
std::vector<int> latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});

View File

@ -35,9 +35,9 @@ using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
#define LMAX (32)
#define LMAX (64)
int Nloop=200;
int Nloop=20;
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();

View File

@ -27,7 +27,7 @@ AX_GXX_VERSION
AC_DEFINE_UNQUOTED([GXX_VERSION],["$GXX_VERSION"],
[version of g++ that will compile the code])
CXXFLAGS="-O3 $CXXFLAGS"
CXXFLAGS="-g $CXXFLAGS"
############### Checks for typedefs, structures, and compiler characteristics
@ -184,6 +184,10 @@ AC_SEARCH_LIBS([limeCreateReader], [lime],
In order to use ILGG file format please install or provide the correct path to your installation
Info at: http://usqcd.jlab.org/usqcd-docs/c-lime/)])
AC_SEARCH_LIBS([crc32], [z],
[AC_DEFINE([HAVE_ZLIB], [1], [Define to 1 if you have the `LIBZ' library])]
[have_zlib=true],
[AC_MSG_ERROR(zlib library was not found in your system.)])
AC_SEARCH_LIBS([H5Fopen], [hdf5_cpp],
[AC_DEFINE([HAVE_HDF5], [1], [Define to 1 if you have the `HDF5' library])]

View File

@ -65,7 +65,7 @@ void TLoad::setup(void)
// execution ///////////////////////////////////////////////////////////////////
void TLoad::execute(void)
{
NerscField header;
FieldMetaData header;
std::string fileName = par().file + "."
+ std::to_string(env().getTrajectory());
@ -74,5 +74,5 @@ void TLoad::execute(void)
LatticeGaugeField &U = *env().createLattice<LatticeGaugeField>(getName());
NerscIO::readConfiguration(U, header, fileName);
LOG(Message) << "NERSC header:" << std::endl;
dump_nersc_header(header, LOG(Message));
dump_meta_data(header, LOG(Message));
}

View File

@ -41,7 +41,9 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
#include <Grid/GridQCDcore.h>
#include <Grid/qcd/action/Action.h>
#include <Grid/qcd/utils/GaugeFix.h>
#include <Grid/qcd/smearing/Smearing.h>
#include <Grid/parallelIO/MetaData.h>
#include <Grid/qcd/hmc/HMC_aggregate.h>
#endif

View File

@ -7,6 +7,7 @@
#include <cassert>
#include <complex>
#include <vector>
#include <string>
#include <iostream>
#include <iomanip>
#include <random>
@ -18,6 +19,7 @@
#include <ctime>
#include <sys/time.h>
#include <chrono>
#include <zlib.h>
///////////////////
// Grid config

View File

@ -33,6 +33,8 @@ directory
namespace Grid {
enum BlockCGtype { BlockCG, BlockCGrQ, CGmultiRHS };
//////////////////////////////////////////////////////////////////////////
// Block conjugate gradient. Dimension zero should be the block direction
//////////////////////////////////////////////////////////////////////////
@ -40,25 +42,276 @@ template <class Field>
class BlockConjugateGradient : public OperatorFunction<Field> {
public:
typedef typename Field::scalar_type scomplex;
const int blockDim = 0;
int blockDim ;
int Nblock;
BlockCGtype CGtype;
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
BlockConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol),
CGtype(cgtype),
blockDim(_Orthog),
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv){};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Thin QR factorisation (google it)
////////////////////////////////////////////////////////////////////////////////////////////////////
void ThinQRfact (Eigen::MatrixXcd &m_rr,
Eigen::MatrixXcd &C,
Eigen::MatrixXcd &Cinv,
Field & Q,
const Field & R)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
////////////////////////////////////////////////////////////////////////////////////////////////////
//Dimensions
// R_{ferm x Nblock} = Q_{ferm x Nblock} x C_{Nblock x Nblock} -> ferm x Nblock
//
// Rdag R = m_rr = Herm = L L^dag <-- Cholesky decomposition (LLT routine in Eigen)
//
// Q C = R => Q = R C^{-1}
//
// Want Ident = Q^dag Q = C^{-dag} R^dag R C^{-1} = C^{-dag} L L^dag C^{-1} = 1_{Nblock x Nblock}
//
// Set C = L^{dag}, and then Q^dag Q = ident
//
// Checks:
// Cdag C = Rdag R ; passes.
// QdagQ = 1 ; passes
////////////////////////////////////////////////////////////////////////////////////////////////////
sliceInnerProductMatrix(m_rr,R,R,Orthog);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Cholesky from Eigen
// There exists a ldlt that is documented as more stable
////////////////////////////////////////////////////////////////////////////////////////////////////
Eigen::MatrixXcd L = m_rr.llt().matrixL();
C = L.adjoint();
Cinv = C.inverse();
////////////////////////////////////////////////////////////////////////////////////////////////////
// Q = R C^{-1}
//
// Q_j = R_i Cinv(i,j)
//
// NB maddMatrix conventions are Right multiplication X[j] a[j,i] already
////////////////////////////////////////////////////////////////////////////////////////////////////
// FIXME:: make a sliceMulMatrix to avoid zero vector
sliceMulMatrix(Q,Cinv,R,Orthog);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Call one of several implementations
////////////////////////////////////////////////////////////////////////////////////////////////////
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = 0; // First dimension is block dim
if ( CGtype == BlockCGrQ ) {
BlockCGrQsolve(Linop,Src,Psi);
} else if (CGtype == BlockCG ) {
BlockCGsolve(Linop,Src,Psi);
} else if (CGtype == CGmultiRHS ) {
CGmultiRHSsolve(Linop,Src,Psi);
} else {
assert(0);
}
}
////////////////////////////////////////////////////////////////////////////
// BlockCGrQ implementation:
//--------------------------
// X is guess/Solution
// B is RHS
// Solve A X_i = B_i ; i refers to Nblock index
////////////////////////////////////////////////////////////////////////////
void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
Nblock = B._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
X.checkerboard = B.checkerboard;
conformable(X, B);
Field tmp(B);
Field Q(B);
Field D(B);
Field Z(B);
Field AD(B);
Eigen::MatrixXcd m_DZ = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_M = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_C = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_Cinv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_S = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_Sinv = Eigen::MatrixXcd::Zero(Nblock,Nblock);
Eigen::MatrixXcd m_tmp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_tmp1 = Eigen::MatrixXcd::Identity(Nblock,Nblock);
// Initial residual computation & set up
std::vector<RealD> residuals(Nblock);
std::vector<RealD> ssq(Nblock);
sliceNorm(ssq,B,Orthog);
RealD sssum=0;
for(int b=0;b<Nblock;b++) sssum+=ssq[b];
sliceNorm(residuals,B,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
sliceNorm(residuals,X,Orthog);
for(int b=0;b<Nblock;b++){ assert(std::isnan(residuals[b])==0); }
/************************************************************************
* Block conjugate gradient rQ (Sebastien Birk Thesis, after Dubrulle 2001)
************************************************************************
* Dimensions:
*
* X,B==(Nferm x Nblock)
* A==(Nferm x Nferm)
*
* Nferm = Nspin x Ncolour x Ncomplex x Nlattice_site
*
* QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
* for k:
* Z = AD
* M = [D^dag Z]^{-1}
* X = X + D MC
* QS = Q - ZM
* D = Q + D S^dag
* C = S C
*/
///////////////////////////////////////
// Initial block: initial search dir is guess
///////////////////////////////////////
std::cout << GridLogMessage<<"BlockCGrQ algorithm initialisation " <<std::endl;
//1. QC = R = B-AX, D = Q ; QC => Thin QR factorisation (google it)
Linop.HermOp(X, AD);
tmp = B - AD;
ThinQRfact (m_rr, m_C, m_Cinv, Q, tmp);
D=Q;
std::cout << GridLogMessage<<"BlockCGrQ computed initial residual and QR fact " <<std::endl;
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch QRTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
//3. Z = AD
MatrixTimer.Start();
Linop.HermOp(D, Z);
MatrixTimer.Stop();
//4. M = [D^dag Z]^{-1}
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_DZ,D,Z,Orthog);
sliceInnerTimer.Stop();
m_M = m_DZ.inverse();
//5. X = X + D MC
m_tmp = m_M * m_C;
sliceMaddTimer.Start();
sliceMaddMatrix(X,m_tmp, D,X,Orthog);
sliceMaddTimer.Stop();
//6. QS = Q - ZM
sliceMaddTimer.Start();
sliceMaddMatrix(tmp,m_M,Z,Q,Orthog,-1.0);
sliceMaddTimer.Stop();
QRTimer.Start();
ThinQRfact (m_rr, m_S, m_Sinv, Q, tmp);
QRTimer.Stop();
//7. D = Q + D S^dag
m_tmp = m_S.adjoint();
sliceMaddTimer.Start();
sliceMaddMatrix(D,m_tmp,D,Q,Orthog);
sliceMaddTimer.Stop();
//8. C = S C
m_C = m_S*m_C;
/*********************
* convergence monitor
*********************
*/
m_rr = m_C.adjoint() * m_C;
RealD max_resid=0;
RealD rrsum=0;
RealD rr;
for(int b=0;b<Nblock;b++) {
rrsum+=real(m_rr(b,b));
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" ave "<<std::sqrt(rrsum/sssum) << " max "<< max_resid <<std::endl;
if ( max_resid < Tolerance*Tolerance ) {
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCGrQ converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "
<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(X, AD);
AD = AD-B;
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AD)/norm2(B)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tThinQRfact " << QRTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
std::cout << GridLogMessage << "BlockConjugateGradient(rQ) did NOT converge" << std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
//////////////////////////////////////////////////////////////////////////
// Block conjugate gradient; Original O'Leary Dimension zero should be the block direction
//////////////////////////////////////////////////////////////////////////
void BlockCGsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = blockDim; // First dimension is block dim; this is an assumption
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
@ -162,8 +415,9 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
*********************
*/
RealD max_resid=0;
RealD rr;
for(int b=0;b<Nblock;b++){
RealD rr = real(m_rr(b,b))/ssq[b];
rr = real(m_rr(b,b))/ssq[b];
if ( rr > max_resid ) max_resid = rr;
}
@ -173,13 +427,14 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
std::cout << GridLogMessage<<"BlockCG converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tblock "<<b<<" resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
std::cout << GridLogMessage<< "\t\tblock "<<b<<" computed resid "
<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout << GridLogMessage <<"\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
@ -197,35 +452,13 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
//////////////////////////////////////////////////////////////////////////
// multiRHS conjugate gradient. Dimension zero should be the block direction
// Use this for spread out across nodes
//////////////////////////////////////////////////////////////////////////
template <class Field>
class MultiRHSConjugateGradient : public OperatorFunction<Field> {
public:
typedef typename Field::scalar_type scomplex;
const int blockDim = 0;
int Nblock;
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
MultiRHSConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = 0; // First dimension is block dim
int Orthog = blockDim; // First dimension is block dim
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
@ -285,12 +518,10 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
MatrixTimer.Stop();
// Alpha
// sliceInnerProductVectorTest(v_pAp_test,P,AP,Orthog);
sliceInnerTimer.Start();
sliceInnerProductVector(v_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
for(int b=0;b<Nblock;b++){
// std::cout << " "<< v_pAp[b]<<" "<< v_pAp_test[b]<<std::endl;
v_alpha[b] = v_rr[b]/real(v_pAp[b]);
}
@ -332,7 +563,7 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
std::cout << GridLogMessage<<"MultiRHS solver converged in " <<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< "\t\tBlock "<<b<<" resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
std::cout << GridLogMessage<< "\t\tBlock "<<b<<" computed resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
@ -358,9 +589,8 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
}
};
}
#endif

View File

@ -50,7 +50,6 @@ public:
GridBase(const std::vector<int> & processor_grid) : CartesianCommunicator(processor_grid) {};
// Physics Grid information.
std::vector<int> _simd_layout;// Which dimensions get relayed out over simd lanes.
std::vector<int> _fdimensions;// (full) Global dimensions of array prior to cb removal
@ -63,13 +62,12 @@ public:
int _isites;
int _fsites; // _isites*_osites = product(dimensions).
int _gsites;
std::vector<int> _slice_block; // subslice information
std::vector<int> _slice_block;// subslice information
std::vector<int> _slice_stride;
std::vector<int> _slice_nblock;
// Might need these at some point
// std::vector<int> _lstart; // local start of array in gcoors. _processor_coor[d]*_ldimensions[d]
// std::vector<int> _lend; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
std::vector<int> _lstart; // local start of array in gcoors _processor_coor[d]*_ldimensions[d]
std::vector<int> _lend ; // local end of array in gcoors _processor_coor[d]*_ldimensions[d]+_ldimensions_[d]-1
public:
@ -176,6 +174,7 @@ public:
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
inline int Nd (void) const { return _ndimension;};
inline const std::vector<int> LocalStarts(void) { return _lstart; };
inline const std::vector<int> &FullDimensions(void) { return _fdimensions;};
inline const std::vector<int> &GlobalDimensions(void) { return _gdimensions;};
inline const std::vector<int> &LocalDimensions(void) { return _ldimensions;};

View File

@ -76,6 +76,8 @@ public:
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
@ -94,8 +96,10 @@ public:
// Use a reduced simd grid
_ldimensions[d]= _gdimensions[d]/_processors[d]; //local dimensions
_rdimensions[d]= _ldimensions[d]/_simd_layout[d]; //overdecomposition
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
_lstart[d] = _processor_coor[d]*_ldimensions[d];
_lend[d] = _processor_coor[d]*_ldimensions[d]+_ldimensions[d]-1;
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];
// Addressing support
if ( d==0 ) {

View File

@ -151,6 +151,8 @@ public:
_ldimensions.resize(_ndimension);
_rdimensions.resize(_ndimension);
_simd_layout.resize(_ndimension);
_lstart.resize(_ndimension);
_lend.resize(_ndimension);
_ostride.resize(_ndimension);
_istride.resize(_ndimension);
@ -169,6 +171,8 @@ public:
_gdimensions[d] = _gdimensions[d]/2; // Remove a checkerboard
}
_ldimensions[d] = _gdimensions[d]/_processors[d];
_lstart[d] = _processor_coor[d]*_ldimensions[d];
_lend[d] = _processor_coor[d]*_ldimensions[d]+_ldimensions[d]-1;
// Use a reduced simd grid
_simd_layout[d] = simd_layout[d];

View File

@ -60,6 +60,7 @@ void CartesianCommunicator::ShmBufferFreeAll(void) {
/////////////////////////////////
// Grid information queries
/////////////////////////////////
int CartesianCommunicator::Dimensions(void) { return _ndimension; };
int CartesianCommunicator::IsBoss(void) { return _processor==0; };
int CartesianCommunicator::BossRank(void) { return 0; };
int CartesianCommunicator::ThisRank(void) { return _processor; };
@ -91,6 +92,7 @@ void CartesianCommunicator::GlobalSumVector(ComplexD *c,int N)
#if !defined( GRID_COMMS_MPI3) && !defined (GRID_COMMS_MPI3L)
int CartesianCommunicator::NodeCount(void) { return ProcessorCount();};
int CartesianCommunicator::RankCount(void) { return ProcessorCount();};
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,

View File

@ -148,6 +148,7 @@ class CartesianCommunicator {
int RankFromProcessorCoor(std::vector<int> &coor);
void ProcessorCoorFromRank(int rank,std::vector<int> &coor);
int Dimensions(void) ;
int IsBoss(void) ;
int BossRank(void) ;
int ThisRank(void) ;
@ -155,6 +156,7 @@ class CartesianCommunicator {
const std::vector<int> & ProcessorGrid(void) ;
int ProcessorCount(void) ;
int NodeCount(void) ;
int RankCount(void) ;
////////////////////////////////////////////////////////////////////////////////
// very VERY rarely (Log, serial RNG) we need world without a grid
@ -175,6 +177,8 @@ class CartesianCommunicator {
void GlobalSumVector(ComplexF *c,int N);
void GlobalSum(ComplexD &c);
void GlobalSumVector(ComplexD *c,int N);
void GlobalXOR(uint32_t &);
void GlobalXOR(uint64_t &);
template<class obj> void GlobalSum(obj &o){
typedef typename obj::scalar_type scalar_type;

View File

@ -83,6 +83,14 @@ void CartesianCommunicator::GlobalSum(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);

View File

@ -65,6 +65,7 @@ std::vector<int> CartesianCommunicator::MyGroup;
std::vector<void *> CartesianCommunicator::ShmCommBufs;
int CartesianCommunicator::NodeCount(void) { return GroupSize;};
int CartesianCommunicator::RankCount(void) { return WorldSize;};
#undef FORCE_COMMS
@ -509,6 +510,14 @@ void CartesianCommunicator::GlobalSum(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalXOR(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);

View File

@ -59,6 +59,8 @@ void CartesianCommunicator::GlobalSum(double &){}
void CartesianCommunicator::GlobalSum(uint32_t &){}
void CartesianCommunicator::GlobalSum(uint64_t &){}
void CartesianCommunicator::GlobalSumVector(double *,int N){}
void CartesianCommunicator::GlobalXOR(uint32_t &){}
void CartesianCommunicator::GlobalXOR(uint64_t &){}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_reduction.h
Copyright (C) 2015
@ -369,71 +369,6 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
}
};
/*
template<class vobj>
static void sliceMaddVectorSlow (Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
int Orthog,RealD scale=1.0)
{
// FIXME: Implementation is slow
// Best base the linear combination by constructing a
// set of vectors of size grid->_rdimensions[Orthog].
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
// If we based this on Cshift it would work for spread out
// but it would be even slower
for(int i=0;i<Nblock;i++){
ExtractSlice(Rslice,Y,i,Orthog);
ExtractSlice(Xslice,X,i,Orthog);
Rslice = Rslice + Xslice*(scale*a[i]);
InsertSlice(Rslice,R,i,Orthog);
}
};
template<class vobj>
static void sliceInnerProductVectorSlow( std::vector<ComplexD> & vec, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
// FIXME: Implementation is slow
// Look at localInnerProduct implementation,
// and do inside a site loop with block strided iterators
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::tensor_reduced scalar;
typedef typename scalar::scalar_object scomplex;
int Nblock = lhs._grid->GlobalDimensions()[Orthog];
vec.resize(Nblock);
std::vector<scomplex> sip(Nblock);
Lattice<scalar> IP(lhs._grid);
IP=localInnerProduct(lhs,rhs);
sliceSum(IP,sip,Orthog);
for(int ss=0;ss<Nblock;ss++){
vec[ss] = TensorRemove(sip[ss]);
}
}
*/
//////////////////////////////////////////////////////////////////////////////////////////
// FIXME: Implementation is slow
// If we based this on Cshift it would work for spread out
// but it would be even slower
//
// Repeated extract slice is inefficient
//
// Best base the linear combination by constructing a
// set of vectors of size grid->_rdimensions[Orthog].
//////////////////////////////////////////////////////////////////////////////////////////
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
{
int NN = BlockSolverGrid->_ndimension;
@ -453,7 +388,6 @@ inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Or
return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
}
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
@ -462,28 +396,103 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
for(int i=0;i<Nblock;i++){
ExtractSlice(Rslice,Y,i,Orthog);
for(int j=0;j<Nblock;j++){
ExtractSlice(Xslice,X,j,Orthog);
Rslice = Rslice + Xslice*(scale*aa(j,i));
}
InsertSlice(Rslice,R,i,Orthog);
assert( FullGrid->_simd_layout[Orthog]==1);
int nh = FullGrid->_ndimension;
int nl = SliceGrid->_ndimension;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
#pragma omp parallel
{
std::vector<vobj> s_x(Nblock);
#pragma omp for collapse(2)
for(int n=0;n<nblock;n++){
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = Y[o+i*ostride];
for(int j=0;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R[o+i*ostride]=dot;
}
}}
}
};
template<class vobj>
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
assert( FullGrid->_simd_layout[Orthog]==1);
int nh = FullGrid->_ndimension;
int nl = SliceGrid->_ndimension;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
#pragma omp parallel
{
std::vector<vobj> s_x(Nblock);
#pragma omp for collapse(2)
for(int n=0;n<nblock;n++){
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
s_x[i] = X[o+i*ostride];
}
vobj dot;
for(int i=0;i<Nblock;i++){
dot = s_x[0]*(scale*aa(0,i));
for(int j=1;j<Nblock;j++){
dot = dot + s_x[j]*(scale*aa(j,i));
}
R[o+i*ostride]=dot;
}
}}
}
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
// FIXME: Implementation is slow
// Not sure of best solution.. think about it
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
@ -497,22 +506,49 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
for(int i=0;i<Nblock;i++){
ExtractSlice(Lslice,lhs,i,Orthog);
for(int j=0;j<Nblock;j++){
ExtractSlice(Rslice,rhs,j,Orthog);
mat(i,j) = innerProduct(Lslice,Rslice);
}
assert( FullGrid->_simd_layout[Orthog]==1);
int nh = FullGrid->_ndimension;
int nl = SliceGrid->_ndimension;
//FIXME package in a convenient iterator
//Should loop over a plane orthogonal to direction "Orthog"
int stride=FullGrid->_slice_stride[Orthog];
int block =FullGrid->_slice_block [Orthog];
int nblock=FullGrid->_slice_nblock[Orthog];
int ostride=FullGrid->_ostride[Orthog];
typedef typename vobj::vector_typeD vector_typeD;
#pragma omp parallel
{
std::vector<vobj> Left(Nblock);
std::vector<vobj> Right(Nblock);
Eigen::MatrixXcd mat_thread = Eigen::MatrixXcd::Zero(Nblock,Nblock);
#pragma omp for collapse(2)
for(int n=0;n<nblock;n++){
for(int b=0;b<block;b++){
int o = n*stride + b;
for(int i=0;i<Nblock;i++){
Left [i] = lhs[o+i*ostride];
Right[i] = rhs[o+i*ostride];
}
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
auto tmp = innerProduct(Left[i],Right[j]);
vector_typeD rtmp = TensorRemove(tmp);
mat_thread(i,j) += Reduce(rtmp);
}}
}}
#pragma omp critical
{
mat += mat_thread;
}
}
#undef FORCE_DIAG
#ifdef FORCE_DIAG
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
if ( i != j ) mat(i,j)=0.0;
}
}
#endif
return;
}

View File

@ -551,7 +551,10 @@ void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
//Copy SIMD-vectorized lattice to array of scalar objects in lexicographic order
template<typename vobj, typename sobj>
typename std::enable_if<isSIMDvectorized<vobj>::value && !isSIMDvectorized<sobj>::value, void>::type unvectorizeToLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in){
typename std::enable_if<isSIMDvectorized<vobj>::value && !isSIMDvectorized<sobj>::value, void>::type
unvectorizeToLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in)
{
typedef typename vobj::vector_type vtype;
GridBase* in_grid = in._grid;
@ -590,6 +593,54 @@ typename std::enable_if<isSIMDvectorized<vobj>::value && !isSIMDvectorized<sobj>
extract1(in_vobj, out_ptrs, 0);
}
}
//Copy SIMD-vectorized lattice to array of scalar objects in lexicographic order
template<typename vobj, typename sobj>
typename std::enable_if<isSIMDvectorized<vobj>::value
&& !isSIMDvectorized<sobj>::value, void>::type
vectorizeFromLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
{
typedef typename vobj::vector_type vtype;
GridBase* grid = out._grid;
assert(in.size()==grid->lSites());
int ndim = grid->Nd();
int nsimd = vtype::Nsimd();
std::vector<std::vector<int> > icoor(nsimd);
for(int lane=0; lane < nsimd; lane++){
icoor[lane].resize(ndim);
grid->iCoorFromIindex(icoor[lane],lane);
}
parallel_for(uint64_t oidx = 0; oidx < grid->oSites(); oidx++){ //loop over outer index
//Assemble vector of pointers to output elements
std::vector<sobj*> ptrs(nsimd);
std::vector<int> ocoor(ndim);
grid->oCoorFromOindex(ocoor, oidx);
std::vector<int> lcoor(grid->Nd());
for(int lane=0; lane < nsimd; lane++){
for(int mu=0;mu<ndim;mu++){
lcoor[mu] = ocoor[mu] + grid->_rdimensions[mu]*icoor[lane][mu];
}
int lex;
Lexicographic::IndexFromCoor(lcoor, lex, grid->_ldimensions);
ptrs[lane] = &in[lex];
}
//pack from those ptrs
vobj vecobj;
merge1(vecobj, ptrs, 0);
out._odata[oidx] = vecobj;
}
}
//Convert a Lattice from one precision to another
template<class VobjOut, class VobjIn>
@ -615,7 +666,7 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
std::vector<SobjOut> in_slex_conv(in_grid->lSites());
unvectorizeToLexOrdArray(in_slex_conv, in);
parallel_for(int out_oidx=0;out_oidx<out_grid->oSites();out_oidx++){
parallel_for(uint64_t out_oidx=0;out_oidx<out_grid->oSites();out_oidx++){
std::vector<int> out_ocoor(ndim);
out_grid->oCoorFromOindex(out_ocoor, out_oidx);

File diff suppressed because it is too large Load Diff

View File

@ -27,6 +27,7 @@ directory
#ifndef GRID_ILDG_IO_H
#define GRID_ILDG_IO_H
#ifdef HAVE_LIME
#include <algorithm>
#include <fstream>
#include <iomanip>
@ -37,213 +38,677 @@ directory
#include <sys/utsname.h>
#include <unistd.h>
#ifdef HAVE_LIME
extern "C" { // for linkage
//C-Lime is a must have for this functionality
extern "C" {
#include "lime.h"
}
namespace Grid {
namespace QCD {
inline void ILDGGrid(GridBase *grid, ILDGField &header) {
assert(grid->_ndimension == 4); // emit error if not
header.dimension.resize(4);
header.boundary.resize(4);
for (int d = 0; d < 4; d++) {
header.dimension[d] = grid->_fdimensions[d];
// Read boundary conditions from ... ?
header.boundary[d] = std::string("periodic");
}
}
/////////////////////////////////
// Encode word types as strings
/////////////////////////////////
template<class word> inline std::string ScidacWordMnemonic(void){ return std::string("unknown"); }
template<> inline std::string ScidacWordMnemonic<double> (void){ return std::string("D"); }
template<> inline std::string ScidacWordMnemonic<float> (void){ return std::string("F"); }
template<> inline std::string ScidacWordMnemonic< int32_t>(void){ return std::string("I32_t"); }
template<> inline std::string ScidacWordMnemonic<uint32_t>(void){ return std::string("U32_t"); }
template<> inline std::string ScidacWordMnemonic< int64_t>(void){ return std::string("I64_t"); }
template<> inline std::string ScidacWordMnemonic<uint64_t>(void){ return std::string("U64_t"); }
inline void ILDGChecksum(uint32_t *buf, uint32_t buf_size_bytes,
uint32_t &csum) {
BinaryIO::Uint32Checksum(buf, buf_size_bytes, csum);
}
/////////////////////////////////////////
// Encode a generic tensor as a string
/////////////////////////////////////////
template<class vobj> std::string ScidacRecordTypeString(int &colors, int &spins, int & typesize,int &datacount) {
//////////////////////////////////////////////////////////////////////
// Utilities ; these are QCD aware
//////////////////////////////////////////////////////////////////////
template <class GaugeField>
inline void ILDGStatistics(GaugeField &data, ILDGField &header) {
// How to convert data precision etc...
header.link_trace = Grid::QCD::WilsonLoops<PeriodicGimplR>::linkTrace(data);
header.plaquette = Grid::QCD::WilsonLoops<PeriodicGimplR>::avgPlaquette(data);
// header.polyakov =
}
typedef typename getPrecision<vobj>::real_scalar_type stype;
// Forcing QCD here
template <class fobj, class sobj>
struct ILDGMunger {
void operator()(fobj &in, sobj &out, uint32_t &csum) {
for (int mu = 0; mu < 4; mu++) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
out(mu)()(i, j) = in(mu)()(i, j);
}
}
}
ILDGChecksum((uint32_t *)&in, sizeof(in), csum);
};
};
int _ColourN = indexRank<ColourIndex,vobj>();
int _ColourScalar = isScalar<ColourIndex,vobj>();
int _ColourVector = isVector<ColourIndex,vobj>();
int _ColourMatrix = isMatrix<ColourIndex,vobj>();
template <class fobj, class sobj>
struct ILDGUnmunger {
void operator()(sobj &in, fobj &out, uint32_t &csum) {
for (int mu = 0; mu < 4; mu++) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
out(mu)()(i, j) = in(mu)()(i, j);
}
}
}
ILDGChecksum((uint32_t *)&out, sizeof(out), csum);
};
};
int _SpinN = indexRank<SpinIndex,vobj>();
int _SpinScalar = isScalar<SpinIndex,vobj>();
int _SpinVector = isVector<SpinIndex,vobj>();
int _SpinMatrix = isMatrix<SpinIndex,vobj>();
////////////////////////////////////////////////////////////////////////////////
// Write and read from fstream; compute header offset for payload
////////////////////////////////////////////////////////////////////////////////
enum ILDGstate {ILDGread, ILDGwrite};
int _LorentzN = indexRank<LorentzIndex,vobj>();
int _LorentzScalar = isScalar<LorentzIndex,vobj>();
int _LorentzVector = isVector<LorentzIndex,vobj>();
int _LorentzMatrix = isMatrix<LorentzIndex,vobj>();
class ILDGIO : public BinaryIO {
FILE *File;
LimeWriter *LimeW;
LimeRecordHeader *LimeHeader;
LimeReader *LimeR;
std::string filename;
std::stringstream stream;
stream << "GRID_";
stream << ScidacWordMnemonic<stype>();
// std::cout << " Lorentz N/S/V/M : " << _LorentzN<<" "<<_LorentzScalar<<"/"<<_LorentzVector<<"/"<<_LorentzMatrix<<std::endl;
// std::cout << " Spin N/S/V/M : " << _SpinN <<" "<<_SpinScalar <<"/"<<_SpinVector <<"/"<<_SpinMatrix<<std::endl;
// std::cout << " Colour N/S/V/M : " << _ColourN <<" "<<_ColourScalar <<"/"<<_ColourVector <<"/"<<_ColourMatrix<<std::endl;
if ( _LorentzVector ) stream << "_LorentzVector"<<_LorentzN;
if ( _LorentzMatrix ) stream << "_LorentzMatrix"<<_LorentzN;
if ( _SpinVector ) stream << "_SpinVector"<<_SpinN;
if ( _SpinMatrix ) stream << "_SpinMatrix"<<_SpinN;
if ( _ColourVector ) stream << "_ColourVector"<<_ColourN;
if ( _ColourMatrix ) stream << "_ColourMatrix"<<_ColourN;
if ( _ColourScalar && _LorentzScalar && _SpinScalar ) stream << "_Complex";
typesize = sizeof(typename vobj::scalar_type);
if ( _ColourMatrix ) typesize*= _ColourN*_ColourN;
else typesize*= _ColourN;
if ( _SpinMatrix ) typesize*= _SpinN*_SpinN;
else typesize*= _SpinN;
colors = _ColourN;
spins = _SpinN;
datacount = _LorentzN;
return stream.str();
}
template<class vobj> std::string ScidacRecordTypeString(Lattice<vobj> & lat,int &colors, int &spins, int & typesize,int &datacount) {
return ScidacRecordTypeString<vobj>(colors,spins,typesize,datacount);
};
////////////////////////////////////////////////////////////
// Helper to fill out metadata
////////////////////////////////////////////////////////////
template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
FieldMetaData &header,
scidacRecord & _scidacRecord,
scidacFile & _scidacFile)
{
typedef typename getPrecision<vobj>::real_scalar_type stype;
/////////////////////////////////////
// Pull Grid's metadata
/////////////////////////////////////
PrepareMetaData(field,header);
/////////////////////////////////////
// Scidac Private File structure
/////////////////////////////////////
_scidacFile = scidacFile(field._grid);
/////////////////////////////////////
// Scidac Private Record structure
/////////////////////////////////////
scidacRecord sr;
sr.datatype = ScidacRecordTypeString(field,sr.colors,sr.spins,sr.typesize,sr.datacount);
sr.date = header.creation_date;
sr.precision = ScidacWordMnemonic<stype>();
sr.recordtype = GRID_IO_FIELD;
_scidacRecord = sr;
std::cout << GridLogMessage << "Build SciDAC datatype " <<sr.datatype<<std::endl;
}
///////////////////////////////////////////////////////
// Scidac checksum
///////////////////////////////////////////////////////
static int scidacChecksumVerify(scidacChecksum &scidacChecksum_,uint32_t scidac_csuma,uint32_t scidac_csumb)
{
uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
if ( scidac_csuma !=scidac_checksuma) return 0;
if ( scidac_csumb !=scidac_checksumb) return 0;
return 1;
}
////////////////////////////////////////////////////////////////////////////////////
// Lime, ILDG and Scidac I/O classes
////////////////////////////////////////////////////////////////////////////////////
class GridLimeReader : public BinaryIO {
public:
ILDGIO(std::string file, ILDGstate RW) {
filename = file;
if (RW == ILDGwrite){
File = fopen(file.c_str(), "w");
// check if opened correctly
///////////////////////////////////////////////////
// FIXME: format for RNG? Now just binary out instead
///////////////////////////////////////////////////
LimeW = limeCreateWriter(File);
} else {
File = fopen(file.c_str(), "r");
// check if opened correctly
FILE *File;
LimeReader *LimeR;
std::string filename;
LimeR = limeCreateReader(File);
/////////////////////////////////////////////
// Open the file
/////////////////////////////////////////////
void open(std::string &_filename)
{
filename= _filename;
File = fopen(filename.c_str(), "r");
LimeR = limeCreateReader(File);
}
/////////////////////////////////////////////
// Close the file
/////////////////////////////////////////////
void close(void){
fclose(File);
// limeDestroyReader(LimeR);
}
////////////////////////////////////////////
// Read a generic lattice field and verify checksum
////////////////////////////////////////////
template<class vobj>
void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
{
typedef typename vobj::scalar_object sobj;
scidacChecksum scidacChecksum_;
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
std::string format = getFormatString<vobj>();
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
std::cout << GridLogMessage << limeReaderType(LimeR) <<std::endl;
if ( strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
off_t offset= ftell(File);
BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::readLatticeObject< sobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
/////////////////////////////////////////////
// Insist checksum is next record
/////////////////////////////////////////////
readLimeObject(scidacChecksum_,std::string("scidacChecksum"),record_name);
/////////////////////////////////////////////
// Verify checksums
/////////////////////////////////////////////
scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb);
return;
}
}
}
////////////////////////////////////////////
// Read a generic serialisable object
////////////////////////////////////////////
template<class serialisable_object>
void readLimeObject(serialisable_object &object,std::string object_name,std::string record_name)
{
std::string xmlstring;
// should this be a do while; can we miss a first record??
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
~ILDGIO() { fclose(File); }
uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
int createHeader(std::string message, int MB, int ME, size_t PayloadSize, LimeWriter* L){
if ( strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
std::vector<char> xmlc(nbytes+1,'\0');
limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);
XmlReader RD(&xmlc[0],"");
read(RD,object_name,object);
return;
}
}
assert(0);
}
};
class GridLimeWriter : public BinaryIO {
public:
///////////////////////////////////////////////////
// FIXME: format for RNG? Now just binary out instead
///////////////////////////////////////////////////
FILE *File;
LimeWriter *LimeW;
std::string filename;
void open(std::string &_filename) {
filename= _filename;
File = fopen(filename.c_str(), "w");
LimeW = limeCreateWriter(File); assert(LimeW != NULL );
}
/////////////////////////////////////////////
// Close the file
/////////////////////////////////////////////
void close(void) {
fclose(File);
// limeDestroyWriter(LimeW);
}
///////////////////////////////////////////////////////
// Lime utility functions
///////////////////////////////////////////////////////
int createLimeRecordHeader(std::string message, int MB, int ME, size_t PayloadSize)
{
LimeRecordHeader *h;
h = limeCreateHeader(MB, ME, const_cast<char *>(message.c_str()), PayloadSize);
int status = limeWriteRecordHeader(h, L);
if (status < 0) {
std::cerr << "ILDG Header error\n";
return status;
}
assert(limeWriteRecordHeader(h, LimeW) >= 0);
limeDestroyHeader(h);
return LIME_SUCCESS;
}
////////////////////////////////////////////
// Write a generic serialisable object
////////////////////////////////////////////
template<class serialisable_object>
void writeLimeObject(int MB,int ME,serialisable_object &object,std::string object_name,std::string record_name)
{
std::string xmlstring;
{
XmlWriter WR("","");
write(WR,object_name,object);
xmlstring = WR.XmlString();
}
uint64_t nbytes = xmlstring.size();
int err;
LimeRecordHeader *h = limeCreateHeader(MB, ME,(char *)record_name.c_str(), nbytes); assert(h!= NULL);
unsigned int writeHeader(ILDGField &header) {
// write header in LIME
n_uint64_t nbytes;
int MB_flag = 1, ME_flag = 0;
err=limeWriteRecordHeader(h, LimeW); assert(err>=0);
err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); assert(err>=0);
err=limeWriterCloseRecord(LimeW); assert(err>=0);
limeDestroyHeader(h);
}
////////////////////////////////////////////
// Write a generic lattice field and csum
////////////////////////////////////////////
template<class vobj>
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
{
////////////////////////////////////////////
// Create record header
////////////////////////////////////////////
typedef typename vobj::scalar_object sobj;
int err;
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
uint64_t PayloadSize = sizeof(sobj) * field._grid->_gsites;
createLimeRecordHeader(record_name, 0, 0, PayloadSize);
char message[] = "ildg-format";
nbytes = strlen(message);
LimeHeader = limeCreateHeader(MB_flag, ME_flag, message, nbytes);
limeWriteRecordHeader(LimeHeader, LimeW);
limeDestroyHeader(LimeHeader);
// save the xml header here
// use the xml_writer to c++ streams in pugixml
// and convert to char message
limeWriteRecordData(message, &nbytes, LimeW);
limeWriterCloseRecord(LimeW);
////////////////////////////////////////////////////////////////////
// NB: FILE and iostream are jointly writing disjoint sequences in the
// the same file through different file handles (integer units).
//
// These are both buffered, so why I think this code is right is as follows.
//
// i) write record header to FILE *File, telegraphing the size.
// ii) ftell reads the offset from FILE *File .
// iii) iostream / MPI Open independently seek this offset. Write sequence direct to disk.
// Closes iostream and flushes.
// iv) fseek on FILE * to end of this disjoint section.
// v) Continue writing scidac record.
////////////////////////////////////////////////////////////////////
off_t offset = ftell(File);
std::string format = getFormatString<vobj>();
BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
err=limeWriterCloseRecord(LimeW); assert(err>=0);
////////////////////////////////////////
// Write checksum element, propagaing forward from the BinaryIO
// Always pair a checksum with a binary object, and close message
////////////////////////////////////////
scidacChecksum checksum;
std::stringstream streama; streama << std::hex << scidac_csuma;
std::stringstream streamb; streamb << std::hex << scidac_csumb;
checksum.suma= streama.str();
checksum.sumb= streamb.str();
std::cout << GridLogMessage<<" writing scidac checksums "<<std::hex<<scidac_csuma<<"/"<<scidac_csumb<<std::dec<<std::endl;
writeLimeObject(0,1,checksum,std::string("scidacChecksum" ),std::string(SCIDAC_CHECKSUM));
}
};
return 0;
}
unsigned int readHeader(ILDGField &header) {
return 0;
class ScidacWriter : public GridLimeWriter {
public:
template<class SerialisableUserFile>
void writeScidacFileRecord(GridBase *grid,SerialisableUserFile &_userFile)
{
scidacFile _scidacFile(grid);
writeLimeObject(1,0,_scidacFile,_scidacFile.SerialisableClassName(),std::string(SCIDAC_PRIVATE_FILE_XML));
writeLimeObject(0,1,_userFile,_userFile.SerialisableClassName(),std::string(SCIDAC_FILE_XML));
}
////////////////////////////////////////////////
// Write generic lattice field in scidac format
////////////////////////////////////////////////
template <class vobj, class userRecord>
void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord)
{
typedef typename vobj::scalar_object sobj;
uint64_t nbytes;
GridBase * grid = field._grid;
////////////////////////////////////////
// fill the Grid header
////////////////////////////////////////
FieldMetaData header;
scidacRecord _scidacRecord;
scidacFile _scidacFile;
ScidacMetaData(field,header,_scidacRecord,_scidacFile);
//////////////////////////////////////////////
// Fill the Lime file record by record
//////////////////////////////////////////////
writeLimeObject(1,0,header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
writeLimeObject(0,0,_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA)); // Closes message with checksum
}
};
class IldgWriter : public ScidacWriter {
public:
///////////////////////////////////
// A little helper
///////////////////////////////////
void writeLimeIldgLFN(std::string &LFN)
{
uint64_t PayloadSize = LFN.size();
int err;
createLimeRecordHeader(ILDG_DATA_LFN, 0 , 0, PayloadSize);
err=limeWriteRecordData(const_cast<char*>(LFN.c_str()), &PayloadSize,LimeW); assert(err>=0);
err=limeWriterCloseRecord(LimeW); assert(err>=0);
}
////////////////////////////////////////////////////////////////
// Special ILDG operations ; gauge configs only.
// Don't require scidac records EXCEPT checksum
// Use Grid MetaData object if present.
////////////////////////////////////////////////////////////////
template <class vsimd>
uint32_t readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu) {
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef LorentzColourMatrixD sobjd;
typedef LorentzColourMatrixF sobjf;
typedef iLorentzColourMatrix<vsimd> itype;
typedef LorentzColourMatrix sobj;
GridBase *grid = Umu._grid;
ILDGField header;
readHeader(header);
// now just the conf, ignore the header
std::string format = std::string("IEEE64BIG");
do {limeReaderNextRecord(LimeR);}
while (strncmp(limeReaderType(LimeR), "ildg-binary-data",16));
n_uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
ILDGtype ILDGt(true, LimeR);
// this is special for double prec data, just for the moment
uint32_t csum = BinaryIO::readObjectParallel< itype, sobjd >(
Umu, filename, ILDGMunger<sobjd, sobj>(), 0, format, ILDGt);
// Check configuration
// todo
return csum;
}
template <class vsimd>
uint32_t writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu, std::string format) {
void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,int sequence,std::string LFN,std::string description)
{
GridBase * grid = Umu._grid;
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef typename vobj::scalar_object sobj;
typedef LorentzColourMatrixD fobj;
ILDGField header;
// fill the header
header.floating_point = format;
uint64_t nbytes;
ILDGUnmunger<fobj, sobj> munge;
unsigned int offset = writeHeader(header);
////////////////////////////////////////
// fill the Grid header
////////////////////////////////////////
FieldMetaData header;
scidacRecord _scidacRecord;
scidacFile _scidacFile;
BinaryIO::Uint32Checksum<vobj, fobj>(Umu, munge, header.checksum);
ScidacMetaData(Umu,header,_scidacRecord,_scidacFile);
// Write data record header
n_uint64_t PayloadSize = sizeof(fobj) * Umu._grid->_gsites;
createHeader("ildg-binary-data", 0, 1, PayloadSize, LimeW);
std::string format = header.floating_point;
header.ensemble_id = description;
header.ensemble_label = description;
header.sequence_number = sequence;
header.ildg_lfn = LFN;
ILDGtype ILDGt(true, LimeW);
uint32_t csum = BinaryIO::writeObjectParallel<vobj, fobj>(
Umu, filename, munge, 0, header.floating_point, ILDGt);
assert ( (format == std::string("IEEE32BIG"))
||(format == std::string("IEEE64BIG")) );
limeWriterCloseRecord(LimeW);
//////////////////////////////////////////////////////
// Fill ILDG header data struct
//////////////////////////////////////////////////////
ildgFormat ildgfmt ;
ildgfmt.field = std::string("su3gauge");
// Last record
// the logical file name LNF
// look into documentation on how to generate this string
std::string LNF = "empty";
if ( format == std::string("IEEE32BIG") ) {
ildgfmt.precision = 32;
} else {
ildgfmt.precision = 64;
}
ildgfmt.version = 1.0;
ildgfmt.lx = header.dimension[0];
ildgfmt.ly = header.dimension[1];
ildgfmt.lz = header.dimension[2];
ildgfmt.lt = header.dimension[3];
assert(header.nd==4);
assert(header.nd==header.dimension.size());
//////////////////////////////////////////////////////////////////////////////
// Fill the USQCD info field
//////////////////////////////////////////////////////////////////////////////
usqcdInfo info;
info.version=1.0;
info.plaq = header.plaquette;
info.linktr = header.link_trace;
PayloadSize = sizeof(LNF);
createHeader("ildg-binary-lfn", 1 , 1, PayloadSize, LimeW);
limeWriteRecordData(const_cast<char*>(LNF.c_str()), &PayloadSize, LimeW);
limeWriterCloseRecord(LimeW);
return csum;
std::cout << GridLogMessage << " Writing config; IldgIO "<<std::endl;
//////////////////////////////////////////////
// Fill the Lime file record by record
//////////////////////////////////////////////
writeLimeObject(1,0,header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
writeLimeObject(0,0,_scidacFile,_scidacFile.SerialisableClassName(),std::string(SCIDAC_PRIVATE_FILE_XML));
writeLimeObject(0,1,info,info.SerialisableClassName(),std::string(SCIDAC_FILE_XML));
writeLimeObject(1,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
writeLimeObject(0,0,info,info.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
writeLimeObject(0,0,ildgfmt,std::string("ildgFormat") ,std::string(ILDG_FORMAT)); // rec
writeLimeIldgLFN(header.ildg_lfn); // rec
writeLimeLatticeBinaryObject(Umu,std::string(ILDG_BINARY_DATA)); // Closes message with checksum
// limeDestroyWriter(LimeW);
fclose(File);
}
// format for RNG? Now just binary out
};
}
}
class IldgReader : public GridLimeReader {
public:
////////////////////////////////////////////////////////////////
// Read either Grid/SciDAC/ILDG configuration
// Don't require scidac records EXCEPT checksum
// Use Grid MetaData object if present.
// Else use ILDG MetaData object if present.
// Else use SciDAC MetaData object if present.
////////////////////////////////////////////////////////////////
template <class vsimd>
void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu, FieldMetaData &FieldMetaData_) {
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef typename GaugeField::vector_object vobj;
typedef typename vobj::scalar_object sobj;
typedef LorentzColourMatrixF fobj;
typedef LorentzColourMatrixD dobj;
GridBase *grid = Umu._grid;
std::vector<int> dims = Umu._grid->FullDimensions();
assert(dims.size()==4);
// Metadata holders
ildgFormat ildgFormat_ ;
std::string ildgLFN_ ;
scidacChecksum scidacChecksum_;
usqcdInfo usqcdInfo_ ;
// track what we read from file
int found_ildgFormat =0;
int found_ildgLFN =0;
int found_scidacChecksum=0;
int found_usqcdInfo =0;
int found_ildgBinary =0;
int found_FieldMetaData =0;
uint32_t nersc_csum;
uint32_t scidac_csuma;
uint32_t scidac_csumb;
// Binary format
std::string format;
//////////////////////////////////////////////////////////////////////////
// Loop over all records
// -- Order is poorly guaranteed except ILDG header preceeds binary section.
// -- Run like an event loop.
// -- Impose trust hierarchy. Grid takes precedence & look for ILDG, and failing
// that Scidac.
// -- Insist on Scidac checksum record.
//////////////////////////////////////////////////////////////////////////
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
//////////////////////////////////////////////////////////////////
// If not BINARY_DATA read a string and parse
//////////////////////////////////////////////////////////////////
if ( strncmp(limeReaderType(LimeR), ILDG_BINARY_DATA,strlen(ILDG_BINARY_DATA) ) ) {
// Copy out the string
std::vector<char> xmlc(nbytes+1,'\0');
limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);
std::cout << GridLogMessage<< "Non binary record :" <<limeReaderType(LimeR) <<std::endl; //<<"\n"<<(&xmlc[0])<<std::endl;
//////////////////////////////////
// ILDG format record
if ( !strncmp(limeReaderType(LimeR), ILDG_FORMAT,strlen(ILDG_FORMAT)) ) {
XmlReader RD(&xmlc[0],"");
read(RD,"ildgFormat",ildgFormat_);
if ( ildgFormat_.precision == 64 ) format = std::string("IEEE64BIG");
if ( ildgFormat_.precision == 32 ) format = std::string("IEEE32BIG");
assert( ildgFormat_.lx == dims[0]);
assert( ildgFormat_.ly == dims[1]);
assert( ildgFormat_.lz == dims[2]);
assert( ildgFormat_.lt == dims[3]);
found_ildgFormat = 1;
}
if ( !strncmp(limeReaderType(LimeR), ILDG_DATA_LFN,strlen(ILDG_DATA_LFN)) ) {
FieldMetaData_.ildg_lfn = std::string(&xmlc[0]);
found_ildgLFN = 1;
}
if ( !strncmp(limeReaderType(LimeR), GRID_FORMAT,strlen(ILDG_FORMAT)) ) {
XmlReader RD(&xmlc[0],"");
read(RD,"FieldMetaData",FieldMetaData_);
format = FieldMetaData_.floating_point;
assert(FieldMetaData_.dimension[0] == dims[0]);
assert(FieldMetaData_.dimension[1] == dims[1]);
assert(FieldMetaData_.dimension[2] == dims[2]);
assert(FieldMetaData_.dimension[3] == dims[3]);
found_FieldMetaData = 1;
}
if ( !strncmp(limeReaderType(LimeR), SCIDAC_RECORD_XML,strlen(SCIDAC_RECORD_XML)) ) {
std::string xmls(&xmlc[0]);
// is it a USQCD info field
if ( xmls.find(std::string("usqcdInfo")) != std::string::npos ) {
std::cout << GridLogMessage<<"...found a usqcdInfo field"<<std::endl;
XmlReader RD(&xmlc[0],"");
read(RD,"usqcdInfo",usqcdInfo_);
found_usqcdInfo = 1;
}
}
if ( !strncmp(limeReaderType(LimeR), SCIDAC_CHECKSUM,strlen(SCIDAC_CHECKSUM)) ) {
XmlReader RD(&xmlc[0],"");
read(RD,"scidacChecksum",scidacChecksum_);
found_scidacChecksum = 1;
}
} else {
/////////////////////////////////
// Binary data
/////////////////////////////////
std::cout << GridLogMessage << "ILDG Binary record found : " ILDG_BINARY_DATA << std::endl;
off_t offset= ftell(File);
if ( format == std::string("IEEE64BIG") ) {
GaugeSimpleMunger<dobj, sobj> munge;
BinaryIO::readLatticeObject< vobj, dobj >(Umu, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
} else {
GaugeSimpleMunger<fobj, sobj> munge;
BinaryIO::readLatticeObject< vobj, fobj >(Umu, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
}
found_ildgBinary = 1;
}
}
//////////////////////////////////////////////////////
// Minimally must find binary segment and checksum
// Since this is an ILDG reader require ILDG format
//////////////////////////////////////////////////////
assert(found_ildgBinary);
assert(found_ildgFormat);
assert(found_scidacChecksum);
// Must find something with the lattice dimensions
assert(found_FieldMetaData||found_ildgFormat);
if ( found_FieldMetaData ) {
std::cout << GridLogMessage<<"Grid MetaData was record found: configuration was probably written by Grid ! Yay ! "<<std::endl;
} else {
assert(found_ildgFormat);
assert ( ildgFormat_.field == std::string("su3gauge") );
///////////////////////////////////////////////////////////////////////////////////////
// Populate our Grid metadata as best we can
///////////////////////////////////////////////////////////////////////////////////////
std::ostringstream vers; vers << ildgFormat_.version;
FieldMetaData_.hdr_version = vers.str();
FieldMetaData_.data_type = std::string("4D_SU3_GAUGE_3X3");
FieldMetaData_.nd=4;
FieldMetaData_.dimension.resize(4);
FieldMetaData_.dimension[0] = ildgFormat_.lx ;
FieldMetaData_.dimension[1] = ildgFormat_.ly ;
FieldMetaData_.dimension[2] = ildgFormat_.lz ;
FieldMetaData_.dimension[3] = ildgFormat_.lt ;
if ( found_usqcdInfo ) {
FieldMetaData_.plaquette = usqcdInfo_.plaq;
FieldMetaData_.link_trace= usqcdInfo_.linktr;
std::cout << GridLogMessage <<"This configuration was probably written by USQCD "<<std::endl;
std::cout << GridLogMessage <<"USQCD xml record Plaquette : "<<FieldMetaData_.plaquette<<std::endl;
std::cout << GridLogMessage <<"USQCD xml record LinkTrace : "<<FieldMetaData_.link_trace<<std::endl;
} else {
FieldMetaData_.plaquette = 0.0;
FieldMetaData_.link_trace= 0.0;
std::cout << GridLogWarning << "This configuration is unsafe with no plaquette records that can verify it !!! "<<std::endl;
}
}
////////////////////////////////////////////////////////////
// Really really want to mandate a scidac checksum
////////////////////////////////////////////////////////////
if ( found_scidacChecksum ) {
FieldMetaData_.scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
FieldMetaData_.scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb);
assert( scidac_csuma ==FieldMetaData_.scidac_checksuma);
assert( scidac_csumb ==FieldMetaData_.scidac_checksumb);
std::cout << GridLogMessage<<"SciDAC checksums match " << std::endl;
} else {
std::cout << GridLogWarning<<"SciDAC checksums not found. This is unsafe. " << std::endl;
assert(0); // Can I insist always checksum ?
}
if ( found_FieldMetaData || found_usqcdInfo ) {
FieldMetaData checker;
GaugeStatistics(Umu,checker);
assert(fabs(checker.plaquette - FieldMetaData_.plaquette )<1.0e-5);
assert(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5);
std::cout << GridLogMessage<<"Plaquette and link trace match " << std::endl;
}
}
};
}}
//HAVE_LIME
#endif

View File

@ -34,47 +34,198 @@ extern "C" { // for linkage
namespace Grid {
struct ILDGtype {
bool is_ILDG;
LimeWriter* LW;
LimeReader* LR;
/////////////////////////////////////////////////////////////////////////////////
// Data representation of records that enter ILDG and SciDac formats
/////////////////////////////////////////////////////////////////////////////////
ILDGtype(bool is, LimeWriter* L) : is_ILDG(is), LW(L), LR(NULL) {}
ILDGtype(bool is, LimeReader* L) : is_ILDG(is), LW(NULL), LR(L) {}
ILDGtype() : is_ILDG(false), LW(NULL), LR(NULL) {}
};
#define GRID_FORMAT "grid-format"
#define ILDG_FORMAT "ildg-format"
#define ILDG_BINARY_DATA "ildg-binary-data"
#define ILDG_DATA_LFN "ildg-data-lfn"
#define SCIDAC_CHECKSUM "scidac-checksum"
#define SCIDAC_PRIVATE_FILE_XML "scidac-private-file-xml"
#define SCIDAC_FILE_XML "scidac-file-xml"
#define SCIDAC_PRIVATE_RECORD_XML "scidac-private-record-xml"
#define SCIDAC_RECORD_XML "scidac-record-xml"
#define SCIDAC_BINARY_DATA "scidac-binary-data"
// Unused SCIDAC records names; could move to support this functionality
#define SCIDAC_SITELIST "scidac-sitelist"
class ILDGField {
////////////////////////////////////////////////////////////
const int GRID_IO_SINGLEFILE = 0; // hardcode lift from QIO compat
const int GRID_IO_MULTIFILE = 1; // hardcode lift from QIO compat
const int GRID_IO_FIELD = 0; // hardcode lift from QIO compat
const int GRID_IO_GLOBAL = 1; // hardcode lift from QIO compat
////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////
// QIO uses mandatory "private" records fixed format
// Private is in principle "opaque" however it can't be changed now because that would break existing
// file compatability, so should be correct to assume the undocumented but defacto file structure.
/////////////////////////////////////////////////////////////////////////////////
////////////////////////
// Scidac private file xml
// <?xml version="1.0" encoding="UTF-8"?><scidacFile><version>1.1</version><spacetime>4</spacetime><dims>16 16 16 32 </dims><volfmt>0</volfmt></scidacFile>
////////////////////////
struct scidacFile : Serializable {
public:
// header strings (not in order)
std::vector<int> dimension;
std::vector<std::string> boundary;
int data_start;
std::string hdr_version;
std::string storage_format;
// Checks on data
double link_trace;
double plaquette;
uint32_t checksum;
unsigned int sequence_number;
std::string data_type;
std::string ensemble_id;
std::string ensemble_label;
std::string creator;
std::string creator_hardware;
std::string creation_date;
std::string archive_date;
std::string floating_point;
};
}
#else
namespace Grid {
GRID_SERIALIZABLE_CLASS_MEMBERS(scidacFile,
double, version,
int, spacetime,
std::string, dims, // must convert to int
int, volfmt);
struct ILDGtype {
bool is_ILDG;
ILDGtype() : is_ILDG(false) {}
};
}
std::vector<int> getDimensions(void) {
std::stringstream stream(dims);
std::vector<int> dimensions;
int n;
while(stream >> n){
dimensions.push_back(n);
}
return dimensions;
}
void setDimensions(std::vector<int> dimensions) {
char delimiter = ' ';
std::stringstream stream;
for(int i=0;i<dimensions.size();i++){
stream << dimensions[i];
if ( i != dimensions.size()-1) {
stream << delimiter <<std::endl;
}
}
dims = stream.str();
}
// Constructor provides Grid
scidacFile() =default; // default constructor
scidacFile(GridBase * grid){
version = 1.0;
spacetime = grid->_ndimension;
setDimensions(grid->FullDimensions());
volfmt = GRID_IO_SINGLEFILE;
}
};
///////////////////////////////////////////////////////////////////////
// scidac-private-record-xml : example
// <scidacRecord>
// <version>1.1</version><date>Tue Jul 26 21:14:44 2011 UTC</date><recordtype>0</recordtype>
// <datatype>QDP_D3_ColorMatrix</datatype><precision>D</precision><colors>3</colors><spins>4</spins>
// <typesize>144</typesize><datacount>4</datacount>
// </scidacRecord>
///////////////////////////////////////////////////////////////////////
struct scidacRecord : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(scidacRecord,
double, version,
std::string, date,
int, recordtype,
std::string, datatype,
std::string, precision,
int, colors,
int, spins,
int, typesize,
int, datacount);
scidacRecord() { version =1.0; }
};
////////////////////////
// ILDG format
////////////////////////
struct ildgFormat : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ildgFormat,
double, version,
std::string, field,
int, precision,
int, lx,
int, ly,
int, lz,
int, lt);
ildgFormat() { version=1.0; };
};
////////////////////////
// USQCD info
////////////////////////
struct usqcdInfo : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(usqcdInfo,
double, version,
double, plaq,
double, linktr,
std::string, info);
usqcdInfo() {
version=1.0;
};
};
////////////////////////
// Scidac Checksum
////////////////////////
struct scidacChecksum : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(scidacChecksum,
double, version,
std::string, suma,
std::string, sumb);
scidacChecksum() {
version=1.0;
};
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Type: scidac-file-xml <title>MILC ILDG archival gauge configuration</title>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Type:
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////
// Scidac private file xml
// <?xml version="1.0" encoding="UTF-8"?><scidacFile><version>1.1</version><spacetime>4</spacetime><dims>16 16 16 32 </dims><volfmt>0</volfmt></scidacFile>
////////////////////////
#if 0
////////////////////////////////////////////////////////////////////////////////////////
// From http://www.physics.utah.edu/~detar/scidac/qio_2p3.pdf
////////////////////////////////////////////////////////////////////////////////////////
struct usqcdPropFile : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(usqcdPropFile,
double, version,
std::string, type,
std::string, info);
usqcdPropFile() {
version=1.0;
};
};
struct usqcdSourceInfo : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(usqcdSourceInfo,
double, version,
std::string, info);
usqcdSourceInfo() {
version=1.0;
};
};
struct usqcdPropInfo : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(usqcdPropInfo,
double, version,
int, spin,
int, color,
std::string, info);
usqcdPropInfo() {
version=1.0;
};
};
#endif
}
#endif
#endif

325
lib/parallelIO/MetaData.h Normal file
View File

@ -0,0 +1,325 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/parallelIO/NerscIO.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <map>
#include <unistd.h>
#include <sys/utsname.h>
#include <pwd.h>
namespace Grid {
///////////////////////////////////////////////////////
// Precision mapping
///////////////////////////////////////////////////////
template<class vobj> static std::string getFormatString (void)
{
std::string format;
typedef typename getPrecision<vobj>::real_scalar_type stype;
if ( sizeof(stype) == sizeof(float) ) {
format = std::string("IEEE32BIG");
}
if ( sizeof(stype) == sizeof(double) ) {
format = std::string("IEEE64BIG");
}
return format;
}
////////////////////////////////////////////////////////////////////////////////
// header specification/interpretation
////////////////////////////////////////////////////////////////////////////////
class FieldMetaData : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(FieldMetaData,
int, nd,
std::vector<int>, dimension,
std::vector<std::string>, boundary,
int, data_start,
std::string, hdr_version,
std::string, storage_format,
double, link_trace,
double, plaquette,
uint32_t, checksum,
uint32_t, scidac_checksuma,
uint32_t, scidac_checksumb,
unsigned int, sequence_number,
std::string, data_type,
std::string, ensemble_id,
std::string, ensemble_label,
std::string, ildg_lfn,
std::string, creator,
std::string, creator_hardware,
std::string, creation_date,
std::string, archive_date,
std::string, floating_point);
FieldMetaData(void) {
nd=4;
dimension.resize(4);
boundary.resize(4);
}
};
namespace QCD {
using namespace Grid;
//////////////////////////////////////////////////////////////////////
// Bit and Physical Checksumming and QA of data
//////////////////////////////////////////////////////////////////////
inline void GridMetaData(GridBase *grid,FieldMetaData &header)
{
int nd = grid->_ndimension;
header.nd = nd;
header.dimension.resize(nd);
header.boundary.resize(nd);
for(int d=0;d<nd;d++) {
header.dimension[d] = grid->_fdimensions[d];
}
for(int d=0;d<nd;d++) {
header.boundary[d] = std::string("PERIODIC");
}
}
inline void MachineCharacteristics(FieldMetaData &header)
{
// Who
struct passwd *pw = getpwuid (getuid());
if (pw) header.creator = std::string(pw->pw_name);
// When
std::time_t t = std::time(nullptr);
std::tm tm_ = *std::localtime(&t);
std::ostringstream oss;
// oss << std::put_time(&tm_, "%c %Z");
header.creation_date = oss.str();
header.archive_date = header.creation_date;
// What
struct utsname name; uname(&name);
header.creator_hardware = std::string(name.nodename)+"-";
header.creator_hardware+= std::string(name.machine)+"-";
header.creator_hardware+= std::string(name.sysname)+"-";
header.creator_hardware+= std::string(name.release);
}
#define dump_meta_data(field, s) \
s << "BEGIN_HEADER" << std::endl; \
s << "HDR_VERSION = " << field.hdr_version << std::endl; \
s << "DATATYPE = " << field.data_type << std::endl; \
s << "STORAGE_FORMAT = " << field.storage_format << std::endl; \
for(int i=0;i<4;i++){ \
s << "DIMENSION_" << i+1 << " = " << field.dimension[i] << std::endl ; \
} \
s << "LINK_TRACE = " << std::setprecision(10) << field.link_trace << std::endl; \
s << "PLAQUETTE = " << std::setprecision(10) << field.plaquette << std::endl; \
for(int i=0;i<4;i++){ \
s << "BOUNDARY_"<<i+1<<" = " << field.boundary[i] << std::endl; \
} \
\
s << "CHECKSUM = "<< std::hex << std::setw(10) << field.checksum << std::dec<<std::endl; \
s << "SCIDAC_CHECKSUMA = "<< std::hex << std::setw(10) << field.scidac_checksuma << std::dec<<std::endl; \
s << "SCIDAC_CHECKSUMB = "<< std::hex << std::setw(10) << field.scidac_checksumb << std::dec<<std::endl; \
s << "ENSEMBLE_ID = " << field.ensemble_id << std::endl; \
s << "ENSEMBLE_LABEL = " << field.ensemble_label << std::endl; \
s << "SEQUENCE_NUMBER = " << field.sequence_number << std::endl; \
s << "CREATOR = " << field.creator << std::endl; \
s << "CREATOR_HARDWARE = "<< field.creator_hardware << std::endl; \
s << "CREATION_DATE = " << field.creation_date << std::endl; \
s << "ARCHIVE_DATE = " << field.archive_date << std::endl; \
s << "FLOATING_POINT = " << field.floating_point << std::endl; \
s << "END_HEADER" << std::endl;
template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMetaData &header)
{
GridBase *grid = field._grid;
std::string format = getFormatString<vobj>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
MachineCharacteristics(header);
}
inline void GaugeStatistics(Lattice<vLorentzColourMatrixF> & data,FieldMetaData &header)
{
// How to convert data precision etc...
header.link_trace=Grid::QCD::WilsonLoops<PeriodicGimplF>::linkTrace(data);
header.plaquette =Grid::QCD::WilsonLoops<PeriodicGimplF>::avgPlaquette(data);
}
inline void GaugeStatistics(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
{
// How to convert data precision etc...
header.link_trace=Grid::QCD::WilsonLoops<PeriodicGimplD>::linkTrace(data);
header.plaquette =Grid::QCD::WilsonLoops<PeriodicGimplD>::avgPlaquette(data);
}
template<> inline void PrepareMetaData<vLorentzColourMatrixF>(Lattice<vLorentzColourMatrixF> & field, FieldMetaData &header)
{
GridBase *grid = field._grid;
std::string format = getFormatString<vLorentzColourMatrixF>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
GaugeStatistics(field,header);
MachineCharacteristics(header);
}
template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzColourMatrixD> & field, FieldMetaData &header)
{
GridBase *grid = field._grid;
std::string format = getFormatString<vLorentzColourMatrixD>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
GaugeStatistics(field,header);
MachineCharacteristics(header);
}
//////////////////////////////////////////////////////////////////////
// Utilities ; these are QCD aware
//////////////////////////////////////////////////////////////////////
inline void reconstruct3(LorentzColourMatrix & cm)
{
const int x=0;
const int y=1;
const int z=2;
for(int mu=0;mu<Nd;mu++){
cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
}
}
////////////////////////////////////////////////////////////////////////////////
// Some data types for intermediate storage
////////////////////////////////////////////////////////////////////////////////
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, 2>, Nd >;
typedef iLorentzColour2x3<Complex> LorentzColour2x3;
typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F;
typedef iLorentzColour2x3<ComplexD> LorentzColour2x3D;
/////////////////////////////////////////////////////////////////////////////////
// Simple classes for precision conversion
/////////////////////////////////////////////////////////////////////////////////
template <class fobj, class sobj>
struct BinarySimpleUnmunger {
typedef typename getPrecision<fobj>::real_scalar_type fobj_stype;
typedef typename getPrecision<sobj>::real_scalar_type sobj_stype;
void operator()(sobj &in, fobj &out) {
// take word by word and transform accoding to the status
fobj_stype *out_buffer = (fobj_stype *)&out;
sobj_stype *in_buffer = (sobj_stype *)&in;
size_t fobj_words = sizeof(out) / sizeof(fobj_stype);
size_t sobj_words = sizeof(in) / sizeof(sobj_stype);
assert(fobj_words == sobj_words);
for (unsigned int word = 0; word < sobj_words; word++)
out_buffer[word] = in_buffer[word]; // type conversion on the fly
}
};
template <class fobj, class sobj>
struct BinarySimpleMunger {
typedef typename getPrecision<fobj>::real_scalar_type fobj_stype;
typedef typename getPrecision<sobj>::real_scalar_type sobj_stype;
void operator()(fobj &in, sobj &out) {
// take word by word and transform accoding to the status
fobj_stype *in_buffer = (fobj_stype *)&in;
sobj_stype *out_buffer = (sobj_stype *)&out;
size_t fobj_words = sizeof(in) / sizeof(fobj_stype);
size_t sobj_words = sizeof(out) / sizeof(sobj_stype);
assert(fobj_words == sobj_words);
for (unsigned int word = 0; word < sobj_words; word++)
out_buffer[word] = in_buffer[word]; // type conversion on the fly
}
};
template<class fobj,class sobj>
struct GaugeSimpleMunger{
void operator()(fobj &in, sobj &out) {
for (int mu = 0; mu < Nd; mu++) {
for (int i = 0; i < Nc; i++) {
for (int j = 0; j < Nc; j++) {
out(mu)()(i, j) = in(mu)()(i, j);
}}
}
};
};
template <class fobj, class sobj>
struct GaugeSimpleUnmunger {
void operator()(sobj &in, fobj &out) {
for (int mu = 0; mu < Nd; mu++) {
for (int i = 0; i < Nc; i++) {
for (int j = 0; j < Nc; j++) {
out(mu)()(i, j) = in(mu)()(i, j);
}}
}
};
};
template<class fobj,class sobj>
struct Gauge3x2munger{
void operator() (fobj &in,sobj &out){
for(int mu=0;mu<Nd;mu++){
for(int i=0;i<2;i++){
for(int j=0;j<3;j++){
out(mu)()(i,j) = in(mu)(i)(j);
}}
}
reconstruct3(out);
}
};
template<class fobj,class sobj>
struct Gauge3x2unmunger{
void operator() (sobj &in,fobj &out){
for(int mu=0;mu<Nd;mu++){
for(int i=0;i<2;i++){
for(int j=0;j<3;j++){
out(mu)(i)(j) = in(mu)()(i,j);
}}
}
}
};
}
}

View File

@ -30,182 +30,11 @@
#ifndef GRID_NERSC_IO_H
#define GRID_NERSC_IO_H
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <map>
#include <unistd.h>
#include <sys/utsname.h>
#include <pwd.h>
namespace Grid {
namespace QCD {
using namespace Grid;
////////////////////////////////////////////////////////////////////////////////
// Some data types for intermediate storage
////////////////////////////////////////////////////////////////////////////////
template<typename vtype> using iLorentzColour2x3 = iVector<iVector<iVector<vtype, Nc>, 2>, 4 >;
typedef iLorentzColour2x3<Complex> LorentzColour2x3;
typedef iLorentzColour2x3<ComplexF> LorentzColour2x3F;
typedef iLorentzColour2x3<ComplexD> LorentzColour2x3D;
////////////////////////////////////////////////////////////////////////////////
// header specification/interpretation
////////////////////////////////////////////////////////////////////////////////
class NerscField {
public:
// header strings (not in order)
int dimension[4];
std::string boundary[4];
int data_start;
std::string hdr_version;
std::string storage_format;
// Checks on data
double link_trace;
double plaquette;
uint32_t checksum;
unsigned int sequence_number;
std::string data_type;
std::string ensemble_id ;
std::string ensemble_label ;
std::string creator ;
std::string creator_hardware ;
std::string creation_date ;
std::string archive_date ;
std::string floating_point;
};
//////////////////////////////////////////////////////////////////////
// Bit and Physical Checksumming and QA of data
//////////////////////////////////////////////////////////////////////
inline void NerscGrid(GridBase *grid,NerscField &header)
{
assert(grid->_ndimension==4);
for(int d=0;d<4;d++) {
header.dimension[d] = grid->_fdimensions[d];
}
for(int d=0;d<4;d++) {
header.boundary[d] = std::string("PERIODIC");
}
}
template<class GaugeField>
inline void NerscStatistics(GaugeField & data,NerscField &header)
{
// How to convert data precision etc...
header.link_trace=Grid::QCD::WilsonLoops<PeriodicGimplR>::linkTrace(data);
header.plaquette =Grid::QCD::WilsonLoops<PeriodicGimplR>::avgPlaquette(data);
}
inline void NerscMachineCharacteristics(NerscField &header)
{
// Who
struct passwd *pw = getpwuid (getuid());
if (pw) header.creator = std::string(pw->pw_name);
// When
std::time_t t = std::time(nullptr);
std::tm tm = *std::localtime(&t);
std::ostringstream oss;
// oss << std::put_time(&tm, "%c %Z");
header.creation_date = oss.str();
header.archive_date = header.creation_date;
// What
struct utsname name; uname(&name);
header.creator_hardware = std::string(name.nodename)+"-";
header.creator_hardware+= std::string(name.machine)+"-";
header.creator_hardware+= std::string(name.sysname)+"-";
header.creator_hardware+= std::string(name.release);
}
//////////////////////////////////////////////////////////////////////
// Utilities ; these are QCD aware
//////////////////////////////////////////////////////////////////////
inline void NerscChecksum(uint32_t *buf,uint32_t buf_size_bytes,uint32_t &csum)
{
BinaryIO::Uint32Checksum(buf,buf_size_bytes,csum);
}
inline void reconstruct3(LorentzColourMatrix & cm)
{
const int x=0;
const int y=1;
const int z=2;
for(int mu=0;mu<4;mu++){
cm(mu)()(2,x) = adj(cm(mu)()(0,y)*cm(mu)()(1,z)-cm(mu)()(0,z)*cm(mu)()(1,y)); //x= yz-zy
cm(mu)()(2,y) = adj(cm(mu)()(0,z)*cm(mu)()(1,x)-cm(mu)()(0,x)*cm(mu)()(1,z)); //y= zx-xz
cm(mu)()(2,z) = adj(cm(mu)()(0,x)*cm(mu)()(1,y)-cm(mu)()(0,y)*cm(mu)()(1,x)); //z= xy-yx
}
}
template<class fobj,class sobj>
struct NerscSimpleMunger{
void operator()(fobj &in, sobj &out, uint32_t &csum) {
for (int mu = 0; mu < Nd; mu++) {
for (int i = 0; i < Nc; i++) {
for (int j = 0; j < Nc; j++) {
out(mu)()(i, j) = in(mu)()(i, j);
}
}
}
NerscChecksum((uint32_t *)&in, sizeof(in), csum);
};
};
template <class fobj, class sobj>
struct NerscSimpleUnmunger {
void operator()(sobj &in, fobj &out, uint32_t &csum) {
for (int mu = 0; mu < Nd; mu++) {
for (int i = 0; i < Nc; i++) {
for (int j = 0; j < Nc; j++) {
out(mu)()(i, j) = in(mu)()(i, j);
}
}
}
NerscChecksum((uint32_t *)&out, sizeof(out), csum);
};
};
template<class fobj,class sobj>
struct Nersc3x2munger{
void operator() (fobj &in,sobj &out,uint32_t &csum){
NerscChecksum((uint32_t *)&in,sizeof(in),csum);
for(int mu=0;mu<4;mu++){
for(int i=0;i<2;i++){
for(int j=0;j<3;j++){
out(mu)()(i,j) = in(mu)(i)(j);
}}
}
reconstruct3(out);
}
};
template<class fobj,class sobj>
struct Nersc3x2unmunger{
void operator() (sobj &in,fobj &out,uint32_t &csum){
for(int mu=0;mu<4;mu++){
for(int i=0;i<2;i++){
for(int j=0;j<3;j++){
out(mu)(i)(j) = in(mu)()(i,j);
}}
}
NerscChecksum((uint32_t *)&out,sizeof(out),csum);
}
};
////////////////////////////////////////////////////////////////////////////////
// Write and read from fstream; comput header offset for payload
////////////////////////////////////////////////////////////////////////////////
@ -216,42 +45,17 @@ namespace Grid {
std::ofstream fout(file,std::ios::out);
}
#define dump_nersc_header(field, s) \
s << "BEGIN_HEADER" << std::endl; \
s << "HDR_VERSION = " << field.hdr_version << std::endl; \
s << "DATATYPE = " << field.data_type << std::endl; \
s << "STORAGE_FORMAT = " << field.storage_format << std::endl; \
for(int i=0;i<4;i++){ \
s << "DIMENSION_" << i+1 << " = " << field.dimension[i] << std::endl ; \
} \
s << "LINK_TRACE = " << std::setprecision(10) << field.link_trace << std::endl; \
s << "PLAQUETTE = " << std::setprecision(10) << field.plaquette << std::endl; \
for(int i=0;i<4;i++){ \
s << "BOUNDARY_"<<i+1<<" = " << field.boundary[i] << std::endl; \
} \
\
s << "CHECKSUM = "<< std::hex << std::setw(10) << field.checksum << std::dec<<std::endl; \
s << "ENSEMBLE_ID = " << field.ensemble_id << std::endl; \
s << "ENSEMBLE_LABEL = " << field.ensemble_label << std::endl; \
s << "SEQUENCE_NUMBER = " << field.sequence_number << std::endl; \
s << "CREATOR = " << field.creator << std::endl; \
s << "CREATOR_HARDWARE = "<< field.creator_hardware << std::endl; \
s << "CREATION_DATE = " << field.creation_date << std::endl; \
s << "ARCHIVE_DATE = " << field.archive_date << std::endl; \
s << "FLOATING_POINT = " << field.floating_point << std::endl; \
s << "END_HEADER" << std::endl;
static inline unsigned int writeHeader(NerscField &field,std::string file)
static inline unsigned int writeHeader(FieldMetaData &field,std::string file)
{
std::ofstream fout(file,std::ios::out|std::ios::in);
fout.seekp(0,std::ios::beg);
dump_nersc_header(field, fout);
dump_meta_data(field, fout);
field.data_start = fout.tellp();
return field.data_start;
}
// for the header-reader
static inline int readHeader(std::string file,GridBase *grid, NerscField &field)
static inline int readHeader(std::string file,GridBase *grid, FieldMetaData &field)
{
int offset=0;
std::map<std::string,std::string> header;
@ -323,21 +127,21 @@ namespace Grid {
return field.data_start;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Now the meat: the object readers
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#define PARALLEL_READ
#define PARALLEL_WRITE
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Now the meat: the object readers
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vsimd>
static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,NerscField& header,std::string file)
{
template<class vsimd>
static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
FieldMetaData& header,
std::string file)
{
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
GridBase *grid = Umu._grid;
int offset = readHeader(file,Umu._grid,header);
NerscField clone(header);
FieldMetaData clone(header);
std::string format(header.floating_point);
@ -346,76 +150,78 @@ namespace Grid {
int ieee64big = (format == std::string("IEEE64BIG"));
int ieee64 = (format == std::string("IEEE64"));
uint32_t csum;
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
// depending on datatype, set up munger;
// munger is a function of <floating point, Real, data_type>
if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
if ( ieee32 || ieee32big ) {
#ifdef PARALLEL_READ
csum=BinaryIO::readObjectParallel<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
(Umu,file,Nersc3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format);
#else
csum=BinaryIO::readObjectSerial<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
(Umu,file,Nersc3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format);
#endif
}
if ( ieee64 || ieee64big ) {
#ifdef PARALLEL_READ
csum=BinaryIO::readObjectParallel<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
(Umu,file,Nersc3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format);
#else
csum=BinaryIO::readObjectSerial<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
(Umu,file,Nersc3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format);
#endif
}
} else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
if ( ieee32 || ieee32big ) {
#ifdef PARALLEL_READ
csum=BinaryIO::readObjectParallel<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
(Umu,file,NerscSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format);
#else
csum=BinaryIO::readObjectSerial<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
(Umu,file,NerscSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format);
#endif
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
(Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
if ( ieee64 || ieee64big ) {
#ifdef PARALLEL_READ
csum=BinaryIO::readObjectParallel<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
(Umu,file,NerscSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format);
#else
csum=BinaryIO::readObjectSerial<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
(Umu,file,NerscSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format);
#endif
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
(Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
} else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
} else {
assert(0);
}
NerscStatistics<GaugeField>(Umu,clone);
GaugeStatistics(Umu,clone);
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<< csum<< std::dec
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<<nersc_csum<< std::dec
<<" header "<<std::hex<<header.checksum<<std::dec <<std::endl;
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" plaquette "<<clone.plaquette
<<" header "<<header.plaquette<<std::endl;
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" link_trace "<<clone.link_trace
<<" header "<<header.link_trace<<std::endl;
if ( fabs(clone.plaquette -header.plaquette ) >= 1.0e-5 ) {
std::cout << " Plaquette mismatch "<<std::endl;
std::cout << Umu[0]<<std::endl;
std::cout << Umu[1]<<std::endl;
}
if ( nersc_csum != header.checksum ) {
std::cerr << " checksum mismatch " << std::endl;
std::cerr << " plaqs " << clone.plaquette << " " << header.plaquette << std::endl;
std::cerr << " trace " << clone.link_trace<< " " << header.link_trace<< std::endl;
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
exit(0);
}
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
assert(csum == header.checksum );
assert(nersc_csum == header.checksum );
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
}
}
template<class vsimd>
static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,std::string file, int two_row,int bits32)
static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
std::string file,
int two_row,
int bits32)
{
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef typename vobj::scalar_object sobj;
FieldMetaData header;
///////////////////////////////////////////
// Following should become arguments
NerscField header;
///////////////////////////////////////////
header.sequence_number = 1;
header.ensemble_id = "UKQCD";
header.ensemble_label = "DWF";
@ -425,45 +231,32 @@ namespace Grid {
GridBase *grid = Umu._grid;
NerscGrid(grid,header);
NerscStatistics<GaugeField>(Umu,header);
NerscMachineCharacteristics(header);
GridMetaData(grid,header);
assert(header.nd==4);
GaugeStatistics(Umu,header);
MachineCharacteristics(header);
uint32_t csum;
int offset;
truncate(file);
if ( two_row ) {
// Sod it -- always write 3x3 double
header.floating_point = std::string("IEEE64BIG");
header.data_type = std::string("4D_SU3_GAUGE_3x3");
GaugeSimpleUnmunger<fobj3D,sobj> munge;
offset = writeHeader(header,file);
header.floating_point = std::string("IEEE64BIG");
header.data_type = std::string("4D_SU3_GAUGE");
Nersc3x2unmunger<fobj2D,sobj> munge;
BinaryIO::Uint32Checksum<vobj,fobj2D>(Umu, munge,header.checksum);
offset = writeHeader(header,file);
#ifdef PARALLEL_WRITE
csum=BinaryIO::writeObjectParallel<vobj,fobj2D>(Umu,file,munge,offset,header.floating_point);
#else
csum=BinaryIO::writeObjectSerial<vobj,fobj2D>(Umu,file,munge,offset,header.floating_point);
#endif
} else {
header.floating_point = std::string("IEEE64BIG");
header.data_type = std::string("4D_SU3_GAUGE_3x3");
NerscSimpleUnmunger<fobj3D,sobj> munge;
BinaryIO::Uint32Checksum<vobj,fobj3D>(Umu, munge,header.checksum);
offset = writeHeader(header,file);
#ifdef PARALLEL_WRITE
csum=BinaryIO::writeObjectParallel<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point);
#else
csum=BinaryIO::writeObjectSerial<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point);
#endif
}
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
header.checksum = nersc_csum;
writeHeader(header,file);
std::cout<<GridLogMessage <<"Written NERSC Configuration on "<< file << " checksum "<<std::hex<<csum<< std::dec<<" plaq "<< header.plaquette <<std::endl;
std::cout<<GridLogMessage <<"Written NERSC Configuration on "<< file << " checksum "
<<std::hex<<header.checksum
<<std::dec<<" plaq "<< header.plaquette <<std::endl;
}
///////////////////////////////
// RNG state
///////////////////////////////
@ -472,19 +265,19 @@ namespace Grid {
typedef typename GridParallelRNG::RngStateType RngStateType;
// Following should become arguments
NerscField header;
FieldMetaData header;
header.sequence_number = 1;
header.ensemble_id = "UKQCD";
header.ensemble_label = "DWF";
GridBase *grid = parallel._grid;
NerscGrid(grid,header);
GridMetaData(grid,header);
assert(header.nd==4);
header.link_trace=0.0;
header.plaquette=0.0;
NerscMachineCharacteristics(header);
MachineCharacteristics(header);
uint32_t csum;
int offset;
#ifdef RNG_RANLUX
@ -502,15 +295,19 @@ namespace Grid {
truncate(file);
offset = writeHeader(header,file);
csum=BinaryIO::writeRNGSerial(serial,parallel,file,offset);
header.checksum = csum;
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeRNG(serial,parallel,file,offset,nersc_csum,scidac_csuma,scidac_csumb);
header.checksum = nersc_csum;
offset = writeHeader(header,file);
std::cout<<GridLogMessage <<"Written NERSC RNG STATE "<<file<< " checksum "<<std::hex<<csum<<std::dec<<std::endl;
std::cout<<GridLogMessage
<<"Written NERSC RNG STATE "<<file<< " checksum "
<<std::hex<<header.checksum
<<std::dec<<std::endl;
}
static inline void readRNGState(GridSerialRNG &serial,GridParallelRNG & parallel,NerscField& header,std::string file)
static inline void readRNGState(GridSerialRNG &serial,GridParallelRNG & parallel,FieldMetaData& header,std::string file)
{
typedef typename GridParallelRNG::RngStateType RngStateType;
@ -518,7 +315,7 @@ namespace Grid {
int offset = readHeader(file,grid,header);
NerscField clone(header);
FieldMetaData clone(header);
std::string format(header.floating_point);
std::string data_type(header.data_type);
@ -538,15 +335,19 @@ namespace Grid {
// depending on datatype, set up munger;
// munger is a function of <floating point, Real, data_type>
uint32_t csum=BinaryIO::readRNGSerial(serial,parallel,file,offset);
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::readRNG(serial,parallel,file,offset,nersc_csum,scidac_csuma,scidac_csumb);
assert(csum == header.checksum );
if ( nersc_csum != header.checksum ) {
std::cerr << "checksum mismatch "<<std::hex<< nersc_csum <<" "<<header.checksum<<std::dec<<std::endl;
exit(0);
}
assert(nersc_csum == header.checksum );
std::cout<<GridLogMessage <<"Read NERSC RNG file "<<file<< " format "<< data_type <<std::endl;
}
};
}}
#endif

View File

@ -644,19 +644,16 @@ class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation:
INHERIT_GIMPL_TYPES(Gimpl);
template <typename vtype> using iImplScalar = iScalar<iScalar<iScalar<vtype> > >;
template <typename vtype> using iImplSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
template <typename vtype> using iImplHalfSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
template <typename vtype> using iImplPropagator = iScalar<iScalar<iMatrix<vtype, Dimension> > >;
typedef iImplScalar<Simd> SiteComplex;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef iImplPropagator<Simd> SitePropagator;
typedef Lattice<SiteComplex> ComplexField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef Lattice<SitePropagator> PropagatorField;
@ -775,7 +772,6 @@ class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation:
INHERIT_GIMPL_TYPES(Gimpl);
template <typename vtype> using iImplScalar = iScalar<iScalar<iScalar<vtype> > >;
template <typename vtype> using iImplSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
template <typename vtype> using iImplHalfSpinor = iScalar<iScalar<iVector<vtype, Dimension> > >;
template <typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Dimension> >, Nds>;
@ -792,12 +788,10 @@ class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation:
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef Lattice<SitePropagator> PropagatorField;
typedef iImplScalar<Simd> SiteComplex;
typedef iImplSpinor<Simd> SiteSpinor;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef Lattice<SiteComplex> ComplexField;
typedef Lattice<SiteSpinor> FermionField;
typedef SimpleCompressor<SiteSpinor> Compressor;

View File

@ -40,12 +40,15 @@ namespace QCD {
typedef typename GImpl::Simd Simd; \
typedef typename GImpl::LinkField GaugeLinkField; \
typedef typename GImpl::Field GaugeField; \
typedef typename GImpl::ComplexField ComplexField;\
typedef typename GImpl::SiteField SiteGaugeField; \
typedef typename GImpl::SiteComplex SiteComplex; \
typedef typename GImpl::SiteLink SiteGaugeLink;
#define INHERIT_FIELD_TYPES(Impl) \
typedef typename Impl::Simd Simd; \
typedef typename Impl::SiteField SiteField; \
#define INHERIT_FIELD_TYPES(Impl) \
typedef typename Impl::Simd Simd; \
typedef typename Impl::ComplexField ComplexField; \
typedef typename Impl::SiteField SiteField; \
typedef typename Impl::Field Field;
// hardcodes the exponential approximation in the template
@ -53,14 +56,17 @@ template <class S, int Nrepresentation = Nc, int Nexp = 12 > class GaugeImplType
public:
typedef S Simd;
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation>>>;
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation>>, Nd>;
template <typename vtype> using iImplScalar = iScalar<iScalar<iScalar<vtype> > >;
template <typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
template <typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd>;
typedef iImplScalar<Simd> SiteComplex;
typedef iImplGaugeLink<Simd> SiteLink;
typedef iImplGaugeField<Simd> SiteField;
typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field;
typedef Lattice<SiteComplex> ComplexField;
typedef Lattice<SiteLink> LinkField;
typedef Lattice<SiteField> Field;
// Guido: we can probably separate the types from the HMC functions
// this will create 2 kind of implementations

View File

@ -62,36 +62,50 @@ class BinaryHmcCheckpointer : public BaseHmcCheckpointer<Impl> {
fout.close();
}
void TrajectoryComplete(int traj, Field &U, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) {
void TrajectoryComplete(int traj, Field &U, GridSerialRNG &sRNG, GridParallelRNG &pRNG) {
if ((traj % Params.saveInterval) == 0) {
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
BinaryIO::BinarySimpleUnmunger<sobj_double, sobj> munge;
uint32_t nersc_csum;
uint32_t scidac_csuma;
uint32_t scidac_csumb;
BinarySimpleUnmunger<sobj_double, sobj> munge;
truncate(rng);
BinaryIO::writeRNGSerial(sRNG, pRNG, rng, 0);
BinaryIO::writeRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
truncate(config);
uint32_t csum = BinaryIO::writeObjectParallel<vobj, sobj_double>(
U, config, munge, 0, Params.format);
BinaryIO::writeLatticeObject<vobj, sobj_double>(U, config, munge, 0, Params.format,
nersc_csum,scidac_csuma,scidac_csumb);
std::cout << GridLogMessage << "Written Binary Configuration " << config
<< " checksum " << std::hex << csum << std::dec << std::endl;
<< " checksum " << std::hex
<< nersc_csum <<"/"
<< scidac_csuma <<"/"
<< scidac_csumb
<< std::dec << std::endl;
}
};
void CheckpointRestore(int traj, Field &U, GridSerialRNG &sRNG,
GridParallelRNG &pRNG) {
void CheckpointRestore(int traj, Field &U, GridSerialRNG &sRNG, GridParallelRNG &pRNG) {
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
BinaryIO::BinarySimpleMunger<sobj_double, sobj> munge;
BinaryIO::readRNGSerial(sRNG, pRNG, rng, 0);
uint32_t csum = BinaryIO::readObjectParallel<vobj, sobj_double>(
U, config, munge, 0, Params.format);
BinarySimpleMunger<sobj_double, sobj> munge;
uint32_t nersc_csum;
uint32_t scidac_csuma;
uint32_t scidac_csumb;
BinaryIO::readRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
BinaryIO::readLatticeObject<vobj, sobj_double>(U, config, munge, 0, Params.format,
nersc_csum,scidac_csuma,scidac_csumb);
std::cout << GridLogMessage << "Read Binary Configuration " << config
<< " checksum " << std::hex << csum << std::dec << std::endl;
<< " checksums " << std::hex << nersc_csum<<"/"<<scidac_csuma<<"/"<<scidac_csumb
<< std::dec << std::endl;
};
};
}

View File

@ -54,9 +54,9 @@ class ILDGHmcCheckpointer : public BaseHmcCheckpointer<Implementation> {
// check here that the format is valid
int ieee32big = (Params.format == std::string("IEEE32BIG"));
int ieee32 = (Params.format == std::string("IEEE32"));
int ieee32 = (Params.format == std::string("IEEE32"));
int ieee64big = (Params.format == std::string("IEEE64BIG"));
int ieee64 = (Params.format == std::string("IEEE64"));
int ieee64 = (Params.format == std::string("IEEE64"));
if (!(ieee64big || ieee32 || ieee32big || ieee64)) {
std::cout << GridLogError << "Unrecognized file format " << Params.format
@ -74,13 +74,20 @@ class ILDGHmcCheckpointer : public BaseHmcCheckpointer<Implementation> {
if ((traj % Params.saveInterval) == 0) {
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
ILDGIO IO(config, ILDGwrite);
BinaryIO::writeRNGSerial(sRNG, pRNG, rng, 0);
uint32_t csum = IO.writeConfiguration(U, Params.format);
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
IldgWriter _IldgWriter;
_IldgWriter.open(config);
_IldgWriter.writeConfiguration(U, traj, config, config);
_IldgWriter.close();
std::cout << GridLogMessage << "Written ILDG Configuration on " << config
<< " checksum " << std::hex << csum << std::dec << std::endl;
<< " checksum " << std::hex
<< nersc_csum<<"/"
<< scidac_csuma<<"/"
<< scidac_csumb
<< std::dec << std::endl;
}
};
@ -89,12 +96,21 @@ class ILDGHmcCheckpointer : public BaseHmcCheckpointer<Implementation> {
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
ILDGIO IO(config, ILDGread);
BinaryIO::readRNGSerial(sRNG, pRNG, rng, 0);
uint32_t csum = IO.readConfiguration(U); // format from the header
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::readRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
FieldMetaData header;
IldgReader _IldgReader;
_IldgReader.open(config);
_IldgReader.readConfiguration(config,U,header); // format from the header
_IldgReader.close();
std::cout << GridLogMessage << "Read ILDG Configuration from " << config
<< " checksum " << std::hex << csum << std::dec << std::endl;
<< " checksum " << std::hex
<< nersc_csum<<"/"
<< scidac_csuma<<"/"
<< scidac_csumb
<< std::dec << std::endl;
};
};
}

View File

@ -70,7 +70,7 @@ class NerscHmcCheckpointer : public BaseHmcCheckpointer<Gimpl> {
std::string config, rng;
this->build_filenames(traj, Params, config, rng);
NerscField header;
FieldMetaData header;
NerscIO::readRNGState(sRNG, pRNG, header, rng);
NerscIO::readConfiguration(U, header, config);
};

188
lib/qcd/utils/GaugeFix.h Normal file
View File

@ -0,0 +1,188 @@
/*************************************************************************************
grid` physics library, www.github.com/paboyle/Grid
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
template <class Gimpl>
class FourierAcceleratedGaugeFixer : public Gimpl {
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
for(int mu=0;mu<Nd;mu++){
Complex cmi(0.0,-1.0);
A[mu] = Ta(U[mu]) * cmi;
}
}
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu) {
dmuAmu=zero;
for(int mu=0;mu<Nd;mu++){
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
}
}
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false) {
GridBase *grid = Umu._grid;
Real org_plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real org_link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
Real old_trace = org_link_trace;
Real trG;
std::vector<GaugeMat> U(Nd,grid);
GaugeMat dmuAmu(grid);
for(int i=0;i<maxiter;i++){
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
if ( Fourier==false ) {
trG = SteepestDescentStep(U,alpha,dmuAmu);
} else {
trG = FourierAccelSteepestDescentStep(U,alpha,dmuAmu);
}
for(int mu=0;mu<Nd;mu++) PokeIndex<LorentzIndex>(Umu,U[mu],mu);
// Monitor progress and convergence test
// infrequently to minimise cost overhead
if ( i %20 == 0 ) {
Real plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
if (Fourier)
std::cout << GridLogMessage << "Fourier Iteration "<<i<< " plaq= "<<plaq<< " dmuAmu " << norm2(dmuAmu)<< std::endl;
else
std::cout << GridLogMessage << " Iteration "<<i<< " plaq= "<<plaq<< " dmuAmu " << norm2(dmuAmu)<< std::endl;
Real Phi = 1.0 - old_trace / link_trace ;
Real Omega= 1.0 - trG;
std::cout << GridLogMessage << " Iteration "<<i<< " Phi= "<<Phi<< " Omega= " << Omega<< " trG " << trG <<std::endl;
if ( (Omega < Omega_tol) && ( ::fabs(Phi) < Phi_tol) ) {
std::cout << GridLogMessage << "Converged ! "<<std::endl;
return;
}
old_trace = link_trace;
}
}
};
static Real SteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
GridBase *grid = U[0]._grid;
std::vector<GaugeMat> A(Nd,grid);
GaugeMat g(grid);
GaugeLinkToLieAlgebraField(U,A);
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu);
Real vol = grid->gSites();
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
GridBase *grid = U[0]._grid;
Real vol = grid->gSites();
FFT theFFT((GridCartesian *)grid);
LatticeComplex Fp(grid);
LatticeComplex psq(grid); psq=zero;
LatticeComplex pmu(grid);
LatticeComplex one(grid); one = Complex(1.0,0.0);
GaugeMat g(grid);
GaugeMat dmuAmu_p(grid);
std::vector<GaugeMat> A(Nd,grid);
GaugeLinkToLieAlgebraField(U,A);
DmuAmu(A,dmuAmu);
theFFT.FFT_all_dim(dmuAmu_p,dmuAmu,FFT::forward);
//////////////////////////////////
// Work out Fp = psq_max/ psq...
//////////////////////////////////
std::vector<int> latt_size = grid->GlobalDimensions();
std::vector<int> coor(grid->_ndimension,0);
for(int mu=0;mu<Nd;mu++) {
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
}
Complex psqMax(16.0);
Fp = psqMax*one/psq;
/*
static int once;
if ( once == 0 ) {
std::cout << " Fp " << Fp <<std::endl;
once ++;
}*/
pokeSite(TComplex(1.0),Fp,coor);
dmuAmu_p = dmuAmu_p * Fp;
theFFT.FFT_all_dim(dmuAmu,dmuAmu_p,FFT::backward);
GaugeMat ciadmam(grid);
Complex cialpha(0.0,-alpha);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu) {
GridBase *grid = g._grid;
Complex cialpha(0.0,-alpha);
GaugeMat ciadmam(grid);
DmuAmu(A,dmuAmu);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
}
};

View File

@ -12,7 +12,4 @@
#include <Grid/qcd/utils/SUnAdjoint.h>
#include <Grid/qcd/utils/SUnTwoIndex.h>
#endif

View File

@ -73,7 +73,7 @@ public:
//////////////////////////////////////////////////
// trace of directed plaquette oriented in mu,nu plane
//////////////////////////////////////////////////
static void traceDirPlaquette(LatticeComplex &plaq,
static void traceDirPlaquette(ComplexField &plaq,
const std::vector<GaugeMat> &U, const int mu,
const int nu) {
GaugeMat sp(U[0]._grid);
@ -83,9 +83,9 @@ public:
//////////////////////////////////////////////////
// sum over all planes of plaquette
//////////////////////////////////////////////////
static void sitePlaquette(LatticeComplex &Plaq,
static void sitePlaquette(ComplexField &Plaq,
const std::vector<GaugeMat> &U) {
LatticeComplex sitePlaq(U[0]._grid);
ComplexField sitePlaq(U[0]._grid);
Plaq = zero;
for (int mu = 1; mu < Nd; mu++) {
for (int nu = 0; nu < mu; nu++) {
@ -104,11 +104,11 @@ public:
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Plaq(Umu._grid);
ComplexField Plaq(Umu._grid);
sitePlaquette(Plaq, U);
TComplex Tp = sum(Plaq);
Complex p = TensorRemove(Tp);
auto Tp = sum(Plaq);
auto p = TensorRemove(Tp);
return p.real();
}
@ -129,15 +129,15 @@ public:
static RealD linkTrace(const GaugeLorentz &Umu) {
std::vector<GaugeMat> U(Nd, Umu._grid);
LatticeComplex Tr(Umu._grid);
ComplexField Tr(Umu._grid);
Tr = zero;
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
Tr = Tr + trace(U[mu]);
}
TComplex Tp = sum(Tr);
Complex p = TensorRemove(Tp);
auto Tp = sum(Tr);
auto p = TensorRemove(Tp);
double vol = Umu._grid->gSites();
@ -355,8 +355,8 @@ static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
double coeff = 8.0/(32.0*M_PI*M_PI);
LatticeComplex qfield = coeff*trace(Bx*Ex + By*Ey + Bz*Ez);
TComplex Tq = sum(qfield);
ComplexField qfield = coeff*trace(Bx*Ex + By*Ey + Bz*Ez);
auto Tq = sum(qfield);
return TensorRemove(Tq).real();
}
@ -375,16 +375,16 @@ static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
adj(Gimpl::CovShiftForward(
U[nu], nu, Gimpl::CovShiftForward(U[nu], nu, U[mu])));
}
static void traceDirRectangle(LatticeComplex &rect,
static void traceDirRectangle(ComplexField &rect,
const std::vector<GaugeMat> &U, const int mu,
const int nu) {
GaugeMat sp(U[0]._grid);
dirRectangle(sp, U, mu, nu);
rect = trace(sp);
}
static void siteRectangle(LatticeComplex &Rect,
static void siteRectangle(ComplexField &Rect,
const std::vector<GaugeMat> &U) {
LatticeComplex siteRect(U[0]._grid);
ComplexField siteRect(U[0]._grid);
Rect = zero;
for (int mu = 1; mu < Nd; mu++) {
for (int nu = 0; nu < mu; nu++) {
@ -404,12 +404,12 @@ static void StapleMult(GaugeMat &staple, const GaugeLorentz &Umu, int mu) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
LatticeComplex Rect(Umu._grid);
ComplexField Rect(Umu._grid);
siteRectangle(Rect, U);
TComplex Tp = sum(Rect);
Complex p = TensorRemove(Tp);
auto Tp = sum(Rect);
auto p = TensorRemove(Tp);
return p.real();
}
//////////////////////////////////////////////////

View File

@ -110,11 +110,12 @@ THE SOFTWARE.
#define GRID_MACRO_MEMBER(A,B) A B;
#define GRID_MACRO_COMP_MEMBER(A,B) result = (result and (lhs. B == rhs. B));
#define GRID_MACRO_OS_WRITE_MEMBER(A,B) os<< #A <<" "#B <<" = "<< obj. B <<" ; " <<std::endl;
#define GRID_MACRO_OS_WRITE_MEMBER(A,B) os<< #A <<" " #B << " = " << obj. B << " ; " <<std::endl;
#define GRID_MACRO_READ_MEMBER(A,B) Grid::read(RD,#B,obj. B);
#define GRID_MACRO_WRITE_MEMBER(A,B) Grid::write(WR,#B,obj. B);
#define GRID_SERIALIZABLE_CLASS_MEMBERS(cname,...)\
std::string SerialisableClassName(void) {return std::string(#cname);} \
GRID_MACRO_EVAL(GRID_MACRO_MAP(GRID_MACRO_MEMBER,__VA_ARGS__))\
template <typename T>\
static inline void write(Writer<T> &WR,const std::string &s, const cname &obj){ \

View File

@ -32,16 +32,21 @@ using namespace Grid;
using namespace std;
// Writer implementation ///////////////////////////////////////////////////////
XmlWriter::XmlWriter(const string &fileName)
: fileName_(fileName)
XmlWriter::XmlWriter(const string &fileName, string toplev) : fileName_(fileName)
{
node_ = doc_.append_child();
node_.set_name("grid");
if ( toplev == std::string("") ) {
node_=doc_;
} else {
node_=doc_.append_child();
node_.set_name(toplev.c_str());
}
}
XmlWriter::~XmlWriter(void)
{
doc_.save_file(fileName_.c_str(), " ");
if ( fileName_ != std::string("") ) {
doc_.save_file(fileName_.c_str(), " ");
}
}
void XmlWriter::push(const string &s)
@ -53,21 +58,44 @@ void XmlWriter::pop(void)
{
node_ = node_.parent();
}
// Reader implementation ///////////////////////////////////////////////////////
XmlReader::XmlReader(const string &fileName)
: fileName_(fileName)
std::string XmlWriter::XmlString(void)
{
pugi::xml_parse_result result = doc_.load_file(fileName_.c_str());
if ( !result )
{
std::ostringstream oss;
doc_.save(oss);
return oss.str();
}
XmlReader::XmlReader(const char *xmlstring,string toplev) : fileName_("")
{
pugi::xml_parse_result result;
result = doc_.load_string(xmlstring);
if ( !result ) {
cerr << "XML error description: " << result.description() << "\n";
cerr << "XML error offset : " << result.offset << "\n";
abort();
}
node_ = doc_.child("grid");
if ( toplev == std::string("") ) {
node_ = doc_;
} else {
node_ = doc_.child(toplev.c_str());
}
}
// Reader implementation ///////////////////////////////////////////////////////
XmlReader::XmlReader(const string &fileName,string toplev) : fileName_(fileName)
{
pugi::xml_parse_result result;
result = doc_.load_file(fileName_.c_str());
if ( !result ) {
cerr << "XML error description: " << result.description() << "\n";
cerr << "XML error offset : " << result.offset << "\n";
abort();
}
if ( toplev == std::string("") ) {
node_ = doc_;
} else {
node_ = doc_.child(toplev.c_str());
}
}
bool XmlReader::push(const string &s)

View File

@ -44,10 +44,9 @@ namespace Grid
{
class XmlWriter: public Writer<XmlWriter>
{
{
public:
XmlWriter(const std::string &fileName);
XmlWriter(const std::string &fileName,std::string toplev = std::string("grid") );
virtual ~XmlWriter(void);
void push(const std::string &s);
void pop(void);
@ -55,6 +54,7 @@ namespace Grid
void writeDefault(const std::string &s, const U &x);
template <typename U>
void writeDefault(const std::string &s, const std::vector<U> &x);
std::string XmlString(void);
private:
pugi::xml_document doc_;
pugi::xml_node node_;
@ -64,7 +64,8 @@ namespace Grid
class XmlReader: public Reader<XmlReader>
{
public:
XmlReader(const std::string &fileName);
XmlReader(const char *xmlstring,std::string toplev = std::string("grid") );
XmlReader(const std::string &fileName,std::string toplev = std::string("grid") );
virtual ~XmlReader(void) = default;
bool push(const std::string &s);
void pop(void);
@ -118,7 +119,7 @@ namespace Grid
std::string buf;
readDefault(s, buf);
std::cout << s << " " << buf << std::endl;
// std::cout << s << " " << buf << std::endl;
fromString(output, buf);
}

View File

@ -327,10 +327,6 @@ class Grid_simd {
// provides support
///////////////////////////////////////
//#if (__GNUC__ == 5 ) || ( ( __GNUC__ == 6 ) && __GNUC_MINOR__ < 3 )
//#pragma GCC push_options
//#pragma GCC optimize ("O0")
//#endif
template <class functor>
friend inline Grid_simd SimdApply(const functor &func, const Grid_simd &v) {
Grid_simd ret;
@ -364,9 +360,6 @@ class Grid_simd {
ret.v = cx.v;
return ret;
}
//#if (__GNUC__ == 5 ) || ( ( __GNUC__ == 6 ) && __GNUC_MINOR__ < 3 )
//#pragma GCC pop_options
//#endif
///////////////////////
// Exchange
// Al Ah , Bl Bh -> Al Bl Ah,Bh
@ -428,7 +421,6 @@ class Grid_simd {
}; // end of Grid_simd class definition
inline void permute(ComplexD &y,ComplexD b, int perm) { y=b; }
inline void permute(ComplexF &y,ComplexF b, int perm) { y=b; }
inline void permute(RealD &y,RealD b, int perm) { y=b; }
@ -759,8 +751,8 @@ inline Grid_simd<std::complex<R>, V> toComplex(const Grid_simd<R, V> &in) {
conv.v = in.v;
for (int i = 0; i < Rsimd::Nsimd(); i += 2) {
assert(conv.s[i + 1] ==
conv.s[i]); // trap any cases where real was not duplicated
assert(conv.s[i + 1] == conv.s[i]);
// trap any cases where real was not duplicated
// indicating the SIMD grids of real and imag assignment did not correctly
// match
conv.s[i + 1] = 0.0; // zero imaginary parts
@ -838,8 +830,6 @@ inline void precisionChange(vComplexD *out,vComplexF *in,int nvec){ precisionCha
inline void precisionChange(vComplexD *out,vComplexH *in,int nvec){ precisionChange((vRealD *)out,(vRealH *)in,nvec);}
inline void precisionChange(vComplexF *out,vComplexH *in,int nvec){ precisionChange((vRealF *)out,(vRealH *)in,nvec);}
// Check our vector types are of an appropriate size.
#if defined QPX
static_assert(2*sizeof(SIMD_Ftype) == sizeof(SIMD_Dtype), "SIMD vector lengths incorrect");
@ -854,21 +844,14 @@ static_assert(sizeof(SIMD_Ftype) == sizeof(SIMD_Itype), "SIMD vector lengths inc
/////////////////////////////////////////
template <typename T>
struct is_simd : public std::false_type {};
template <>
struct is_simd<vRealF> : public std::true_type {};
template <>
struct is_simd<vRealD> : public std::true_type {};
template <>
struct is_simd<vComplexF> : public std::true_type {};
template <>
struct is_simd<vComplexD> : public std::true_type {};
template <>
struct is_simd<vInteger> : public std::true_type {};
template <> struct is_simd<vRealF> : public std::true_type {};
template <> struct is_simd<vRealD> : public std::true_type {};
template <> struct is_simd<vComplexF> : public std::true_type {};
template <> struct is_simd<vComplexD> : public std::true_type {};
template <> struct is_simd<vInteger> : public std::true_type {};
template <typename T>
using IfSimd = Invoke<std::enable_if<is_simd<T>::value, int> >;
template <typename T>
using IfNotSimd = Invoke<std::enable_if<!is_simd<T>::value, unsigned> >;
template <typename T> using IfSimd = Invoke<std::enable_if<is_simd<T>::value, int> >;
template <typename T> using IfNotSimd = Invoke<std::enable_if<!is_simd<T>::value, unsigned> >;
}
#endif

View File

@ -179,13 +179,6 @@ inline Grid_simd<S, V> div(const Grid_simd<S, V> &r, Integer y) {
////////////////////////////////////////////////////////////////////////////
// Allows us to assign into **conformable** real vectors from complex
////////////////////////////////////////////////////////////////////////////
// template < class S, class V >
// inline auto ComplexRemove(const Grid_simd<S,V> &c) ->
// Grid_simd<Grid_simd<S,V>::Real,V> {
// Grid_simd<Grid_simd<S,V>::Real,V> ret;
// ret.v = c.v;
// return ret;
// }
template <class scalar>
struct AndFunctor {
scalar operator()(const scalar &x, const scalar &y) const { return x & y; }

View File

@ -156,11 +156,18 @@ class iScalar {
// convert from a something to a scalar via constructor of something arg
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type * = nullptr>
strong_inline iScalar<vtype> operator=(T arg) {
strong_inline iScalar<vtype> operator=(T arg) {
_internal = arg;
return *this;
}
// Convert elements
template <class ttype>
strong_inline iScalar<vtype> operator=(iScalar<ttype> &&arg) {
_internal = arg._internal;
return *this;
}
friend std::ostream &operator<<(std::ostream &stream,const iScalar<vtype> &o) {
stream << "S {" << o._internal << "}";
return stream;

View File

@ -80,8 +80,11 @@ template<class vtype, int N> inline iVector<vtype, N> Exponentiate(const iVector
mat iQ2 = arg*arg*alpha*alpha;
mat iQ3 = arg*iQ2*alpha;
// sign in c0 from the conventions on the Ta
c0 = -imag( trace(iQ3) ) * one_over_three;
c1 = -real( trace(iQ2) ) * one_over_two;
scalar imQ3, reQ2;
imQ3 = imag( trace(iQ3) );
reQ2 = real( trace(iQ2) );
c0 = -imQ3 * one_over_three;
c1 = -reQ2 * one_over_two;
// Cayley Hamilton checks to machine precision, tested
tmp = c1 * one_over_three;

View File

@ -47,6 +47,28 @@ template<int Level>
class TensorIndexRecursion {
public:
////////////////////////////////////////////////////
// Type Queries
////////////////////////////////////////////////////
template<class vtype> static inline int indexRank(const iScalar<vtype> tmp) { return TensorIndexRecursion<Level-1>::indexRank(tmp._internal); }
template<class vtype,int N> static inline int indexRank(const iVector<vtype,N> tmp){ return TensorIndexRecursion<Level-1>::indexRank(tmp._internal[0]); }
template<class vtype,int N> static inline int indexRank(const iMatrix<vtype,N> tmp){ return TensorIndexRecursion<Level-1>::indexRank(tmp._internal[0][0]); }
template<class vtype> static inline int isScalar(const iScalar<vtype> tmp) { return TensorIndexRecursion<Level-1>::isScalar(tmp._internal); }
template<class vtype,int N> static inline int isScalar(const iVector<vtype,N> tmp){ return TensorIndexRecursion<Level-1>::isScalar(tmp._internal[0]); }
template<class vtype,int N> static inline int isScalar(const iMatrix<vtype,N> tmp){ return TensorIndexRecursion<Level-1>::isScalar(tmp._internal[0][0]); }
template<class vtype> static inline int isVector(const iScalar<vtype> tmp) { return TensorIndexRecursion<Level-1>::isVector(tmp._internal); }
template<class vtype,int N> static inline int isVector(const iVector<vtype,N> tmp){ return TensorIndexRecursion<Level-1>::isVector(tmp._internal[0]); }
template<class vtype,int N> static inline int isVector(const iMatrix<vtype,N> tmp){ return TensorIndexRecursion<Level-1>::isVector(tmp._internal[0][0]); }
template<class vtype> static inline int isMatrix(const iScalar<vtype> tmp) { return TensorIndexRecursion<Level-1>::isMatrix(tmp._internal); }
template<class vtype,int N> static inline int isMatrix(const iVector<vtype,N> tmp){ return TensorIndexRecursion<Level-1>::isMatrix(tmp._internal[0]); }
template<class vtype,int N> static inline int isMatrix(const iMatrix<vtype,N> tmp){ return TensorIndexRecursion<Level-1>::isMatrix(tmp._internal[0][0]); }
////////////////////////////////////////////////////
// Trace
////////////////////////////////////////////////////
template<class vtype>
static auto traceIndex(const iScalar<vtype> arg) -> iScalar<decltype(TensorIndexRecursion<Level-1>::traceIndex(arg._internal))>
{
@ -215,6 +237,24 @@ class TensorIndexRecursion {
template<>
class TensorIndexRecursion<0> {
public:
////////////////////////////////////////////////////
// Type Queries
////////////////////////////////////////////////////
template<class vtype> static inline int indexRank(const iScalar<vtype> tmp) { return 1; }
template<class vtype,int N> static inline int indexRank(const iVector<vtype,N> tmp){ return N; }
template<class vtype,int N> static inline int indexRank(const iMatrix<vtype,N> tmp){ return N; }
template<class vtype> static inline int isScalar(const iScalar<vtype> tmp) { return true;}
template<class vtype,int N> static inline int isScalar(const iVector<vtype,N> tmp){ return false;}
template<class vtype,int N> static inline int isScalar(const iMatrix<vtype,N> tmp){ return false;}
template<class vtype> static inline int isVector(const iScalar<vtype> tmp) { return false;}
template<class vtype,int N> static inline int isVector(const iVector<vtype,N> tmp){ return true;}
template<class vtype,int N> static inline int isVector(const iMatrix<vtype,N> tmp){ return false;}
template<class vtype> static inline int isMatrix(const iScalar<vtype> tmp) { return false;}
template<class vtype,int N> static inline int isMatrix(const iVector<vtype,N> tmp){ return false;}
template<class vtype,int N> static inline int isMatrix(const iMatrix<vtype,N> tmp){ return true;}
/////////////////////////////////////////
// Ends recursion for trace (scalar/vector/matrix)
@ -302,6 +342,26 @@ class TensorIndexRecursion<0> {
////////////////////////////////////////////////////////////////////////////////////////////////////////
// External wrappers
////////////////////////////////////////////////////////////////////////////////////////////////////////
template<int Level,class vtype> inline int indexRank(void)
{
vtype tmp;
return TensorIndexRecursion<Level>::indexRank(tmp);
}
template<int Level,class vtype> inline int isScalar(void)
{
vtype tmp;
return TensorIndexRecursion<Level>::isScalar(tmp);
}
template<int Level,class vtype> inline int isVector(void)
{
vtype tmp;
return TensorIndexRecursion<Level>::isVector(tmp);
}
template<int Level,class vtype> inline int isMatrix(void)
{
vtype tmp;
return TensorIndexRecursion<Level>::isMatrix(tmp);
}
template<int Level,class vtype> inline auto traceIndex (const vtype &arg) -> RemoveCRV(TensorIndexRecursion<Level>::traceIndex(arg))
{

View File

@ -281,8 +281,8 @@ namespace Grid {
template<typename T>
class getPrecision{
public:
typedef typename getVectorType<T>::type vector_obj; //get the vector_obj (i.e. a grid Tensor) if its a Lattice<vobj>, do nothing otherwise (i.e. if fundamental or grid Tensor)
//get the vector_obj (i.e. a grid Tensor) if its a Lattice<vobj>, do nothing otherwise (i.e. if fundamental or grid Tensor)
typedef typename getVectorType<T>::type vector_obj;
typedef typename GridTypeMapper<vector_obj>::scalar_type scalar_type; //get the associated scalar type. Works on fundamental and tensor types
typedef typename GridTypeMapper<scalar_type>::Realified real_scalar_type; //remove any std::complex wrapper, should get us to the fundamental type

99
tests/IO/Test_ildg_io.cc Normal file
View File

@ -0,0 +1,99 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_nersc_io.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::cout <<GridLogMessage<< " main "<<std::endl;
std::vector<int> simd_layout = GridDefaultSimd(4,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
//std::vector<int> latt_size ({48,48,48,96});
//std::vector<int> latt_size ({32,32,32,32});
std::vector<int> latt_size ({16,16,16,32});
std::vector<int> clatt_size ({4,4,4,8});
int orthodir=3;
int orthosz =latt_size[orthodir];
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
GridCartesian Coarse(clatt_size,simd_layout,mpi_layout);
GridParallelRNG pRNGa(&Fine);
GridParallelRNG pRNGb(&Fine);
GridSerialRNG sRNGa;
GridSerialRNG sRNGb;
std::cout <<GridLogMessage<< " seeding... "<<std::endl;
pRNGa.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
sRNGa.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
std::cout <<GridLogMessage<< " ...done "<<std::endl;
LatticeGaugeField Umu(&Fine);
LatticeGaugeField Umu_diff(&Fine);
LatticeGaugeField Umu_saved(&Fine);
std::vector<LatticeColourMatrix> U(4,&Fine);
SU3::HotConfiguration(pRNGa,Umu);
FieldMetaData header;
std::cout <<GridLogMessage<<"**************************************"<<std::endl;
std::cout <<GridLogMessage<<"** Writing out ILDG conf *********"<<std::endl;
std::cout <<GridLogMessage<<"**************************************"<<std::endl;
std::string file("./ckpoint_ildg.4000");
IldgWriter _IldgWriter;
_IldgWriter.open(file);
_IldgWriter.writeConfiguration(Umu,4000,std::string("dummy_ildg_LFN"),std::string("dummy_config"));
_IldgWriter.close();
Umu_saved = Umu;
std::cout <<GridLogMessage<<"**************************************"<<std::endl;
std::cout <<GridLogMessage<<"** Reading back ILDG conf *********"<<std::endl;
std::cout <<GridLogMessage<<"**************************************"<<std::endl;
IldgReader _IldgReader;
_IldgReader.open(file);
_IldgReader.readConfiguration(Umu,header);
_IldgReader.close();
Umu_diff = Umu - Umu_saved;
std::cout <<GridLogMessage<< "norm2 Gauge Diff = "<<norm2(Umu_diff)<<std::endl;
Grid_finalize();
}

115
tests/IO/Test_ildg_read.cc Normal file
View File

@ -0,0 +1,115 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_nersc_io.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> simd_layout = GridDefaultSimd(4,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<int> latt_size = GridDefaultLatt();
int orthodir=3;
int orthosz =latt_size[orthodir];
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
LatticeGaugeField Umu(&Fine);
std::vector<LatticeColourMatrix> U(4,&Fine);
FieldMetaData header;
std::string file("./ildg.file");
IldgReader IR;
IR.open(file);
IR.readConfiguration(Umu,header);
IR.close();
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
}
// Painful ; fix syntactical niceness
LatticeComplex LinkTrace(&Fine);
LinkTrace=zero;
for(int mu=0;mu<Nd;mu++){
LinkTrace = LinkTrace + trace(U[mu]);
}
// (1+2+3)=6 = N(N-1)/2 terms
LatticeComplex Plaq(&Fine);
Plaq = zero;
for(int mu=1;mu<Nd;mu++){
for(int nu=0;nu<mu;nu++){
Plaq = Plaq + trace(U[mu]*Cshift(U[nu],mu,1)*adj(Cshift(U[mu],nu,1))*adj(U[nu]));
}
}
double vol = Fine.gSites();
Complex PlaqScale(1.0/vol/6.0/3.0);
std::cout<<GridLogMessage <<"PlaqScale" << PlaqScale<<std::endl;
std::vector<TComplex> Plaq_T(orthosz);
sliceSum(Plaq,Plaq_T,Nd-1);
int Nt = Plaq_T.size();
TComplex Plaq_T_sum;
Plaq_T_sum=zero;
for(int t=0;t<Nt;t++){
Plaq_T_sum = Plaq_T_sum+Plaq_T[t];
Complex Pt=TensorRemove(Plaq_T[t]);
std::cout<<GridLogMessage << "sliced ["<<t<<"]" <<Pt*PlaqScale*Real(Nt)<<std::endl;
}
{
Complex Pt = TensorRemove(Plaq_T_sum);
std::cout<<GridLogMessage << "total " <<Pt*PlaqScale<<std::endl;
}
TComplex Tp = sum(Plaq);
Complex p = TensorRemove(Tp);
std::cout<<GridLogMessage << "calculated plaquettes " <<p*PlaqScale<<std::endl;
Complex LinkTraceScale(1.0/vol/4.0/3.0);
TComplex Tl = sum(LinkTrace);
Complex l = TensorRemove(Tl);
std::cout<<GridLogMessage << "calculated link trace " <<l*LinkTraceScale<<std::endl;
Grid_finalize();
}

View File

@ -38,10 +38,13 @@ int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::cout <<GridLogMessage<< " main "<<std::endl;
std::vector<int> simd_layout = GridDefaultSimd(4,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<int> latt_size ({16,16,16,16});
//std::vector<int> latt_size ({48,48,48,96});
//std::vector<int> latt_size ({32,32,32,32});
std::vector<int> latt_size ({16,16,16,32});
std::vector<int> clatt_size ({4,4,4,8});
int orthodir=3;
int orthosz =latt_size[orthodir];
@ -49,30 +52,32 @@ int main (int argc, char ** argv)
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
GridCartesian Coarse(clatt_size,simd_layout,mpi_layout);
GridParallelRNG pRNGa(&Fine);
GridParallelRNG pRNGb(&Fine);
GridSerialRNG sRNGa;
GridSerialRNG sRNGb;
std::cout <<GridLogMessage<< " seeding... "<<std::endl;
pRNGa.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
sRNGa.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
std::cout <<GridLogMessage<< " ...done "<<std::endl;
std::string rfile("./ckpoint_rng.4000");
FieldMetaData rngheader;
NerscIO::writeRNGState(sRNGa,pRNGa,rfile);
NerscField rngheader;
NerscIO::readRNGState (sRNGb,pRNGb,rngheader,rfile);
LatticeComplex tmpa(&Fine); random(pRNGa,tmpa);
LatticeComplex tmpb(&Fine); random(pRNGb,tmpb);
tmpa = tmpa - tmpb;
std::cout << " difference between restored randoms and orig "<<norm2( tmpa ) <<" / "<< norm2(tmpb)<<std::endl;
std::cout <<GridLogMessage<< " difference between restored randoms and orig "<<norm2( tmpa ) <<" / "<< norm2(tmpb)<<std::endl;
ComplexD a,b;
random(sRNGa,a);
random(sRNGb,b);
std::cout << " serial RNG numbers "<<a<<" "<<b<<std::endl;
std::cout <<GridLogMessage<< " serial RNG numbers "<<a<<" "<<b<<std::endl;
LatticeGaugeField Umu(&Fine);
LatticeGaugeField Umu_diff(&Fine);
@ -80,15 +85,20 @@ int main (int argc, char ** argv)
std::vector<LatticeColourMatrix> U(4,&Fine);
SU3::ColdConfiguration(pRNGa,Umu);
SU3::HotConfiguration(pRNGa,Umu);
NerscField header;
FieldMetaData header;
std::string file("./ckpoint_lat.4000");
int precision32 = 0;
int tworow = 0;
NerscIO::writeConfiguration(Umu,file,tworow,precision32);
Umu_saved = Umu;
NerscIO::readConfiguration(Umu,header,file);
Umu_diff = Umu - Umu_saved;
//std::cout << "Umu_save "<<Umu_saved[0]<<std::endl;
//std::cout << "Umu_read "<<Umu[0]<<std::endl;
std::cout <<GridLogMessage<< "norm2 Gauge Diff = "<<norm2(Umu_diff)<<std::endl;
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
@ -115,7 +125,6 @@ int main (int argc, char ** argv)
#endif
double vol = Fine.gSites();
Complex PlaqScale(1.0/vol/6.0/3.0);
std::cout<<GridLogMessage <<"PlaqScale" << PlaqScale<<std::endl;
std::vector<TComplex> Plaq_T(orthosz);
sliceSum(Plaq,Plaq_T,Nd-1);
@ -139,7 +148,6 @@ int main (int argc, char ** argv)
Complex p = TensorRemove(Tp);
std::cout<<GridLogMessage << "calculated plaquettes " <<p*PlaqScale<<std::endl;
Complex LinkTraceScale(1.0/vol/4.0/3.0);
TComplex Tl = sum(LinkTrace);
Complex l = TensorRemove(Tl);

View File

@ -50,7 +50,7 @@ int main (int argc, char ** argv)
LatticeGaugeField Umu(&Fine);
std::vector<LatticeColourMatrix> U(4,&Fine);
NerscField header;
FieldMetaData header;
std::string file("./ckpoint_lat");
NerscIO::readConfiguration(Umu,header,file);

View File

@ -31,6 +31,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
using namespace Grid;
using namespace Grid::QCD;
GRID_SERIALIZABLE_ENUM(myenum, undef, red, 1, blue, 2, green, 3);
@ -44,8 +45,8 @@ public:
double, y,
bool , b,
std::vector<double>, array,
std::vector<std::vector<double>>, twodimarray,
std::vector<std::vector<std::vector<Complex>>>, cmplx3darray
std::vector<std::vector<double> >, twodimarray,
std::vector<std::vector<std::vector<Complex> > >, cmplx3darray
);
myclass() {}
myclass(int i)
@ -237,7 +238,7 @@ int main(int argc,char **argv)
std::cout << "Loaded (JSON) -----------------" << std::endl;
std::cout << jcopy1 << std::endl << jveccopy1 << std::endl;
}
/*
// This is still work in progress
{

View File

@ -73,7 +73,7 @@ int main (int argc, char ** argv)
std::vector<LatticeColourMatrix> U(4,&Fine);
NerscField header;
FieldMetaData header;
std::string file("./ckpoint_lat.4000");
NerscIO::readConfiguration(Umu,header,file);

View File

@ -90,7 +90,7 @@ int main (int argc, char ** argv)
std::vector<LatticeColourMatrix> U(4,&Fine);
NerscField header;
FieldMetaData header;
std::string file("./ckpoint_lat.4000");
NerscIO::readConfiguration(Umu,header,file);

View File

@ -28,212 +28,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
template <class Gimpl>
class FourierAcceleratedGaugeFixer : public Gimpl {
public:
INHERIT_GIMPL_TYPES(Gimpl);
typedef typename Gimpl::GaugeLinkField GaugeMat;
typedef typename Gimpl::GaugeField GaugeLorentz;
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
for(int mu=0;mu<Nd;mu++){
// ImplComplex cmi(0.0,-1.0);
Complex cmi(0.0,-1.0);
A[mu] = Ta(U[mu]) * cmi;
}
}
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu) {
dmuAmu=zero;
for(int mu=0;mu<Nd;mu++){
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
}
}
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol) {
GridBase *grid = Umu._grid;
Real org_plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real org_link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
Real old_trace = org_link_trace;
Real trG;
std::vector<GaugeMat> U(Nd,grid);
GaugeMat dmuAmu(grid);
for(int i=0;i<maxiter;i++){
for(int mu=0;mu<Nd;mu++) U[mu]= PeekIndex<LorentzIndex>(Umu,mu);
//trG = SteepestDescentStep(U,alpha,dmuAmu);
trG = FourierAccelSteepestDescentStep(U,alpha,dmuAmu);
for(int mu=0;mu<Nd;mu++) PokeIndex<LorentzIndex>(Umu,U[mu],mu);
// Monitor progress and convergence test
// infrequently to minimise cost overhead
if ( i %20 == 0 ) {
Real plaq =WilsonLoops<Gimpl>::avgPlaquette(Umu);
Real link_trace=WilsonLoops<Gimpl>::linkTrace(Umu);
std::cout << GridLogMessage << " Iteration "<<i<< " plaq= "<<plaq<< " dmuAmu " << norm2(dmuAmu)<< std::endl;
Real Phi = 1.0 - old_trace / link_trace ;
Real Omega= 1.0 - trG;
std::cout << GridLogMessage << " Iteration "<<i<< " Phi= "<<Phi<< " Omega= " << Omega<< " trG " << trG <<std::endl;
if ( (Omega < Omega_tol) && ( ::fabs(Phi) < Phi_tol) ) {
std::cout << GridLogMessage << "Converged ! "<<std::endl;
return;
}
old_trace = link_trace;
}
}
};
static Real SteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
GridBase *grid = U[0]._grid;
std::vector<GaugeMat> A(Nd,grid);
GaugeMat g(grid);
GaugeLinkToLieAlgebraField(U,A);
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu);
Real vol = grid->gSites();
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,Real & alpha, GaugeMat & dmuAmu) {
GridBase *grid = U[0]._grid;
Real vol = grid->gSites();
FFT theFFT((GridCartesian *)grid);
LatticeComplex Fp(grid);
LatticeComplex psq(grid); psq=zero;
LatticeComplex pmu(grid);
LatticeComplex one(grid); one = Complex(1.0,0.0);
GaugeMat g(grid);
GaugeMat dmuAmu_p(grid);
std::vector<GaugeMat> A(Nd,grid);
GaugeLinkToLieAlgebraField(U,A);
DmuAmu(A,dmuAmu);
theFFT.FFT_all_dim(dmuAmu_p,dmuAmu,FFT::forward);
//////////////////////////////////
// Work out Fp = psq_max/ psq...
//////////////////////////////////
std::vector<int> latt_size = grid->GlobalDimensions();
std::vector<int> coor(grid->_ndimension,0);
for(int mu=0;mu<Nd;mu++) {
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
psq = psq + 4.0*sin(pmu*0.5)*sin(pmu*0.5);
}
Complex psqMax(16.0);
Fp = psqMax*one/psq;
/*
static int once;
if ( once == 0 ) {
std::cout << " Fp " << Fp <<std::endl;
once ++;
}*/
pokeSite(TComplex(1.0),Fp,coor);
dmuAmu_p = dmuAmu_p * Fp;
theFFT.FFT_all_dim(dmuAmu,dmuAmu_p,FFT::backward);
GaugeMat ciadmam(grid);
Complex cialpha(0.0,-alpha);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
SU<Nc>::GaugeTransform(U,g);
return trG;
}
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu) {
GridBase *grid = g._grid;
Complex cialpha(0.0,-alpha);
GaugeMat ciadmam(grid);
DmuAmu(A,dmuAmu);
ciadmam = dmuAmu*cialpha;
SU<Nc>::taExp(ciadmam,g);
}
/*
////////////////////////////////////////////////////////////////
// NB The FT for fields living on links has an extra phase in it
// Could add these to the FFT class as a later task since this code
// might be reused elsewhere ????
////////////////////////////////////////////////////////////////
static void InverseFourierTransformAmu(FFT &theFFT,const std::vector<GaugeMat> &Ap,std::vector<GaugeMat> &Ax) {
GridBase * grid = theFFT.Grid();
std::vector<int> latt_size = grid->GlobalDimensions();
ComplexField pmu(grid);
ComplexField pha(grid);
GaugeMat Apha(grid);
Complex ci(0.0,1.0);
for(int mu=0;mu<Nd;mu++){
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
pha = exp(pmu * (0.5 *ci)); // e(ipmu/2) since Amu(x+mu/2)
Apha = Ap[mu] * pha;
theFFT.FFT_all_dim(Apha,Ax[mu],FFT::backward);
}
}
static void FourierTransformAmu(FFT & theFFT,const std::vector<GaugeMat> &Ax,std::vector<GaugeMat> &Ap) {
GridBase * grid = theFFT.Grid();
std::vector<int> latt_size = grid->GlobalDimensions();
ComplexField pmu(grid);
ComplexField pha(grid);
Complex ci(0.0,1.0);
// Sign convention for FFTW calls:
// A(x)= Sum_p e^ipx A(p) / V
// A(p)= Sum_p e^-ipx A(x)
for(int mu=0;mu<Nd;mu++){
Real TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(pmu,mu);
pmu = TwoPiL * pmu ;
pha = exp(-pmu * (0.5 *ci)); // e(+ipmu/2) since Amu(x+mu/2)
theFFT.FFT_all_dim(Ax[mu],Ap[mu],FFT::backward);
Ap[mu] = Ap[mu] * pha;
}
}
*/
};
int main (int argc, char ** argv)
{
std::vector<int> seeds({1,2,3,4});
@ -264,22 +58,24 @@ int main (int argc, char ** argv)
std::cout<< "*****************************************************************" <<std::endl;
LatticeGaugeField Umu(&GRID);
LatticeGaugeField Urnd(&GRID);
LatticeGaugeField Uorg(&GRID);
LatticeColourMatrix g(&GRID); // Gauge xform
SU3::ColdConfiguration(pRNG,Umu); // Unit gauge
Uorg=Umu;
Urnd=Umu;
SU3::RandomGaugeTransform(pRNG,Urnd,g); // Unit gauge
SU3::RandomGaugeTransform(pRNG,Umu,g); // Unit gauge
Real plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
std::cout << " Initial plaquette "<<plaq << std::endl;
Real alpha=0.1;
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-10, 1.0e-10);
Umu = Urnd;
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,false);
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
std::cout << " Final plaquette "<<plaq << std::endl;
@ -288,14 +84,28 @@ int main (int argc, char ** argv)
std::cout << " Norm Difference "<< norm2(Uorg) << std::endl;
// std::cout<< "*****************************************************************" <<std::endl;
// std::cout<< "* Testing Fourier accelerated fixing *" <<std::endl;
// std::cout<< "*****************************************************************" <<std::endl;
std::cout<< "*****************************************************************" <<std::endl;
std::cout<< "* Testing Fourier accelerated fixing *" <<std::endl;
std::cout<< "*****************************************************************" <<std::endl;
Umu=Urnd;
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,true);
// std::cout<< "*****************************************************************" <<std::endl;
// std::cout<< "* Testing non-unit configuration *" <<std::endl;
// std::cout<< "*****************************************************************" <<std::endl;
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
std::cout << " Final plaquette "<<plaq << std::endl;
std::cout<< "*****************************************************************" <<std::endl;
std::cout<< "* Testing non-unit configuration *" <<std::endl;
std::cout<< "*****************************************************************" <<std::endl;
SU3::HotConfiguration(pRNG,Umu); // Unit gauge
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
std::cout << " Initial plaquette "<<plaq << std::endl;
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,true);
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
std::cout << " Final plaquette "<<plaq << std::endl;
Grid_finalize();

View File

@ -336,7 +336,7 @@ int main(int argc, char **argv) {
std::cout << GridLogMessage << "norm cMmat : " << norm2(cMat)
<< std::endl;
cMat = expMat(cMat, ComplexD(1.0, 0.0));
cMat = expMat(cMat,1.0);// ComplexD(1.0, 0.0));
std::cout << GridLogMessage << "norm expMat: " << norm2(cMat)
<< std::endl;
peekSite(cm, cMat, mysite);

View File

@ -67,7 +67,7 @@ int main (int argc, char ** argv)
LatticeFermion err(FGrid);
LatticeGaugeField Umu(UGrid);
NerscField header;
FieldMetaData header;
std::string file("./ckpoint_lat.400");
NerscIO::readConfiguration(Umu,header,file);

View File

@ -139,7 +139,7 @@ int main (int argc, char ** argv)
}
Complex dSpred = sum(dS);
ComplexD dSpred = sum(dS);
std::cout << GridLogMessage << " S "<<S<<std::endl;
std::cout << GridLogMessage << " Sprime "<<Sprime<<std::endl;

View File

@ -150,7 +150,7 @@ int main (int argc, char ** argv)
}
Complex dSpred = sum(dS);
ComplexD dSpred = sum(dS);
std::cout << GridLogMessage << " S "<<S<<std::endl;
std::cout << GridLogMessage << " Sprime "<<Sprime<<std::endl;

View File

@ -194,9 +194,9 @@ int main (int argc, char ** argv)
}
Complex dSpred = sum(dS);
Complex dSm = sum(dSmom);
Complex dSm2 = sum(dSmom2);
ComplexD dSpred = sum(dS);
ComplexD dSm = sum(dSmom);
ComplexD dSm2 = sum(dSmom2);
std::cout << GridLogMessage <<"Initial mom hamiltonian is "<< Hmom <<std::endl;

View File

@ -113,7 +113,7 @@ int main (int argc, char ** argv)
dS = dS - trace(mommu*UdSdUmu)*dt*2.0;
}
Complex dSpred = sum(dS);
ComplexD dSpred = sum(dS);
std::cout << GridLogMessage << " S "<<S<<std::endl;
std::cout << GridLogMessage << " Sprime "<<Sprime<<std::endl;

View File

@ -143,7 +143,7 @@ int main (int argc, char ** argv)
dS = dS+trace(mommu*forcemu)*dt;
}
Complex dSpred = sum(dS);
ComplexD dSpred = sum(dS);
// From TwoFlavourPseudoFermion:
//////////////////////////////////////////////////////

View File

@ -143,7 +143,7 @@ int main (int argc, char ** argv)
dS = dS+trace(mommu*forcemu)*dt;
}
Complex dSpred = sum(dS);
ComplexD dSpred = sum(dS);
std::cout << GridLogMessage << " S "<<S<<std::endl;
std::cout << GridLogMessage << " Sprime "<<Sprime<<std::endl;

View File

@ -128,7 +128,7 @@ int main (int argc, char ** argv)
dS = dS + trace(mommu*UdSdUmu)*dt*2.0;
}
Complex dSpred = sum(dS);
ComplexD dSpred = sum(dS);
std::cout << GridLogMessage << " S "<<S<<std::endl;
std::cout << GridLogMessage << " Sprime "<<Sprime<<std::endl;

View File

@ -141,7 +141,7 @@ int main (int argc, char ** argv)
}
Complex dSpred = sum(dS);
ComplexD dSpred = sum(dS);
std::cout << GridLogMessage << " -- S "<<S<<std::endl;
std::cout << GridLogMessage << " -- Sprime "<<Sprime<<std::endl;

View File

@ -141,7 +141,7 @@ int main (int argc, char ** argv)
}
Complex dSpred = sum(dS);
ComplexD dSpred = sum(dS);
std::cout << GridLogMessage << " S "<<S<<std::endl;
std::cout << GridLogMessage << " Sprime "<<Sprime<<std::endl;

View File

@ -112,7 +112,7 @@ int main (int argc, char ** argv)
dS = dS - trace(mommu*UdSdUmu)*dt*2.0;
}
Complex dSpred = sum(dS);
ComplexD dSpred = sum(dS);
std::cout << GridLogMessage << " S "<<S<<std::endl;
std::cout << GridLogMessage << " Sprime "<<Sprime<<std::endl;

View File

@ -178,9 +178,9 @@ int main (int argc, char ** argv)
}
Complex dSpred = sum(dS);
Complex dSm = sum(dSmom);
Complex dSm2 = sum(dSmom2);
ComplexD dSpred = sum(dS);
ComplexD dSm = sum(dSmom);
ComplexD dSm2 = sum(dSmom2);
std::cout << GridLogMessage <<"Initial mom hamiltonian is "<< Hmom <<std::endl;

View File

@ -155,7 +155,7 @@ int main (int argc, char ** argv)
}
Complex dSpred = sum(dS);
ComplexD dSpred = sum(dS);
std::cout << GridLogMessage << " S "<<S<<std::endl;
std::cout << GridLogMessage << " Sprime "<<Sprime<<std::endl;

View File

@ -516,7 +516,7 @@ int main (int argc, char ** argv)
LatticeColourMatrix U(UGrid);
LatticeColourMatrix zz(UGrid);
NerscField header;
FieldMetaData header;
std::string file("./ckpoint_lat.4000");
NerscIO::readConfiguration(Umu,header,file);

View File

@ -51,7 +51,7 @@ int main (int argc, char ** argv)
typedef typename ImprovedStaggeredFermion5DR::ComplexField ComplexField;
typename ImprovedStaggeredFermion5DR::ImplParams params;
const int Ls=4;
const int Ls=8;
Grid_init(&argc,&argv);
@ -74,17 +74,19 @@ int main (int argc, char ** argv)
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(pRNG,Umu);
RealD mass=0.01;
RealD mass=0.003;
ImprovedStaggeredFermion5DR Ds(Umu,Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass);
MdagMLinearOperator<ImprovedStaggeredFermion5DR,FermionField> HermOp(Ds);
ConjugateGradient<FermionField> CG(1.0e-8,10000);
BlockConjugateGradient<FermionField> BCG(1.0e-8,10000);
MultiRHSConjugateGradient<FermionField> mCG(1.0e-8,10000);
int blockDim = 0;
BlockConjugateGradient<FermionField> BCGrQ(BlockCGrQ,blockDim,1.0e-8,10000);
BlockConjugateGradient<FermionField> BCG (BlockCG,blockDim,1.0e-8,10000);
BlockConjugateGradient<FermionField> mCG (CGmultiRHS,blockDim,1.0e-8,10000);
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling 4d CG "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
ImprovedStaggeredFermionR Ds4d(Umu,Umu,*UGrid,*UrbGrid,mass);
MdagMLinearOperator<ImprovedStaggeredFermionR,FermionField> HermOp4d(Ds4d);
FermionField src4d(UGrid); random(pRNG,src4d);
@ -111,7 +113,7 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << " Calling Block CG for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
result=zero;
BCG(HermOp,src,result);
BCGrQ(HermOp,src,result);
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;