1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

removing Hadrons

This commit is contained in:
Antonin Portelli 2020-03-27 12:03:32 +00:00
parent 05ebc458e2
commit 7e13724882
240 changed files with 1 additions and 31183 deletions

View File

@ -1,777 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/A2AMatrix.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef A2A_Matrix_hpp_
#define A2A_Matrix_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/TimerArray.hpp>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
#ifdef USE_MKL
#include "mkl.h"
#include "mkl_cblas.h"
#endif
#ifndef HADRONS_A2AM_NAME
#define HADRONS_A2AM_NAME "a2aMatrix"
#endif
#ifndef HADRONS_A2AM_IO_TYPE
#define HADRONS_A2AM_IO_TYPE ComplexF
#endif
#define HADRONS_A2AM_PARALLEL_IO
BEGIN_HADRONS_NAMESPACE
// general A2A matrix set based on Eigen tensors and Grid-allocated memory
// Dimensions:
// 0 - ext - external field (momentum, EM field, ...)
// 1 - str - spin-color structure
// 2 - t - timeslice
// 3 - i - left A2A mode index
// 4 - j - right A2A mode index
template <typename T>
using A2AMatrixSet = Eigen::TensorMap<Eigen::Tensor<T, 5, Eigen::RowMajor>>;
template <typename T>
using A2AMatrix = Eigen::Matrix<T, -1, -1, Eigen::RowMajor>;
template <typename T>
using A2AMatrixTr = Eigen::Matrix<T, -1, -1, Eigen::ColMajor>;
/******************************************************************************
* Abstract class for A2A kernels *
******************************************************************************/
template <typename T, typename Field>
class A2AKernel
{
public:
A2AKernel(void) = default;
virtual ~A2AKernel(void) = default;
virtual void operator()(A2AMatrixSet<T> &m, const Field *left, const Field *right,
const unsigned int orthogDim, double &time) = 0;
virtual double flops(const unsigned int blockSizei, const unsigned int blockSizej) = 0;
virtual double bytes(const unsigned int blockSizei, const unsigned int blockSizej) = 0;
};
/******************************************************************************
* Class to handle A2A matrix block HDF5 I/O *
******************************************************************************/
template <typename T>
class A2AMatrixIo
{
public:
// constructors
A2AMatrixIo(void) = default;
A2AMatrixIo(std::string filename, std::string dataname,
const unsigned int nt, const unsigned int ni = 0,
const unsigned int nj = 0);
// destructor
~A2AMatrixIo(void) = default;
// access
unsigned int getNi(void) const;
unsigned int getNj(void) const;
unsigned int getNt(void) const;
size_t getSize(void) const;
// file allocation
template <typename MetadataType>
void initFile(const MetadataType &d, const unsigned int chunkSize);
// block I/O
void saveBlock(const T *data, const unsigned int i, const unsigned int j,
const unsigned int blockSizei, const unsigned int blockSizej);
void saveBlock(const A2AMatrixSet<T> &m, const unsigned int ext, const unsigned int str,
const unsigned int i, const unsigned int j);
template <template <class> class Vec, typename VecT>
void load(Vec<VecT> &v, double *tRead = nullptr, GridBase *grid = nullptr);
private:
std::string filename_{""}, dataname_{""};
unsigned int nt_{0}, ni_{0}, nj_{0};
};
/******************************************************************************
* Wrapper for A2A matrix block computation *
******************************************************************************/
template <typename T, typename Field, typename MetadataType, typename TIo = T>
class A2AMatrixBlockComputation
{
private:
struct IoHelper
{
A2AMatrixIo<TIo> io;
MetadataType md;
unsigned int e, s, i, j;
};
typedef std::function<std::string(const unsigned int, const unsigned int)> FilenameFn;
typedef std::function<MetadataType(const unsigned int, const unsigned int)> MetadataFn;
public:
// constructor
A2AMatrixBlockComputation(GridBase *grid,
const unsigned int orthogDim,
const unsigned int next,
const unsigned int nstr,
const unsigned int blockSize,
const unsigned int cacheBlockSize,
TimerArray *tArray = nullptr);
// execution
void execute(const std::vector<Field> &left,
const std::vector<Field> &right,
A2AKernel<T, Field> &kernel,
const FilenameFn &ionameFn,
const FilenameFn &filenameFn,
const MetadataFn &metadataFn);
private:
// I/O handler
void saveBlock(const A2AMatrixSet<TIo> &m, IoHelper &h);
private:
TimerArray *tArray_;
GridBase *grid_;
unsigned int orthogDim_, nt_, next_, nstr_, blockSize_, cacheBlockSize_;
Vector<T> mCache_;
Vector<TIo> mBuf_;
std::vector<IoHelper> nodeIo_;
};
/******************************************************************************
* A2A matrix contraction kernels *
******************************************************************************/
class A2AContraction
{
public:
// accTrMul(acc, a, b): acc += tr(a*b)
template <typename C, typename MatLeft, typename MatRight>
static inline void accTrMul(C &acc, const MatLeft &a, const MatRight &b)
{
const int RowMajor = Eigen::RowMajor;
const int ColMajor = Eigen::ColMajor;
if ((MatLeft::Options == RowMajor) and
(MatRight::Options == ColMajor))
{
thread_for(r,a.rows(),
{
C tmp;
#ifdef USE_MKL
dotuRow(tmp, r, a, b);
#else
tmp = a.row(r).conjugate().dot(b.col(r));
#endif
thread_critical
{
acc += tmp;
}
});
}
else
{
thread_for(c,a.cols(),
{
C tmp;
#ifdef USE_MKL
dotuCol(tmp, c, a, b);
#else
tmp = a.col(c).conjugate().dot(b.row(c));
#endif
thread_critical
{
acc += tmp;
}
});
}
}
template <typename MatLeft, typename MatRight>
static inline double accTrMulFlops(const MatLeft &a, const MatRight &b)
{
double n = a.rows()*a.cols();
return 8.*n;
}
// mul(res, a, b): res = a*b
#ifdef USE_MKL
template <template <class, int...> class Mat, int... Opts>
static inline void mul(Mat<ComplexD, Opts...> &res,
const Mat<ComplexD, Opts...> &a,
const Mat<ComplexD, Opts...> &b)
{
static const ComplexD one(1., 0.), zero(0., 0.);
const int RowMajor = Eigen::RowMajor;
const int ColMajor = Eigen::ColMajor;
if ((res.rows() != a.rows()) or (res.cols() != b.cols()))
{
res.resize(a.rows(), b.cols());
}
if (Mat<ComplexD, Opts...>::Options == RowMajor)
{
cblas_zgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, a.rows(), b.cols(),
a.cols(), &one, a.data(), a.cols(), b.data(), b.cols(), &zero,
res.data(), res.cols());
}
else if (Mat<ComplexD, Opts...>::Options == ColMajor)
{
cblas_zgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, a.rows(), b.cols(),
a.cols(), &one, a.data(), a.rows(), b.data(), b.rows(), &zero,
res.data(), res.rows());
}
}
template <template <class, int...> class Mat, int... Opts>
static inline void mul(Mat<ComplexF, Opts...> &res,
const Mat<ComplexF, Opts...> &a,
const Mat<ComplexF, Opts...> &b)
{
static const ComplexF one(1., 0.), zero(0., 0.);
const int RowMajor = Eigen::RowMajor;
const int ColMajor = Eigen::ColMajor;
if ((res.rows() != a.rows()) or (res.cols() != b.cols()))
{
res.resize(a.rows(), b.cols());
}
if (Mat<ComplexF, Opts...>::Options == RowMajor)
{
cblas_cgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, a.rows(), b.cols(),
a.cols(), &one, a.data(), a.cols(), b.data(), b.cols(), &zero,
res.data(), res.cols());
}
else if (Mat<ComplexF, Opts...>::Options == ColMajor)
{
cblas_cgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, a.rows(), b.cols(),
a.cols(), &one, a.data(), a.rows(), b.data(), b.rows(), &zero,
res.data(), res.rows());
}
}
#else
template <typename Mat>
static inline void mul(Mat &res, const Mat &a, const Mat &b)
{
res = a*b;
}
#endif
template <typename Mat>
static inline double mulFlops(const Mat &a, const Mat &b)
{
double nr = a.rows(), nc = a.cols();
return nr*nr*(6.*nc + 2.*(nc - 1.));
}
private:
template <typename C, typename MatLeft, typename MatRight>
static inline void makeDotRowPt(C * &aPt, unsigned int &aInc, C * &bPt,
unsigned int &bInc, const unsigned int aRow,
const MatLeft &a, const MatRight &b)
{
const int RowMajor = Eigen::RowMajor;
const int ColMajor = Eigen::ColMajor;
if (MatLeft::Options == RowMajor)
{
aPt = a.data() + aRow*a.cols();
aInc = 1;
}
else if (MatLeft::Options == ColMajor)
{
aPt = a.data() + aRow;
aInc = a.rows();
}
if (MatRight::Options == RowMajor)
{
bPt = b.data() + aRow;
bInc = b.cols();
}
else if (MatRight::Options == ColMajor)
{
bPt = b.data() + aRow*b.rows();
bInc = 1;
}
}
#ifdef USE_MKL
template <typename C, typename MatLeft, typename MatRight>
static inline void makeDotColPt(C * &aPt, unsigned int &aInc, C * &bPt,
unsigned int &bInc, const unsigned int aCol,
const MatLeft &a, const MatRight &b)
{
const int RowMajor = Eigen::RowMajor;
const int ColMajor = Eigen::ColMajor;
if (MatLeft::Options == RowMajor)
{
aPt = a.data() + aCol;
aInc = a.cols();
}
else if (MatLeft::Options == ColMajor)
{
aPt = a.data() + aCol*a.rows();
aInc = 1;
}
if (MatRight::Options == RowMajor)
{
bPt = b.data() + aCol*b.cols();
bInc = 1;
}
else if (MatRight::Options == ColMajor)
{
bPt = b.data() + aCol;
bInc = b.rows();
}
}
template <typename MatLeft, typename MatRight>
static inline void dotuRow(ComplexF &res, const unsigned int aRow,
const MatLeft &a, const MatRight &b)
{
const ComplexF *aPt, *bPt;
unsigned int aInc, bInc;
makeDotRowPt(aPt, aInc, bPt, bInc, aRow, a, b);
cblas_cdotu_sub(a.cols(), aPt, aInc, bPt, bInc, &res);
}
template <typename MatLeft, typename MatRight>
static inline void dotuCol(ComplexF &res, const unsigned int aCol,
const MatLeft &a, const MatRight &b)
{
const ComplexF *aPt, *bPt;
unsigned int aInc, bInc;
makeDotColPt(aPt, aInc, bPt, bInc, aCol, a, b);
cblas_cdotu_sub(a.rows(), aPt, aInc, bPt, bInc, &res);
}
template <typename MatLeft, typename MatRight>
static inline void dotuRow(ComplexD &res, const unsigned int aRow,
const MatLeft &a, const MatRight &b)
{
const ComplexD *aPt, *bPt;
unsigned int aInc, bInc;
makeDotRowPt(aPt, aInc, bPt, bInc, aRow, a, b);
cblas_zdotu_sub(a.cols(), aPt, aInc, bPt, bInc, &res);
}
template <typename MatLeft, typename MatRight>
static inline void dotuCol(ComplexD &res, const unsigned int aCol,
const MatLeft &a, const MatRight &b)
{
const ComplexD *aPt, *bPt;
unsigned int aInc, bInc;
makeDotColPt(aPt, aInc, bPt, bInc, aCol, a, b);
cblas_zdotu_sub(a.rows(), aPt, aInc, bPt, bInc, &res);
}
#endif
};
/******************************************************************************
* A2AMatrixIo template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename T>
A2AMatrixIo<T>::A2AMatrixIo(std::string filename, std::string dataname,
const unsigned int nt, const unsigned int ni,
const unsigned int nj)
: filename_(filename), dataname_(dataname)
, nt_(nt), ni_(ni), nj_(nj)
{}
// access //////////////////////////////////////////////////////////////////////
template <typename T>
unsigned int A2AMatrixIo<T>::getNt(void) const
{
return nt_;
}
template <typename T>
unsigned int A2AMatrixIo<T>::getNi(void) const
{
return ni_;
}
template <typename T>
unsigned int A2AMatrixIo<T>::getNj(void) const
{
return nj_;
}
template <typename T>
size_t A2AMatrixIo<T>::getSize(void) const
{
return nt_*ni_*nj_*sizeof(T);
}
// file allocation /////////////////////////////////////////////////////////////
template <typename T>
template <typename MetadataType>
void A2AMatrixIo<T>::initFile(const MetadataType &d, const unsigned int chunkSize)
{
#ifdef HAVE_HDF5
std::vector<hsize_t> dim = {static_cast<hsize_t>(nt_),
static_cast<hsize_t>(ni_),
static_cast<hsize_t>(nj_)},
chunk = {static_cast<hsize_t>(nt_),
static_cast<hsize_t>(chunkSize),
static_cast<hsize_t>(chunkSize)};
H5NS::DataSpace dataspace(dim.size(), dim.data());
H5NS::DataSet dataset;
H5NS::DSetCreatPropList plist;
// create empty file just with metadata
{
Hdf5Writer writer(filename_);
write(writer, dataname_, d);
}
// create the dataset
Hdf5Reader reader(filename_, false);
push(reader, dataname_);
auto &group = reader.getGroup();
plist.setChunk(chunk.size(), chunk.data());
plist.setFletcher32();
dataset = group.createDataSet(HADRONS_A2AM_NAME, Hdf5Type<T>::type(), dataspace, plist);
#else
HADRONS_ERROR(Implementation, "all-to-all matrix I/O needs HDF5 library");
#endif
}
// block I/O ///////////////////////////////////////////////////////////////////
template <typename T>
void A2AMatrixIo<T>::saveBlock(const T *data,
const unsigned int i,
const unsigned int j,
const unsigned int blockSizei,
const unsigned int blockSizej)
{
#ifdef HAVE_HDF5
Hdf5Reader reader(filename_, false);
std::vector<hsize_t> count = {nt_, blockSizei, blockSizej},
offset = {0, static_cast<hsize_t>(i),
static_cast<hsize_t>(j)},
stride = {1, 1, 1},
block = {1, 1, 1};
H5NS::DataSpace memspace(count.size(), count.data()), dataspace;
H5NS::DataSet dataset;
// size_t shift;
push(reader, dataname_);
auto &group = reader.getGroup();
dataset = group.openDataSet(HADRONS_A2AM_NAME);
dataspace = dataset.getSpace();
dataspace.selectHyperslab(H5S_SELECT_SET, count.data(), offset.data(),
stride.data(), block.data());
dataset.write(data, Hdf5Type<T>::type(), memspace, dataspace);
#else
HADRONS_ERROR(Implementation, "all-to-all matrix I/O needs HDF5 library");
#endif
}
template <typename T>
void A2AMatrixIo<T>::saveBlock(const A2AMatrixSet<T> &m,
const unsigned int ext, const unsigned int str,
const unsigned int i, const unsigned int j)
{
unsigned int blockSizei = m.dimension(3);
unsigned int blockSizej = m.dimension(4);
unsigned int nstr = m.dimension(1);
size_t offset = (ext*nstr + str)*nt_*blockSizei*blockSizej;
saveBlock(m.data() + offset, i, j, blockSizei, blockSizej);
}
template <typename T>
template <template <class> class Vec, typename VecT>
void A2AMatrixIo<T>::load(Vec<VecT> &v, double *tRead, GridBase *grid)
{
#ifdef HAVE_HDF5
std::vector<hsize_t> hdim;
H5NS::DataSet dataset;
H5NS::DataSpace dataspace;
H5NS::CompType datatype;
if (!(grid) || grid->IsBoss())
{
Hdf5Reader reader(filename_);
push(reader, dataname_);
auto &group = reader.getGroup();
dataset = group.openDataSet(HADRONS_A2AM_NAME);
datatype = dataset.getCompType();
dataspace = dataset.getSpace();
hdim.resize(dataspace.getSimpleExtentNdims());
dataspace.getSimpleExtentDims(hdim.data());
if ((nt_ * ni_ * nj_ != 0) and
((hdim[0] != nt_) or (hdim[1] != ni_) or (hdim[2] != nj_)))
{
HADRONS_ERROR(Size, "all-to-all matrix size mismatch (got "
+ std::to_string(hdim[0]) + "x" + std::to_string(hdim[1]) + "x"
+ std::to_string(hdim[2]) + ", expected "
+ std::to_string(nt_) + "x" + std::to_string(ni_) + "x"
+ std::to_string(nj_));
}
else if (ni_*nj_ == 0)
{
if (hdim[0] != nt_)
{
HADRONS_ERROR(Size, "all-to-all time size mismatch (got "
+ std::to_string(hdim[0]) + ", expected "
+ std::to_string(nt_) + ")");
}
ni_ = hdim[1];
nj_ = hdim[2];
}
}
if (grid)
{
grid->Broadcast(grid->BossRank(), &ni_, sizeof(unsigned int));
grid->Broadcast(grid->BossRank(), &nj_, sizeof(unsigned int));
}
A2AMatrix<T> buf(ni_, nj_);
int broadcastSize = sizeof(T) * buf.size();
std::vector<hsize_t> count = {1, static_cast<hsize_t>(ni_),
static_cast<hsize_t>(nj_)},
stride = {1, 1, 1},
block = {1, 1, 1},
memCount = {static_cast<hsize_t>(ni_),
static_cast<hsize_t>(nj_)};
H5NS::DataSpace memspace(memCount.size(), memCount.data());
std::cout << "Loading timeslice";
std::cout.flush();
*tRead = 0.;
for (unsigned int tp1 = nt_; tp1 > 0; --tp1)
{
unsigned int t = tp1 - 1;
std::vector<hsize_t> offset = {static_cast<hsize_t>(t), 0, 0};
if (t % 10 == 0)
{
std::cout << " " << t;
std::cout.flush();
}
if (!(grid) || grid->IsBoss())
{
dataspace.selectHyperslab(H5S_SELECT_SET, count.data(), offset.data(),
stride.data(), block.data());
}
if (tRead) *tRead -= usecond();
if (!(grid) || grid->IsBoss())
{
dataset.read(buf.data(), datatype, memspace, dataspace);
}
if (grid)
{
grid->Broadcast(grid->BossRank(), buf.data(), broadcastSize);
}
if (tRead) *tRead += usecond();
v[t] = buf.template cast<VecT>();
}
std::cout << std::endl;
#else
HADRONS_ERROR(Implementation, "all-to-all matrix I/O needs HDF5 library");
#endif
}
/******************************************************************************
* A2AMatrixBlockComputation template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename T, typename Field, typename MetadataType, typename TIo>
A2AMatrixBlockComputation<T, Field, MetadataType, TIo>
::A2AMatrixBlockComputation(GridBase *grid,
const unsigned int orthogDim,
const unsigned int next,
const unsigned int nstr,
const unsigned int blockSize,
const unsigned int cacheBlockSize,
TimerArray *tArray)
: grid_(grid), nt_(grid->GlobalDimensions()[orthogDim]), orthogDim_(orthogDim)
, next_(next), nstr_(nstr), blockSize_(blockSize), cacheBlockSize_(cacheBlockSize)
, tArray_(tArray)
{
mCache_.resize(nt_*next_*nstr_*cacheBlockSize_*cacheBlockSize_);
mBuf_.resize(nt_*next_*nstr_*blockSize_*blockSize_);
}
#define START_TIMER(name) if (tArray_) tArray_->startTimer(name)
#define STOP_TIMER(name) if (tArray_) tArray_->stopTimer(name)
#define GET_TIMER(name) ((tArray_ != nullptr) ? tArray_->getDTimer(name) : 0.)
// execution ///////////////////////////////////////////////////////////////////
template <typename T, typename Field, typename MetadataType, typename TIo>
void A2AMatrixBlockComputation<T, Field, MetadataType, TIo>
::execute(const std::vector<Field> &left, const std::vector<Field> &right,
A2AKernel<T, Field> &kernel, const FilenameFn &ionameFn,
const FilenameFn &filenameFn, const MetadataFn &metadataFn)
{
//////////////////////////////////////////////////////////////////////////
// i,j is first loop over blockSize_ factors
// ii,jj is second loop over cacheBlockSize_ factors for high perf contractions
// iii,jjj are loops within cacheBlock
// Total index is sum of these i+ii+iii etc...
//////////////////////////////////////////////////////////////////////////
int N_i = left.size();
int N_j = right.size();
double flops, bytes, t_kernel;
double nodes = grid_->NodeCount();
int NBlock_i = N_i/blockSize_ + (((N_i % blockSize_) != 0) ? 1 : 0);
int NBlock_j = N_j/blockSize_ + (((N_j % blockSize_) != 0) ? 1 : 0);
for(int i=0;i<N_i;i+=blockSize_)
for(int j=0;j<N_j;j+=blockSize_)
{
// Get the W and V vectors for this block^2 set of terms
int N_ii = MIN(N_i-i,blockSize_);
int N_jj = MIN(N_j-j,blockSize_);
A2AMatrixSet<TIo> mBlock(mBuf_.data(), next_, nstr_, nt_, N_ii, N_jj);
LOG(Message) << "All-to-all matrix block "
<< j/blockSize_ + NBlock_j*i/blockSize_ + 1
<< "/" << NBlock_i*NBlock_j << " [" << i <<" .. "
<< i+N_ii-1 << ", " << j <<" .. " << j+N_jj-1 << "]"
<< std::endl;
// Series of cache blocked chunks of the contractions within this block
flops = 0.0;
bytes = 0.0;
t_kernel = 0.0;
for(int ii=0;ii<N_ii;ii+=cacheBlockSize_)
for(int jj=0;jj<N_jj;jj+=cacheBlockSize_)
{
double t;
int N_iii = MIN(N_ii-ii,cacheBlockSize_);
int N_jjj = MIN(N_jj-jj,cacheBlockSize_);
A2AMatrixSet<T> mCacheBlock(mCache_.data(), next_, nstr_, nt_, N_iii, N_jjj);
START_TIMER("kernel");
kernel(mCacheBlock, &left[i+ii], &right[j+jj], orthogDim_, t);
STOP_TIMER("kernel");
t_kernel += t;
flops += kernel.flops(N_iii, N_jjj);
bytes += kernel.bytes(N_iii, N_jjj);
START_TIMER("cache copy");
thread_for_collapse( 5,e,next_,{
for(int s =0;s< nstr_;s++)
for(int t =0;t< nt_;t++)
for(int iii=0;iii< N_iii;iii++)
for(int jjj=0;jjj< N_jjj;jjj++)
{
mBlock(e,s,t,ii+iii,jj+jjj) = mCacheBlock(e,s,t,iii,jjj);
}
});
STOP_TIMER("cache copy");
}
// perf
LOG(Message) << "Kernel perf " << flops/t_kernel/1.0e3/nodes
<< " Gflop/s/node " << std::endl;
LOG(Message) << "Kernel perf " << bytes/t_kernel*1.0e6/1024/1024/1024/nodes
<< " GB/s/node " << std::endl;
// IO
double blockSize, ioTime;
unsigned int myRank = grid_->ThisRank(), nRank = grid_->RankCount();
LOG(Message) << "Writing block to disk" << std::endl;
ioTime = -GET_TIMER("IO: write block");
START_TIMER("IO: total");
makeFileDir(filenameFn(0, 0), grid_);
#ifdef HADRONS_A2AM_PARALLEL_IO
grid_->Barrier();
// make task list for current node
nodeIo_.clear();
for(int f = myRank; f < next_*nstr_; f += nRank)
{
IoHelper h;
h.i = i;
h.j = j;
h.e = f/nstr_;
h.s = f % nstr_;
h.io = A2AMatrixIo<TIo>(filenameFn(h.e, h.s),
ionameFn(h.e, h.s), nt_, N_i, N_j);
h.md = metadataFn(h.e, h.s);
nodeIo_.push_back(h);
}
// parallel IO
for (auto &h: nodeIo_)
{
saveBlock(mBlock, h);
}
grid_->Barrier();
#else
// serial IO, for testing purposes only
for(int e = 0; e < next_; e++)
for(int s = 0; s < nstr_; s++)
{
IoHelper h;
h.i = i;
h.j = j;
h.e = e;
h.s = s;
h.io = A2AMatrixIo<TIo>(filenameFn(h.e, h.s),
ionameFn(h.e, h.s), nt_, N_i, N_j);
h.md = metadataFn(h.e, h.s);
saveBlock(mfBlock, h);
}
#endif
STOP_TIMER("IO: total");
blockSize = static_cast<double>(next_*nstr_*nt_*N_ii*N_jj*sizeof(TIo));
ioTime += GET_TIMER("IO: write block");
LOG(Message) << "HDF5 IO done " << sizeString(blockSize) << " in "
<< ioTime << " us ("
<< blockSize/ioTime*1.0e6/1024/1024
<< " MB/s)" << std::endl;
}
}
// I/O handler /////////////////////////////////////////////////////////////////
template <typename T, typename Field, typename MetadataType, typename TIo>
void A2AMatrixBlockComputation<T, Field, MetadataType, TIo>
::saveBlock(const A2AMatrixSet<TIo> &m, IoHelper &h)
{
if ((h.i == 0) and (h.j == 0))
{
START_TIMER("IO: file creation");
h.io.initFile(h.md, blockSize_);
STOP_TIMER("IO: file creation");
}
START_TIMER("IO: write block");
h.io.saveBlock(m, h.e, h.s, h.i, h.j);
STOP_TIMER("IO: write block");
}
#undef START_TIMER
#undef STOP_TIMER
#undef GET_TIMER
END_HADRONS_NAMESPACE
#endif // A2A_Matrix_hpp_

View File

@ -1,342 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/A2AVectors.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: fionnoh <fionnoh@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef A2A_Vectors_hpp_
#define A2A_Vectors_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Environment.hpp>
#include <Hadrons/Solver.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Class to generate V & W all-to-all vectors *
******************************************************************************/
template <typename FImpl>
class A2AVectorsSchurDiagTwo
{
public:
FERM_TYPE_ALIASES(FImpl,);
SOLVER_TYPE_ALIASES(FImpl,);
public:
A2AVectorsSchurDiagTwo(FMat &action, Solver &solver);
virtual ~A2AVectorsSchurDiagTwo(void) = default;
void makeLowModeV(FermionField &vout,
const FermionField &evec, const Real &eval);
void makeLowModeV5D(FermionField &vout_4d, FermionField &vout_5d,
const FermionField &evec, const Real &eval);
void makeLowModeW(FermionField &wout,
const FermionField &evec, const Real &eval);
void makeLowModeW5D(FermionField &wout_4d, FermionField &wout_5d,
const FermionField &evec, const Real &eval);
void makeHighModeV(FermionField &vout, const FermionField &noise);
void makeHighModeV5D(FermionField &vout_4d, FermionField &vout_5d,
const FermionField &noise_5d);
void makeHighModeW(FermionField &wout, const FermionField &noise);
void makeHighModeW5D(FermionField &vout_5d, FermionField &wout_5d,
const FermionField &noise_5d);
private:
FMat &action_;
Solver &solver_;
GridBase *fGrid_, *frbGrid_, *gGrid_;
bool is5d_;
FermionField src_o_, sol_e_, sol_o_, tmp_, tmp5_;
SchurDiagTwoOperator<FMat, FermionField> op_;
};
/******************************************************************************
* Methods for V & W all-to-all vectors I/O *
******************************************************************************/
class A2AVectorsIo
{
public:
struct Record: Serializable
{
GRID_SERIALIZABLE_CLASS_MEMBERS(Record,
unsigned int, index);
Record(void): index(0) {}
};
public:
template <typename Field>
static void write(const std::string fileStem, std::vector<Field> &vec,
const bool multiFile, const int trajectory = -1);
template <typename Field>
static void read(std::vector<Field> &vec, const std::string fileStem,
const bool multiFile, const int trajectory = -1);
private:
static inline std::string vecFilename(const std::string stem, const int traj,
const bool multiFile)
{
std::string t = (traj < 0) ? "" : ("." + std::to_string(traj));
if (multiFile)
{
return stem + t;
}
else
{
return stem + t + ".bin";
}
}
};
/******************************************************************************
* A2AVectorsSchurDiagTwo template implementation *
******************************************************************************/
template <typename FImpl>
A2AVectorsSchurDiagTwo<FImpl>::A2AVectorsSchurDiagTwo(FMat &action, Solver &solver)
: action_(action)
, solver_(solver)
, fGrid_(action_.FermionGrid())
, frbGrid_(action_.FermionRedBlackGrid())
, gGrid_(action_.GaugeGrid())
, src_o_(frbGrid_)
, sol_e_(frbGrid_)
, sol_o_(frbGrid_)
, tmp_(frbGrid_)
, tmp5_(fGrid_)
, op_(action_)
{}
template <typename FImpl>
void A2AVectorsSchurDiagTwo<FImpl>::makeLowModeV(FermionField &vout, const FermionField &evec, const Real &eval)
{
src_o_ = evec;
src_o_.Checkerboard() = Odd;
pickCheckerboard(Even, sol_e_, vout);
pickCheckerboard(Odd, sol_o_, vout);
/////////////////////////////////////////////////////
// v_ie = -(1/eval_i) * MeeInv Meo MooInv evec_i
/////////////////////////////////////////////////////
action_.MooeeInv(src_o_, tmp_);
assert(tmp_.Checkerboard() == Odd);
action_.Meooe(tmp_, sol_e_);
assert(sol_e_.Checkerboard() == Even);
action_.MooeeInv(sol_e_, tmp_);
assert(tmp_.Checkerboard() == Even);
sol_e_ = (-1.0 / eval) * tmp_;
assert(sol_e_.Checkerboard() == Even);
/////////////////////////////////////////////////////
// v_io = (1/eval_i) * MooInv evec_i
/////////////////////////////////////////////////////
action_.MooeeInv(src_o_, tmp_);
assert(tmp_.Checkerboard() == Odd);
sol_o_ = (1.0 / eval) * tmp_;
assert(sol_o_.Checkerboard() == Odd);
setCheckerboard(vout, sol_e_);
assert(sol_e_.Checkerboard() == Even);
setCheckerboard(vout, sol_o_);
assert(sol_o_.Checkerboard() == Odd);
}
template <typename FImpl>
void A2AVectorsSchurDiagTwo<FImpl>::makeLowModeV5D(FermionField &vout_4d, FermionField &vout_5d, const FermionField &evec, const Real &eval)
{
makeLowModeV(vout_5d, evec, eval);
action_.ExportPhysicalFermionSolution(vout_5d, vout_4d);
}
template <typename FImpl>
void A2AVectorsSchurDiagTwo<FImpl>::makeLowModeW(FermionField &wout, const FermionField &evec, const Real &eval)
{
src_o_ = evec;
src_o_.Checkerboard() = Odd;
pickCheckerboard(Even, sol_e_, wout);
pickCheckerboard(Odd, sol_o_, wout);
/////////////////////////////////////////////////////
// w_ie = - MeeInvDag MoeDag Doo evec_i
/////////////////////////////////////////////////////
op_.Mpc(src_o_, tmp_);
assert(tmp_.Checkerboard() == Odd);
action_.MeooeDag(tmp_, sol_e_);
assert(sol_e_.Checkerboard() == Even);
action_.MooeeInvDag(sol_e_, tmp_);
assert(tmp_.Checkerboard() == Even);
sol_e_ = (-1.0) * tmp_;
/////////////////////////////////////////////////////
// w_io = Doo evec_i
/////////////////////////////////////////////////////
op_.Mpc(src_o_, sol_o_);
assert(sol_o_.Checkerboard() == Odd);
setCheckerboard(wout, sol_e_);
assert(sol_e_.Checkerboard() == Even);
setCheckerboard(wout, sol_o_);
assert(sol_o_.Checkerboard() == Odd);
}
template <typename FImpl>
void A2AVectorsSchurDiagTwo<FImpl>::makeLowModeW5D(FermionField &wout_4d,
FermionField &wout_5d,
const FermionField &evec,
const Real &eval)
{
makeLowModeW(tmp5_, evec, eval);
action_.DminusDag(tmp5_, wout_5d);
action_.ExportPhysicalFermionSource(wout_5d, wout_4d);
}
template <typename FImpl>
void A2AVectorsSchurDiagTwo<FImpl>::makeHighModeV(FermionField &vout,
const FermionField &noise)
{
solver_(vout, noise);
}
template <typename FImpl>
void A2AVectorsSchurDiagTwo<FImpl>::makeHighModeV5D(FermionField &vout_4d,
FermionField &vout_5d,
const FermionField &noise)
{
if (noise.Grid()->Dimensions() == fGrid_->Dimensions() - 1)
{
action_.ImportPhysicalFermionSource(noise, tmp5_);
}
else
{
tmp5_ = noise;
}
makeHighModeV(vout_5d, tmp5_);
action_.ExportPhysicalFermionSolution(vout_5d, vout_4d);
}
template <typename FImpl>
void A2AVectorsSchurDiagTwo<FImpl>::makeHighModeW(FermionField &wout,
const FermionField &noise)
{
wout = noise;
}
template <typename FImpl>
void A2AVectorsSchurDiagTwo<FImpl>::makeHighModeW5D(FermionField &wout_4d,
FermionField &wout_5d,
const FermionField &noise)
{
if (noise.Grid()->Dimensions() == fGrid_->Dimensions() - 1)
{
action_.ImportUnphysicalFermion(noise, wout_5d);
wout_4d = noise;
}
else
{
wout_5d = noise;
action_.ExportPhysicalFermionSource(wout_5d, wout_4d);
}
}
/******************************************************************************
* all-to-all vectors I/O template implementation *
******************************************************************************/
template <typename Field>
void A2AVectorsIo::write(const std::string fileStem, std::vector<Field> &vec,
const bool multiFile, const int trajectory)
{
Record record;
GridBase *grid = vec[0].Grid();
ScidacWriter binWriter(grid->IsBoss());
std::string filename = vecFilename(fileStem, trajectory, multiFile);
if (multiFile)
{
std::string fullFilename;
for (unsigned int i = 0; i < vec.size(); ++i)
{
fullFilename = filename + "/elem" + std::to_string(i) + ".bin";
LOG(Message) << "Writing vector " << i << std::endl;
makeFileDir(fullFilename, grid);
binWriter.open(fullFilename);
record.index = i;
binWriter.writeScidacFieldRecord(vec[i], record);
binWriter.close();
}
}
else
{
makeFileDir(filename, grid);
binWriter.open(filename);
for (unsigned int i = 0; i < vec.size(); ++i)
{
LOG(Message) << "Writing vector " << i << std::endl;
record.index = i;
binWriter.writeScidacFieldRecord(vec[i], record);
}
binWriter.close();
}
}
template <typename Field>
void A2AVectorsIo::read(std::vector<Field> &vec, const std::string fileStem,
const bool multiFile, const int trajectory)
{
Record record;
ScidacReader binReader;
std::string filename = vecFilename(fileStem, trajectory, multiFile);
if (multiFile)
{
std::string fullFilename;
for (unsigned int i = 0; i < vec.size(); ++i)
{
fullFilename = filename + "/elem" + std::to_string(i) + ".bin";
LOG(Message) << "Reading vector " << i << std::endl;
binReader.open(fullFilename);
binReader.readScidacFieldRecord(vec[i], record);
binReader.close();
if (record.index != i)
{
HADRONS_ERROR(Io, "vector index mismatch");
}
}
}
else
{
binReader.open(filename);
for (unsigned int i = 0; i < vec.size(); ++i)
{
LOG(Message) << "Reading vector " << i << std::endl;
binReader.readScidacFieldRecord(vec[i], record);
if (record.index != i)
{
HADRONS_ERROR(Io, "vector index mismatch");
}
}
binReader.close();
}
}
END_HADRONS_NAMESPACE
#endif // A2A_Vectors_hpp_

View File

@ -1,287 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Application.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Application.hpp>
#include <Hadrons/GeneticScheduler.hpp>
#include <Hadrons/Modules.hpp>
using namespace Grid;
using namespace Hadrons;
#define BIG_SEP "================"
#define SEP "----------------"
/******************************************************************************
* Application implementation *
******************************************************************************/
// constructors ////////////////////////////////////////////////////////////////
#define MACOUT(macro) macro << " (" << #macro << ")"
#define MACOUTS(macro) HADRONS_STR(macro) << " (" << #macro << ")"
Application::Application(void)
{
initLogger();
auto dim = GridDefaultLatt(), mpi = GridDefaultMpi(), loc(dim);
if (dim.size())
{
locVol_ = 1;
for (unsigned int d = 0; d < dim.size(); ++d)
{
loc[d] /= mpi[d];
locVol_ *= loc[d];
}
LOG(Message) << "====== HADRONS APPLICATION INITIALISATION ======" << std::endl;
LOG(Message) << "** Dimensions" << std::endl;
LOG(Message) << "Global lattice: " << dim << std::endl;
LOG(Message) << "MPI partition : " << mpi << std::endl;
LOG(Message) << "Local lattice : " << loc << std::endl;
LOG(Message) << std::endl;
LOG(Message) << "** Default parameters (and associated C macros)" << std::endl;
LOG(Message) << "ASCII output precision : " << MACOUT(DEFAULT_ASCII_PREC) << std::endl;
LOG(Message) << "Fermion implementation : " << MACOUTS(FIMPLBASE) << std::endl;
LOG(Message) << "z-Fermion implementation: " << MACOUTS(ZFIMPLBASE) << std::endl;
LOG(Message) << "Scalar implementation : " << MACOUTS(SIMPLBASE) << std::endl;
LOG(Message) << "Gauge implementation : " << MACOUTS(GIMPLBASE) << std::endl;
LOG(Message) << "Eigenvector base size : "
<< MACOUT(HADRONS_DEFAULT_LANCZOS_NBASIS) << std::endl;
LOG(Message) << "Schur decomposition : " << MACOUTS(HADRONS_DEFAULT_SCHUR) << std::endl;
LOG(Message) << std::endl;
}
}
Application::Application(const Application::GlobalPar &par)
: Application()
{
setPar(par);
}
Application::Application(const std::string parameterFileName)
: Application()
{
parameterFileName_ = parameterFileName;
}
// access //////////////////////////////////////////////////////////////////////
void Application::setPar(const Application::GlobalPar &par)
{
par_ = par;
}
const Application::GlobalPar & Application::getPar(void)
{
return par_;
}
// execute /////////////////////////////////////////////////////////////////////
void Application::run(void)
{
LOG(Message) << "====== HADRONS APPLICATION START ======" << std::endl;
if (!parameterFileName_.empty() and (vm().getNModule() == 0))
{
parseParameterFile(parameterFileName_);
}
if (getPar().runId.empty())
{
HADRONS_ERROR(Definition, "run id is empty");
}
LOG(Message) << "RUN ID '" << getPar().runId << "'" << std::endl;
BinaryIO::latticeWriteMaxRetry = getPar().parallelWriteMaxRetry;
LOG(Message) << "Attempt(s) for resilient parallel I/O: "
<< BinaryIO::latticeWriteMaxRetry << std::endl;
vm().setRunId(getPar().runId);
vm().printContent();
env().printContent();
if (getPar().saveSchedule or getPar().scheduleFile.empty())
{
schedule();
if (getPar().saveSchedule)
{
std::string filename;
filename = (getPar().scheduleFile.empty()) ?
"hadrons.sched" : getPar().scheduleFile;
saveSchedule(filename);
}
}
else
{
loadSchedule(getPar().scheduleFile);
}
printSchedule();
if (!getPar().graphFile.empty())
{
makeFileDir(getPar().graphFile, env().getGrid());
vm().dumpModuleGraph(getPar().graphFile);
}
configLoop();
}
// parse parameter file ////////////////////////////////////////////////////////
class ObjectId: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ObjectId,
std::string, name,
std::string, type);
};
void Application::parseParameterFile(const std::string parameterFileName)
{
XmlReader reader(parameterFileName);
GlobalPar par;
ObjectId id;
LOG(Message) << "Building application from '" << parameterFileName << "'..." << std::endl;
read(reader, "parameters", par);
setPar(par);
if (!push(reader, "modules"))
{
HADRONS_ERROR(Parsing, "Cannot open node 'modules' in parameter file '"
+ parameterFileName + "'");
}
if (!push(reader, "module"))
{
HADRONS_ERROR(Parsing, "Cannot open node 'modules/module' in parameter file '"
+ parameterFileName + "'");
}
do
{
read(reader, "id", id);
vm().createModule(id.name, id.type, reader);
} while (reader.nextElement("module"));
pop(reader);
pop(reader);
}
void Application::saveParameterFile(const std::string parameterFileName, unsigned int prec)
{
LOG(Message) << "Saving application to '" << parameterFileName << "'..." << std::endl;
if (env().getGrid()->IsBoss())
{
XmlWriter writer(parameterFileName);
writer.setPrecision(prec);
ObjectId id;
const unsigned int nMod = vm().getNModule();
write(writer, "parameters", getPar());
push(writer, "modules");
for (unsigned int i = 0; i < nMod; ++i)
{
push(writer, "module");
id.name = vm().getModuleName(i);
id.type = vm().getModule(i)->getRegisteredName();
write(writer, "id", id);
vm().getModule(i)->saveParameters(writer, "options");
pop(writer);
}
pop(writer);
pop(writer);
}
}
// schedule computation ////////////////////////////////////////////////////////
void Application::schedule(void)
{
if (!scheduled_ and !loadedSchedule_)
{
program_ = vm().schedule(par_.genetic);
scheduled_ = true;
}
}
void Application::saveSchedule(const std::string filename)
{
LOG(Message) << "Saving current schedule to '" << filename << "'..."
<< std::endl;
if (env().getGrid()->IsBoss())
{
TextWriter writer(filename);
std::vector<std::string> program;
if (!scheduled_)
{
HADRONS_ERROR(Definition, "Computation not scheduled");
}
for (auto address: program_)
{
program.push_back(vm().getModuleName(address));
}
write(writer, "schedule", program);
}
}
void Application::loadSchedule(const std::string filename)
{
TextReader reader(filename);
std::vector<std::string> program;
LOG(Message) << "Loading schedule from '" << filename << "'..."
<< std::endl;
read(reader, "schedule", program);
program_.clear();
for (auto &name: program)
{
program_.push_back(vm().getModuleAddress(name));
}
loadedSchedule_ = true;
scheduled_ = true;
}
void Application::printSchedule(void)
{
if (!scheduled_ and !loadedSchedule_)
{
HADRONS_ERROR(Definition, "Computation not scheduled");
}
auto peak = vm().memoryNeeded(program_);
LOG(Message) << "Schedule (memory needed: " << sizeString(peak) << "):"
<< std::endl;
for (unsigned int i = 0; i < program_.size(); ++i)
{
LOG(Message) << std::setw(4) << i + 1 << ": "
<< vm().getModuleName(program_[i]) << std::endl;
}
}
// loop on configurations //////////////////////////////////////////////////////
void Application::configLoop(void)
{
auto range = par_.trajCounter;
for (unsigned int t = range.start; t < range.end; t += range.step)
{
LOG(Message) << BIG_SEP << " Starting measurement for trajectory " << t
<< " " << BIG_SEP << std::endl;
vm().setTrajectory(t);
vm().executeProgram(program_);
}
LOG(Message) << BIG_SEP << " End of measurement " << BIG_SEP << std::endl;
env().freeAll();
}

View File

@ -1,126 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Application.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Application_hpp_
#define Hadrons_Application_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/VirtualMachine.hpp>
#include <Hadrons/Module.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Main program manager *
******************************************************************************/
class Application
{
public:
class TrajRange: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(TrajRange,
unsigned int, start,
unsigned int, end,
unsigned int, step);
};
class GlobalPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(GlobalPar,
TrajRange, trajCounter,
VirtualMachine::GeneticPar, genetic,
std::string, runId,
std::string, graphFile,
std::string, scheduleFile,
bool, saveSchedule,
int, parallelWriteMaxRetry);
GlobalPar(void): parallelWriteMaxRetry{-1} {}
};
public:
// constructors
Application(void);
Application(const GlobalPar &par);
Application(const std::string parameterFileName);
// destructor
virtual ~Application(void) = default;
// access
void setPar(const GlobalPar &par);
const GlobalPar & getPar(void);
// module creation
template <typename M>
void createModule(const std::string name);
template <typename M>
void createModule(const std::string name, const typename M::Par &par);
// execute
void run(void);
// XML parameter file I/O
void parseParameterFile(const std::string parameterFileName);
void saveParameterFile(const std::string parameterFileName, unsigned int prec=15);
// schedule computation
void schedule(void);
void saveSchedule(const std::string filename);
void loadSchedule(const std::string filename);
void printSchedule(void);
// loop on configurations
void configLoop(void);
private:
// environment shortcut
DEFINE_ENV_ALIAS;
// virtual machine shortcut
DEFINE_VM_ALIAS;
private:
long unsigned int locVol_;
std::string parameterFileName_{""};
GlobalPar par_;
VirtualMachine::Program program_;
bool scheduled_{false}, loadedSchedule_{false};
};
/******************************************************************************
* Application template implementation *
******************************************************************************/
// module creation /////////////////////////////////////////////////////////////
template <typename M>
void Application::createModule(const std::string name)
{
vm().createModule<M>(name);
scheduled_ = false;
}
template <typename M>
void Application::createModule(const std::string name,
const typename M::Par &par)
{
vm().createModule<M>(name, par);
scheduled_ = false;
}
END_HADRONS_NAMESPACE
#endif // Hadrons_Application_hpp_

View File

@ -1,564 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/ScalarVP.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: James Harrison <jch1g10@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Hadrons/Modules/MScalar/ScalarVP.hpp>
#include <Hadrons/Modules/MScalar/Scalar.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MScalar;
/*
* Scalar QED vacuum polarisation up to O(alpha)
*
* Conserved vector 2-point function diagram notation:
* _______
* / \
* U_nu * * U_mu
* \_______/
*
* ( adj(S(a\hat{nu}|x)) U_mu(x) S(0|x+a\hat{mu}) U_nu(0) )
* = 2 Re( - )
* ( adj(S(a\hat{nu}|x+a\hat{mu})) adj(U_mu(x)) S(0|x) U_nu(0) )
*
*
* _______
* / \
* free = 1 * * 1
* \_______/
*
*
*
* _______
* / \
* S = iA_nu * * iA_mu
* \_______/
*
*
* Delta_1
* ___*___
* / \
* X = 1 * * 1
* \___*___/
* Delta_1
*
* Delta_1 Delta_1
* ___*___ ___*___
* / \ / \
* 1 * * iA_mu + iA_nu * * 1
* \_______/ \_______/
* 4C = _______ _______
* / \ / \
* + 1 * * iA_mu + iA_nu * * 1
* \___*___/ \___*___/
* Delta_1 Delta_1
*
* Delta_1 Delta_1
* _*___*_ _______
* / \ / \
* 2E = 1 * * 1 + 1 * * 1
* \_______/ \_*___*_/
* Delta_1 Delta_1
*
* Delta_2
* ___*___ _______
* / \ / \
* 2T = 1 * * 1 + 1 * * 1
* \_______/ \___*___/
* Delta_2
*
*
* _______
* / \
* srcT = -A_nu^2/2 * * 1
* \_______/
*
*
*
* _______
* / \
* snkT = 1 * * -A_mu^2/2
* \_______/
*
* Full VP to O(alpha) = free + q^2*(S+X+4C+2E+2T+srcT+snkT)
*/
/******************************************************************************
* TScalarVP implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TScalarVP::TScalarVP(const std::string name)
: Module<ScalarVPPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TScalarVP::getInput(void)
{
prop0Name_ = par().scalarProp + "_0";
propQName_ = par().scalarProp + "_Q";
propSunName_ = par().scalarProp + "_Sun";
propTadName_ = par().scalarProp + "_Tad";
std::vector<std::string> in = {par().emField, prop0Name_, propQName_,
propSunName_, propTadName_};
return in;
}
std::vector<std::string> TScalarVP::getOutput(void)
{
std::vector<std::string> out;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
// out.push_back(getName() + "_propQ_" + std::to_string(mu));
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
out.push_back(getName() + "_" + std::to_string(mu)
+ "_" + std::to_string(nu));
}
}
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TScalarVP::setup(void)
{
freeMomPropName_ = FREEMOMPROP(static_cast<TChargedProp *>(vm().getModule(par().scalarProp))->par().mass);
GFSrcName_ = par().scalarProp + "_DinvSrc";
fftName_ = par().scalarProp + "_fft";
phaseName_.clear();
muPropQName_.clear();
vpTensorName_.clear();
momPhaseName_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phaseName_.push_back("_shiftphase_" + std::to_string(mu));
muPropQName_.push_back(getName() + "_propQ_" + std::to_string(mu));
std::vector<std::string> vpTensorName_mu;
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
vpTensorName_mu.push_back(getName() + "_" + std::to_string(mu)
+ "_" + std::to_string(nu));
}
vpTensorName_.push_back(vpTensorName_mu);
}
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
momPhaseName_.push_back("_momentumphase_" + std::to_string(i_p));
}
}
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
envCreateLat(ScalarField, muPropQName_[mu]);
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
envCreateLat(ScalarField, vpTensorName_[mu][nu]);
}
}
if (!par().output.empty())
{
momPhasesDone_ = env().hasCreatedObject(momPhaseName_[0]);
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
envCacheLat(ScalarField, momPhaseName_[i_p]);
}
}
envTmpLat(ScalarField, "buf");
envTmpLat(ScalarField, "result");
envTmpLat(ScalarField, "Amu");
envTmpLat(ScalarField, "Usnk");
envTmpLat(ScalarField, "tmpProp");
}
// execution ///////////////////////////////////////////////////////////////////
void TScalarVP::execute(void)
{
// CACHING ANALYTIC EXPRESSIONS
makeCaches();
Complex ci(0.0,1.0);
Real q = static_cast<TChargedProp *>(vm().getModule(par().scalarProp))->par().charge;
auto &prop0 = envGet(ScalarField, prop0Name_);
auto &propQ = envGet(ScalarField, propQName_);
auto &propSun = envGet(ScalarField, propSunName_);
auto &propTad = envGet(ScalarField, propTadName_);
auto &GFSrc = envGet(ScalarField, GFSrcName_);
auto &G = envGet(ScalarField, freeMomPropName_);
auto &fft = envGet(FFT, fftName_);
phase_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
auto &phmu = envGet(ScalarField, phaseName_[mu]);
phase_.push_back(&phmu);
}
// PROPAGATORS FROM SHIFTED SOURCES
LOG(Message) << "Computing O(q) charged scalar propagators..."
<< std::endl;
std::vector<ScalarField *> muPropQ;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
auto &propmu = envGet(ScalarField, muPropQName_[mu]);
// -G*momD1*G*F*tau_mu*Src (momD1 = F*D1*Finv)
propmu = adj(*phase_[mu])*GFSrc;
momD1(propmu, fft);
propmu = -G*propmu;
fft.FFT_all_dim(propmu, propmu, FFT::backward);
muPropQ.push_back(&propmu);
}
// CONTRACTIONS
auto &A = envGet(EmField, par().emField);
envGetTmp(ScalarField, buf);
envGetTmp(ScalarField, result);
envGetTmp(ScalarField, Amu);
envGetTmp(ScalarField, Usnk);
envGetTmp(ScalarField, tmpProp);
TComplex Anu0, Usrc;
std::vector<int> coor0 = {0, 0, 0, 0};
std::vector<std::vector<ScalarField *> > vpTensor;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
std::vector<ScalarField *> vpTensor_mu;
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
auto &vpmunu = envGet(ScalarField, vpTensorName_[mu][nu]);
vpTensor_mu.push_back(&vpmunu);
}
vpTensor.push_back(vpTensor_mu);
}
// Prepare output data structure if necessary
Result outputData;
if (!par().output.empty())
{
outputData.projection.resize(par().outputMom.size());
outputData.lattice_size = env().getGrid()->FullDimensions().toVector();
outputData.mass = static_cast<TChargedProp *>(vm().getModule(par().scalarProp))->par().mass;
outputData.charge = q;
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
outputData.projection[i_p].momentum = strToVec<int>(par().outputMom[i_p]);
outputData.projection[i_p].pi.resize(env().getNd());
outputData.projection[i_p].pi_free.resize(env().getNd());
outputData.projection[i_p].pi_2E.resize(env().getNd());
outputData.projection[i_p].pi_2T.resize(env().getNd());
outputData.projection[i_p].pi_S.resize(env().getNd());
outputData.projection[i_p].pi_4C.resize(env().getNd());
outputData.projection[i_p].pi_X.resize(env().getNd());
outputData.projection[i_p].pi_srcT.resize(env().getNd());
outputData.projection[i_p].pi_snkT.resize(env().getNd());
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
outputData.projection[i_p].pi[nu].resize(env().getNd());
outputData.projection[i_p].pi_free[nu].resize(env().getNd());
outputData.projection[i_p].pi_2E[nu].resize(env().getNd());
outputData.projection[i_p].pi_2T[nu].resize(env().getNd());
outputData.projection[i_p].pi_S[nu].resize(env().getNd());
outputData.projection[i_p].pi_4C[nu].resize(env().getNd());
outputData.projection[i_p].pi_X[nu].resize(env().getNd());
outputData.projection[i_p].pi_srcT[nu].resize(env().getNd());
outputData.projection[i_p].pi_snkT[nu].resize(env().getNd());
}
}
}
// Do contractions
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
peekSite(Anu0, peekLorentz(A, nu), coor0);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
LOG(Message) << "Computing Pi[" << mu << "][" << nu << "]..."
<< std::endl;
Amu = peekLorentz(A, mu);
// free
tmpProp = Cshift(prop0, nu, -1); // S_0(0|x-a\hat{\nu})
// = S_0(a\hat{\nu}|x)
Usrc = Complex(1.0,0.0);
vpContraction(result, prop0, tmpProp, Usrc, mu);
*vpTensor[mu][nu] = result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_free[mu][nu], result,
i_p);
}
}
tmpProp = result; // Just using tmpProp as a temporary ScalarField
// here (buf is modified by calls to writeVP())
// srcT
result = tmpProp * (-0.5)*Anu0*Anu0;
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_srcT[mu][nu], result,
i_p);
}
}
// snkT
result = tmpProp * (-0.5)*Amu*Amu;
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_snkT[mu][nu], result,
i_p);
}
}
// S
tmpProp = Cshift(prop0, nu, -1); // S_0(a\hat{\nu}|x)
Usrc = ci*Anu0;
Usnk = ci*Amu;
vpContraction(result, prop0, tmpProp, Usrc, Usnk, mu);
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_S[mu][nu], result,
i_p);
}
}
// 4C
tmpProp = Cshift(prop0, nu, -1); // S_0(a\hat{\nu}|x)
Usrc = Complex(1.0,0.0);
Usnk = ci*Amu;
vpContraction(result, propQ, tmpProp, Usrc, Usnk, mu);
Usrc = ci*Anu0;
vpContraction(buf, propQ, tmpProp, Usrc, mu);
result += buf;
vpContraction(buf, prop0, *muPropQ[nu], Usrc, mu);
result += buf;
Usrc = Complex(1.0,0.0);
Usnk = ci*Amu;
vpContraction(buf, prop0, *muPropQ[nu], Usrc, Usnk, mu);
result += buf;
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_4C[mu][nu], result,
i_p);
}
}
// X
Usrc = Complex(1.0,0.0);
vpContraction(result, propQ, *muPropQ[nu], Usrc, mu);
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_X[mu][nu], result,
i_p);
}
}
// 2E
tmpProp = Cshift(prop0, nu, -1); // S_0(a\hat{\nu}|x)
Usrc = Complex(1.0,0.0);
vpContraction(result, propSun, tmpProp, Usrc, mu);
tmpProp = Cshift(propSun, nu, -1); // S_\Sigma(0|x-a\hat{\nu})
//(Note: <S(0|x-a\hat{\nu})> = <S(a\hat{\nu}|x)>)
vpContraction(buf, prop0, tmpProp, Usrc, mu);
result += buf;
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_2E[mu][nu], result,
i_p);
}
}
// 2T
tmpProp = Cshift(prop0, nu, -1); // S_0(a\hat{\nu}|x)
Usrc = Complex(1.0,0.0);
vpContraction(result, propTad, tmpProp, Usrc, mu);
tmpProp = Cshift(propTad, nu, -1); // S_T(0|x-a\hat{\nu})
vpContraction(buf, prop0, tmpProp, Usrc, mu);
result += buf;
*vpTensor[mu][nu] += q*q*result;
// Do momentum projections if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi_2T[mu][nu], result,
i_p);
}
}
// Do momentum projections of full VP if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pi[mu][nu],
*vpTensor[mu][nu], i_p);
}
}
}
}
// OUTPUT IF NECESSARY
if (!par().output.empty())
{
LOG(Message) << "Saving momentum-projected HVP to '"
<< RESULT_FILE_NAME(par().output, vm().getTrajectory()) << "'..."
<< std::endl;
saveResult(par().output, "HVP", outputData);
}
}
void TScalarVP::makeCaches(void)
{
envGetTmp(ScalarField, buf);
if ( (!par().output.empty()) && (!momPhasesDone_) )
{
LOG(Message) << "Caching phases for momentum projections..."
<< std::endl;
auto l = env().getGrid()->FullDimensions();
Complex ci(0.0,1.0);
// Calculate phase factors
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
std::vector<int> mom = strToVec<int>(par().outputMom[i_p]);
auto &momph_ip = envGet(ScalarField, momPhaseName_[i_p]);
momph_ip = Zero();
for (unsigned int j = 0; j < env().getNd()-1; ++j)
{
Real twoPiL = M_PI*2./l[j];
LatticeCoordinate(buf, j);
buf = mom[j]*twoPiL*buf;
momph_ip = momph_ip + buf;
}
momph_ip = exp(-ci*momph_ip);
momPhase_.push_back(&momph_ip);
}
}
}
void TScalarVP::vpContraction(ScalarField &vp,
ScalarField &prop_0_x, ScalarField &prop_nu_x,
TComplex u_src, ScalarField &u_snk, int mu)
{
// Note: this function assumes a point source is used.
vp = adj(prop_nu_x) * u_snk * Cshift(prop_0_x, mu, 1) * u_src;
vp -= Cshift(adj(prop_nu_x), mu, 1) * adj(u_snk) * prop_0_x * u_src;
vp = 2.0*real(vp);
}
void TScalarVP::vpContraction(ScalarField &vp,
ScalarField &prop_0_x, ScalarField &prop_nu_x,
TComplex u_src, int mu)
{
// Note: this function assumes a point source is used.
vp = adj(prop_nu_x) * Cshift(prop_0_x, mu, 1) * u_src;
vp -= Cshift(adj(prop_nu_x), mu, 1) * prop_0_x * u_src;
vp = 2.0*real(vp);
}
void TScalarVP::project(std::vector<Complex> &projection, const ScalarField &vp, int i_p)
{
std::vector<TComplex> vecBuf;
envGetTmp(ScalarField, buf);
buf = vp*(*momPhase_[i_p]);
sliceSum(buf, vecBuf, Tp);
projection.resize(vecBuf.size());
for (unsigned int t = 0; t < vecBuf.size(); ++t)
{
projection[t] = TensorRemove(vecBuf[t]);
}
}
void TScalarVP::momD1(ScalarField &s, FFT &fft)
{
auto &A = envGet(EmField, par().emField);
Complex ci(0.0,1.0);
envGetTmp(ScalarField, buf);
envGetTmp(ScalarField, result);
envGetTmp(ScalarField, Amu);
result = Zero();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = (*phase_[mu])*s;
fft.FFT_all_dim(buf, buf, FFT::backward);
buf = Amu*buf;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result - ci*buf;
}
fft.FFT_all_dim(s, s, FFT::backward);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Amu = peekLorentz(A, mu);
buf = Amu*s;
fft.FFT_all_dim(buf, buf, FFT::forward);
result = result + ci*adj(*phase_[mu])*buf;
}
s = result;
}

View File

@ -1,129 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/ScalarVP.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: James Harrison <jch1g10@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MScalar_ScalarVP_hpp_
#define Hadrons_MScalar_ScalarVP_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Scalar vacuum polarisation *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MScalar)
class ScalarVPPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ScalarVPPar,
std::string, emField,
std::string, scalarProp,
std::string, output,
std::vector<std::string>, outputMom);
};
class TScalarVP: public Module<ScalarVPPar>
{
public:
BASIC_TYPE_ALIASES(SIMPL,);
typedef PhotonR::GaugeField EmField;
typedef PhotonR::GaugeLinkField EmComp;
class Result: Serializable
{
public:
class Projection: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Projection,
std::vector<int>, momentum,
std::vector<std::vector<std::vector<Complex>>>, pi,
std::vector<std::vector<std::vector<Complex>>>, pi_free,
std::vector<std::vector<std::vector<Complex>>>, pi_2E,
std::vector<std::vector<std::vector<Complex>>>, pi_2T,
std::vector<std::vector<std::vector<Complex>>>, pi_S,
std::vector<std::vector<std::vector<Complex>>>, pi_4C,
std::vector<std::vector<std::vector<Complex>>>, pi_X,
std::vector<std::vector<std::vector<Complex>>>, pi_srcT,
std::vector<std::vector<std::vector<Complex>>>, pi_snkT);
};
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::vector<int>, lattice_size,
double, mass,
double, charge,
std::vector<Projection>, projection);
};
public:
// constructor
TScalarVP(const std::string name);
// destructor
virtual ~TScalarVP(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
void makeCaches(void);
// conserved vector two-point contraction
void vpContraction(ScalarField &vp,
ScalarField &prop_0_x, ScalarField &prop_nu_x,
TComplex u_src, ScalarField &u_snk, int mu);
// conserved vector two-point contraction with unit gauge link at sink
void vpContraction(ScalarField &vp,
ScalarField &prop_0_x, ScalarField &prop_nu_x,
TComplex u_src, int mu);
// write momentum-projected vacuum polarisation to file(s)
void project(std::vector<Complex> &projection, const ScalarField &vp,
int i_p);
// momentum-space Delta_1 insertion
void momD1(ScalarField &s, FFT &fft);
private:
bool momPhasesDone_;
std::string freeMomPropName_, GFSrcName_,
prop0Name_, propQName_,
propSunName_, propTadName_,
fftName_;
std::vector<std::string> phaseName_, muPropQName_,
momPhaseName_;
std::vector<std::vector<std::string> > vpTensorName_;
std::vector<ScalarField *> phase_, momPhase_;
};
MODULE_REGISTER(ScalarVP, TScalarVP, MScalar);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MScalar_ScalarVP_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/TestSeqConserved.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MUtilities/TestSeqConserved.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MUtilities;
template class Grid::Hadrons::MUtilities::TTestSeqConserved<FIMPL>;

View File

@ -1,186 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/TestSeqConserved.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MUtilities_TestSeqConserved_hpp_
#define Hadrons_MUtilities_TestSeqConserved_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
Ward Identity contractions using sequential propagators.
-----------------------------
* options:
- q: point source propagator, 5D if available (string)
- qSeq: result of sequential insertion of conserved current using q (string)
- action: action used for computation of q (string)
- origin: string giving point source origin of q (string)
- t_J: time at which sequential current is inserted (int)
- mu: Lorentz index of current inserted (int)
- curr: current type, e.g. vector/axial (Current)
*/
/******************************************************************************
* TestSeqConserved *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MUtilities)
class TestSeqConservedPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(TestSeqConservedPar,
std::string, q,
std::string, qSeq,
std::string, action,
std::string, origin,
unsigned int, t_J,
unsigned int, mu,
Current, curr);
};
template <typename FImpl>
class TTestSeqConserved: public Module<TestSeqConservedPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TTestSeqConserved(const std::string name);
// destructor
virtual ~TTestSeqConserved(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(TestSeqConserved, TTestSeqConserved<FIMPL>, MUtilities);
/******************************************************************************
* TTestSeqConserved implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TTestSeqConserved<FImpl>::TTestSeqConserved(const std::string name)
: Module<TestSeqConservedPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TTestSeqConserved<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().q, par().qSeq, par().action};
return in;
}
template <typename FImpl>
std::vector<std::string> TTestSeqConserved<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TTestSeqConserved<FImpl>::setup(void)
{
auto Ls = env().getObjectLs(par().q);
if (Ls != env().getObjectLs(par().action))
{
HADRONS_ERROR(Size, "Ls mismatch between quark action and propagator");
}
envTmpLat(PropagatorField, "tmp");
envTmpLat(LatticeComplex, "c");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TTestSeqConserved<FImpl>::execute(void)
{
// Check sequential insertion of current gives same result as conserved
// current sink upon contraction. Assume q uses a point source.
auto &q = envGet(PropagatorField, par().q);
auto &qSeq = envGet(PropagatorField, par().qSeq);
auto &act = envGet(FMat, par().action);
Gamma g5(Gamma::Algebra::Gamma5);
Gamma::Algebra gA = (par().curr == Current::Axial) ?
Gamma::Algebra::Gamma5 :
Gamma::Algebra::Identity;
Gamma g(gA);
SitePropagator qSite;
Complex test_S, test_V, check_S, check_V;
std::vector<TComplex> check_buf;
std::vector<int> siteCoord;
envGetTmp(PropagatorField, tmp);
envGetTmp(LatticeComplex, c);
siteCoord = strToVec<int>(par().origin);
peekSite(qSite, qSeq, siteCoord);
test_S = trace(qSite*g);
test_V = trace(qSite*g*Gamma::gmu[par().mu]);
act.ContractConservedCurrent(q, q, tmp, par().curr, par().mu);
c = trace(tmp*g);
sliceSum(c, check_buf, Tp);
check_S = TensorRemove(check_buf[par().t_J]);
c = trace(tmp*g*Gamma::gmu[par().mu]);
sliceSum(c, check_buf, Tp);
check_V = TensorRemove(check_buf[par().t_J]);
LOG(Message) << "Test S = " << abs(test_S) << std::endl;
LOG(Message) << "Test V = " << abs(test_V) << std::endl;
LOG(Message) << "Check S = " << abs(check_S) << std::endl;
LOG(Message) << "Check V = " << abs(check_V) << std::endl;
// Check difference = 0
check_S -= test_S;
check_V -= test_V;
LOG(Message) << "Consistency check for sequential conserved "
<< par().curr << " current insertion: " << std::endl;
LOG(Message) << "Diff S = " << abs(check_S) << std::endl;
LOG(Message) << "Diff V = " << abs(check_V) << std::endl;
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_TestSeqConserved_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/TestSeqGamma.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MUtilities/TestSeqGamma.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MUtilities;
template class Grid::Hadrons::MUtilities::TTestSeqGamma<FIMPL>;

View File

@ -1,150 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/TestSeqGamma.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MUtilities_TestSeqGamma_hpp_
#define Hadrons_MUtilities_TestSeqGamma_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* TestSeqGamma *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MUtilities)
class TestSeqGammaPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(TestSeqGammaPar,
std::string, q,
std::string, qSeq,
std::string, origin,
Gamma::Algebra, gamma,
unsigned int, t_g);
};
template <typename FImpl>
class TTestSeqGamma: public Module<TestSeqGammaPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TTestSeqGamma(const std::string name);
// destructor
virtual ~TTestSeqGamma(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(TestSeqGamma, TTestSeqGamma<FIMPL>, MUtilities);
/******************************************************************************
* TTestSeqGamma implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TTestSeqGamma<FImpl>::TTestSeqGamma(const std::string name)
: Module<TestSeqGammaPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TTestSeqGamma<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().q, par().qSeq};
return in;
}
template <typename FImpl>
std::vector<std::string> TTestSeqGamma<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TTestSeqGamma<FImpl>::setup(void)
{
envTmpLat(LatticeComplex, "c");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TTestSeqGamma<FImpl>::execute(void)
{
auto &q = envGet(PropagatorField, par().q);
auto &qSeq = envGet(PropagatorField, par().qSeq);
Gamma g5(Gamma::Algebra::Gamma5);
Gamma g(par().gamma);
SitePropagator qSite;
Complex test, check;
std::vector<TComplex> check_buf;
std::vector<int> siteCoord;
// Check sequential insertion of gamma matrix gives same result as
// insertion of gamma at sink upon contraction. Assume q uses a point
// source.
envGetTmp(LatticeComplex, c);
siteCoord = strToVec<int>(par().origin);
peekSite(qSite, qSeq, siteCoord);
test = trace(g*qSite);
c = trace(adj(g)*g5*adj(q)*g5*g*q);
sliceSum(c, check_buf, Tp);
check = TensorRemove(check_buf[par().t_g]);
LOG(Message) << "Seq Result = " << abs(test) << std::endl;
LOG(Message) << "Reference = " << abs(check) << std::endl;
// Check difference = 0
check -= test;
LOG(Message) << "Consistency check for sequential " << par().gamma
<< " insertion = " << abs(check) << std::endl;
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_TestSeqGamma_hpp_

View File

@ -1,260 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/VPCounterTerms.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: James Harrison <jch1g10@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MScalar/VPCounterTerms.hpp>
#include <Hadrons/Modules/MScalar/Scalar.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MScalar;
/******************************************************************************
* TVPCounterTerms implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TVPCounterTerms::TVPCounterTerms(const std::string name)
: Module<VPCounterTermsPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TVPCounterTerms::getInput(void)
{
std::vector<std::string> in = {par().source};
return in;
}
std::vector<std::string> TVPCounterTerms::getOutput(void)
{
std::vector<std::string> out;
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TVPCounterTerms::setup(void)
{
freeMomPropName_ = FREEMOMPROP(par().mass);
phaseName_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phaseName_.push_back("_shiftphase_" + std::to_string(mu));
}
GFSrcName_ = getName() + "_DinvSrc";
phatsqName_ = getName() + "_pHatSquared";
prop0Name_ = getName() + "_freeProp";
twoscalarName_ = getName() + "_2scalarProp";
psquaredName_ = getName() + "_psquaredProp";
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
momPhaseName_.push_back("_momentumphase_" + std::to_string(i_p));
}
}
envCreateLat(ScalarField, freeMomPropName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
envCreateLat(ScalarField, phaseName_[mu]);
}
envCreateLat(ScalarField, phatsqName_);
envCreateLat(ScalarField, GFSrcName_);
envCreateLat(ScalarField, prop0Name_);
envCreateLat(ScalarField, twoscalarName_);
envCreateLat(ScalarField, psquaredName_);
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
envCacheLat(ScalarField, momPhaseName_[i_p]);
}
}
envTmpLat(ScalarField, "buf");
envTmpLat(ScalarField, "tmp_vp");
envTmpLat(ScalarField, "vpPhase");
}
// execution ///////////////////////////////////////////////////////////////////
void TVPCounterTerms::execute(void)
{
auto &source = envGet(ScalarField, par().source);
Complex ci(0.0,1.0);
FFT fft(env().getGrid());
envGetTmp(ScalarField, buf);
envGetTmp(ScalarField, tmp_vp);
// Momentum-space free scalar propagator
auto &G = envGet(ScalarField, freeMomPropName_);
SIMPL::MomentumSpacePropagator(G, par().mass);
// Phases and hat{p}^2
auto &phatsq = envGet(ScalarField, phatsqName_);
Coordinate l = env().getGrid()->FullDimensions();
LOG(Message) << "Calculating shift phases..." << std::endl;
phatsq = Zero();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Real twoPiL = M_PI*2./l[mu];
auto &phmu = envGet(ScalarField, phaseName_[mu]);
LatticeCoordinate(buf, mu);
phmu = exp(ci*twoPiL*buf);
phase_.push_back(&phmu);
buf = 2.*sin(.5*twoPiL*buf);
phatsq = phatsq + buf*buf;
}
// G*F*src
auto &GFSrc = envGet(ScalarField, GFSrcName_);
fft.FFT_all_dim(GFSrc, source, FFT::forward);
GFSrc = G*GFSrc;
// Position-space free scalar propagator
auto &prop0 = envGet(ScalarField, prop0Name_);
prop0 = GFSrc;
fft.FFT_all_dim(prop0, prop0, FFT::backward);
// Propagators for counter-terms
auto &twoscalarProp = envGet(ScalarField, twoscalarName_);
auto &psquaredProp = envGet(ScalarField, psquaredName_);
twoscalarProp = G*GFSrc;
fft.FFT_all_dim(twoscalarProp, twoscalarProp, FFT::backward);
psquaredProp = G*phatsq*GFSrc;
fft.FFT_all_dim(psquaredProp, psquaredProp, FFT::backward);
// Prepare output data structure if necessary
Result outputData;
if (!par().output.empty())
{
outputData.projection.resize(par().outputMom.size());
outputData.lattice_size = env().getGrid()->FullDimensions().toVector();
outputData.mass = par().mass;
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
outputData.projection[i_p].momentum = strToVec<int>(par().outputMom[i_p]);
outputData.projection[i_p].twoScalar.resize(env().getNd());
outputData.projection[i_p].threeScalar.resize(env().getNd());
outputData.projection[i_p].pSquaredInsertion.resize(env().getNd());
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
outputData.projection[i_p].twoScalar[nu].resize(env().getNd());
outputData.projection[i_p].threeScalar[nu].resize(env().getNd());
outputData.projection[i_p].pSquaredInsertion[nu].resize(env().getNd());
}
// Calculate phase factors
auto &momph_ip = envGet(ScalarField, momPhaseName_[i_p]);
momph_ip = Zero();
for (unsigned int j = 0; j < env().getNd()-1; ++j)
{
Real twoPiL = M_PI*2./l[j];
LatticeCoordinate(buf, j);
buf = outputData.projection[i_p].momentum[j]*twoPiL*buf;
momph_ip = momph_ip + buf;
}
momph_ip = exp(-ci*momph_ip);
momPhase_.push_back(&momph_ip);
}
}
// Contractions
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
buf = adj(Cshift(prop0, nu, -1));
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
// Two-scalar loop
tmp_vp = buf * Cshift(prop0, mu, 1);
tmp_vp -= Cshift(buf, mu, 1) * prop0;
tmp_vp = 2.0*real(tmp_vp);
// Output if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].twoScalar[mu][nu],
tmp_vp, i_p);
}
}
// Three-scalar loop (no vertex)
tmp_vp = buf * Cshift(twoscalarProp, mu, 1);
tmp_vp -= Cshift(buf, mu, 1) * twoscalarProp;
tmp_vp = 2.0*real(tmp_vp);
// Output if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].threeScalar[mu][nu],
tmp_vp, i_p);
}
}
// Three-scalar loop (hat{p}^2 insertion)
tmp_vp = buf * Cshift(psquaredProp, mu, 1);
tmp_vp -= Cshift(buf, mu, 1) * psquaredProp;
tmp_vp = 2.0*real(tmp_vp);
// Output if necessary
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
project(outputData.projection[i_p].pSquaredInsertion[mu][nu],
tmp_vp, i_p);
}
}
}
}
// OUTPUT IF NECESSARY
if (!par().output.empty())
{
LOG(Message) << "Saving momentum-projected correlators to '"
<< RESULT_FILE_NAME(par().output, vm().getTrajectory()) << "'..."
<< std::endl;
saveResult(par().output, "scalar_loops", outputData);
}
}
void TVPCounterTerms::project(std::vector<Complex> &projection, const ScalarField &vp, int i_p)
{
std::vector<TComplex> vecBuf;
envGetTmp(ScalarField, vpPhase);
vpPhase = vp*(*momPhase_[i_p]);
sliceSum(vpPhase, vecBuf, Tp);
projection.resize(vecBuf.size());
for (unsigned int t = 0; t < vecBuf.size(); ++t)
{
projection[t] = TensorRemove(vecBuf[t]);
}
}

View File

@ -1,103 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/VPCounterTerms.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: James Harrison <jch1g10@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MScalar_VPCounterTerms_hpp_
#define Hadrons_MScalar_VPCounterTerms_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* VPCounterTerms *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MScalar)
class VPCounterTermsPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(VPCounterTermsPar,
std::string, source,
double, mass,
std::string, output,
std::vector<std::string>, outputMom);
};
class TVPCounterTerms: public Module<VPCounterTermsPar>
{
public:
BASIC_TYPE_ALIASES(SIMPL,);
class Result: Serializable
{
public:
class Projection: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Projection,
std::vector<int>, momentum,
std::vector<std::vector<std::vector<Complex>>>, twoScalar,
std::vector<std::vector<std::vector<Complex>>>, threeScalar,
std::vector<std::vector<std::vector<Complex>>>, pSquaredInsertion);
};
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::vector<int>, lattice_size,
double, mass,
std::vector<Projection>, projection);
};
public:
// constructor
TVPCounterTerms(const std::string name);
// destructor
virtual ~TVPCounterTerms(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
void project(std::vector<Complex> &projection, const ScalarField &vp, int i_p);
private:
std::string freeMomPropName_, GFSrcName_, phatsqName_, prop0Name_,
twoscalarName_, twoscalarVertexName_,
psquaredName_, psquaredVertexName_;
std::vector<std::string> phaseName_, momPhaseName_;
std::vector<ScalarField *> phase_, momPhase_;
};
MODULE_REGISTER(VPCounterTerms, TVPCounterTerms, MScalar);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MScalar_VPCounterTerms_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/WardIdentity.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/WardIdentity.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TWardIdentity<FIMPL>;

View File

@ -1,224 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/WardIdentity.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_WardIdentity_hpp_
#define Hadrons_MContraction_WardIdentity_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
Ward Identity contractions
-----------------------------
* options:
- q: propagator, 5D if available (string)
- action: action module used for propagator solution (string)
- mass: mass of quark (double)
- test_axial: whether or not to test PCAC relation.
*/
/******************************************************************************
* WardIdentity *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class WardIdentityPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WardIdentityPar,
std::string, q,
std::string, action,
double, mass,
bool, test_axial);
};
template <typename FImpl>
class TWardIdentity: public Module<WardIdentityPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TWardIdentity(const std::string name);
// destructor
virtual ~TWardIdentity(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
unsigned int Ls_;
};
MODULE_REGISTER_TMP(WardIdentity, TWardIdentity<FIMPL>, MContraction);
/******************************************************************************
* TWardIdentity implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TWardIdentity<FImpl>::TWardIdentity(const std::string name)
: Module<WardIdentityPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TWardIdentity<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().q, par().action};
return in;
}
template <typename FImpl>
std::vector<std::string> TWardIdentity<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWardIdentity<FImpl>::setup(void)
{
Ls_ = env().getObjectLs(par().q);
if (Ls_ != env().getObjectLs(par().action))
{
HADRONS_ERROR(Size, "Ls mismatch between quark action and propagator");
}
envTmpLat(PropagatorField, "tmp");
envTmpLat(PropagatorField, "vector_WI");
if (par().test_axial)
{
envTmpLat(PropagatorField, "psi");
envTmpLat(LatticeComplex, "PP");
envTmpLat(LatticeComplex, "axial_defect");
envTmpLat(LatticeComplex, "PJ5q");
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWardIdentity<FImpl>::execute(void)
{
LOG(Message) << "Performing Ward Identity checks for quark '" << par().q
<< "'." << std::endl;
auto &q = envGet(PropagatorField, par().q);
auto &act = envGet(FMat, par().action);
Gamma g5(Gamma::Algebra::Gamma5);
// Compute D_mu V_mu, D here is backward derivative.
envGetTmp(PropagatorField, tmp);
envGetTmp(PropagatorField, vector_WI);
vector_WI = Zero();
for (unsigned int mu = 0; mu < Nd; ++mu)
{
act.ContractConservedCurrent(q, q, tmp, Current::Vector, mu);
tmp -= Cshift(tmp, mu, -1);
vector_WI += tmp;
}
// Test ward identity D_mu V_mu = 0;
LOG(Message) << "Vector Ward Identity check Delta_mu V_mu = "
<< norm2(vector_WI) << std::endl;
if (par().test_axial)
{
envGetTmp(PropagatorField, psi);
envGetTmp(LatticeComplex, PP);
envGetTmp(LatticeComplex, axial_defect);
envGetTmp(LatticeComplex, PJ5q);
std::vector<TComplex> axial_buf;
// Compute <P|D_mu A_mu>, D is backwards derivative.
axial_defect = Zero();
for (unsigned int mu = 0; mu < Nd; ++mu)
{
act.ContractConservedCurrent(q, q, tmp, Current::Axial, mu);
tmp -= Cshift(tmp, mu, -1);
axial_defect += trace(g5*tmp);
}
// Get <P|J5q> for 5D (Zero(); for 4D) and <P|P>.
PJ5q = Zero();
if (Ls_ > 1)
{
// <P|P>
ExtractSlice(tmp, q, 0, 0);
psi = 0.5 * (tmp - g5*tmp);
ExtractSlice(tmp, q, Ls_ - 1, 0);
psi += 0.5 * (tmp + g5*tmp);
PP = trace(adj(psi)*psi);
// <P|5Jq>
ExtractSlice(tmp, q, Ls_/2 - 1, 0);
psi = 0.5 * (tmp + g5*tmp);
ExtractSlice(tmp, q, Ls_/2, 0);
psi += 0.5 * (tmp - g5*tmp);
PJ5q = trace(adj(psi)*psi);
}
else
{
PP = trace(adj(q)*q);
}
// Test ward identity <P|D_mu A_mu> = 2m<P|P> + 2<P|J5q>
LOG(Message) << "|D_mu A_mu|^2 = " << norm2(axial_defect) << std::endl;
LOG(Message) << "|PP|^2 = " << norm2(PP) << std::endl;
LOG(Message) << "|PJ5q|^2 = " << norm2(PJ5q) << std::endl;
LOG(Message) << "Axial Ward Identity defect Delta_mu A_mu = "
<< norm2(axial_defect) << std::endl;
// Axial defect by timeslice.
axial_defect -= 2.*(par().mass*PP + PJ5q);
LOG(Message) << "Check Axial defect by timeslice" << std::endl;
sliceSum(axial_defect, axial_buf, Tp);
for (int t = 0; t < axial_buf.size(); ++t)
{
LOG(Message) << "t = " << t << ": "
<< TensorRemove(axial_buf[t]) << std::endl;
}
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WardIdentity_hpp_

View File

@ -1,118 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/WeakHamiltonian.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_WeakHamiltonian_hpp_
#define Hadrons_MContraction_WeakHamiltonian_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* WeakHamiltonian *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
/*******************************************************************************
* Utilities for contractions involving the Weak Hamiltonian.
******************************************************************************/
//// Sum and store correlator.
#define MAKE_DIAG(exp, buf, res, n)\
sliceSum(exp, buf, Tp);\
res.name = (n);\
res.corr.resize(buf.size());\
for (unsigned int t = 0; t < buf.size(); ++t)\
{\
res.corr[t] = TensorRemove(buf[t]);\
}
//// Contraction of mu index: use 'mu' variable in exp.
#define SUM_MU(buf,exp)\
buf = Zero(); \
for (unsigned int mu = 0; mu < ndim; ++mu)\
{\
buf += exp;\
}
enum
{
i_V = 0,
i_A = 1,
n_i = 2
};
class WeakHamiltonianPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WeakHamiltonianPar,
std::string, q1,
std::string, q2,
std::string, q3,
std::string, q4,
unsigned int, tSnk,
std::string, output);
};
#define MAKE_WEAK_MODULE(modname)\
class T##modname: public Module<WeakHamiltonianPar>\
{\
public:\
FERM_TYPE_ALIASES(FIMPL,)\
class Result: Serializable\
{\
public:\
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,\
std::string, name,\
std::vector<Complex>, corr);\
};\
public:\
/* constructor */ \
T##modname(const std::string name);\
/* destructor */ \
virtual ~T##modname(void) {};\
/* dependency relation */ \
virtual std::vector<std::string> getInput(void);\
virtual std::vector<std::string> getOutput(void);\
public:\
std::vector<std::string> VA_label = {"V", "A"};\
protected:\
/* setup */ \
virtual void setup(void);\
/* execution */ \
virtual void execute(void);\
};\
MODULE_REGISTER(modname, T##modname, MContraction);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_WeakHamiltonian_hpp_

View File

@ -1,151 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/WeakHamiltonianEye.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
/*
* Weak Hamiltonian current-current contractions, Eye-type.
*
* These contractions are generated by the Q1 and Q2 operators in the physical
* basis (see e.g. Fig 3 of arXiv:1507.03094).
*
* Schematics: q4 |
* /-<-¬ |
* / \ | q2 q3
* \ / | /----<------*------<----¬
* q2 \ / q3 | / /-*-¬ \
* /-----<-----* *-----<----¬ | / / \ \
* i * H_W * f | i * \ / q4 * f
* \ / | \ \->-/ /
* \ / | \ /
* \---------->---------/ | \----------->----------/
* q1 | q1
* |
* Saucer (S) | Eye (E)
*
* S: trace(q3*g5*q1*adj(q2)*g5*gL[mu][p_1]*q4*gL[mu][p_2])
* E: trace(q3*g5*q1*adj(q2)*g5*gL[mu][p_1])*trace(q4*gL[mu][p_2])
*
* Note q1 must be sink smeared.
*/
/******************************************************************************
* TWeakHamiltonianEye implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TWeakHamiltonianEye::TWeakHamiltonianEye(const std::string name)
: Module<WeakHamiltonianPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TWeakHamiltonianEye::getInput(void)
{
std::vector<std::string> in = {par().q1, par().q2, par().q3, par().q4};
return in;
}
std::vector<std::string> TWeakHamiltonianEye::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TWeakHamiltonianEye::setup(void)
{
unsigned int ndim = env().getNd();
envTmpLat(LatticeComplex, "expbuf");
envTmpLat(PropagatorField, "tmp1");
envTmpLat(LatticeComplex, "tmp2");
envTmp(std::vector<PropagatorField>, "S_body", 1, ndim, PropagatorField(env().getGrid()));
envTmp(std::vector<PropagatorField>, "S_loop", 1, ndim, PropagatorField(env().getGrid()));
envTmp(std::vector<LatticeComplex>, "E_body", 1, ndim, LatticeComplex(env().getGrid()));
envTmp(std::vector<LatticeComplex>, "E_loop", 1, ndim, LatticeComplex(env().getGrid()));
}
// execution ///////////////////////////////////////////////////////////////////
void TWeakHamiltonianEye::execute(void)
{
LOG(Message) << "Computing Weak Hamiltonian (Eye type) contractions '"
<< getName() << "' using quarks '" << par().q1 << "', '"
<< par().q2 << ", '" << par().q3 << "' and '" << par().q4
<< "'." << std::endl;
auto &q1 = envGet(SlicedPropagator, par().q1);
auto &q2 = envGet(PropagatorField, par().q2);
auto &q3 = envGet(PropagatorField, par().q3);
auto &q4 = envGet(PropagatorField, par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_eye_diag);
unsigned int ndim = env().getNd();
envGetTmp(LatticeComplex, expbuf);
envGetTmp(PropagatorField, tmp1);
envGetTmp(LatticeComplex, tmp2);
envGetTmp(std::vector<PropagatorField>, S_body);
envGetTmp(std::vector<PropagatorField>, S_loop);
envGetTmp(std::vector<LatticeComplex>, E_body);
envGetTmp(std::vector<LatticeComplex>, E_loop);
// Get sink timeslice of q1.
SitePropagator q1Snk = q1[par().tSnk];
// Setup for S-type contractions.
for (int mu = 0; mu < ndim; ++mu)
{
S_body[mu] = MAKE_SE_BODY(q1Snk, q2, q3, GammaL(Gamma::gmu[mu]));
S_loop[mu] = MAKE_SE_LOOP(q4, GammaL(Gamma::gmu[mu]));
}
// Perform S-type contractions.
SUM_MU(expbuf, trace(S_body[mu]*S_loop[mu]))
MAKE_DIAG(expbuf, corrbuf, result[S_diag], "HW_S")
// Recycle sub-expressions for E-type contractions.
for (unsigned int mu = 0; mu < ndim; ++mu)
{
E_body[mu] = trace(S_body[mu]);
E_loop[mu] = trace(S_loop[mu]);
}
// Perform E-type contractions.
SUM_MU(expbuf, E_body[mu]*E_loop[mu])
MAKE_DIAG(expbuf, corrbuf, result[E_diag], "HW_E")
// IO
saveResult(par().output, "HW_Eye", result);
}

View File

@ -1,59 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/WeakHamiltonianEye.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_WeakHamiltonianEye_hpp_
#define Hadrons_MContraction_WeakHamiltonianEye_hpp_
#include <Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* WeakHamiltonianEye *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
enum
{
S_diag = 0,
E_diag = 1,
n_eye_diag = 2
};
// Saucer and Eye subdiagram contractions.
#define MAKE_SE_BODY(Q_1, Q_2, Q_3, gamma) (Q_3*g5*Q_1*adj(Q_2)*g5*gamma)
#define MAKE_SE_LOOP(Q_loop, gamma) (Q_loop*gamma)
MAKE_WEAK_MODULE(WeakHamiltonianEye)
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_WeakHamiltonianEye_hpp_

View File

@ -1,148 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/WeakHamiltonianNonEye.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
/*
* Weak Hamiltonian current-current contractions, Non-Eye-type.
*
* These contractions are generated by the Q1 and Q2 operators in the physical
* basis (see e.g. Fig 3 of arXiv:1507.03094).
*
* Schematic:
* q2 q3 | q2 q3
* /--<--¬ /--<--¬ | /--<--¬ /--<--¬
* / \ / \ | / \ / \
* / \ / \ | / \ / \
* / \ / \ | / \ / \
* i * * H_W * f | i * * * H_W * f
* \ * | | \ / \ /
* \ / \ / | \ / \ /
* \ / \ / | \ / \ /
* \ / \ / | \-->--/ \-->--/
* \-->--/ \-->--/ | q1 q4
* q1 q4 |
* Connected (C) | Wing (W)
*
* C: trace(q1*adj(q2)*g5*gL[mu]*q3*adj(q4)*g5*gL[mu])
* W: trace(q1*adj(q2)*g5*gL[mu])*trace(q3*adj(q4)*g5*gL[mu])
*
*/
/******************************************************************************
* TWeakHamiltonianNonEye implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TWeakHamiltonianNonEye::TWeakHamiltonianNonEye(const std::string name)
: Module<WeakHamiltonianPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TWeakHamiltonianNonEye::getInput(void)
{
std::vector<std::string> in = {par().q1, par().q2, par().q3, par().q4};
return in;
}
std::vector<std::string> TWeakHamiltonianNonEye::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TWeakHamiltonianNonEye::setup(void)
{
unsigned int ndim = env().getNd();
envTmpLat(LatticeComplex, "expbuf");
envTmpLat(PropagatorField, "tmp1");
envTmpLat(LatticeComplex, "tmp2");
envTmp(std::vector<PropagatorField>, "C_i_side_loop", 1, ndim, PropagatorField(env().getGrid()));
envTmp(std::vector<PropagatorField>, "C_f_side_loop", 1, ndim, PropagatorField(env().getGrid()));
envTmp(std::vector<LatticeComplex>, "W_i_side_loop", 1, ndim, LatticeComplex(env().getGrid()));
envTmp(std::vector<LatticeComplex>, "W_f_side_loop", 1, ndim, LatticeComplex(env().getGrid()));
}
// execution ///////////////////////////////////////////////////////////////////
void TWeakHamiltonianNonEye::execute(void)
{
LOG(Message) << "Computing Weak Hamiltonian (Non-Eye type) contractions '"
<< getName() << "' using quarks '" << par().q1 << "', '"
<< par().q2 << ", '" << par().q3 << "' and '" << par().q4
<< "'." << std::endl;
auto &q1 = envGet(PropagatorField, par().q1);
auto &q2 = envGet(PropagatorField, par().q2);
auto &q3 = envGet(PropagatorField, par().q3);
auto &q4 = envGet(PropagatorField, par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_noneye_diag);
unsigned int ndim = env().getNd();
envGetTmp(LatticeComplex, expbuf);
envGetTmp(PropagatorField, tmp1);
envGetTmp(LatticeComplex, tmp2);
envGetTmp(std::vector<PropagatorField>, C_i_side_loop);
envGetTmp(std::vector<PropagatorField>, C_f_side_loop);
envGetTmp(std::vector<LatticeComplex>, W_i_side_loop);
envGetTmp(std::vector<LatticeComplex>, W_f_side_loop);
// Setup for C-type contractions.
for (int mu = 0; mu < ndim; ++mu)
{
C_i_side_loop[mu] = MAKE_CW_SUBDIAG(q1, q2, GammaL(Gamma::gmu[mu]));
C_f_side_loop[mu] = MAKE_CW_SUBDIAG(q3, q4, GammaL(Gamma::gmu[mu]));
}
// Perform C-type contractions.
SUM_MU(expbuf, trace(C_i_side_loop[mu]*C_f_side_loop[mu]))
MAKE_DIAG(expbuf, corrbuf, result[C_diag], "HW_C")
// Recycle sub-expressions for W-type contractions.
for (unsigned int mu = 0; mu < ndim; ++mu)
{
W_i_side_loop[mu] = trace(C_i_side_loop[mu]);
W_f_side_loop[mu] = trace(C_f_side_loop[mu]);
}
// Perform W-type contractions.
SUM_MU(expbuf, W_i_side_loop[mu]*W_f_side_loop[mu])
MAKE_DIAG(expbuf, corrbuf, result[W_diag], "HW_W")
// IO
saveResult(par().output, "HW_NonEye", result);
}

View File

@ -1,58 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/WeakHamiltonianNonEye.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_WeakHamiltonianNonEye_hpp_
#define Hadrons_MContraction_WeakHamiltonianNonEye_hpp_
#include <Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* WeakHamiltonianNonEye *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
enum
{
W_diag = 0,
C_diag = 1,
n_noneye_diag = 2
};
// Wing and Connected subdiagram contractions
#define MAKE_CW_SUBDIAG(Q_1, Q_2, gamma) (Q_1*adj(Q_2)*g5*gamma)
MAKE_WEAK_MODULE(WeakHamiltonianNonEye)
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_WeakHamiltonianNonEye_hpp_

View File

@ -1,142 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/WeakNeutral4ptDisc.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
/*
* Weak Hamiltonian + current contractions, disconnected topology for neutral
* mesons.
*
* These contractions are generated by operators Q_1,...,10 of the dS=1 Weak
* Hamiltonian in the physical basis and an additional current J (see e.g.
* Fig 11 of arXiv:1507.03094).
*
* Schematic:
*
* q2 q4 q3
* /--<--¬ /---<--¬ /---<--¬
* / \ / \ / \
* i * * H_W | J * * f
* \ / \ / \ /
* \--->---/ \-------/ \------/
* q1
*
* options
* - q1: input propagator 1 (string)
* - q2: input propagator 2 (string)
* - q3: input propagator 3 (string), assumed to be sequential propagator
* - q4: input propagator 4 (string), assumed to be a loop
*
* type 1: trace(q1*adj(q2)*g5*gL[mu])*trace(loop*gL[mu])*trace(q3*g5)
* type 2: trace(q1*adj(q2)*g5*gL[mu]*loop*gL[mu])*trace(q3*g5)
*/
/*******************************************************************************
* TWeakNeutral4ptDisc implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TWeakNeutral4ptDisc::TWeakNeutral4ptDisc(const std::string name)
: Module<WeakHamiltonianPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TWeakNeutral4ptDisc::getInput(void)
{
std::vector<std::string> in = {par().q1, par().q2, par().q3, par().q4};
return in;
}
std::vector<std::string> TWeakNeutral4ptDisc::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TWeakNeutral4ptDisc::setup(void)
{
unsigned int ndim = env().getNd();
envTmpLat(LatticeComplex, "expbuf");
envTmpLat(PropagatorField, "tmp");
envTmpLat(LatticeComplex, "curr");
envTmp(std::vector<PropagatorField>, "meson", 1, ndim, PropagatorField(env().getGrid()));
envTmp(std::vector<PropagatorField>, "loop", 1, ndim, PropagatorField(env().getGrid()));
}
// execution ///////////////////////////////////////////////////////////////////
void TWeakNeutral4ptDisc::execute(void)
{
LOG(Message) << "Computing Weak Hamiltonian neutral disconnected contractions '"
<< getName() << "' using quarks '" << par().q1 << "', '"
<< par().q2 << ", '" << par().q3 << "' and '" << par().q4
<< "'." << std::endl;
auto &q1 = envGet(PropagatorField, par().q1);
auto &q2 = envGet(PropagatorField, par().q2);
auto &q3 = envGet(PropagatorField, par().q3);
auto &q4 = envGet(PropagatorField, par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_neut_disc_diag);
unsigned int ndim = env().getNd();
envGetTmp(LatticeComplex, expbuf);
envGetTmp(PropagatorField, tmp);
envGetTmp(LatticeComplex, curr);
envGetTmp(std::vector<PropagatorField>, meson);
envGetTmp(std::vector<PropagatorField>, loop);
// Setup for type 1 contractions.
for (int mu = 0; mu < ndim; ++mu)
{
meson[mu] = MAKE_DISC_MESON(q1, q2, GammaL(Gamma::gmu[mu]));
loop[mu] = MAKE_DISC_LOOP(q4, GammaL(Gamma::gmu[mu]));
}
curr = MAKE_DISC_CURR(q3, GammaL(Gamma::Algebra::Gamma5));
// Perform type 1 contractions.
SUM_MU(expbuf, trace(meson[mu]*loop[mu]))
expbuf *= curr;
MAKE_DIAG(expbuf, corrbuf, result[neut_disc_1_diag], "HW_disc0_1")
// Perform type 2 contractions.
SUM_MU(expbuf, trace(meson[mu])*trace(loop[mu]))
expbuf *= curr;
MAKE_DIAG(expbuf, corrbuf, result[neut_disc_2_diag], "HW_disc0_2")
// IO
saveResult(par().output, "HW_disc0", result);
}

View File

@ -1,60 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/WeakNeutral4ptDisc.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_WeakNeutral4ptDisc_hpp_
#define Hadrons_MContraction_WeakNeutral4ptDisc_hpp_
#include <Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* WeakNeutral4ptDisc *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
enum
{
neut_disc_1_diag = 0,
neut_disc_2_diag = 1,
n_neut_disc_diag = 2
};
// Neutral 4pt disconnected subdiagram contractions.
#define MAKE_DISC_MESON(Q_1, Q_2, gamma) (Q_1*adj(Q_2)*g5*gamma)
#define MAKE_DISC_LOOP(Q_LOOP, gamma) (Q_LOOP*gamma)
#define MAKE_DISC_CURR(Q_c, gamma) (trace(Q_c*gamma))
MAKE_WEAK_MODULE(WeakNeutral4ptDisc)
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_WeakNeutral4ptDisc_hpp_

View File

@ -1,356 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/DilutedNoise.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
Author: Vera Guelpers <vmg1n14@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_DilutedNoise_hpp_
#define Hadrons_DilutedNoise_hpp_
#include <Hadrons/Global.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Abstract container for diluted noise *
******************************************************************************/
template <typename FImpl>
class DilutedNoise
{
public:
typedef typename FImpl::FermionField FermionField;
public:
// constructor/destructor
DilutedNoise(GridCartesian *g);
DilutedNoise(GridCartesian *g, const unsigned int nNoise);
virtual ~DilutedNoise(void) = default;
// access
std::vector<FermionField> & getNoise(void);
const std::vector<FermionField> & getNoise(void) const;
const FermionField & operator[](const unsigned int i) const;
FermionField & operator[](const unsigned int i);
void normalise(Real norm);
void resize(const unsigned int nNoise);
unsigned int size(void) const;
GridCartesian *getGrid(void) const;
// generate noise (pure virtual)
virtual void generateNoise(GridParallelRNG &rng) = 0;
private:
std::vector<FermionField> noise_;
GridCartesian *grid_;
unsigned int nNoise_;
};
template <typename FImpl>
class TimeDilutedSpinColorDiagonalNoise: public DilutedNoise<FImpl>
{
public:
typedef typename FImpl::FermionField FermionField;
public:
// constructor/destructor
TimeDilutedSpinColorDiagonalNoise(GridCartesian *g);
virtual ~TimeDilutedSpinColorDiagonalNoise(void) = default;
// generate noise
virtual void generateNoise(GridParallelRNG &rng);
private:
unsigned int nt_;
};
template <typename FImpl>
class FullVolumeSpinColorDiagonalNoise: public DilutedNoise<FImpl>
{
public:
typedef typename FImpl::FermionField FermionField;
public:
// constructor/destructor
FullVolumeSpinColorDiagonalNoise(GridCartesian *g, unsigned int n_src);
virtual ~FullVolumeSpinColorDiagonalNoise(void) = default;
// generate noise
virtual void generateNoise(GridParallelRNG &rng);
private:
unsigned int nSrc_;
};
template <typename FImpl>
class SparseSpinColorDiagonalNoise: public DilutedNoise<FImpl>
{
public:
typedef typename FImpl::FermionField FermionField;
public:
// constructor/destructor
SparseSpinColorDiagonalNoise(GridCartesian *g, unsigned int n_src, unsigned int n_sparse);
virtual ~SparseSpinColorDiagonalNoise(void) = default;
// generate noise
virtual void generateNoise(GridParallelRNG &rng);
private:
unsigned int nSrc_;
unsigned int nSparse_;
};
/******************************************************************************
* DilutedNoise template implementation *
******************************************************************************/
template <typename FImpl>
DilutedNoise<FImpl>::DilutedNoise(GridCartesian *g)
: grid_(g)
{}
template <typename FImpl>
DilutedNoise<FImpl>::DilutedNoise(GridCartesian *g,
const unsigned int nNoise)
: DilutedNoise(g)
{
resize(nNoise);
}
template <typename FImpl>
std::vector<typename DilutedNoise<FImpl>::FermionField> & DilutedNoise<FImpl>::
getNoise(void)
{
return noise_;
}
template <typename FImpl>
const std::vector<typename DilutedNoise<FImpl>::FermionField> & DilutedNoise<FImpl>::
getNoise(void) const
{
return noise_;
}
template <typename FImpl>
const typename DilutedNoise<FImpl>::FermionField &
DilutedNoise<FImpl>::operator[](const unsigned int i) const
{
return noise_[i];
}
template <typename FImpl>
typename DilutedNoise<FImpl>::FermionField &
DilutedNoise<FImpl>::operator[](const unsigned int i)
{
return noise_[i];
}
template <typename FImpl>
void DilutedNoise<FImpl>::normalise(Real norm)
{
for(int i=0;i<noise_.size();i++)
{
noise_[i] = norm*noise_[i];
}
}
template <typename FImpl>
void DilutedNoise<FImpl>::resize(const unsigned int nNoise)
{
nNoise_ = nNoise;
noise_.resize(nNoise, grid_);
}
template <typename FImpl>
unsigned int DilutedNoise<FImpl>::size(void) const
{
return noise_.size();
}
template <typename FImpl>
GridCartesian * DilutedNoise<FImpl>::getGrid(void) const
{
return grid_;
}
/******************************************************************************
* TimeDilutedSpinColorDiagonalNoise template implementation *
******************************************************************************/
template <typename FImpl>
TimeDilutedSpinColorDiagonalNoise<FImpl>::
TimeDilutedSpinColorDiagonalNoise(GridCartesian *g)
: DilutedNoise<FImpl>(g)
{
nt_ = this->getGrid()->GlobalDimensions().size();
this->resize(nt_*Ns*FImpl::Dimension);
}
template <typename FImpl>
void TimeDilutedSpinColorDiagonalNoise<FImpl>::generateNoise(GridParallelRNG &rng)
{
typedef decltype(peekColour((*this)[0], 0)) SpinField;
auto &noise = *this;
auto g = this->getGrid();
auto nd = g->GlobalDimensions().size();
auto nc = FImpl::Dimension;
Complex shift(1., 1.);
Lattice<iScalar<vInteger>> tLat(g);
LatticeComplex eta(g), etaCut(g);
SpinField etas(g);
unsigned int i = 0;
LatticeCoordinate(tLat, nd - 1);
bernoulli(rng, eta);
eta = (2.*eta - shift)*(1./::sqrt(2.));
for (unsigned int t = 0; t < nt_; ++t)
{
etaCut = where((tLat == t), eta, 0.*eta);
for (unsigned int s = 0; s < Ns; ++s)
{
etas = Zero();
pokeSpin(etas, etaCut, s);
for (unsigned int c = 0; c < nc; ++c)
{
noise[i] = Zero();
pokeColour(noise[i], etas, c);
i++;
}
}
}
}
/******************************************************************************
* FullVolumeSpinColorDiagonalNoise template implementation *
******************************************************************************/
template <typename FImpl>
FullVolumeSpinColorDiagonalNoise<FImpl>::
FullVolumeSpinColorDiagonalNoise(GridCartesian *g, unsigned int nSrc)
: DilutedNoise<FImpl>(g, nSrc*Ns*FImpl::Dimension), nSrc_(nSrc)
{}
template <typename FImpl>
void FullVolumeSpinColorDiagonalNoise<FImpl>::generateNoise(GridParallelRNG &rng)
{
typedef decltype(peekColour((*this)[0], 0)) SpinField;
auto &noise = *this;
auto g = this->getGrid();
auto nd = g->GlobalDimensions().size();
auto nc = FImpl::Dimension;
Complex shift(1., 1.);
LatticeComplex eta(g);
SpinField etas(g);
unsigned int i = 0;
bernoulli(rng, eta);
eta = (2.*eta - shift)*(1./::sqrt(2.));
for (unsigned int n = 0; n < nSrc_; ++n)
{
for (unsigned int s = 0; s < Ns; ++s)
{
etas = Zero();
pokeSpin(etas, eta, s);
for (unsigned int c = 0; c < nc; ++c)
{
noise[i] = Zero();
pokeColour(noise[i], etas, c);
i++;
}
}
}
}
/******************************************************************************
* SparseSpinColorDiagonalNoise template implementation *
******************************************************************************/
template <typename FImpl>
SparseSpinColorDiagonalNoise<FImpl>::
SparseSpinColorDiagonalNoise(GridCartesian *g, unsigned int nSrc, unsigned int nSparse)
: DilutedNoise<FImpl>(g, nSrc*Ns*FImpl::Dimension), nSrc_(nSrc), nSparse_(nSparse)
{}
template <typename FImpl>
void SparseSpinColorDiagonalNoise<FImpl>::generateNoise(GridParallelRNG &rng)
{
typedef decltype(peekColour((*this)[0], 0)) SpinField;
auto &noise = *this;
auto g = this->getGrid();
auto nd = g->GlobalDimensions().size();
auto nc = FImpl::Dimension;
LatticeInteger coor(g), coorTot(g); coorTot = 0.;
Complex shift(1., 1.);
LatticeComplex eta(g), etaSparse(g);
SpinField etas(g);
unsigned int i = 0;
unsigned int j = 0;
unsigned int nSrc_ec;
if(nSrc_%nSparse_==0)
{
nSrc_ec = nSrc_/nSparse_;
}
else
{
nSrc_ec = (nSrc_ - nSrc_%nSparse_)/nSparse_;
}
for (unsigned int n = 0; n < nSrc_; ++n)
{
bernoulli(rng, eta);
eta = (2.*eta - shift)*(1./::sqrt(2.));
if(nSparse_ != 1)
{
assert(g->GlobalDimensions()[1]%nSparse_ == 0);
// # 0 # 0
// 0 # 0 #
// # 0 # 0
// 0 # 0 #
coorTot = 0;
for(unsigned int d = 0; d < nd; ++d)
{
LatticeCoordinate(coor, d);
coorTot = coorTot + coor;
}
coorTot = coorTot + j;
eta = where(mod(coorTot,nSparse_), 0.*eta, eta);
}
for (unsigned int s = 0; s < Ns; ++s)
{
etas = Zero();
pokeSpin(etas, eta, s);
for (unsigned int c = 0; c < nc; ++c)
{
noise[i] = Zero();
pokeColour(noise[i], etas, c);
i++;
/**/
}
}
((n+1)%nSrc_ec == 0) ? j++: 0;
}
Real norm = sqrt(1./nSrc_ec);
this->normalise(norm);
}
END_HADRONS_NAMESPACE
#endif // Hadrons_DilutedNoise_hpp_

View File

@ -1,511 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/DiskVector.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_DiskVector_hpp_
#define Hadrons_DiskVector_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/A2AMatrix.hpp>
#include <deque>
#include <sys/stat.h>
#include <ftw.h>
#include <unistd.h>
#ifdef DV_DEBUG
#define DV_DEBUG_MSG(dv, stream) LOG(Debug) << "diskvector " << (dv) << ": " << stream << std::endl
#else
#define DV_DEBUG_MSG(dv, stream)
#endif
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Abstract base class *
******************************************************************************/
template <typename T>
class DiskVectorBase
{
public:
typedef T ObjectType;
// helper for read/write vector access
class RwAccessHelper
{
public:
RwAccessHelper(DiskVectorBase<T> &master, const unsigned int i)
: master_(master), cmaster_(master), i_(i) {}
// operator=: somebody is trying to store a vector element
// write to cache and tag as modified
T &operator=(const T &obj) const
{
auto &cache = *master_.cachePtr_;
auto &modified = *master_.modifiedPtr_;
auto &index = *master_.indexPtr_;
DV_DEBUG_MSG(&master_, "writing to " << i_);
master_.cacheInsert(i_, obj);
modified[index.at(i_)] = true;
return cache[index.at(i_)];
}
// implicit cast to const object reference and redirection
// to the const operator[] for read-only operations
operator const T&() const
{
return cmaster_[i_];
}
private:
DiskVectorBase<T> &master_;
const DiskVectorBase<T> &cmaster_;
const unsigned int i_;
};
public:
DiskVectorBase(const std::string dirname, const unsigned int size = 0,
const unsigned int cacheSize = 1, const bool clean = true,
GridBase *grid = nullptr);
DiskVectorBase(DiskVectorBase<T> &&v) = default;
virtual ~DiskVectorBase(void);
const T & operator[](const unsigned int i) const;
RwAccessHelper operator[](const unsigned int i);
double hitRatio(void) const;
void resetStat(void);
void setSize(unsigned int size_);
unsigned int getSize() const;
unsigned int dvSize;
void setGrid(GridBase *grid_);
GridBase *getGrid() const;
GridBase *dvGrid;
private:
virtual void load(T &obj, const std::string filename) const = 0;
virtual void save(const std::string filename, const T &obj) const = 0;
virtual std::string filename(const unsigned int i) const;
void evict(void) const;
void fetch(const unsigned int i) const;
void cacheInsert(const unsigned int i, const T &obj) const;
void clean(void);
private:
std::string dirname_;
unsigned int size_, cacheSize_;
double access_{0.}, hit_{0.};
bool clean_;
GridBase *grid_;
// using pointers to allow modifications when class is const
// semantic: const means data unmodified, but cache modification allowed
std::unique_ptr<std::vector<T>> cachePtr_;
std::unique_ptr<std::vector<bool>> modifiedPtr_;
std::unique_ptr<std::map<unsigned int, unsigned int>> indexPtr_;
std::unique_ptr<std::stack<unsigned int>> freePtr_;
std::unique_ptr<std::deque<unsigned int>> loadsPtr_;
};
/******************************************************************************
* Specialisation for serialisable classes *
******************************************************************************/
template <typename T, typename Reader, typename Writer>
class SerializableDiskVector: public DiskVectorBase<T>
{
public:
using DiskVectorBase<T>::DiskVectorBase;
private:
virtual void load(T &obj, const std::string filename) const
{
Reader reader(filename);
read(reader, basename(filename), obj);
}
virtual void save(const std::string filename, const T &obj) const
{
Writer writer(filename);
write(writer, basename(filename), obj);
}
};
/******************************************************************************
* Specialisation for Eigen matrices *
******************************************************************************/
template <typename T>
using EigenDiskVectorMat = A2AMatrix<T>;
template <typename T>
class EigenDiskVector: public DiskVectorBase<EigenDiskVectorMat<T>>
{
public:
using DiskVectorBase<EigenDiskVectorMat<T>>::DiskVectorBase;
typedef EigenDiskVectorMat<T> Matrix;
public:
T operator()(const unsigned int i, const Eigen::Index j,
const Eigen::Index k) const
{
return (*this)[i](j, k);
}
std::vector<int> dimensions() const
{
std::vector<int> dims(3);
dims[0] = (*this).getSize();
dims[1] = (*this)[0].rows();
dims[2] = (*this)[0].cols();
return dims;
}
private:
virtual void load(EigenDiskVectorMat<T> &obj, const std::string filename) const
{
GridBase *loadGrid;
loadGrid = (*this).getGrid();
if (!(loadGrid) || loadGrid->IsBoss())
{
std::ifstream f(filename, std::ios::binary);
uint32_t crc, check;
Eigen::Index nRow, nCol;
size_t matSize;
double tRead, tHash;
f.read(reinterpret_cast<char *>(&crc), sizeof(crc));
f.read(reinterpret_cast<char *>(&nRow), sizeof(nRow));
f.read(reinterpret_cast<char *>(&nCol), sizeof(nCol));
obj.resize(nRow, nCol);
matSize = nRow*nCol*sizeof(T);
tRead = -usecond();
f.read(reinterpret_cast<char *>(obj.data()), matSize);
tRead += usecond();
tHash = -usecond();
#ifdef USE_IPP
check = GridChecksum::crc32c(obj.data(), matSize);
#else
check = GridChecksum::crc32(obj.data(), matSize);
#endif
tHash += usecond();
DV_DEBUG_MSG(this, "Eigen read " << tRead/1.0e6 << " sec " << matSize/tRead*1.0e6/1024/1024 << " MB/s");
DV_DEBUG_MSG(this, "Eigen crc32 " << std::hex << check << std::dec
<< " " << tHash/1.0e6 << " sec " << matSize/tHash*1.0e6/1024/1024 << " MB/s");
if (crc != check)
{
HADRONS_ERROR(Io, "checksum failed")
}
}
int broadcastSize;
broadcastSize = sizeof(T)*obj.size();
if (loadGrid)
{
loadGrid->Broadcast(loadGrid->BossRank(), obj.data(), broadcastSize);
loadGrid->Barrier();
}
}
virtual void save(const std::string filename, const EigenDiskVectorMat<T> &obj) const
{
GridBase *saveGrid;
saveGrid = (*this).getGrid();
if (!(saveGrid) || saveGrid->IsBoss())
{
std::ofstream f(filename, std::ios::binary);
uint32_t crc;
Eigen::Index nRow, nCol;
size_t matSize;
double tWrite, tHash;
nRow = obj.rows();
nCol = obj.cols();
matSize = nRow*nCol*sizeof(T);
tHash = -usecond();
#ifdef USE_IPP
crc = GridChecksum::crc32c(obj.data(), matSize);
#else
crc = GridChecksum::crc32(obj.data(), matSize);
#endif
tHash += usecond();
f.write(reinterpret_cast<char *>(&crc), sizeof(crc));
f.write(reinterpret_cast<char *>(&nRow), sizeof(nRow));
f.write(reinterpret_cast<char *>(&nCol), sizeof(nCol));
tWrite = -usecond();
f.write(reinterpret_cast<const char *>(obj.data()), matSize);
tWrite += usecond();
DV_DEBUG_MSG(this, "Eigen write " << tWrite/1.0e6 << " sec " << matSize/tWrite*1.0e6/1024/1024 << " MB/s");
DV_DEBUG_MSG(this, "Eigen crc32 " << std::hex << crc << std::dec
<< " " << tHash/1.0e6 << " sec " << matSize/tHash*1.0e6/1024/1024 << " MB/s");
}
if (saveGrid) saveGrid->Barrier();
}
};
/******************************************************************************
* DiskVectorBase implementation *
******************************************************************************/
template <typename T>
DiskVectorBase<T>::DiskVectorBase(const std::string dirname,
const unsigned int size,
const unsigned int cacheSize,
const bool clean,
GridBase *grid)
: dirname_(dirname), size_(size), cacheSize_(cacheSize), clean_(clean), grid_(grid)
, cachePtr_(new std::vector<T>(size))
, modifiedPtr_(new std::vector<bool>(size, false))
, indexPtr_(new std::map<unsigned int, unsigned int>())
, freePtr_(new std::stack<unsigned int>)
, loadsPtr_(new std::deque<unsigned int>())
{
struct stat s;
if (!(grid_) || grid_->IsBoss())
{
if(stat(dirname.c_str(), &s) == 0)
{
HADRONS_ERROR(Io, "directory '" + dirname + "' already exists")
}
mkdir(dirname);
}
if (grid_) grid_->Barrier();
for (unsigned int i = 0; i < cacheSize_; ++i)
{
freePtr_->push(i);
}
setSize(size_);
setGrid(grid_);
}
template <typename T>
DiskVectorBase<T>::~DiskVectorBase(void)
{
if (clean_)
{
clean();
}
}
template <typename T>
void DiskVectorBase<T>::setSize(unsigned int size_)
{
dvSize = size_;
}
template <typename T>
unsigned int DiskVectorBase<T>::getSize() const
{
return dvSize;
}
template <typename T>
void DiskVectorBase<T>::setGrid(GridBase *grid_)
{
dvGrid = grid_;
}
template <typename T>
GridBase *DiskVectorBase<T>::getGrid() const
{
return dvGrid;
}
template <typename T>
const T & DiskVectorBase<T>::operator[](const unsigned int i) const
{
auto &cache = *cachePtr_;
auto &index = *indexPtr_;
auto &freeInd = *freePtr_;
auto &loads = *loadsPtr_;
DV_DEBUG_MSG(this, "accessing " << i << " (RO)");
if (i >= size_)
{
HADRONS_ERROR(Size, "index out of range");
}
const_cast<double &>(access_)++;
if (index.find(i) == index.end())
{
// cache miss
DV_DEBUG_MSG(this, "cache miss");
fetch(i);
}
else
{
DV_DEBUG_MSG(this, "cache hit");
auto pos = std::find(loads.begin(), loads.end(), i);
const_cast<double &>(hit_)++;
loads.erase(pos);
loads.push_back(i);
}
#ifdef DV_DEBUG
std::string msg;
for (auto &p: loads)
{
msg += std::to_string(p) + " ";
}
DV_DEBUG_MSG(this, "in cache: " << msg);
#endif
if (grid_) grid_->Barrier();
return cache[index.at(i)];
}
template <typename T>
typename DiskVectorBase<T>::RwAccessHelper DiskVectorBase<T>::operator[](const unsigned int i)
{
DV_DEBUG_MSG(this, "accessing " << i << " (RW)");
if (i >= size_)
{
HADRONS_ERROR(Size, "index out of range");
}
return RwAccessHelper(*this, i);
}
template <typename T>
double DiskVectorBase<T>::hitRatio(void) const
{
return hit_/access_;
}
template <typename T>
void DiskVectorBase<T>::resetStat(void)
{
access_ = 0.;
hit_ = 0.;
}
template <typename T>
std::string DiskVectorBase<T>::filename(const unsigned int i) const
{
return dirname_ + "/elem_" + std::to_string(i);
}
template <typename T>
void DiskVectorBase<T>::evict(void) const
{
auto &cache = *cachePtr_;
auto &modified = *modifiedPtr_;
auto &index = *indexPtr_;
auto &freeInd = *freePtr_;
auto &loads = *loadsPtr_;
if (index.size() >= cacheSize_)
{
unsigned int i = loads.front();
DV_DEBUG_MSG(this, "evicting " << i);
if (modified[index.at(i)])
{
DV_DEBUG_MSG(this, "element " << i << " modified, saving to disk");
save(filename(i), cache[index.at(i)]);
}
freeInd.push(index.at(i));
index.erase(i);
loads.pop_front();
}
if (grid_) grid_->Barrier();
}
template <typename T>
void DiskVectorBase<T>::fetch(const unsigned int i) const
{
auto &cache = *cachePtr_;
auto &modified = *modifiedPtr_;
auto &index = *indexPtr_;
auto &freeInd = *freePtr_;
auto &loads = *loadsPtr_;
struct stat s;
DV_DEBUG_MSG(this, "loading " << i << " from disk");
evict();
if(stat(filename(i).c_str(), &s) != 0)
{
HADRONS_ERROR(Io, "disk vector element " + std::to_string(i) + " uninitialised");
}
index[i] = freeInd.top();
freeInd.pop();
load(cache[index.at(i)], filename(i));
loads.push_back(i);
modified[index.at(i)] = false;
}
template <typename T>
void DiskVectorBase<T>::cacheInsert(const unsigned int i, const T &obj) const
{
auto &cache = *cachePtr_;
auto &modified = *modifiedPtr_;
auto &index = *indexPtr_;
auto &freeInd = *freePtr_;
auto &loads = *loadsPtr_;
evict();
index[i] = freeInd.top();
freeInd.pop();
cache[index.at(i)] = obj;
loads.push_back(i);
modified[index.at(i)] = false;
if (grid_) grid_->Barrier();
#ifdef DV_DEBUG
std::string msg;
for (auto &p: loads)
{
msg += std::to_string(p) + " ";
}
DV_DEBUG_MSG(this, "in cache: " << msg);
#endif
}
#ifdef DV_DEBUG
#undef DV_DEBUG_MSG
#endif
template <typename T>
void DiskVectorBase<T>::clean(void)
{
if (!(grid_) || grid_->IsBoss())
{
auto unlink = [](const char *fpath, const struct stat *sb,
int typeflag, struct FTW *ftwbuf) {
int rv = remove(fpath);
if (rv)
{
HADRONS_ERROR(Io, "cannot remove '" + std::string(fpath) + "': " + std::string(std::strerror(errno)));
}
return rv;
};
nftw(dirname_.c_str(), unlink, 64, FTW_DEPTH | FTW_PHYS);
}
if (grid_) grid_->Barrier();
}
END_HADRONS_NAMESPACE
#endif // Hadrons_DiskVector_hpp_

View File

@ -1,416 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/EigenPack.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_EigenPack_hpp_
#define Hadrons_EigenPack_hpp_
#include <Hadrons/Global.hpp>
#include <Grid/algorithms/iterative/Deflation.h>
#include <Grid/algorithms/iterative/LocalCoherenceLanczos.h>
BEGIN_HADRONS_NAMESPACE
// Lanczos type
#ifndef HADRONS_DEFAULT_LANCZOS_NBASIS
#define HADRONS_DEFAULT_LANCZOS_NBASIS 60
#endif
#define HADRONS_DUMP_EP_METADATA(record) \
LOG(Message) << "Eigenpack metadata:" << std::endl;\
LOG(Message) << "* operator" << std::endl;\
LOG(Message) << (record).operatorXml << std::endl;\
LOG(Message) << "* solver" << std::endl;\
LOG(Message) << (record).solverXml << std::endl;
struct PackRecord
{
std::string operatorXml, solverXml;
};
struct VecRecord: Serializable
{
GRID_SERIALIZABLE_CLASS_MEMBERS(VecRecord,
unsigned int, index,
double, eval);
VecRecord(void): index(0), eval(0.) {}
};
namespace EigenPackIo
{
inline void readHeader(PackRecord &record, ScidacReader &binReader)
{
std::string recordXml;
binReader.readLimeObject(recordXml, SCIDAC_FILE_XML);
XmlReader xmlReader(recordXml, true, "eigenPackPar");
xmlReader.push();
xmlReader.readCurrentSubtree(record.operatorXml);
xmlReader.nextElement();
xmlReader.readCurrentSubtree(record.solverXml);
}
template <typename T, typename TIo = T>
void readElement(T &evec, RealD &eval, const unsigned int index,
ScidacReader &binReader, TIo *ioBuf = nullptr)
{
VecRecord vecRecord;
LOG(Message) << "Reading eigenvector " << index << std::endl;
if (ioBuf == nullptr)
{
binReader.readScidacFieldRecord(evec, vecRecord);
}
else
{
binReader.readScidacFieldRecord(*ioBuf, vecRecord);
precisionChange(evec, *ioBuf);
}
if (vecRecord.index != index)
{
HADRONS_ERROR(Io, "Eigenvector " + std::to_string(index) + " has a"
+ " wrong index (expected " + std::to_string(vecRecord.index)
+ ")");
}
eval = vecRecord.eval;
}
template <typename T, typename TIo = T>
static void readPack(std::vector<T> &evec, std::vector<RealD> &eval,
PackRecord &record, const std::string filename,
const unsigned int size, bool multiFile,
GridBase *gridIo = nullptr)
{
std::unique_ptr<TIo> ioBuf{nullptr};
ScidacReader binReader;
if (typeHash<T>() != typeHash<TIo>())
{
if (gridIo == nullptr)
{
HADRONS_ERROR(Definition,
"I/O type different from vector type but null I/O grid passed");
}
ioBuf.reset(new TIo(gridIo));
}
if (multiFile)
{
std::string fullFilename;
for(int k = 0; k < size; ++k)
{
fullFilename = filename + "/v" + std::to_string(k) + ".bin";
binReader.open(fullFilename);
readHeader(record, binReader);
readElement(evec[k], eval[k], k, binReader, ioBuf.get());
binReader.close();
}
}
else
{
binReader.open(filename);
readHeader(record, binReader);
for(int k = 0; k < size; ++k)
{
readElement(evec[k], eval[k], k, binReader, ioBuf.get());
}
binReader.close();
}
}
inline void writeHeader(ScidacWriter &binWriter, PackRecord &record)
{
XmlWriter xmlWriter("", "eigenPackPar");
xmlWriter.pushXmlString(record.operatorXml);
xmlWriter.pushXmlString(record.solverXml);
binWriter.writeLimeObject(1, 1, xmlWriter, "parameters", SCIDAC_FILE_XML);
}
template <typename T, typename TIo = T>
void writeElement(ScidacWriter &binWriter, T &evec, RealD &eval,
const unsigned int index, TIo *ioBuf,
T *testBuf = nullptr)
{
VecRecord vecRecord;
LOG(Message) << "Writing eigenvector " << index << std::endl;
vecRecord.eval = eval;
vecRecord.index = index;
if ((ioBuf == nullptr) || (testBuf == nullptr))
{
binWriter.writeScidacFieldRecord(evec, vecRecord, DEFAULT_ASCII_PREC);
}
else
{
precisionChange(*ioBuf, evec);
precisionChange(*testBuf, *ioBuf);
*testBuf -= evec;
LOG(Message) << "Precision diff norm^2 " << norm2(*testBuf) << std::endl;
binWriter.writeScidacFieldRecord(*ioBuf, vecRecord, DEFAULT_ASCII_PREC);
}
}
template <typename T, typename TIo = T>
static void writePack(const std::string filename, std::vector<T> &evec,
std::vector<RealD> &eval, PackRecord &record,
const unsigned int size, bool multiFile,
GridBase *gridIo = nullptr)
{
GridBase *grid = evec[0].Grid();
std::unique_ptr<TIo> ioBuf{nullptr};
std::unique_ptr<T> testBuf{nullptr};
ScidacWriter binWriter(grid->IsBoss());
if (typeHash<T>() != typeHash<TIo>())
{
if (gridIo == nullptr)
{
HADRONS_ERROR(Definition,
"I/O type different from vector type but null I/O grid passed");
}
ioBuf.reset(new TIo(gridIo));
testBuf.reset(new T(grid));
}
if (multiFile)
{
std::string fullFilename;
for(int k = 0; k < size; ++k)
{
fullFilename = filename + "/v" + std::to_string(k) + ".bin";
makeFileDir(fullFilename, grid);
binWriter.open(fullFilename);
writeHeader(binWriter, record);
writeElement(binWriter, evec[k], eval[k], k, ioBuf.get(), testBuf.get());
binWriter.close();
}
}
else
{
makeFileDir(filename, grid);
binWriter.open(filename);
writeHeader(binWriter, record);
for(int k = 0; k < size; ++k)
{
writeElement(binWriter, evec[k], eval[k], k, ioBuf.get(), testBuf.get());
}
binWriter.close();
}
}
}
template <typename F>
class BaseEigenPack
{
public:
typedef F Field;
public:
std::vector<RealD> eval;
std::vector<F> evec;
PackRecord record;
public:
BaseEigenPack(void) = default;
BaseEigenPack(const size_t size, GridBase *grid)
{
resize(size, grid);
}
virtual ~BaseEigenPack(void) = default;
void resize(const size_t size, GridBase *grid)
{
eval.resize(size);
evec.resize(size, grid);
}
};
template <typename F, typename FIo = F>
class EigenPack: public BaseEigenPack<F>
{
public:
typedef F Field;
typedef FIo FieldIo;
public:
EigenPack(void) = default;
virtual ~EigenPack(void) = default;
EigenPack(const size_t size, GridBase *grid, GridBase *gridIo = nullptr)
: BaseEigenPack<F>(size, grid)
{
if (typeHash<F>() != typeHash<FIo>())
{
if (gridIo == nullptr)
{
HADRONS_ERROR(Definition,
"I/O type different from vector type but null I/O grid passed");
}
}
gridIo_ = gridIo;
}
virtual void read(const std::string fileStem, const bool multiFile, const int traj = -1)
{
EigenPackIo::readPack<F, FIo>(this->evec, this->eval, this->record,
evecFilename(fileStem, traj, multiFile),
this->evec.size(), multiFile, gridIo_);
HADRONS_DUMP_EP_METADATA(this->record);
}
virtual void write(const std::string fileStem, const bool multiFile, const int traj = -1)
{
EigenPackIo::writePack<F, FIo>(evecFilename(fileStem, traj, multiFile),
this->evec, this->eval, this->record,
this->evec.size(), multiFile, gridIo_);
}
protected:
std::string evecFilename(const std::string stem, const int traj, const bool multiFile)
{
std::string t = (traj < 0) ? "" : ("." + std::to_string(traj));
if (multiFile)
{
return stem + t;
}
else
{
return stem + t + ".bin";
}
}
protected:
GridBase *gridIo_;
};
template <typename FineF, typename CoarseF,
typename FineFIo = FineF, typename CoarseFIo = CoarseF>
class CoarseEigenPack: public EigenPack<FineF, FineFIo>
{
public:
typedef CoarseF CoarseField;
typedef CoarseFIo CoarseFieldIo;
public:
std::vector<CoarseF> evecCoarse;
std::vector<RealD> evalCoarse;
public:
CoarseEigenPack(void) = default;
virtual ~CoarseEigenPack(void) = default;
CoarseEigenPack(const size_t sizeFine, const size_t sizeCoarse,
GridBase *gridFine, GridBase *gridCoarse,
GridBase *gridFineIo = nullptr,
GridBase *gridCoarseIo = nullptr)
{
if (typeHash<FineF>() != typeHash<FineFIo>())
{
if (gridFineIo == nullptr)
{
HADRONS_ERROR(Definition,
"Fine I/O type different from vector type but null fine I/O grid passed");
}
}
if (typeHash<CoarseF>() != typeHash<CoarseFIo>())
{
if (gridCoarseIo == nullptr)
{
HADRONS_ERROR(Definition,
"Coarse I/O type different from vector type but null coarse I/O grid passed");
}
}
this->gridIo_ = gridFineIo;
gridCoarseIo_ = gridCoarseIo;
resize(sizeFine, sizeCoarse, gridFine, gridCoarse);
}
void resize(const size_t sizeFine, const size_t sizeCoarse,
GridBase *gridFine, GridBase *gridCoarse)
{
EigenPack<FineF, FineFIo>::resize(sizeFine, gridFine);
evalCoarse.resize(sizeCoarse);
evecCoarse.resize(sizeCoarse, gridCoarse);
}
void readFine(const std::string fileStem, const bool multiFile, const int traj = -1)
{
EigenPack<FineF, FineFIo>::read(fileStem + "_fine", multiFile, traj);
}
void readCoarse(const std::string fileStem, const bool multiFile, const int traj = -1)
{
PackRecord dummy;
EigenPackIo::readPack<CoarseF, CoarseFIo>(evecCoarse, evalCoarse, dummy,
this->evecFilename(fileStem + "_coarse", traj, multiFile),
evecCoarse.size(), multiFile, gridCoarseIo_);
}
virtual void read(const std::string fileStem, const bool multiFile, const int traj = -1)
{
readFine(fileStem, multiFile, traj);
readCoarse(fileStem, multiFile, traj);
}
void writeFine(const std::string fileStem, const bool multiFile, const int traj = -1)
{
EigenPack<FineF, FineFIo>::write(fileStem + "_fine", multiFile, traj);
}
void writeCoarse(const std::string fileStem, const bool multiFile, const int traj = -1)
{
EigenPackIo::writePack<CoarseF, CoarseFIo>(this->evecFilename(fileStem + "_coarse", traj, multiFile),
evecCoarse, evalCoarse, this->record,
evecCoarse.size(), multiFile, gridCoarseIo_);
}
virtual void write(const std::string fileStem, const bool multiFile, const int traj = -1)
{
writeFine(fileStem, multiFile, traj);
writeCoarse(fileStem, multiFile, traj);
}
private:
GridBase *gridCoarseIo_;
};
template <typename FImpl>
using BaseFermionEigenPack = BaseEigenPack<typename FImpl::FermionField>;
template <typename FImpl, typename FImplIo = FImpl>
using FermionEigenPack = EigenPack<typename FImpl::FermionField, typename FImplIo::FermionField>;
template <typename FImpl, int nBasis, typename FImplIo = FImpl>
using CoarseFermionEigenPack = CoarseEigenPack<
typename FImpl::FermionField,
typename LocalCoherenceLanczos<typename FImpl::SiteSpinor,
typename FImpl::SiteComplex,
nBasis>::CoarseField,
typename FImplIo::FermionField,
typename LocalCoherenceLanczos<typename FImplIo::SiteSpinor,
typename FImplIo::SiteComplex,
nBasis>::CoarseField>;
#undef HADRONS_DUMP_EP_METADATA
END_HADRONS_NAMESPACE
#endif // Hadrons_EigenPack_hpp_

View File

@ -1,347 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Environment.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Environment.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
using namespace Grid;
using namespace Hadrons;
#define ERROR_NO_ADDRESS(address)\
HADRONS_ERROR_REF(ObjectDefinition, "no object with address " + std::to_string(address), address);
/******************************************************************************
* Environment implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
Environment::Environment(void)
{
dim_ = GridDefaultLatt().toVector();
nd_ = dim_.size();
vol_ = 1.;
for (auto d: dim_)
{
vol_ *= d;
}
}
// grids ///////////////////////////////////////////////////////////////////////
unsigned int Environment::getNd(void) const
{
return nd_;
}
std::vector<int> Environment::getDim(void) const
{
return dim_;
}
int Environment::getDim(const unsigned int mu) const
{
return dim_[mu];
}
double Environment::getVolume(void) const
{
return vol_;
}
// random number generator /////////////////////////////////////////////////////
GridParallelRNG * Environment::get4dRng(void)
{
if (rng4d_ == nullptr)
{
rng4d_.reset(new GridParallelRNG(getGrid()));
}
return rng4d_.get();
}
GridSerialRNG * Environment::getSerialRng(void)
{
if (rngSerial_ == nullptr)
{
rngSerial_.reset(new GridSerialRNG());
}
return rngSerial_.get();
}
// general memory management ///////////////////////////////////////////////////
void Environment::addObject(const std::string name, const int moduleAddress)
{
if (!hasObject(name))
{
ObjInfo info;
info.name = name;
info.module = moduleAddress;
info.data = nullptr;
object_.push_back(std::move(info));
objectAddress_[name] = static_cast<unsigned int>(object_.size() - 1);
}
else
{
HADRONS_ERROR_REF(ObjectDefinition, "object '" + name + "' already exists",
getObjectAddress(name));
}
}
void Environment::setObjectModule(const unsigned int objAddress,
const int modAddress)
{
object_[objAddress].module = modAddress;
}
unsigned int Environment::getMaxAddress(void) const
{
return object_.size();
}
unsigned int Environment::getObjectAddress(const std::string name) const
{
if (hasObject(name))
{
return objectAddress_.at(name);
}
else
{
HADRONS_ERROR(Definition, "no object with name '" + name + "'");
}
}
std::string Environment::getObjectName(const unsigned int address) const
{
if (hasObject(address))
{
return object_[address].name;
}
else
{
ERROR_NO_ADDRESS(address);
}
}
std::string Environment::getObjectType(const unsigned int address) const
{
if (hasObject(address))
{
if (object_[address].type)
{
return typeName(object_[address].type);
}
else
{
return "<no type>";
}
}
else
{
ERROR_NO_ADDRESS(address);
}
}
std::string Environment::getObjectType(const std::string name) const
{
return getObjectType(getObjectAddress(name));
}
Environment::Size Environment::getObjectSize(const unsigned int address) const
{
if (hasObject(address))
{
return object_[address].size;
}
else
{
ERROR_NO_ADDRESS(address);
}
}
Environment::Size Environment::getObjectSize(const std::string name) const
{
return getObjectSize(getObjectAddress(name));
}
Environment::Storage Environment::getObjectStorage(const unsigned int address) const
{
if (hasObject(address))
{
return object_[address].storage;
}
else
{
ERROR_NO_ADDRESS(address);
}
}
Environment::Storage Environment::getObjectStorage(const std::string name) const
{
return getObjectStorage(getObjectAddress(name));
}
int Environment::getObjectModule(const unsigned int address) const
{
if (hasObject(address))
{
return object_[address].module;
}
else
{
ERROR_NO_ADDRESS(address);
}
}
int Environment::getObjectModule(const std::string name) const
{
return getObjectModule(getObjectAddress(name));
}
unsigned int Environment::getObjectLs(const unsigned int address) const
{
if (hasCreatedObject(address))
{
return object_[address].Ls;
}
else
{
ERROR_NO_ADDRESS(address);
}
}
unsigned int Environment::getObjectLs(const std::string name) const
{
return getObjectLs(getObjectAddress(name));
}
bool Environment::hasObject(const unsigned int address) const
{
return (address < object_.size());
}
bool Environment::hasObject(const std::string name) const
{
auto it = objectAddress_.find(name);
return ((it != objectAddress_.end()) and hasObject(it->second));
}
bool Environment::hasCreatedObject(const unsigned int address) const
{
if (hasObject(address))
{
return (object_[address].data != nullptr);
}
else
{
return false;
}
}
bool Environment::hasCreatedObject(const std::string name) const
{
if (hasObject(name))
{
return hasCreatedObject(getObjectAddress(name));
}
else
{
return false;
}
}
bool Environment::isObject5d(const unsigned int address) const
{
return (getObjectLs(address) > 1);
}
bool Environment::isObject5d(const std::string name) const
{
return (getObjectLs(name) > 1);
}
Environment::Size Environment::getTotalSize(void) const
{
Environment::Size size = 0;
for (auto &o: object_)
{
size += o.size;
}
return size;
}
void Environment::freeObject(const unsigned int address)
{
if (hasCreatedObject(address))
{
LOG(Message) << "Destroying object '" << object_[address].name
<< "'" << std::endl;
}
object_[address].size = 0;
object_[address].type = nullptr;
object_[address].data.reset(nullptr);
}
void Environment::freeObject(const std::string name)
{
freeObject(getObjectAddress(name));
}
void Environment::freeAll(void)
{
for (unsigned int i = 0; i < object_.size(); ++i)
{
freeObject(i);
}
}
void Environment::protectObjects(const bool protect)
{
protect_ = protect;
}
bool Environment::objectsProtected(void) const
{
return protect_;
}
// print environment content ///////////////////////////////////////////////////
void Environment::printContent(void) const
{
LOG(Debug) << "Objects: " << std::endl;
for (unsigned int i = 0; i < object_.size(); ++i)
{
LOG(Debug) << std::setw(4) << i << ": "
<< getObjectName(i) << " ("
<< sizeString(getObjectSize(i)) << ")" << std::endl;
}
}

View File

@ -1,588 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Environment.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Environment_hpp_
#define Hadrons_Environment_hpp_
#include <Hadrons/Global.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Global environment *
******************************************************************************/
class Object
{
public:
Object(void) = default;
virtual ~Object(void) = default;
};
template <typename T>
class Holder: public Object
{
public:
Holder(void) = default;
Holder(T *pt);
virtual ~Holder(void) = default;
T & get(void) const;
T * getPt(void) const;
void reset(T *pt);
private:
std::unique_ptr<T> objPt_{nullptr};
};
#define DEFINE_ENV_ALIAS \
inline Environment & env(void) const\
{\
return Environment::getInstance();\
}
#define DEFINE_ENV_LAMBDA \
auto env = [](void)->Environment &{return Environment::getInstance();}
class Environment
{
SINGLETON(Environment);
public:
typedef SITE_SIZE_TYPE Size;
typedef std::unique_ptr<GridCartesian> GridPt;
typedef std::unique_ptr<GridRedBlackCartesian> GridRbPt;
typedef std::unique_ptr<GridParallelRNG> RngPt;
typedef std::unique_ptr<GridSerialRNG> SerialRngPt;
enum class Storage {object, cache, temporary};
private:
struct ObjInfo
{
Size size{0};
Storage storage{Storage::object};
unsigned int Ls{0};
const std::type_info *type{nullptr}, *derivedType{nullptr};
std::string name;
int module{-1};
std::unique_ptr<Object> data{nullptr};
};
typedef std::pair<size_t, unsigned int> FineGridKey;
typedef std::pair<size_t, std::vector<int>> CoarseGridKey;
public:
// grids
template <typename VType = vComplex>
void createGrid(const unsigned int Ls);
template <typename VType = vComplex>
void createCoarseGrid(const std::vector<int> &blockSize,
const unsigned int Ls);
template <typename VType = vComplex>
GridCartesian * getGrid(void);
template <typename VType = vComplex>
GridRedBlackCartesian * getRbGrid(void);
template <typename VType = vComplex>
GridCartesian * getCoarseGrid(const std::vector<int> &blockSize);
template <typename VType = vComplex>
GridCartesian * getGrid(const unsigned int Ls);
template <typename VType = vComplex>
GridRedBlackCartesian * getRbGrid(const unsigned int Ls);
template <typename VType = vComplex>
GridCartesian * getCoarseGrid(const std::vector<int> &blockSize,
const unsigned int Ls);
std::vector<int> getDim(void) const;
int getDim(const unsigned int mu) const;
unsigned int getNd(void) const;
double getVolume(void) const;
// random number generator
GridParallelRNG * get4dRng(void);
GridSerialRNG * getSerialRng(void);
// general memory management
void addObject(const std::string name,
const int moduleAddress = -1);
template <typename B, typename T, typename ... Ts>
void createDerivedObject(const std::string name,
const Environment::Storage storage,
const unsigned int Ls,
Ts && ... args);
template <typename T, typename ... Ts>
void createObject(const std::string name,
const Environment::Storage storage,
const unsigned int Ls,
Ts && ... args);
void setObjectModule(const unsigned int objAddress,
const int modAddress);
template <typename B, typename T>
T * getDerivedObject(const unsigned int address) const;
template <typename B, typename T>
T * getDerivedObject(const std::string name) const;
template <typename T>
T * getObject(const unsigned int address) const;
template <typename T>
T * getObject(const std::string name) const;
unsigned int getMaxAddress(void) const;
unsigned int getObjectAddress(const std::string name) const;
std::string getObjectName(const unsigned int address) const;
std::string getObjectType(const unsigned int address) const;
std::string getObjectType(const std::string name) const;
Size getObjectSize(const unsigned int address) const;
Size getObjectSize(const std::string name) const;
Storage getObjectStorage(const unsigned int address) const;
Storage getObjectStorage(const std::string name) const;
int getObjectModule(const unsigned int address) const;
int getObjectModule(const std::string name) const;
unsigned int getObjectLs(const unsigned int address) const;
unsigned int getObjectLs(const std::string name) const;
bool hasObject(const unsigned int address) const;
bool hasObject(const std::string name) const;
bool hasCreatedObject(const unsigned int address) const;
bool hasCreatedObject(const std::string name) const;
bool isObject5d(const unsigned int address) const;
bool isObject5d(const std::string name) const;
template <typename T>
bool isObjectOfType(const unsigned int address) const;
template <typename T>
bool isObjectOfType(const std::string name) const;
Environment::Size getTotalSize(void) const;
void freeObject(const unsigned int address);
void freeObject(const std::string name);
void freeAll(void);
void protectObjects(const bool protect);
bool objectsProtected(void) const;
// print environment content
void printContent(void) const;
private:
// general
double vol_;
bool protect_{true};
// grids
std::vector<int> dim_;
std::map<FineGridKey, GridPt> grid4d_;
std::map<FineGridKey, GridPt> grid5d_;
std::map<FineGridKey, GridRbPt> gridRb4d_;
std::map<FineGridKey, GridRbPt> gridRb5d_;
std::map<CoarseGridKey, GridPt> gridCoarse4d_;
std::map<CoarseGridKey, GridPt> gridCoarse5d_;
unsigned int nd_;
// random number generator
RngPt rng4d_{nullptr};
SerialRngPt rngSerial_{nullptr};
// object store
std::vector<ObjInfo> object_;
std::map<std::string, unsigned int> objectAddress_;
};
/******************************************************************************
* Holder template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename T>
Holder<T>::Holder(T *pt)
: objPt_(pt)
{}
// access //////////////////////////////////////////////////////////////////////
template <typename T>
T & Holder<T>::get(void) const
{
return *objPt_.get();
}
template <typename T>
T * Holder<T>::getPt(void) const
{
return objPt_.get();
}
template <typename T>
void Holder<T>::reset(T *pt)
{
objPt_.reset(pt);
}
/******************************************************************************
* Environment template implementation *
******************************************************************************/
// grids ///////////////////////////////////////////////////////////////////////
#define HADRONS_DUMP_GRID(...)\
LOG(Debug) << "New grid " << (__VA_ARGS__) << std::endl;\
LOG(Debug) << " - cb : " << (__VA_ARGS__)->_isCheckerBoarded << std::endl;\
LOG(Debug) << " - fdim: " << (__VA_ARGS__)->_fdimensions << std::endl;\
LOG(Debug) << " - gdim: " << (__VA_ARGS__)->_gdimensions << std::endl;\
LOG(Debug) << " - ldim: " << (__VA_ARGS__)->_ldimensions << std::endl;\
LOG(Debug) << " - rdim: " << (__VA_ARGS__)->_rdimensions << std::endl;
template <typename VType>
void Environment::createGrid(const unsigned int Ls)
{
size_t hash = typeHash<VType>();
if (grid4d_.find({hash, 1}) == grid4d_.end())
{
grid4d_[{hash, 1}].reset(
SpaceTimeGrid::makeFourDimGrid(getDim(),
GridDefaultSimd(getNd(), VType::Nsimd()),
GridDefaultMpi()));
HADRONS_DUMP_GRID(grid4d_[{hash, 1}].get());
gridRb4d_[{hash, 1}].reset(
SpaceTimeGrid::makeFourDimRedBlackGrid(grid4d_[{hash, 1}].get()));
HADRONS_DUMP_GRID(gridRb4d_[{hash, 1}].get());
}
if (grid5d_.find({hash, Ls}) == grid5d_.end())
{
auto g = grid4d_[{hash, 1}].get();
grid5d_[{hash, Ls}].reset(SpaceTimeGrid::makeFiveDimGrid(Ls, g));
HADRONS_DUMP_GRID(grid5d_[{hash, Ls}].get());
gridRb5d_[{hash, Ls}].reset(SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, g));
HADRONS_DUMP_GRID(gridRb5d_[{hash, Ls}].get());
}
}
template <typename VType>
void Environment::createCoarseGrid(const std::vector<int> &blockSize,
const unsigned int Ls)
{
int nd = getNd();
std::vector<int> fineDim = getDim(), coarseDim(nd);
unsigned int cLs;
auto key4d = blockSize, key5d = blockSize;
size_t hash = typeHash<VType>();
createGrid(Ls);
for (int d = 0; d < coarseDim.size(); d++)
{
coarseDim[d] = fineDim[d]/blockSize[d];
if (coarseDim[d]*blockSize[d] != fineDim[d])
{
HADRONS_ERROR(Size, "Fine dimension " + std::to_string(d)
+ " (" + std::to_string(fineDim[d])
+ ") not divisible by coarse dimension ("
+ std::to_string(coarseDim[d]) + ")");
}
}
if (blockSize.size() > nd)
{
cLs = Ls/blockSize[nd];
if (cLs*blockSize[nd] != Ls)
{
HADRONS_ERROR(Size, "Fine Ls (" + std::to_string(Ls)
+ ") not divisible by coarse Ls ("
+ std::to_string(cLs) + ")");
}
}
else
{
cLs = Ls;
}
key4d.resize(nd);
key5d.push_back(Ls);
CoarseGridKey hkey4d = {hash, key4d}, hkey5d = {hash, key5d};
if (gridCoarse4d_.find(hkey4d) == gridCoarse4d_.end())
{
gridCoarse4d_[hkey4d].reset(
SpaceTimeGrid::makeFourDimGrid(coarseDim,
GridDefaultSimd(nd, VType::Nsimd()), GridDefaultMpi()));
HADRONS_DUMP_GRID(gridCoarse4d_[hkey4d].get());
}
if (gridCoarse5d_.find(hkey5d) == gridCoarse5d_.end())
{
gridCoarse5d_[hkey5d].reset(
SpaceTimeGrid::makeFiveDimGrid(cLs, gridCoarse4d_[hkey4d].get()));
HADRONS_DUMP_GRID(gridCoarse5d_[hkey5d].get());
}
}
#undef HADRONS_DUMP_GRID
template <typename VType>
GridCartesian * Environment::getGrid(void)
{
FineGridKey key = {typeHash<VType>(), 1};
auto it = grid4d_.find(key);
if (it != grid4d_.end())
{
return it->second.get();
}
else
{
createGrid<VType>(1);
return grid4d_.at(key).get();
}
}
template <typename VType>
GridRedBlackCartesian * Environment::getRbGrid(void)
{
FineGridKey key = {typeHash<VType>(), 1};
auto it = gridRb4d_.find(key);
if (it != gridRb4d_.end())
{
return it->second.get();
}
else
{
createGrid<VType>(1);
return gridRb4d_.at(key).get();
}
}
template <typename VType>
GridCartesian * Environment::getCoarseGrid(const std::vector<int> &blockSize)
{
std::vector<int> s = blockSize;
s.resize(getNd());
CoarseGridKey key = {typeHash<VType>(), s};
auto it = gridCoarse4d_.find(key);
if (it != gridCoarse4d_.end())
{
return it->second.get();
}
else
{
createCoarseGrid<VType>(blockSize, 1);
return gridCoarse4d_.at(key).get();
}
}
template <typename VType>
GridCartesian * Environment::getGrid(const unsigned int Ls)
{
FineGridKey key = {typeHash<VType>(), Ls};
auto it = grid5d_.find(key);
if (it != grid5d_.end())
{
return it->second.get();
}
else
{
createGrid<VType>(Ls);
return grid5d_.at(key).get();
}
}
template <typename VType>
GridRedBlackCartesian * Environment::getRbGrid(const unsigned int Ls)
{
FineGridKey key = {typeHash<VType>(), Ls};
auto it = gridRb5d_.find(key);
if (it != gridRb5d_.end())
{
return it->second.get();
}
else
{
createGrid<VType>(Ls);
return gridRb5d_.at(key).get();
}
}
template <typename VType>
GridCartesian * Environment::getCoarseGrid(const std::vector<int> &blockSize,
const unsigned int Ls)
{
std::vector<int> s = blockSize;
s.push_back(Ls);
CoarseGridKey key = {typeHash<VType>(), s};
auto it = gridCoarse5d_.find(key);
if (it != gridCoarse5d_.end())
{
return it->second.get();
}
else
{
createCoarseGrid<VType>(blockSize, Ls);
return gridCoarse5d_.at(key).get();
}
}
// general memory management ///////////////////////////////////////////////////
template <typename B, typename T, typename ... Ts>
void Environment::createDerivedObject(const std::string name,
const Environment::Storage storage,
const unsigned int Ls,
Ts && ... args)
{
if (!hasObject(name))
{
addObject(name);
}
unsigned int address = getObjectAddress(name);
if (!object_[address].data or !objectsProtected())
{
MemoryStats memStats;
if (!MemoryProfiler::stats)
{
MemoryProfiler::stats = &memStats;
}
size_t initMem = MemoryProfiler::stats->currentlyAllocated;
object_[address].storage = storage;
object_[address].Ls = Ls;
object_[address].data.reset(new Holder<B>(new T(std::forward<Ts>(args)...)));
object_[address].size = MemoryProfiler::stats->maxAllocated - initMem;
object_[address].type = typeIdPt<B>();
object_[address].derivedType = typeIdPt<T>();
if (MemoryProfiler::stats == &memStats)
{
MemoryProfiler::stats = nullptr;
}
}
// object already exists, no error if it is a cache, error otherwise
else if ((object_[address].storage != Storage::cache) or
(object_[address].storage != storage) or
(object_[address].name != name) or
(typeHash(object_[address].type) != typeHash<B>()) or
(typeHash(object_[address].derivedType) != typeHash<T>()))
{
HADRONS_ERROR_REF(ObjectDefinition, "object '" + name + "' already allocated", address);
}
}
template <typename T, typename ... Ts>
void Environment::createObject(const std::string name,
const Environment::Storage storage,
const unsigned int Ls,
Ts && ... args)
{
createDerivedObject<T, T>(name, storage, Ls, std::forward<Ts>(args)...);
}
template <typename B, typename T>
T * Environment::getDerivedObject(const unsigned int address) const
{
if (hasObject(address))
{
if (hasCreatedObject(address))
{
if (auto h = dynamic_cast<Holder<B> *>(object_[address].data.get()))
{
if (&typeid(T) == &typeid(B))
{
return dynamic_cast<T *>(h->getPt());
}
else
{
if (auto hder = dynamic_cast<T *>(h->getPt()))
{
return hder;
}
else
{
HADRONS_ERROR_REF(ObjectType, "object with address " +
std::to_string(address) +
" cannot be casted to '" + typeName(&typeid(T)) +
"' (has type '" + typeName(&typeid(h->get())) + "')", address);
}
}
}
else
{
HADRONS_ERROR_REF(ObjectType, "object with address " +
std::to_string(address) +
" does not have type '" + typeName(&typeid(B)) +
"' (has type '" + getObjectType(address) + "')", address);
}
}
else
{
HADRONS_ERROR_REF(ObjectDefinition, "object with address " +
std::to_string(address) + " is empty", address);
}
}
else
{
HADRONS_ERROR_REF(ObjectDefinition, "no object with address " +
std::to_string(address), address);
}
}
template <typename B, typename T>
T * Environment::getDerivedObject(const std::string name) const
{
return getDerivedObject<B, T>(getObjectAddress(name));
}
template <typename T>
T * Environment::getObject(const unsigned int address) const
{
return getDerivedObject<T, T>(address);
}
template <typename T>
T * Environment::getObject(const std::string name) const
{
return getObject<T>(getObjectAddress(name));
}
template <typename T>
bool Environment::isObjectOfType(const unsigned int address) const
{
if (hasObject(address))
{
if (auto h = dynamic_cast<Holder<T> *>(object_[address].data.get()))
{
return true;
}
else
{
return false;
}
}
else
{
HADRONS_ERROR_REF(ObjectDefinition, "no object with address "
+ std::to_string(address), address);
}
}
template <typename T>
bool Environment::isObjectOfType(const std::string name) const
{
return isObjectOfType<T>(getObjectAddress(name));
}
END_HADRONS_NAMESPACE
#endif // Hadrons_Environment_hpp_

View File

@ -1,102 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Exceptions.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Exceptions.hpp>
#include <Hadrons/VirtualMachine.hpp>
#include <Hadrons/Module.hpp>
#ifndef ERR_SUFF
#define ERR_SUFF " (" + loc + ")"
#endif
#define CTOR_EXC(name, init) \
name::name(std::string msg, std::string loc)\
:init\
{}
#define CTOR_EXC_REF(name, init) \
name::name(std::string msg, std::string loc, const unsigned int address)\
:init\
{}
using namespace Grid;
using namespace Hadrons;
using namespace Exceptions;
// backtrace cache
std::vector<std::string> Grid::Hadrons::Exceptions::backtraceStr;
// logic errors
CTOR_EXC(Logic, logic_error(msg + ERR_SUFF))
CTOR_EXC(Definition, Logic("definition error: " + msg, loc))
CTOR_EXC(Implementation, Logic("implementation error: " + msg, loc))
CTOR_EXC(Range, Logic("range error: " + msg, loc))
CTOR_EXC(Size, Logic("size error: " + msg, loc))
// runtime errors
CTOR_EXC(Runtime, runtime_error(msg + ERR_SUFF))
CTOR_EXC(Argument, Runtime("argument error: " + msg, loc))
CTOR_EXC(Io, Runtime("IO error: " + msg, loc))
CTOR_EXC(Memory, Runtime("memory error: " + msg, loc))
CTOR_EXC(Parsing, Runtime("parsing error: " + msg, loc))
CTOR_EXC(Program, Runtime("program error: " + msg, loc))
CTOR_EXC(System, Runtime("system error: " + msg, loc))
// virtual machine errors
CTOR_EXC_REF(ObjectDefinition, RuntimeRef("object definition error: " + msg, loc, address));
CTOR_EXC_REF(ObjectType, RuntimeRef("object type error: " + msg, loc, address));
// abort functions
void Grid::Hadrons::Exceptions::abort(const std::exception& e)
{
auto &vm = VirtualMachine::getInstance();
int mod = vm.getCurrentModule();
LOG(Error) << "FATAL ERROR -- Exception " << typeName(&typeid(e))
<< std::endl;
if (mod >= 0)
{
LOG(Error) << "During execution of module '"
<< vm.getModuleName(mod) << "' (address " << mod << ")"
<< std::endl;
}
LOG(Error) << e.what() << std::endl;
if (!backtraceStr.empty())
{
LOG(Error) << "-- BACKTRACE --------------" << std::endl;
for (auto &s: backtraceStr)
{
LOG(Error) << s << std::endl;
}
LOG(Error) << "---------------------------" << std::endl;
}
LOG(Error) << "Aborting program" << std::endl;
Grid_finalize();
exit(EXIT_FAILURE);
}

View File

@ -1,129 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Exceptions.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Exceptions_hpp_
#define Hadrons_Exceptions_hpp_
#include <stdexcept>
#include <execinfo.h>
#ifndef Hadrons_Global_hpp_
#include <Hadrons/Global.hpp>
#endif
#define HADRONS_SRC_LOC std::string(__FUNCTION__) + " at " \
+ std::string(__FILE__) + ":" + std::to_string(__LINE__)
#define HADRONS_BACKTRACE_MAX 128
#ifdef HAVE_EXECINFO_H
#define HADRONS_CACHE_BACKTRACE \
{\
void* _callstack[HADRONS_BACKTRACE_MAX];\
int _i, _frames = backtrace(_callstack, HADRONS_BACKTRACE_MAX);\
char** _strs = backtrace_symbols(_callstack, _frames);\
Grid::Hadrons::Exceptions::backtraceStr.clear();\
for (_i = 0; _i < _frames; ++_i)\
{\
Hadrons::Exceptions::backtraceStr.push_back(std::string(_strs[_i]));\
}\
free(_strs);\
}
#else
#define HADRONS_CACHE_BACKTRACE \
Grid::Hadrons::Exceptions::backtraceStr.clear();\
Grid::Hadrons::Exceptions::backtraceStr.push_back("<backtrace not supported>");
#endif
#define HADRONS_ERROR(exc, msg)\
HADRONS_CACHE_BACKTRACE \
throw(Exceptions::exc(msg, HADRONS_SRC_LOC));
#define HADRONS_ERROR_REF(exc, msg, address)\
HADRONS_CACHE_BACKTRACE \
throw(Exceptions::exc(msg, HADRONS_SRC_LOC, address));
#define DECL_EXC(name, base) \
class name: public base\
{\
public:\
name(std::string msg, std::string loc);\
}
#define DECL_EXC_REF(name, base) \
class name: public base\
{\
public:\
name(std::string msg, std::string loc, const unsigned int address);\
}
BEGIN_HADRONS_NAMESPACE
namespace Exceptions
{
// backtrace cache
extern std::vector<std::string> backtraceStr;
// logic errors
DECL_EXC(Logic, std::logic_error);
DECL_EXC(Definition, Logic);
DECL_EXC(Implementation, Logic);
DECL_EXC(Range, Logic);
DECL_EXC(Size, Logic);
// runtime errors
DECL_EXC(Runtime, std::runtime_error);
DECL_EXC(Argument, Runtime);
DECL_EXC(Io, Runtime);
DECL_EXC(Memory, Runtime);
DECL_EXC(Parsing, Runtime);
DECL_EXC(Program, Runtime);
DECL_EXC(System, Runtime);
// virtual machine errors
class RuntimeRef: public Runtime
{
public:
RuntimeRef(std::string msg, std::string loc, const unsigned int address)
: Runtime(msg, loc), address_(address)
{}
unsigned int getAddress(void) const
{
return address_;
}
private:
unsigned int address_;
};
DECL_EXC_REF(ObjectDefinition, RuntimeRef);
DECL_EXC_REF(ObjectType, RuntimeRef);
// abort functions
void abort(const std::exception& e);
}
END_HADRONS_NAMESPACE
#endif // Hadrons_Exceptions_hpp_

View File

@ -1,105 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Factory.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Factory_hpp_
#define Hadrons_Factory_hpp_
#include <Hadrons/Global.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* abstract factory class *
******************************************************************************/
template <typename T>
class Factory
{
public:
typedef std::function<std::unique_ptr<T>(const std::string)> Func;
public:
// constructor
Factory(void) = default;
// destructor
virtual ~Factory(void) = default;
// registration
void registerBuilder(const std::string type, const Func &f);
// get builder list
std::vector<std::string> getBuilderList(void) const;
// factory
std::unique_ptr<T> create(const std::string type,
const std::string name) const;
private:
std::map<std::string, Func> builder_;
};
/******************************************************************************
* template implementation *
******************************************************************************/
// registration ////////////////////////////////////////////////////////////////
template <typename T>
void Factory<T>::registerBuilder(const std::string type, const Func &f)
{
builder_[type] = f;
}
// get module list /////////////////////////////////////////////////////////////
template <typename T>
std::vector<std::string> Factory<T>::getBuilderList(void) const
{
std::vector<std::string> list;
for (auto &b: builder_)
{
list.push_back(b.first);
}
return list;
}
// factory /////////////////////////////////////////////////////////////////////
template <typename T>
std::unique_ptr<T> Factory<T>::create(const std::string type,
const std::string name) const
{
Func func;
try
{
func = builder_.at(type);
}
catch (std::out_of_range &)
{
HADRONS_ERROR(Argument, "object of type '" + type + "' unknown");
}
return func(name);
}
END_HADRONS_NAMESPACE
#endif // Hadrons_Factory_hpp_

View File

@ -1,321 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/GeneticScheduler.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_GeneticScheduler_hpp_
#define Hadrons_GeneticScheduler_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Graph.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Scheduler based on a genetic algorithm *
******************************************************************************/
template <typename V, typename T>
class GeneticScheduler
{
public:
typedef std::vector<T> Gene;
typedef std::pair<Gene *, Gene *> GenePair;
typedef std::function<V(const Gene &)> ObjFunc;
struct Parameters
{
double mutationRate;
unsigned int popSize, seed;
};
public:
// constructor
GeneticScheduler(Graph<T> &graph, const ObjFunc &func,
const Parameters &par);
// destructor
virtual ~GeneticScheduler(void) = default;
// access
const Gene & getMinSchedule(void);
V getMinValue(void);
// reset population
void initPopulation(void);
// breed a new generation
void nextGeneration(void);
// heuristic benchmarks
void benchmarkCrossover(const unsigned int nIt);
// print population
friend std::ostream & operator<<(std::ostream &out,
const GeneticScheduler<V, T> &s)
{
out << "[";
for (auto &p: s.population_)
{
out << p.first << ", ";
}
out << "\b\b]";
return out;
}
private:
void doCrossover(void);
void doMutation(void);
// genetic operators
GenePair selectPair(void);
void crossover(Gene &c1, Gene &c2, const Gene &p1, const Gene &p2);
void mutation(Gene &m, const Gene &c);
private:
Graph<T> &graph_;
const ObjFunc &func_;
const Parameters par_;
std::multimap<V, Gene> population_;
std::mt19937 gen_;
};
/******************************************************************************
* template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename V, typename T>
GeneticScheduler<V, T>::GeneticScheduler(Graph<T> &graph, const ObjFunc &func,
const Parameters &par)
: graph_(graph)
, func_(func)
, par_(par)
{
gen_.seed(par_.seed);
}
// access //////////////////////////////////////////////////////////////////////
template <typename V, typename T>
const typename GeneticScheduler<V, T>::Gene &
GeneticScheduler<V, T>::getMinSchedule(void)
{
return population_.begin()->second;
}
template <typename V, typename T>
V GeneticScheduler<V, T>::getMinValue(void)
{
return population_.begin()->first;
}
// breed a new generation //////////////////////////////////////////////////////
template <typename V, typename T>
void GeneticScheduler<V, T>::nextGeneration(void)
{
// random initialization of the population if necessary
if (population_.size() != par_.popSize)
{
initPopulation();
}
//LOG(Debug) << "Starting population:\n" << *this << std::endl;
// random mutations
for (unsigned int i = 0; i < par_.popSize; ++i)
{
doMutation();
}
//LOG(Debug) << "After mutations:\n" << *this << std::endl;
// mating
for (unsigned int i = 0; i < par_.popSize/2; ++i)
{
doCrossover();
}
//LOG(Debug) << "After mating:\n" << *this << std::endl;
// grim reaper
auto it = population_.begin();
std::advance(it, par_.popSize);
population_.erase(it, population_.end());
//LOG(Debug) << "After grim reaper:\n" << *this << std::endl;
}
// evolution steps /////////////////////////////////////////////////////////////
template <typename V, typename T>
void GeneticScheduler<V, T>::initPopulation(void)
{
population_.clear();
for (unsigned int i = 0; i < par_.popSize; ++i)
{
auto p = graph_.topoSort(gen_);
population_.insert(std::make_pair(func_(p), p));
}
}
template <typename V, typename T>
void GeneticScheduler<V, T>::doCrossover(void)
{
auto p = selectPair();
Gene &p1 = *(p.first), &p2 = *(p.second);
Gene c1, c2;
crossover(c1, c2, p1, p2);
thread_critical
{
population_.insert(std::make_pair(func_(c1), c1));
population_.insert(std::make_pair(func_(c2), c2));
}
}
template <typename V, typename T>
void GeneticScheduler<V, T>::doMutation(void)
{
std::uniform_real_distribution<double> mdis(0., 1.);
std::uniform_int_distribution<unsigned int> pdis(0, population_.size() - 1);
if (mdis(gen_) < par_.mutationRate)
{
Gene m;
auto it = population_.begin();
std::advance(it, pdis(gen_));
mutation(m, it->second);
thread_critical
{
population_.insert(std::make_pair(func_(m), m));
}
}
}
// genetic operators ///////////////////////////////////////////////////////////
template <typename V, typename T>
typename GeneticScheduler<V, T>::GenePair GeneticScheduler<V, T>::selectPair(void)
{
std::vector<double> prob;
unsigned int ind;
Gene *p1, *p2;
const double max = population_.rbegin()->first;
for (auto &c: population_)
{
prob.push_back(std::exp((c.first-1.)/max));
}
std::discrete_distribution<unsigned int> dis1(prob.begin(), prob.end());
auto rIt = population_.begin();
ind = dis1(gen_);
std::advance(rIt, ind);
p1 = &(rIt->second);
prob[ind] = 0.;
std::discrete_distribution<unsigned int> dis2(prob.begin(), prob.end());
rIt = population_.begin();
std::advance(rIt, dis2(gen_));
p2 = &(rIt->second);
return std::make_pair(p1, p2);
}
template <typename V, typename T>
void GeneticScheduler<V, T>::crossover(Gene &c1, Gene &c2, const Gene &p1,
const Gene &p2)
{
Gene buf;
std::uniform_int_distribution<unsigned int> dis(0, p1.size() - 1);
unsigned int cut = dis(gen_);
c1.clear();
buf = p2;
for (unsigned int i = 0; i < cut; ++i)
{
c1.push_back(p1[i]);
buf.erase(std::find(buf.begin(), buf.end(), p1[i]));
}
for (unsigned int i = 0; i < buf.size(); ++i)
{
c1.push_back(buf[i]);
}
c2.clear();
buf = p2;
for (unsigned int i = cut; i < p1.size(); ++i)
{
buf.erase(std::find(buf.begin(), buf.end(), p1[i]));
}
for (unsigned int i = 0; i < buf.size(); ++i)
{
c2.push_back(buf[i]);
}
for (unsigned int i = cut; i < p1.size(); ++i)
{
c2.push_back(p1[i]);
}
}
template <typename V, typename T>
void GeneticScheduler<V, T>::mutation(Gene &m, const Gene &c)
{
Gene buf;
std::uniform_int_distribution<unsigned int> dis(0, c.size() - 1);
unsigned int cut = dis(gen_);
Graph<T> g1 = graph_, g2 = graph_;
for (unsigned int i = 0; i < cut; ++i)
{
g1.removeVertex(c[i]);
}
for (unsigned int i = cut; i < c.size(); ++i)
{
g2.removeVertex(c[i]);
}
if (g1.size() > 0)
{
buf = g1.topoSort(gen_);
}
if (g2.size() > 0)
{
m = g2.topoSort(gen_);
}
for (unsigned int i = cut; i < c.size(); ++i)
{
m.push_back(buf[i - cut]);
}
}
template <typename V, typename T>
void GeneticScheduler<V, T>::benchmarkCrossover(const unsigned int nIt)
{
Gene p1, p2, c1, c2;
double neg = 0., eq = 0., pos = 0., total;
int improvement;
LOG(Message) << "Benchmarking crossover..." << std::endl;
for (unsigned int i = 0; i < nIt; ++i)
{
p1 = graph_.topoSort(gen_);
p2 = graph_.topoSort(gen_);
crossover(c1, c2, p1, p2);
improvement = (func_(c1) + func_(c2) - func_(p1) - func_(p2))/2;
if (improvement < 0) neg++; else if (improvement == 0) eq++; else pos++;
}
total = neg + eq + pos;
LOG(Message) << " -: " << neg/total << " =: " << eq/total
<< " +: " << pos/total << std::endl;
}
END_HADRONS_NAMESPACE
#endif // Hadrons_GeneticScheduler_hpp_

View File

@ -1,213 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Global.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Global.hpp>
using namespace Grid;
using namespace Hadrons;
HadronsLogger Hadrons::HadronsLogError(1,"Error");
HadronsLogger Hadrons::HadronsLogWarning(1,"Warning");
HadronsLogger Hadrons::HadronsLogMessage(1,"Message");
HadronsLogger Hadrons::HadronsLogIterative(1,"Iterative");
HadronsLogger Hadrons::HadronsLogDebug(1,"Debug");
HadronsLogger Hadrons::HadronsLogIRL(1,"IRL");
void Hadrons::initLogger(void)
{
auto w = std::string("Hadrons").length();
int cw = 8;
GridLogError.setTopWidth(w);
GridLogWarning.setTopWidth(w);
GridLogMessage.setTopWidth(w);
GridLogIterative.setTopWidth(w);
GridLogDebug.setTopWidth(w);
GridLogIRL.setTopWidth(w);
GridLogError.setChanWidth(cw);
GridLogWarning.setChanWidth(cw);
GridLogMessage.setChanWidth(cw);
GridLogIterative.setChanWidth(cw);
GridLogDebug.setChanWidth(cw);
GridLogIRL.setChanWidth(cw);
HadronsLogError.Active(true);
HadronsLogWarning.Active(true);
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
HadronsLogIRL.Active(GridLogIRL.isActive());
HadronsLogError.setChanWidth(cw);
HadronsLogWarning.setChanWidth(cw);
HadronsLogMessage.setChanWidth(cw);
HadronsLogIterative.setChanWidth(cw);
HadronsLogDebug.setChanWidth(cw);
HadronsLogIRL.setChanWidth(cw);
}
// type utilities //////////////////////////////////////////////////////////////
size_t Hadrons::typeHash(const std::type_info *info)
{
return info->hash_code();
}
//constexpr unsigned int maxNameSize = 1024u;
std::string Hadrons::typeName(const std::type_info *info)
{
char *buf;
std::string name;
buf = abi::__cxa_demangle(info->name(), nullptr, nullptr, nullptr);
name = buf;
free(buf);
return name;
}
// default writers/readers /////////////////////////////////////////////////////
#ifdef HAVE_HDF5
const std::string Hadrons::resultFileExt = "h5";
#else
const std::string Hadrons::resultFileExt = "xml";
#endif
// recursive mkdir /////////////////////////////////////////////////////////////
int Hadrons::mkdir(const std::string dirName)
{
if (!dirName.empty() and access(dirName.c_str(), R_OK|W_OK|X_OK))
{
mode_t mode755;
char tmp[MAX_PATH_LENGTH];
char *p = NULL;
size_t len;
mode755 = S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH;
snprintf(tmp, sizeof(tmp), "%s", dirName.c_str());
len = strlen(tmp);
if(tmp[len - 1] == '/')
{
tmp[len - 1] = 0;
}
for(p = tmp + 1; *p; p++)
{
if(*p == '/')
{
*p = 0;
::mkdir(tmp, mode755);
*p = '/';
}
}
return ::mkdir(tmp, mode755);
}
else
{
return 0;
}
}
std::string Hadrons::basename(const std::string &s)
{
constexpr char sep = '/';
size_t i = s.rfind(sep, s.length());
if (i != std::string::npos)
{
return s.substr(i+1, s.length() - i);
}
else
{
return s;
}
}
std::string Hadrons::dirname(const std::string &s)
{
constexpr char sep = '/';
size_t i = s.rfind(sep, s.length());
if (i != std::string::npos)
{
return s.substr(0, i);
}
else
{
return "";
}
}
void Hadrons::makeFileDir(const std::string filename, GridBase *g)
{
bool doIt = true;
if (g)
{
doIt = g->IsBoss();
}
if (doIt)
{
std::string dir = dirname(filename);
int status = mkdir(dir);
if (status)
{
HADRONS_ERROR(Io, "cannot create directory '" + dir
+ "' ( " + std::strerror(errno) + ")");
}
}
}
void Hadrons::printTimeProfile(const std::map<std::string, GridTime> &timing,
GridTime total)
{
typedef decltype(total.count()) Count;
std::map<Count, std::string, std::greater<Count>> rtiming;
const double dtotal = static_cast<double>(total.count());
auto cf = std::cout.flags();
auto p = std::cout.precision();
unsigned int width = 0;
for (auto &t: timing)
{
width = std::max(width, static_cast<unsigned int>(t.first.length()));
rtiming[t.second.count()] = t.first;
}
for (auto &rt: rtiming)
{
LOG(Message) << std::setw(width) << rt.second << ": "
<< rt.first << " us (" << std::fixed
<< std::setprecision(1)
<< static_cast<double>(rt.first)/dtotal*100 << "%)"
<< std::endl;
}
std::cout.flags(cf);
std::cout.precision(p);
}

View File

@ -1,282 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Global.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Global_hpp_
#define Hadrons_Global_hpp_
#include <set>
#include <stack>
#include <regex>
#include <Grid/Grid.h>
#include <cxxabi.h>
#ifndef SITE_SIZE_TYPE
#define SITE_SIZE_TYPE size_t
#endif
#ifndef DEFAULT_ASCII_PREC
#define DEFAULT_ASCII_PREC 16
#endif
#define ARG(...) __VA_ARGS__
/* the 'using Grid::operator<<;' statement prevents a very nasty compilation
* error with GCC 5 (clang & GCC 6 compile fine without it).
*/
#define BEGIN_HADRONS_NAMESPACE \
namespace Grid {\
namespace Hadrons {\
using Grid::operator<<;\
using Grid::operator>>;
#define END_HADRONS_NAMESPACE }}
#define BEGIN_MODULE_NAMESPACE(name)\
namespace name {\
using Grid::operator<<;\
using Grid::operator>>;
#define END_MODULE_NAMESPACE }
#define _HADRONS_IMPL(impl, sub) impl##sub
#define HADRONS_IMPL(impl, sub) _HADRONS_IMPL(impl, sub)
#ifndef FIMPLBASE
#define FIMPLBASE WilsonImpl
#endif
#define FIMPL HADRONS_IMPL(FIMPLBASE, R)
#define FIMPLF HADRONS_IMPL(FIMPLBASE, F)
#define FIMPLD HADRONS_IMPL(FIMPLBASE, D)
#ifndef ZFIMPLBASE
#define ZFIMPLBASE ZWilsonImpl
#endif
#define ZFIMPL HADRONS_IMPL(ZFIMPLBASE, R)
#define ZFIMPLF HADRONS_IMPL(ZFIMPLBASE, F)
#define ZFIMPLD HADRONS_IMPL(ZFIMPLBASE, D)
#ifndef SIMPLBASE
#define SIMPLBASE ScalarImplC
#endif
#define SIMPL HADRONS_IMPL(SIMPLBASE, R)
#define SIMPLF HADRONS_IMPL(SIMPLBASE, F)
#define SIMPLD HADRONS_IMPL(SIMPLBASE, D)
#ifndef GIMPLBASE
#define GIMPLBASE PeriodicGimpl
#endif
#define GIMPL HADRONS_IMPL(GIMPLBASE, R)
#define GIMPLF HADRONS_IMPL(GIMPLBASE, F)
#define GIMPLD HADRONS_IMPL(GIMPLBASE, D)
BEGIN_HADRONS_NAMESPACE
// type aliases
#define BASIC_TYPE_ALIASES(Impl, suffix)\
typedef typename Impl::Field ScalarField##suffix;\
typedef typename Impl::PropagatorField PropagatorField##suffix;\
typedef typename Impl::SitePropagator::scalar_object SitePropagator##suffix;\
typedef typename Impl::ComplexField ComplexField##suffix;\
typedef std::vector<SitePropagator##suffix> SlicedPropagator##suffix;\
typedef std::vector<typename ComplexField##suffix::vector_object::scalar_object> SlicedComplex##suffix;
#define FERM_TYPE_ALIASES(FImpl, suffix)\
BASIC_TYPE_ALIASES(FImpl, suffix);\
typedef FermionOperator<FImpl> FMat##suffix;\
typedef typename FImpl::FermionField FermionField##suffix;\
typedef typename FImpl::GaugeField GaugeField##suffix;\
typedef typename FImpl::DoubledGaugeField DoubledGaugeField##suffix;\
typedef Lattice<iSpinMatrix<typename FImpl::Simd>> SpinMatrixField##suffix;
#define GAUGE_TYPE_ALIASES(GImpl, suffix)\
typedef typename GImpl::GaugeField GaugeField##suffix;
#define SOLVER_TYPE_ALIASES(FImpl, suffix)\
typedef Solver<FImpl> Solver##suffix;
#define SINK_TYPE_ALIASES(suffix)\
typedef std::function<SlicedPropagator##suffix\
(const PropagatorField##suffix &)> SinkFn##suffix;
// logger
class HadronsLogger: public Logger
{
public:
HadronsLogger(int on, std::string nm): Logger("Hadrons", on, nm,
GridLogColours, "BLACK"){};
};
#define LOG(channel) std::cout << HadronsLog##channel
#define HADRONS_DEBUG_VAR(var) LOG(Debug) << #var << "= " << (var) << std::endl;
extern HadronsLogger HadronsLogError;
extern HadronsLogger HadronsLogWarning;
extern HadronsLogger HadronsLogMessage;
extern HadronsLogger HadronsLogIterative;
extern HadronsLogger HadronsLogDebug;
extern HadronsLogger HadronsLogIRL;
void initLogger(void);
// singleton pattern
#define SINGLETON(name)\
public:\
name(const name &e) = delete;\
void operator=(const name &e) = delete;\
static name & getInstance(void)\
{\
static name e;\
return e;\
}\
private:\
name(void);
#define SINGLETON_DEFCTOR(name)\
public:\
name(const name &e) = delete;\
void operator=(const name &e) = delete;\
static name & getInstance(void)\
{\
static name e;\
return e;\
}\
private:\
name(void) = default;
// type utilities
template <typename T>
const std::type_info * typeIdPt(const T &x)
{
return &typeid(x);
}
template <typename T>
const std::type_info * typeIdPt(void)
{
return &typeid(T);
}
size_t typeHash(const std::type_info *info);
template <typename T>
size_t typeHash(const T &x)
{
return typeHash(typeIdPt(x));
}
template <typename T>
size_t typeHash(void)
{
return typeHash(typeIdPt<T>());
}
std::string typeName(const std::type_info *info);
template <typename T>
std::string typeName(const T &x)
{
return typeName(typeIdPt(x));
}
template <typename T>
std::string typeName(void)
{
return typeName(typeIdPt<T>());
}
// default writers/readers
extern const std::string resultFileExt;
#ifdef HAVE_HDF5
typedef Hdf5Reader ResultReader;
typedef Hdf5Writer ResultWriter;
#else
typedef XmlReader ResultReader;
typedef XmlWriter ResultWriter;
#endif
#define RESULT_FILE_NAME(name, traj) \
name + "." + std::to_string(traj) + "." + resultFileExt
// recursive mkdir
#define MAX_PATH_LENGTH 512u
int mkdir(const std::string dirName);
std::string basename(const std::string &s);
std::string dirname(const std::string &s);
void makeFileDir(const std::string filename, GridBase *g = nullptr);
// default Schur convention
#ifndef HADRONS_DEFAULT_SCHUR
#define HADRONS_DEFAULT_SCHUR DiagTwo
#endif
#define _HADRONS_SCHUR_OP_(conv) Schur##conv##Operator
#define HADRONS_SCHUR_OP(conv) _HADRONS_SCHUR_OP_(conv)
#define HADRONS_DEFAULT_SCHUR_OP HADRONS_SCHUR_OP(HADRONS_DEFAULT_SCHUR)
#define _HADRONS_SCHUR_SOLVE_(conv) SchurRedBlack##conv##Solve
#define HADRONS_SCHUR_SOLVE(conv) _HADRONS_SCHUR_SOLVE_(conv)
#define HADRONS_DEFAULT_SCHUR_SOLVE HADRONS_SCHUR_SOLVE(HADRONS_DEFAULT_SCHUR)
#define _HADRONS_SCHUR_A2A_(conv) A2AVectorsSchur##conv
#define HADRONS_SCHUR_A2A(conv) _HADRONS_SCHUR_A2A_(conv)
#define HADRONS_DEFAULT_SCHUR_A2A HADRONS_SCHUR_A2A(HADRONS_DEFAULT_SCHUR)
// stringify macro
#define _HADRONS_STR(x) #x
#define HADRONS_STR(x) _HADRONS_STR(x)
// pretty print time profile
void printTimeProfile(const std::map<std::string, GridTime> &timing, GridTime total);
// token replacement utility
template <typename T>
void tokenReplace(std::string &str, const std::string token,
const T &x, const std::string mark = "@")
{
std::string fullToken = mark + token + mark;
auto pos = str.find(fullToken);
if (pos != std::string::npos)
{
str.replace(pos, fullToken.size(), std::to_string(x));
}
}
// generic correlator class
template <typename Metadata, typename Scalar = Complex>
struct Correlator: Serializable
{
GRID_SERIALIZABLE_CLASS_MEMBERS(ARG(Correlator<Metadata, Scalar>),
Metadata, info,
std::vector<Scalar>, corr);
};
END_HADRONS_NAMESPACE
#include <Hadrons/Exceptions.hpp>
#endif // Hadrons_Global_hpp_

View File

@ -1,759 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Graph.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Graph_hpp_
#define Hadrons_Graph_hpp_
#include <Hadrons/Global.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Oriented graph class *
******************************************************************************/
// I/O for edges
template <typename T>
std::ostream & operator<<(std::ostream &out, const std::pair<T, T> &e)
{
out << "\"" << e.first << "\" -> \"" << e.second << "\"";
return out;
}
// main class
template <typename T>
class Graph
{
public:
typedef std::pair<T, T> Edge;
public:
// constructor
Graph(void);
// destructor
virtual ~Graph(void) = default;
// access
void addVertex(const T &value);
void addEdge(const Edge &e);
void addEdge(const T &start, const T &end);
std::vector<T> getVertices(void) const;
void removeVertex(const T &value);
void removeEdge(const Edge &e);
void removeEdge(const T &start, const T &end);
unsigned int size(void) const;
// tests
bool gotValue(const T &value) const;
// graph topological manipulations
std::vector<T> getAdjacentVertices(const T &value) const;
std::vector<T> getChildren(const T &value) const;
std::vector<T> getParents(const T &value) const;
std::vector<T> getRoots(void) const;
std::vector<Graph<T>> getConnectedComponents(void) const;
std::vector<T> topoSort(void);
template <typename Gen>
std::vector<T> topoSort(Gen &gen);
std::vector<std::vector<T>> allTopoSort(void);
// I/O
friend std::ostream & operator<<(std::ostream &out, const Graph<T> &g)
{
out << "{";
for (auto &e: g.edgeSet_)
{
out << e << ", ";
}
if (g.edgeSet_.size() != 0)
{
out << "\b\b";
}
out << "}";
return out;
}
private:
// vertex marking
void mark(const T &value, const bool doMark = true);
void markAll(const bool doMark = true);
void unmark(const T &value);
void unmarkAll(void);
bool isMarked(const T &value) const;
const T * getFirstMarked(const bool isMarked = true) const;
template <typename Gen>
const T * getRandomMarked(const bool isMarked, Gen &gen);
const T * getFirstUnmarked(void) const;
template <typename Gen>
const T * getRandomUnmarked(Gen &gen);
// prune marked/unmarked vertices
void removeMarked(const bool isMarked = true);
void removeUnmarked(void);
// depth-first search marking
void depthFirstSearch(void);
void depthFirstSearch(const T &root);
private:
std::map<T, bool> isMarked_;
std::set<Edge> edgeSet_;
};
// build depedency matrix from topological sorts
template <typename T>
std::map<T, std::map<T, bool>>
makeDependencyMatrix(const std::vector<std::vector<T>> &topSort);
/******************************************************************************
* template implementation *
******************************************************************************
* in all the following V is the number of vertex and E is the number of edge
* in the worst case E = V^2
*/
// constructor /////////////////////////////////////////////////////////////////
template <typename T>
Graph<T>::Graph(void)
{}
// access //////////////////////////////////////////////////////////////////////
// complexity: log(V)
template <typename T>
void Graph<T>::addVertex(const T &value)
{
isMarked_[value] = false;
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::addEdge(const Edge &e)
{
addVertex(e.first);
addVertex(e.second);
edgeSet_.insert(e);
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::addEdge(const T &start, const T &end)
{
addEdge(Edge(start, end));
}
template <typename T>
std::vector<T> Graph<T>::getVertices(void) const
{
std::vector<T> vertex;
for (auto &v: isMarked_)
{
vertex.push_back(v.first);
}
return vertex;
}
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::removeVertex(const T &value)
{
// remove vertex from the mark table
auto vIt = isMarked_.find(value);
if (vIt != isMarked_.end())
{
isMarked_.erase(vIt);
}
else
{
HADRONS_ERROR(Range, "vertex does not exists");
}
// remove all edges containing the vertex
auto pred = [&value](const Edge &e)
{
return ((e.first == value) or (e.second == value));
};
auto eIt = find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
edgeSet_.erase(eIt);
eIt = find_if(edgeSet_.begin(), edgeSet_.end(), pred);
}
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::removeEdge(const Edge &e)
{
auto eIt = edgeSet_.find(e);
if (eIt != edgeSet_.end())
{
edgeSet_.erase(eIt);
}
else
{
HADRONS_ERROR(Range, "edge does not exists");
}
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::removeEdge(const T &start, const T &end)
{
removeEdge(Edge(start, end));
}
// complexity: O(1)
template <typename T>
unsigned int Graph<T>::size(void) const
{
return isMarked_.size();
}
// tests ///////////////////////////////////////////////////////////////////////
// complexity: O(log(V))
template <typename T>
bool Graph<T>::gotValue(const T &value) const
{
auto it = isMarked_.find(value);
if (it == isMarked_.end())
{
return false;
}
else
{
return true;
}
}
// vertex marking //////////////////////////////////////////////////////////////
// complexity: O(log(V))
template <typename T>
void Graph<T>::mark(const T &value, const bool doMark)
{
if (gotValue(value))
{
isMarked_[value] = doMark;
}
else
{
HADRONS_ERROR(Range, "vertex does not exists");
}
}
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::markAll(const bool doMark)
{
for (auto &v: isMarked_)
{
mark(v.first, doMark);
}
}
// complexity: O(log(V))
template <typename T>
void Graph<T>::unmark(const T &value)
{
mark(value, false);
}
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::unmarkAll(void)
{
markAll(false);
}
// complexity: O(log(V))
template <typename T>
bool Graph<T>::isMarked(const T &value) const
{
if (gotValue(value))
{
return isMarked_.at(value);
}
else
{
HADRONS_ERROR(Range, "vertex does not exists");
return false;
}
}
// complexity: O(log(V))
template <typename T>
const T * Graph<T>::getFirstMarked(const bool isMarked) const
{
auto pred = [&isMarked](const std::pair<T, bool> &v)
{
return (v.second == isMarked);
};
auto vIt = std::find_if(isMarked_.begin(), isMarked_.end(), pred);
if (vIt != isMarked_.end())
{
return &(vIt->first);
}
else
{
return nullptr;
}
}
// complexity: O(log(V))
template <typename T>
template <typename Gen>
const T * Graph<T>::getRandomMarked(const bool isMarked, Gen &gen)
{
auto pred = [&isMarked](const std::pair<T, bool> &v)
{
return (v.second == isMarked);
};
std::uniform_int_distribution<unsigned int> dis(0, size() - 1);
auto rIt = isMarked_.begin();
std::advance(rIt, dis(gen));
auto vIt = std::find_if(rIt, isMarked_.end(), pred);
if (vIt != isMarked_.end())
{
return &(vIt->first);
}
else
{
vIt = std::find_if(isMarked_.begin(), rIt, pred);
if (vIt != rIt)
{
return &(vIt->first);
}
else
{
return nullptr;
}
}
}
// complexity: O(log(V))
template <typename T>
const T * Graph<T>::getFirstUnmarked(void) const
{
return getFirstMarked(false);
}
// complexity: O(log(V))
template <typename T>
template <typename Gen>
const T * Graph<T>::getRandomUnmarked(Gen &gen)
{
return getRandomMarked(false, gen);
}
// prune marked/unmarked vertices //////////////////////////////////////////////
// complexity: O(V^2*log(V))
template <typename T>
void Graph<T>::removeMarked(const bool isMarked)
{
auto isMarkedCopy = isMarked_;
for (auto &v: isMarkedCopy)
{
if (v.second == isMarked)
{
removeVertex(v.first);
}
}
}
// complexity: O(V^2*log(V))
template <typename T>
void Graph<T>::removeUnmarked(void)
{
removeMarked(false);
}
// depth-first search marking //////////////////////////////////////////////////
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::depthFirstSearch(void)
{
depthFirstSearch(isMarked_.begin()->first);
}
// complexity: O(V*log(V))
template <typename T>
void Graph<T>::depthFirstSearch(const T &root)
{
std::vector<T> adjacentVertex;
mark(root);
adjacentVertex = getAdjacentVertices(root);
for (auto &v: adjacentVertex)
{
if (!isMarked(v))
{
depthFirstSearch(v);
}
}
}
// graph topological manipulations /////////////////////////////////////////////
// complexity: O(V*log(V))
template <typename T>
std::vector<T> Graph<T>::getAdjacentVertices(const T &value) const
{
std::vector<T> adjacentVertex;
auto pred = [&value](const Edge &e)
{
return ((e.first == value) or (e.second == value));
};
auto eIt = std::find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
if (eIt->first == value)
{
adjacentVertex.push_back((*eIt).second);
}
else if (eIt->second == value)
{
adjacentVertex.push_back((*eIt).first);
}
eIt = std::find_if(++eIt, edgeSet_.end(), pred);
}
return adjacentVertex;
}
// complexity: O(V*log(V))
template <typename T>
std::vector<T> Graph<T>::getChildren(const T &value) const
{
std::vector<T> child;
auto pred = [&value](const Edge &e)
{
return (e.first == value);
};
auto eIt = std::find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
child.push_back((*eIt).second);
eIt = std::find_if(++eIt, edgeSet_.end(), pred);
}
return child;
}
// complexity: O(V*log(V))
template <typename T>
std::vector<T> Graph<T>::getParents(const T &value) const
{
std::vector<T> parent;
auto pred = [&value](const Edge &e)
{
return (e.second == value);
};
auto eIt = std::find_if(edgeSet_.begin(), edgeSet_.end(), pred);
while (eIt != edgeSet_.end())
{
parent.push_back((*eIt).first);
eIt = std::find_if(++eIt, edgeSet_.end(), pred);
}
return parent;
}
// complexity: O(V^2*log(V))
template <typename T>
std::vector<T> Graph<T>::getRoots(void) const
{
std::vector<T> root;
for (auto &v: isMarked_)
{
auto parent = getParents(v.first);
if (parent.size() == 0)
{
root.push_back(v.first);
}
}
return root;
}
// complexity: O(V^2*log(V))
template <typename T>
std::vector<Graph<T>> Graph<T>::getConnectedComponents(void) const
{
std::vector<Graph<T>> res;
Graph<T> copy(*this);
while (copy.size() > 0)
{
copy.depthFirstSearch();
res.push_back(copy);
res.back().removeUnmarked();
res.back().unmarkAll();
copy.removeMarked();
copy.unmarkAll();
}
return res;
}
// topological sort using a directed DFS algorithm
// complexity: O(V*log(V))
template <typename T>
std::vector<T> Graph<T>::topoSort(void)
{
std::stack<T> buf;
std::vector<T> res;
const T *vPt;
std::map<T, bool> tmpMarked(isMarked_);
// visit function
std::function<void(const T &)> visit = [&](const T &v)
{
if (tmpMarked.at(v))
{
HADRONS_ERROR(Range, "cannot topologically sort a cyclic graph");
}
if (!isMarked(v))
{
std::vector<T> child = getChildren(v);
tmpMarked[v] = true;
for (auto &c: child)
{
visit(c);
}
mark(v);
tmpMarked[v] = false;
buf.push(v);
}
};
// reset temporary marks
for (auto &v: tmpMarked)
{
tmpMarked.at(v.first) = false;
}
// loop on unmarked vertices
unmarkAll();
vPt = getFirstUnmarked();
while (vPt)
{
visit(*vPt);
vPt = getFirstUnmarked();
}
unmarkAll();
// create result vector
while (!buf.empty())
{
res.push_back(buf.top());
buf.pop();
}
return res;
}
// random version of the topological sort
// complexity: O(V*log(V))
template <typename T>
template <typename Gen>
std::vector<T> Graph<T>::topoSort(Gen &gen)
{
std::stack<T> buf;
std::vector<T> res;
const T *vPt;
std::map<T, bool> tmpMarked(isMarked_);
// visit function
std::function<void(const T &)> visit = [&](const T &v)
{
if (tmpMarked.at(v))
{
HADRONS_ERROR(Range, "cannot topologically sort a cyclic graph");
}
if (!isMarked(v))
{
std::vector<T> child = getChildren(v);
tmpMarked[v] = true;
std::shuffle(child.begin(), child.end(), gen);
for (auto &c: child)
{
visit(c);
}
mark(v);
tmpMarked[v] = false;
buf.push(v);
}
};
// reset temporary marks
for (auto &v: tmpMarked)
{
tmpMarked.at(v.first) = false;
}
// loop on unmarked vertices
unmarkAll();
vPt = getRandomUnmarked(gen);
while (vPt)
{
visit(*vPt);
vPt = getRandomUnmarked(gen);
}
unmarkAll();
// create result vector
while (!buf.empty())
{
res.push_back(buf.top());
buf.pop();
}
return res;
}
// generate all possible topological sorts
// Y. L. Varol & D. Rotem, Comput. J. 24(1), pp. 8384, 1981
// http://comjnl.oupjournals.org/cgi/doi/10.1093/comjnl/24.1.83
// complexity: O(V*log(V)) (from the paper, but really ?)
template <typename T>
std::vector<std::vector<T>> Graph<T>::allTopoSort(void)
{
std::vector<std::vector<T>> res;
std::map<T, std::map<T, bool>> iMat;
// create incidence matrix
for (auto &v1: isMarked_)
for (auto &v2: isMarked_)
{
iMat[v1.first][v2.first] = false;
}
for (auto &v: isMarked_)
{
auto cVec = getChildren(v.first);
for (auto &c: cVec)
{
iMat[v.first][c] = true;
}
}
// generate initial topological sort
res.push_back(topoSort());
// generate all other topological sorts by permutation
std::vector<T> p = res[0];
const unsigned int n = size();
std::vector<unsigned int> loc(n);
unsigned int i, k, k1;
T obj_k, obj_k1;
bool isFinal;
for (unsigned int j = 0; j < n; ++j)
{
loc[j] = j;
}
i = 0;
while (i < n-1)
{
k = loc[i];
k1 = k + 1;
obj_k = p[k];
if (k1 >= n)
{
isFinal = true;
obj_k1 = obj_k;
}
else
{
isFinal = false;
obj_k1 = p[k1];
}
if (iMat[res[0][i]][obj_k1] or isFinal)
{
for (unsigned int l = k; l >= i + 1; --l)
{
p[l] = p[l-1];
}
p[i] = obj_k;
loc[i] = i;
i++;
}
else
{
p[k] = obj_k1;
p[k1] = obj_k;
loc[i] = k1;
i = 0;
res.push_back(p);
}
}
return res;
}
// build depedency matrix from topological sorts ///////////////////////////////
// complexity: something like O(V^2*log(V!))
template <typename T>
std::map<T, std::map<T, bool>>
makeDependencyMatrix(const std::vector<std::vector<T>> &topSort)
{
std::map<T, std::map<T, bool>> m;
const std::vector<T> &vList = topSort[0];
for (auto &v1: vList)
for (auto &v2: vList)
{
bool dep = true;
for (auto &t: topSort)
{
auto i1 = std::find(t.begin(), t.end(), v1);
auto i2 = std::find(t.begin(), t.end(), v2);
dep = dep and (i1 - i2 > 0);
if (!dep) break;
}
m[v1][v2] = dep;
}
return m;
}
END_HADRONS_NAMESPACE
#endif // Hadrons_Graph_hpp_

View File

@ -1,38 +0,0 @@
SUBDIRS = . Utilities
lib_LIBRARIES = libHadrons.a
include modules.inc
libHadrons_a_SOURCES = \
Application.cc \
Environment.cc \
Exceptions.cc \
Global.cc \
Module.cc \
TimerArray.cc \
VirtualMachine.cc \
$(modules_cc)
libHadrons_adir = $(includedir)/Hadrons
nobase_libHadrons_a_HEADERS = \
A2AVectors.hpp \
A2AMatrix.hpp \
Application.hpp \
DilutedNoise.hpp \
DiskVector.hpp \
EigenPack.hpp \
Environment.hpp \
Exceptions.hpp \
Factory.hpp \
GeneticScheduler.hpp \
Global.hpp \
Graph.hpp \
Module.hpp \
Modules.hpp \
ModuleFactory.hpp \
NamedTensor.hpp \
Solver.hpp \
TimerArray.hpp \
VirtualMachine.hpp \
$(modules_hpp)

View File

@ -1,110 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Module.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Module.hpp>
using namespace Grid;
using namespace Hadrons;
/******************************************************************************
* ModuleBase implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
ModuleBase::ModuleBase(const std::string name)
: name_(name)
{}
// access //////////////////////////////////////////////////////////////////////
std::string ModuleBase::getName(void) const
{
return name_;
}
// get factory registration name if available
std::string ModuleBase::getRegisteredName(void)
{
HADRONS_ERROR(Definition, "module '" + getName() + "' has no registered type"
+ " in the factory");
}
// execution ///////////////////////////////////////////////////////////////////
void ModuleBase::operator()(void)
{
resetTimers();
startTimer("_total");
startTimer("_setup");
setup();
stopTimer("_setup");
startTimer("_execute");
execute();
stopAllTimers();
}
std::string ModuleBase::makeSeedString(void)
{
std::string seed;
if (!vm().getRunId().empty())
{
seed += vm().getRunId() + "-";
}
seed += getName() + "-" + std::to_string(vm().getTrajectory());
return seed;
}
GridParallelRNG & ModuleBase::rng4d(void)
{
auto &r = *env().get4dRng();
if (makeSeedString() != seed_)
{
seed_ = makeSeedString();
LOG(Message) << "Seeding 4D RNG " << &r << " with string '"
<< seed_ << "'" << std::endl;
r.SeedUniqueString(seed_);
}
return r;
}
GridSerialRNG & ModuleBase::rngSerial(void)
{
auto &r = *env().getSerialRng();
if (makeSeedString() != seed_)
{
seed_ = makeSeedString();
LOG(Message) << "Seeding Serial RNG " << &r << " with string '"
<< seed_ << "'" << std::endl;
r.SeedUniqueString(seed_);
}
return r;
}

View File

@ -1,295 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Module.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_Module_hpp_
#define Hadrons_Module_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/TimerArray.hpp>
#include <Hadrons/VirtualMachine.hpp>
BEGIN_HADRONS_NAMESPACE
// module registration macros
#define MODULE_REGISTER(mod, base, ns)\
class mod: public base\
{\
public:\
typedef base Base;\
using Base::Base;\
virtual std::string getRegisteredName(void)\
{\
return std::string(#ns "::" #mod);\
}\
};\
class ns##mod##ModuleRegistrar\
{\
public:\
ns##mod##ModuleRegistrar(void)\
{\
ModuleFactory &modFac = ModuleFactory::getInstance();\
modFac.registerBuilder(#ns "::" #mod, [&](const std::string name)\
{\
return std::unique_ptr<ns::mod>(new ns::mod(name));\
});\
}\
};\
static ns##mod##ModuleRegistrar ns##mod##ModuleRegistrarInstance;
#define MODULE_REGISTER_TMP(mod, base, ns)\
extern template class base;\
MODULE_REGISTER(mod, ARG(base), ns);
#define HADRONS_MACRO_REDIRECT_12(arg1, arg2, macro, ...) macro
#define HADRONS_MACRO_REDIRECT_23(arg1, arg2, arg3, macro, ...) macro
#define envGetGrid4(latticeType)\
env().template getGrid<typename latticeType::vector_type>()
#define envGetGrid5(latticeType, Ls)\
env().template getGrid<typename latticeType::vector_type>(Ls)
#define envGetGrid(...)\
HADRONS_MACRO_REDIRECT_12(__VA_ARGS__, envGetGrid5, envGetGrid4)(__VA_ARGS__)
#define envGetCoarseGrid4(latticeType, blockSize)\
env().template getCoarseGrid<typename latticeType::vector_type>(blockSize)
#define envGetCoarseGrid5(latticeType, blockSize, Ls)\
env().template getCoarseGrid<typename latticeType::vector_type>(blockSize, Ls)
#define envGetCoarseGrid(...)\
HADRONS_MACRO_REDIRECT_23(__VA_ARGS__, envGetCoarseGrid5, envGetCoarseGrid4)(__VA_ARGS__)
#define envGetRbGrid4(latticeType)\
env().template getRbGrid<typename latticeType::vector_type>()
#define envGetRbGrid5(latticeType, Ls)\
env().template getRbGrid<typename latticeType::vector_type>(Ls)
#define envGetRbGrid(...)\
HADRONS_MACRO_REDIRECT_12(__VA_ARGS__, envGetRbGrid5, envGetRbGrid4)(__VA_ARGS__)
#define envGet(type, name)\
*env().template getObject<type>(name)
#define envGetDerived(base, type, name)\
*env().template getDerivedObject<base, type>(name)
#define envGetTmp(type, var)\
type &var = *env().template getObject<type>(getName() + "_tmp_" + #var)
#define envHasType(type, name)\
env().template isObjectOfType<type>(name)
#define envCreate(type, name, Ls, ...)\
env().template createObject<type>(name, Environment::Storage::object, Ls, __VA_ARGS__)
#define envCreateDerived(base, type, name, Ls, ...)\
env().template createDerivedObject<base, type>(name, Environment::Storage::object, Ls, __VA_ARGS__)
#define envCreateLat4(type, name)\
envCreate(type, name, 1, envGetGrid(type))
#define envCreateLat5(type, name, Ls)\
envCreate(type, name, Ls, envGetGrid(type, Ls))
#define envCreateLat(...)\
HADRONS_MACRO_REDIRECT_23(__VA_ARGS__, envCreateLat5, envCreateLat4)(__VA_ARGS__)
#define envCache(type, name, Ls, ...)\
env().template createObject<type>(name, Environment::Storage::cache, Ls, __VA_ARGS__)
#define envCacheLat4(type, name)\
envCache(type, name, 1, envGetGrid(type))
#define envCacheLat5(type, name, Ls)\
envCache(type, name, Ls, envGetGrid(type, Ls))
#define envCacheLat(...)\
HADRONS_MACRO_REDIRECT_23(__VA_ARGS__, envCacheLat5, envCacheLat4)(__VA_ARGS__)
#define envTmp(type, name, Ls, ...)\
env().template createObject<type>(getName() + "_tmp_" + name, \
Environment::Storage::temporary, Ls, __VA_ARGS__)
#define envTmpLat4(type, name)\
envTmp(type, name, 1, envGetGrid(type))
#define envTmpLat5(type, name, Ls)\
envTmp(type, name, Ls, envGetGrid(type, Ls))
#define envTmpLat(...)\
HADRONS_MACRO_REDIRECT_23(__VA_ARGS__, envTmpLat5, envTmpLat4)(__VA_ARGS__)
#define saveResult(ioStem, name, result)\
if (env().getGrid()->IsBoss() and !ioStem.empty())\
{\
makeFileDir(ioStem, env().getGrid());\
{\
ResultWriter _writer(RESULT_FILE_NAME(ioStem, vm().getTrajectory()));\
write(_writer, name, result);\
}\
}
/******************************************************************************
* Module class *
******************************************************************************/
// base class
class ModuleBase: public TimerArray
{
public:
// constructor
ModuleBase(const std::string name);
// destructor
virtual ~ModuleBase(void) = default;
// access
std::string getName(void) const;
// get factory registration name if available
virtual std::string getRegisteredName(void);
// dependencies/products
virtual std::vector<std::string> getInput(void) = 0;
virtual std::vector<std::string> getReference(void)
{
return std::vector<std::string>(0);
};
virtual std::vector<std::string> getOutput(void) = 0;
// parse parameters
virtual void parseParameters(XmlReader &reader, const std::string name) = 0;
virtual void saveParameters(XmlWriter &writer, const std::string name) = 0;
// parameter string
virtual std::string parString(void) const = 0;
// setup
virtual void setup(void) {};
virtual void execute(void) = 0;
// execution
void operator()(void);
protected:
// environment shortcut
DEFINE_ENV_ALIAS;
// virtual machine shortcut
DEFINE_VM_ALIAS;
// RNG seeded from module string
GridParallelRNG &rng4d(void);
GridSerialRNG &rngSerial(void);
private:
std::string makeSeedString(void);
private:
std::string name_, currentTimer_, seed_;
std::map<std::string, GridStopWatch> timer_;
};
// derived class, templating the parameter class
template <typename P>
class Module: public ModuleBase
{
public:
typedef P Par;
public:
// constructor
Module(const std::string name);
// destructor
virtual ~Module(void) = default;
// parse parameters
virtual void parseParameters(XmlReader &reader, const std::string name);
virtual void saveParameters(XmlWriter &writer, const std::string name);
// parameter string
virtual std::string parString(void) const;
// parameter access
const P & par(void) const;
void setPar(const P &par);
private:
P par_;
};
// no parameter type
class NoPar {};
template <>
class Module<NoPar>: public ModuleBase
{
public:
// constructor
Module(const std::string name): ModuleBase(name) {};
// destructor
virtual ~Module(void) = default;
// parse parameters (do nothing)
virtual void parseParameters(XmlReader &reader, const std::string name) {};
virtual void saveParameters(XmlWriter &writer, const std::string name)
{
push(writer, "options");
pop(writer);
};
// parameter string (empty)
virtual std::string parString(void) const {return "";};
};
/******************************************************************************
* Template implementation *
******************************************************************************/
template <typename P>
Module<P>::Module(const std::string name)
: ModuleBase(name)
{}
template <typename P>
void Module<P>::parseParameters(XmlReader &reader, const std::string name)
{
read(reader, name, par_);
}
template <typename P>
void Module<P>::saveParameters(XmlWriter &writer, const std::string name)
{
write(writer, name, par_);
}
template <typename P>
std::string Module<P>::parString(void) const
{
XmlWriter writer("", "");
write(writer, par_.SerialisableClassName(), par_);
return writer.string();
}
template <typename P>
const P & Module<P>::par(void) const
{
return par_;
}
template <typename P>
void Module<P>::setPar(const P &par)
{
par_ = par;
}
END_HADRONS_NAMESPACE
#endif // Hadrons_Module_hpp_

View File

@ -1,48 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/ModuleFactory.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_ModuleFactory_hpp_
#define Hadrons_ModuleFactory_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Factory.hpp>
#include <Hadrons/Module.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* ModuleFactory *
******************************************************************************/
class ModuleFactory: public Factory<ModuleBase>
{
SINGLETON_DEFCTOR(ModuleFactory)
};
END_HADRONS_NAMESPACE
#endif // Hadrons_ModuleFactory_hpp_

View File

@ -1,87 +0,0 @@
#include <Hadrons/Modules/MAction/DWF.hpp>
#include <Hadrons/Modules/MAction/MobiusDWF.hpp>
#include <Hadrons/Modules/MAction/ScaledDWF.hpp>
#include <Hadrons/Modules/MAction/WilsonClover.hpp>
#include <Hadrons/Modules/MAction/Wilson.hpp>
#include <Hadrons/Modules/MAction/ZMobiusDWF.hpp>
#include <Hadrons/Modules/MContraction/A2AAslashField.hpp>
#include <Hadrons/Modules/MContraction/A2AFourQuarkContraction.hpp>
#include <Hadrons/Modules/MContraction/A2ALoop.hpp>
#include <Hadrons/Modules/MContraction/A2AMesonField.hpp>
#include <Hadrons/Modules/MContraction/Baryon.hpp>
#include <Hadrons/Modules/MContraction/DiscLoop.hpp>
#include <Hadrons/Modules/MContraction/Gamma3pt.hpp>
#include <Hadrons/Modules/MContraction/Meson.hpp>
#include <Hadrons/Modules/MContraction/SigmaToNucleonEye.hpp>
#include <Hadrons/Modules/MContraction/SigmaToNucleonNonEye.hpp>
#include <Hadrons/Modules/MContraction/WeakEye3pt.hpp>
#include <Hadrons/Modules/MContraction/WeakMesonDecayKl2.hpp>
#include <Hadrons/Modules/MContraction/WeakNonEye3pt.hpp>
#include <Hadrons/Modules/MDistil/Distil.hpp>
#include <Hadrons/Modules/MDistil/DistilPar.hpp>
#include <Hadrons/Modules/MDistil/DistilVectors.hpp>
#include <Hadrons/Modules/MDistil/LapEvec.hpp>
#include <Hadrons/Modules/MDistil/Noises.hpp>
#include <Hadrons/Modules/MDistil/PerambFromSolve.hpp>
#include <Hadrons/Modules/MDistil/Perambulator.hpp>
#include <Hadrons/Modules/MFermion/EMLepton.hpp>
#include <Hadrons/Modules/MFermion/FreeProp.hpp>
#include <Hadrons/Modules/MFermion/GaugeProp.hpp>
#include <Hadrons/Modules/MGauge/Electrify.hpp>
#include <Hadrons/Modules/MGauge/FundtoHirep.hpp>
#include <Hadrons/Modules/MGauge/GaugeFix.hpp>
#include <Hadrons/Modules/MGauge/Random.hpp>
#include <Hadrons/Modules/MGauge/StochEm.hpp>
#include <Hadrons/Modules/MGauge/StoutSmearing.hpp>
#include <Hadrons/Modules/MGauge/UnitEm.hpp>
#include <Hadrons/Modules/MGauge/Unit.hpp>
#include <Hadrons/Modules/MIO/LoadA2AMatrixDiskVector.hpp>
#include <Hadrons/Modules/MIO/LoadA2AVectors.hpp>
#include <Hadrons/Modules/MIO/LoadBinary.hpp>
#include <Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp>
#include <Hadrons/Modules/MIO/LoadCosmHol.hpp>
#include <Hadrons/Modules/MIO/LoadDistilNoise.hpp>
#include <Hadrons/Modules/MIO/LoadEigenPack.hpp>
#include <Hadrons/Modules/MIO/LoadNersc.hpp>
#include <Hadrons/Modules/MIO/LoadPerambulator.hpp>
#include <Hadrons/Modules/MNoise/FullVolumeSpinColorDiagonal.hpp>
#include <Hadrons/Modules/MNoise/SparseSpinColorDiagonal.hpp>
#include <Hadrons/Modules/MNoise/TimeDilutedSpinColorDiagonal.hpp>
#include <Hadrons/Modules/MNPR/Amputate.hpp>
#include <Hadrons/Modules/MNPR/Bilinear.hpp>
#include <Hadrons/Modules/MNPR/FourQuark.hpp>
#include <Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Hadrons/Modules/MScalar/FreeProp.hpp>
#include <Hadrons/Modules/MScalar/Scalar.hpp>
#include <Hadrons/Modules/MScalarSUN/Div.hpp>
#include <Hadrons/Modules/MScalarSUN/EMT.hpp>
#include <Hadrons/Modules/MScalarSUN/Grad.hpp>
#include <Hadrons/Modules/MScalarSUN/StochFreeField.hpp>
#include <Hadrons/Modules/MScalarSUN/TransProj.hpp>
#include <Hadrons/Modules/MScalarSUN/TrKinetic.hpp>
#include <Hadrons/Modules/MScalarSUN/TrMag.hpp>
#include <Hadrons/Modules/MScalarSUN/TrPhi.hpp>
#include <Hadrons/Modules/MScalarSUN/TwoPoint.hpp>
#include <Hadrons/Modules/MScalarSUN/TwoPointNPR.hpp>
#include <Hadrons/Modules/MScalarSUN/Utils.hpp>
#include <Hadrons/Modules/MSink/Point.hpp>
#include <Hadrons/Modules/MSink/Smear.hpp>
#include <Hadrons/Modules/MSolver/A2AAslashVectors.hpp>
#include <Hadrons/Modules/MSolver/A2AVectors.hpp>
#include <Hadrons/Modules/MSolver/Guesser.hpp>
#include <Hadrons/Modules/MSolver/LocalCoherenceLanczos.hpp>
#include <Hadrons/Modules/MSolver/MixedPrecisionRBPrecCG.hpp>
#include <Hadrons/Modules/MSolver/RBPrecCG.hpp>
#include <Hadrons/Modules/MSource/Convolution.hpp>
#include <Hadrons/Modules/MSource/Gauss.hpp>
#include <Hadrons/Modules/MSource/JacobiSmear.hpp>
#include <Hadrons/Modules/MSource/Momentum.hpp>
#include <Hadrons/Modules/MSource/MomentumPhase.hpp>
#include <Hadrons/Modules/MSource/Point.hpp>
#include <Hadrons/Modules/MSource/SeqAslash.hpp>
#include <Hadrons/Modules/MSource/SeqConserved.hpp>
#include <Hadrons/Modules/MSource/SeqGamma.hpp>
#include <Hadrons/Modules/MSource/Wall.hpp>
#include <Hadrons/Modules/MSource/Z2.hpp>
#include <Hadrons/Modules/MUtilities/PrecisionCast.hpp>
#include <Hadrons/Modules/MUtilities/RandomVectors.hpp>

View File

@ -1,37 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MAction/DWF.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MAction/DWF.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TDWF<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TDWF<FIMPLF>;
#endif

View File

@ -1,155 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MAction/DWF.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MAction_DWF_hpp_
#define Hadrons_MAction_DWF_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Domain wall quark action *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MAction)
class DWFPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(DWFPar,
std::string, gauge,
unsigned int, Ls,
double , mass,
double , M5,
std::string , boundary,
std::string , twist);
};
template <typename FImpl>
class TDWF: public Module<DWFPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TDWF(const std::string name);
// destructor
virtual ~TDWF(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(DWF, TDWF<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(DWFF, TDWF<FIMPLF>, MAction);
#endif
/******************************************************************************
* DWF template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TDWF<FImpl>::TDWF(const std::string name)
: Module<DWFPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TDWF<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge};
return in;
}
template <typename FImpl>
std::vector<std::string> TDWF<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TDWF<FImpl>::setup(void)
{
LOG(Message) << "Setting up domain wall fermion matrix with m= "
<< par().mass << ", M5= " << par().M5 << " and Ls= "
<< par().Ls << " using gauge field '" << par().gauge << "'"
<< std::endl;
auto &U = envGet(GaugeField, par().gauge);
auto &g4 = *envGetGrid(FermionField);
auto &grb4 = *envGetRbGrid(FermionField);
auto &g5 = *envGetGrid(FermionField, par().Ls);
auto &grb5 = *envGetRbGrid(FermionField, par().Ls);
typename DomainWallFermion<FImpl>::ImplParams implParams;
if (!par().boundary.empty())
{
implParams.boundary_phases = strToVec<Complex>(par().boundary);
}
if (!par().twist.empty())
{
implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
}
LOG(Message) << "Fermion boundary conditions: " << implParams.boundary_phases
<< std::endl;
LOG(Message) << "Twists: " << implParams.twist_n_2pi_L
<< std::endl;
if (implParams.boundary_phases.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of boundary phase");
}
if (implParams.twist_n_2pi_L.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of twist");
}
envCreateDerived(FMat, DomainWallFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, implParams);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TDWF<FImpl>::execute(void)
{}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MAction_DWF_hpp_

View File

@ -1,37 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MAction/MobiusDWF.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MAction/MobiusDWF.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TMobiusDWF<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TMobiusDWF<FIMPLF>;
#endif

View File

@ -1,156 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MAction/MobiusDWF.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MAction_MobiusDWF_hpp_
#define Hadrons_MAction_MobiusDWF_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Mobius domain-wall fermion action *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MAction)
class MobiusDWFPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MobiusDWFPar,
std::string , gauge,
unsigned int, Ls,
double , mass,
double , M5,
double , b,
double , c,
std::string , boundary,
std::string , twist);
};
template <typename FImpl>
class TMobiusDWF: public Module<MobiusDWFPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TMobiusDWF(const std::string name);
// destructor
virtual ~TMobiusDWF(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(MobiusDWF, TMobiusDWF<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(MobiusDWFF, TMobiusDWF<FIMPLF>, MAction);
#endif
/******************************************************************************
* TMobiusDWF implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TMobiusDWF<FImpl>::TMobiusDWF(const std::string name)
: Module<MobiusDWFPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TMobiusDWF<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge};
return in;
}
template <typename FImpl>
std::vector<std::string> TMobiusDWF<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TMobiusDWF<FImpl>::setup(void)
{
LOG(Message) << "Setting up Mobius domain wall fermion matrix with m= "
<< par().mass << ", M5= " << par().M5 << ", Ls= " << par().Ls
<< ", b= " << par().b << ", c= " << par().c
<< " using gauge field '" << par().gauge << "'"
<< std::endl;
auto &U = envGet(GaugeField, par().gauge);
auto &g4 = *envGetGrid(FermionField);
auto &grb4 = *envGetRbGrid(FermionField);
auto &g5 = *envGetGrid(FermionField, par().Ls);
auto &grb5 = *envGetRbGrid(FermionField, par().Ls);
typename MobiusFermion<FImpl>::ImplParams implParams;
if (!par().boundary.empty())
{
implParams.boundary_phases = strToVec<Complex>(par().boundary);
}
if (!par().twist.empty())
{
implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
}
LOG(Message) << "Fermion boundary conditions: " << implParams.boundary_phases
<< std::endl;
LOG(Message) << "Twists: " << implParams.twist_n_2pi_L
<< std::endl;
if (implParams.boundary_phases.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of boundary phase");
}
if (implParams.twist_n_2pi_L.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of twist");
}
envCreateDerived(FMat, MobiusFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, par().b, par().c,
implParams);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TMobiusDWF<FImpl>::execute(void)
{}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MAction_MobiusDWF_hpp_

View File

@ -1,37 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MAction/ScaledDWF.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MAction/ScaledDWF.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TScaledDWF<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TScaledDWF<FIMPLF>;
#endif

View File

@ -1,155 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MAction/ScaledDWF.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MAction_ScaledDWF_hpp_
#define Hadrons_MAction_ScaledDWF_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Scaled domain wall fermion *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MAction)
class ScaledDWFPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ScaledDWFPar,
std::string , gauge,
unsigned int, Ls,
double , mass,
double , M5,
double , scale,
std::string , boundary,
std::string , twist);
};
template <typename FImpl>
class TScaledDWF: public Module<ScaledDWFPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TScaledDWF(const std::string name);
// destructor
virtual ~TScaledDWF(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(ScaledDWF, TScaledDWF<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(ScaledDWFF, TScaledDWF<FIMPLF>, MAction);
#endif
/******************************************************************************
* TScaledDWF implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TScaledDWF<FImpl>::TScaledDWF(const std::string name)
: Module<ScaledDWFPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TScaledDWF<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge};
return in;
}
template <typename FImpl>
std::vector<std::string> TScaledDWF<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TScaledDWF<FImpl>::setup(void)
{
LOG(Message) << "Setting up scaled domain wall fermion matrix with m= "
<< par().mass << ", M5= " << par().M5 << ", Ls= " << par().Ls
<< ", scale= " << par().scale
<< " using gauge field '" << par().gauge << "'"
<< std::endl;
auto &U = envGet(GaugeField, par().gauge);
auto &g4 = *envGetGrid(FermionField);
auto &grb4 = *envGetRbGrid(FermionField);
auto &g5 = *envGetGrid(FermionField, par().Ls);
auto &grb5 = *envGetRbGrid(FermionField, par().Ls);
typename ScaledShamirFermion<FImpl>::ImplParams implParams;
if (!par().boundary.empty())
{
implParams.boundary_phases = strToVec<Complex>(par().boundary);
}
if (!par().twist.empty())
{
implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
}
LOG(Message) << "Fermion boundary conditions: " << implParams.boundary_phases
<< std::endl;
LOG(Message) << "Twists: " << implParams.twist_n_2pi_L
<< std::endl;
if (implParams.boundary_phases.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of boundary phase");
}
if (implParams.twist_n_2pi_L.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of twist");
}
envCreateDerived(FMat, ScaledShamirFermion<FImpl>, getName(), par().Ls, U, g5,
grb5, g4, grb4, par().mass, par().M5, par().scale,
implParams);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TScaledDWF<FImpl>::execute(void)
{}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MAction_ScaledDWF_hpp_

View File

@ -1,37 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MAction/Wilson.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MAction/Wilson.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TWilson<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TWilson<FIMPLF>;
#endif

View File

@ -1,148 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MAction/Wilson.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MAction_Wilson_hpp_
#define Hadrons_MAction_Wilson_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* TWilson quark action *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MAction)
class WilsonPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonPar,
std::string, gauge,
double , mass,
std::string, boundary,
std::string, string,
std::string, twist);
};
template <typename FImpl>
class TWilson: public Module<WilsonPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TWilson(const std::string name);
// destructor
virtual ~TWilson(void) {};
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Wilson, TWilson<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(WilsonF, TWilson<FIMPLF>, MAction);
#endif
/******************************************************************************
* TWilson template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TWilson<FImpl>::TWilson(const std::string name)
: Module<WilsonPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TWilson<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge};
return in;
}
template <typename FImpl>
std::vector<std::string> TWilson<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWilson<FImpl>::setup(void)
{
LOG(Message) << "Setting up Wilson fermion matrix with m= " << par().mass
<< " using gauge field '" << par().gauge << "'" << std::endl;
auto &U = envGet(GaugeField, par().gauge);
auto &grid = *envGetGrid(FermionField);
auto &gridRb = *envGetRbGrid(FermionField);
typename WilsonFermion<FImpl>::ImplParams implParams;
if (!par().boundary.empty())
{
implParams.boundary_phases = strToVec<Complex>(par().boundary);
}
if (!par().twist.empty())
{
implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
}
LOG(Message) << "Fermion boundary conditions: " << implParams.boundary_phases << std::endl;
LOG(Message) << "Twists: " << implParams.twist_n_2pi_L << std::endl;
if (implParams.boundary_phases.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of boundary phase");
}
if (implParams.twist_n_2pi_L.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of twist");
}
envCreateDerived(FMat, WilsonFermion<FImpl>, getName(), 1, U, grid, gridRb,
par().mass, implParams);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWilson<FImpl>::execute()
{}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_Wilson_hpp_

View File

@ -1,37 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MAction/WilsonClover.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MAction/WilsonClover.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TWilsonClover<FIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TWilsonClover<FIMPLF>;
#endif

View File

@ -1,157 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MAction/WilsonClover.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: pretidav <david.preti@csic.es>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MAction_WilsonClover_hpp_
#define Hadrons_MAction_WilsonClover_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Wilson clover quark action *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MAction)
class WilsonCloverPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonCloverPar,
std::string, gauge,
double , mass,
double , csw_r,
double , csw_t,
WilsonAnisotropyCoefficients ,clover_anisotropy,
std::string, boundary,
std::string, twist
);
};
template <typename FImpl>
class TWilsonClover: public Module<WilsonCloverPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TWilsonClover(const std::string name);
// destructor
virtual ~TWilsonClover(void) {};
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(WilsonClover, TWilsonClover<FIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(WilsonCloverF, TWilsonClover<FIMPLF>, MAction);
#endif
/******************************************************************************
* TWilsonClover template implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TWilsonClover<FImpl>::TWilsonClover(const std::string name)
: Module<WilsonCloverPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TWilsonClover<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge};
return in;
}
template <typename FImpl>
std::vector<std::string> TWilsonClover<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWilsonClover<FImpl>::setup(void)
{
LOG(Message) << "Setting up Wilson clover fermion matrix with m= " << par().mass
<< " using gauge field '" << par().gauge << "'" << std::endl;
LOG(Message) << "Clover term csw_r: " << par().csw_r
<< " csw_t: " << par().csw_t
<< std::endl;
auto &U = envGet(GaugeField, par().gauge);
auto &grid = *envGetGrid(FermionField);
auto &gridRb = *envGetRbGrid(FermionField);
typename WilsonCloverFermion<FImpl>::ImplParams implParams;
if (!par().boundary.empty())
{
implParams.boundary_phases = strToVec<Complex>(par().boundary);
}
if (!par().twist.empty())
{
implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
}
LOG(Message) << "Fermion boundary conditions: " << implParams.boundary_phases
<< std::endl;
LOG(Message) << "Twists: " << implParams.twist_n_2pi_L
<< std::endl;
if (implParams.boundary_phases.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of boundary phase");
}
if (implParams.twist_n_2pi_L.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of twist");
}
envCreateDerived(FMat, WilsonCloverFermion<FImpl>, getName(), 1, U, grid,
gridRb, par().mass, par().csw_r, par().csw_t,
par().clover_anisotropy, implParams);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWilsonClover<FImpl>::execute()
{}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_WilsonClover_hpp_

View File

@ -1,37 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MAction/ZMobiusDWF.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MAction/ZMobiusDWF.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MAction;
template class Grid::Hadrons::MAction::TZMobiusDWF<ZFIMPL>;
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
template class Grid::Hadrons::MAction::TZMobiusDWF<ZFIMPLF>;
#endif

View File

@ -1,171 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MAction/ZMobiusDWF.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MAction_ZMobiusDWF_hpp_
#define Hadrons_MAction_ZMobiusDWF_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* z-Mobius domain-wall fermion action *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MAction)
class ZMobiusDWFPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ZMobiusDWFPar,
std::string , gauge,
unsigned int , Ls,
double , mass,
double , M5,
double , b,
double , c,
std::vector<std::complex<double> >, omega,
std::string , boundary,
std::string , twist);
};
template <typename FImpl>
class TZMobiusDWF: public Module<ZMobiusDWFPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TZMobiusDWF(const std::string name);
// destructor
virtual ~TZMobiusDWF(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(ZMobiusDWF, TZMobiusDWF<ZFIMPL>, MAction);
#ifdef GRID_DEFAULT_PRECISION_DOUBLE
MODULE_REGISTER_TMP(ZMobiusDWFF, TZMobiusDWF<ZFIMPLF>, MAction);
#endif
/******************************************************************************
* TZMobiusDWF implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TZMobiusDWF<FImpl>::TZMobiusDWF(const std::string name)
: Module<ZMobiusDWFPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TZMobiusDWF<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge};
return in;
}
template <typename FImpl>
std::vector<std::string> TZMobiusDWF<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TZMobiusDWF<FImpl>::setup(void)
{
LOG(Message) << "Setting up z-Mobius domain wall fermion matrix with m= "
<< par().mass << ", M5= " << par().M5 << ", Ls= " << par().Ls
<< ", b= " << par().b << ", c= " << par().c
<< " using gauge field '" << par().gauge << "'"
<< std::endl;
LOG(Message) << "Omegas: " << std::endl;
for (unsigned int i = 0; i < par().omega.size(); ++i)
{
LOG(Message) << " omega[" << i << "]= " << par().omega[i] << std::endl;
}
auto &U = envGet(GaugeField, par().gauge);
auto &g4 = *envGetGrid(FermionField);
auto &grb4 = *envGetRbGrid(FermionField);
auto &g5 = *envGetGrid(FermionField, par().Ls);
auto &grb5 = *envGetRbGrid(FermionField, par().Ls);
auto omega = par().omega;
typename ZMobiusFermion<FImpl>::ImplParams implParams;
if (!par().boundary.empty())
{
implParams.boundary_phases = strToVec<Complex>(par().boundary);
}
if (!par().twist.empty())
{
implParams.twist_n_2pi_L = strToVec<Real>(par().twist);
}
LOG(Message) << "Fermion boundary conditions: " << implParams.boundary_phases << std::endl;
LOG(Message) << "Twists: " << implParams.twist_n_2pi_L << std::endl;
if (implParams.boundary_phases.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of boundary phase");
}
if (implParams.twist_n_2pi_L.size() != env().getNd())
{
HADRONS_ERROR(Size, "Wrong number of twist");
}
assert(par().Ls==omega.size());
int Ls=par().Ls;
std::vector<ComplexD> _omega(Ls);
for(int i=0;i<Ls;i++){
_omega[i] = omega[i];
}
envCreateDerived(FMat, ZMobiusFermion<FImpl>, getName(), par().Ls,
U, g5, grb5, g4, grb4,
par().mass, par().M5,
_omega, par().b, par().c, implParams);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TZMobiusDWF<FImpl>::execute(void)
{}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MAction_ZMobiusDWF_hpp_

View File

@ -1,34 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/A2AAslashField.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/A2AAslashField.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TA2AAslashField<FIMPL, PhotonR>;

View File

@ -1,248 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/A2AAslashField.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_A2AAslashField_hpp_
#define Hadrons_MContraction_A2AAslashField_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/A2AMatrix.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* A2AAslashField *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class A2AAslashFieldPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AAslashFieldPar,
int, cacheBlock,
int, block,
std::string, left,
std::string, right,
std::string, output,
std::vector<std::string>, emField);
};
class A2AAslashFieldMetadata: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AAslashFieldMetadata,
std::string, emFieldName);
};
template <typename T, typename FImpl>
class AslashFieldKernel: public A2AKernel<T, typename FImpl::FermionField>
{
public:
typedef typename FImpl::FermionField FermionField;
public:
AslashFieldKernel(const std::vector<LatticeComplex> &emB0,
const std::vector<LatticeComplex> &emB1,
GridBase *grid)
: emB0_(emB0), emB1_(emB1), grid_(grid)
{
vol_ = 1.;
for (auto &d: grid_->GlobalDimensions())
{
vol_ *= d;
}
}
virtual ~AslashFieldKernel(void) = default;
virtual void operator()(A2AMatrixSet<T> &m, const FermionField *left,
const FermionField *right,
const unsigned int orthogDim, double &t)
{
A2Autils<FImpl>::AslashField(m, left, right, emB0_, emB1_, orthogDim, &t);
}
virtual double flops(const unsigned int blockSizei, const unsigned int blockSizej)
{
return 0.;
}
virtual double bytes(const unsigned int blockSizei, const unsigned int blockSizej)
{
return 0.;
}
private:
const std::vector<LatticeComplex> &emB0_, &emB1_;
GridBase *grid_;
double vol_;
};
template <typename FImpl, typename PhotonImpl>
class TA2AAslashField: public Module<A2AAslashFieldPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
typedef typename PhotonImpl::GaugeField EmField;
typedef A2AMatrixBlockComputation<Complex,
FermionField,
A2AAslashFieldMetadata,
HADRONS_A2AM_IO_TYPE> Computation;
typedef AslashFieldKernel<Complex, FImpl> Kernel;
public:
// constructor
TA2AAslashField(const std::string name);
// destructor
virtual ~TA2AAslashField(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(A2AAslashField, ARG(TA2AAslashField<FIMPL, PhotonR>), MContraction);
/******************************************************************************
* TA2AAslashField implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl, typename PhotonImpl>
TA2AAslashField<FImpl, PhotonImpl>::TA2AAslashField(const std::string name)
: Module<A2AAslashFieldPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl, typename PhotonImpl>
std::vector<std::string> TA2AAslashField<FImpl, PhotonImpl>::getInput(void)
{
std::vector<std::string> in = par().emField;
in.push_back(par().left);
in.push_back(par().right);
return in;
}
template <typename FImpl, typename PhotonImpl>
std::vector<std::string> TA2AAslashField<FImpl, PhotonImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl, typename PhotonImpl>
void TA2AAslashField<FImpl, PhotonImpl>::setup(void)
{
envTmp(Computation, "computation", 1, envGetGrid(FermionField),
env().getNd() - 1, par().emField.size(), 1, par().block,
par().cacheBlock, this);
envTmp(std::vector<ComplexField>, "B0", 1,
par().emField.size(), envGetGrid(ComplexField));
envTmp(std::vector<ComplexField>, "B1", 1,
par().emField.size(), envGetGrid(ComplexField));
envTmpLat(ComplexField, "Amu");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl, typename PhotonImpl>
void TA2AAslashField<FImpl, PhotonImpl>::execute(void)
{
#ifndef GRID_NVCC
auto &left = envGet(std::vector<FermionField>, par().left);
auto &right = envGet(std::vector<FermionField>, par().right);
int nt = env().getDim().back();
int N_i = left.size();
int N_j = right.size();
int nem = par().emField.size();
int block = par().block;
int cacheBlock = par().cacheBlock;
LOG(Message) << "Computing all-to-all A-slash fields" << std::endl;
LOG(Message) << "Left: '" << par().left << "' Right: '" << par().right << "'" << std::endl;
LOG(Message) << "EM fields:" << std::endl;
for (auto &name: par().emField)
{
LOG(Message) << " " << name << std::endl;
}
LOG(Message) << "A-slash field size: " << nt << "*" << N_i << "*" << N_j
<< " (filesize " << sizeString(nt*N_i*N_j*sizeof(HADRONS_A2AM_IO_TYPE))
<< "/EM field)" << std::endl;
// preparing "B" complexified fields
startTimer("Complexify EM fields");
envGetTmp(std::vector<ComplexField>, B0);
envGetTmp(std::vector<ComplexField>, B1);
for (unsigned int i = 0; i < par().emField.size(); ++i)
{
auto &A = envGet(EmField, par().emField[i]);
envGetTmp(ComplexField, Amu);
B0[i] = peekLorentz(A, 0);
B0[i] += timesI(peekLorentz(A, 1));
B1[i] = peekLorentz(A, 2);
B1[i] += timesI(peekLorentz(A, 3));
}
stopTimer("Complexify EM fields");
// I/O name & metadata lambdas
auto ionameFn = [this](const unsigned int em, const unsigned int dummy)
{
return par().emField[em];
};
auto filenameFn = [this, &ionameFn](const unsigned int em, const unsigned int dummy)
{
return par().output + "." + std::to_string(vm().getTrajectory())
+ "/" + ionameFn(em, dummy) + ".h5";
};
auto metadataFn = [this](const unsigned int em, const unsigned int dummy)
{
A2AAslashFieldMetadata md;
md.emFieldName = par().emField[em];
return md;
};
// executing computation
Kernel kernel(B0, B1, envGetGrid(FermionField));
envGetTmp(Computation, computation);
computation.execute(left, right, kernel, ionameFn, filenameFn, metadataFn);
#endif
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2AAslashField_hpp_

View File

@ -1,7 +0,0 @@
#include <Hadrons/Modules/MContraction/A2AFourQuarkContraction.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TA2AFourQuarkContraction<FIMPL>;

View File

@ -1,138 +0,0 @@
#ifndef Hadrons_MContraction_A2AFourQuarkContraction_hpp_
#define Hadrons_MContraction_A2AFourQuarkContraction_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/DiskVector.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* A2AFourQuarkContraction *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class A2AFourQuarkContractionPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AFourQuarkContractionPar,
std::string, v1,
std::string, v2,
std::string, mf12,
bool, allContr,
unsigned int, dt);
};
template <typename FImpl>
class TA2AFourQuarkContraction: public Module<A2AFourQuarkContractionPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
// constructor
TA2AFourQuarkContraction(const std::string name);
// destructor
virtual ~TA2AFourQuarkContraction(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
unsigned int nt_;
};
MODULE_REGISTER_TMP(A2AFourQuarkContraction, TA2AFourQuarkContraction<FIMPL>, MContraction);
/******************************************************************************
* TA2AFourQuarkContraction implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2AFourQuarkContraction<FImpl>::TA2AFourQuarkContraction(const std::string name)
: Module<A2AFourQuarkContractionPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2AFourQuarkContraction<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().v1, par().v2, par().mf12};
return in;
}
template <typename FImpl>
std::vector<std::string> TA2AFourQuarkContraction<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AFourQuarkContraction<FImpl>::setup(void)
{
if (par().allContr)
{
nt_ = env().getDim(Tp);
envTmp(std::vector<PropagatorField>, "tmpWWVV", 1, nt_, envGetGrid(PropagatorField));
envCreate(std::vector<PropagatorField>, getName(), 1, nt_, envGetGrid(PropagatorField));
}
else
{
envTmp(std::vector<PropagatorField>, "tmpWWVV", 1, 1, envGetGrid(PropagatorField));
envCreate(PropagatorField, getName(), 1, envGetGrid(PropagatorField));
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AFourQuarkContraction<FImpl>::execute(void)
{
auto &v1 = envGet(std::vector<FermionField>, par().v1);
auto &v2 = envGet(std::vector<FermionField>, par().v2);
auto &mf12 = envGet(EigenDiskVector<Complex>, par().mf12);
envGetTmp(std::vector<PropagatorField>, tmpWWVV);
unsigned int dt = par().dt;
unsigned int nt = env().getDim(Tp);
if (par().allContr)
{
LOG(Message) << "Computing 4 quark contraction for " << getName()
<< " for all t0 time translations "
<< "with nt = " << nt_ << " and dt = " << dt << std::endl;
auto &WWVV = envGet(std::vector<PropagatorField>, getName());
A2Autils<FImpl>::ContractWWVV(tmpWWVV, mf12, &v1[0], &v2[0]);
for(unsigned int t = 0; t < nt_; t++){
unsigned int t0 = (t + dt) % nt_;
WWVV[t] = tmpWWVV[t0];
}
}
else
{
LOG(Message) << "Computing 4 quark contraction for: " << getName()
<< " for time dt = " << dt << std::endl;
auto &WWVV = envGet(PropagatorField, getName());
int ni = v1.size();
int nj = v2.size();
Eigen::Matrix<Complex, -1, -1, Eigen::RowMajor> mf;
mf = mf12[dt];
Eigen::TensorMap<Eigen::Tensor<Complex, 3, Eigen::RowMajor>> mfT(mf.data(), 1, ni, nj);
A2Autils<FImpl>::ContractWWVV(tmpWWVV, mfT, &v1[0], &v2[0]);
WWVV = tmpWWVV[0];
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2AFourQuarkContraction_hpp_

View File

@ -1,34 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/A2ALoop.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/A2ALoop.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TA2ALoop<FIMPL>;

View File

@ -1,123 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/A2ALoop.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_A2ALoop_hpp_
#define Hadrons_MContraction_A2ALoop_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* From closed loop from all-to-all vectors *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class A2ALoopPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2ALoopPar,
std::string, left,
std::string, right);
};
template <typename FImpl>
class TA2ALoop: public Module<A2ALoopPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TA2ALoop(const std::string name);
// destructor
virtual ~TA2ALoop(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(A2ALoop, TA2ALoop<FIMPL>, MContraction);
/******************************************************************************
* TA2ALoop implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2ALoop<FImpl>::TA2ALoop(const std::string name)
: Module<A2ALoopPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2ALoop<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().left, par().right};
return in;
}
template <typename FImpl>
std::vector<std::string> TA2ALoop<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2ALoop<FImpl>::setup(void)
{
envCreateLat(PropagatorField, getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2ALoop<FImpl>::execute(void)
{
auto &loop = envGet(PropagatorField, getName());
auto &left = envGet(std::vector<FermionField>, par().left);
auto &right = envGet(std::vector<FermionField>, par().right);
loop = Zero();
for (unsigned int i = 0; i < left.size(); ++i)
{
loop += outerProduct(left[i], right[i]);
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2ALoop_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/A2AMesonField.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/A2AMesonField.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TA2AMesonField<FIMPL>;

View File

@ -1,320 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/A2AMesonField.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_A2AMesonField_hpp_
#define Hadrons_MContraction_A2AMesonField_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/A2AMatrix.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* All-to-all meson field creation *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class A2AMesonFieldPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AMesonFieldPar,
int, cacheBlock,
int, block,
std::string, left,
std::string, right,
std::string, output,
std::string, gammas,
std::vector<std::string>, mom);
};
class A2AMesonFieldMetadata: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AMesonFieldMetadata,
std::vector<RealF>, momentum,
Gamma::Algebra, gamma);
};
template <typename T, typename FImpl>
class MesonFieldKernel: public A2AKernel<T, typename FImpl::FermionField>
{
public:
typedef typename FImpl::FermionField FermionField;
public:
MesonFieldKernel(const std::vector<Gamma::Algebra> &gamma,
const std::vector<LatticeComplex> &mom,
GridBase *grid)
: gamma_(gamma), mom_(mom), grid_(grid)
{
vol_ = 1.;
for (auto &d: grid_->GlobalDimensions())
{
vol_ *= d;
}
}
virtual ~MesonFieldKernel(void) = default;
virtual void operator()(A2AMatrixSet<T> &m, const FermionField *left,
const FermionField *right,
const unsigned int orthogDim, double &t)
{
A2Autils<FImpl>::MesonField(m, left, right, gamma_, mom_, orthogDim, &t);
}
virtual double flops(const unsigned int blockSizei, const unsigned int blockSizej)
{
return vol_*(2*8.0+6.0+8.0*mom_.size())*blockSizei*blockSizej*gamma_.size();
}
virtual double bytes(const unsigned int blockSizei, const unsigned int blockSizej)
{
return vol_*(12.0*sizeof(T))*blockSizei*blockSizej
+ vol_*(2.0*sizeof(T)*mom_.size())*blockSizei*blockSizej*gamma_.size();
}
private:
const std::vector<Gamma::Algebra> &gamma_;
const std::vector<LatticeComplex> &mom_;
GridBase *grid_;
double vol_;
};
template <typename FImpl>
class TA2AMesonField : public Module<A2AMesonFieldPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
typedef A2AMatrixBlockComputation<Complex,
FermionField,
A2AMesonFieldMetadata,
HADRONS_A2AM_IO_TYPE> Computation;
typedef MesonFieldKernel<Complex, FImpl> Kernel;
public:
// constructor
TA2AMesonField(const std::string name);
// destructor
virtual ~TA2AMesonField(void){};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
bool hasPhase_{false};
std::string momphName_;
std::vector<Gamma::Algebra> gamma_;
std::vector<std::vector<Real>> mom_;
};
MODULE_REGISTER(A2AMesonField, ARG(TA2AMesonField<FIMPL>), MContraction);
/******************************************************************************
* TA2AMesonField implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2AMesonField<FImpl>::TA2AMesonField(const std::string name)
: Module<A2AMesonFieldPar>(name)
, momphName_(name + "_momph")
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2AMesonField<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().left, par().right};
return in;
}
template <typename FImpl>
std::vector<std::string> TA2AMesonField<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::setup(void)
{
gamma_.clear();
mom_.clear();
if (par().gammas == "all")
{
gamma_ = {
Gamma::Algebra::Gamma5,
Gamma::Algebra::Identity,
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
Gamma::Algebra::GammaXGamma5,
Gamma::Algebra::GammaYGamma5,
Gamma::Algebra::GammaZGamma5,
Gamma::Algebra::GammaTGamma5,
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::SigmaZT
};
}
else
{
gamma_ = strToVec<Gamma::Algebra>(par().gammas);
}
for (auto &pstr: par().mom)
{
auto p = strToVec<Real>(pstr);
if (p.size() != env().getNd() - 1)
{
HADRONS_ERROR(Size, "Momentum has " + std::to_string(p.size())
+ " components instead of "
+ std::to_string(env().getNd() - 1));
}
mom_.push_back(p);
}
envCache(std::vector<ComplexField>, momphName_, 1,
par().mom.size(), envGetGrid(ComplexField));
envTmpLat(ComplexField, "coor");
envTmp(Computation, "computation", 1, envGetGrid(FermionField),
env().getNd() - 1, mom_.size(), gamma_.size(), par().block,
par().cacheBlock, this);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::execute(void)
{
auto &left = envGet(std::vector<FermionField>, par().left);
auto &right = envGet(std::vector<FermionField>, par().right);
int nt = env().getDim().back();
int N_i = left.size();
int N_j = right.size();
int ngamma = gamma_.size();
int nmom = mom_.size();
int block = par().block;
int cacheBlock = par().cacheBlock;
if (N_i < block || N_j < block)
{
HADRONS_ERROR(Range, "blockSize must not exceed size of input vector.");
}
LOG(Message) << "Computing all-to-all meson fields" << std::endl;
LOG(Message) << "Left: '" << par().left << "' Right: '" << par().right << "'" << std::endl;
LOG(Message) << "Momenta:" << std::endl;
for (auto &p: mom_)
{
LOG(Message) << " " << p << std::endl;
}
LOG(Message) << "Spin bilinears:" << std::endl;
for (auto &g: gamma_)
{
LOG(Message) << " " << g << std::endl;
}
LOG(Message) << "Meson field size: " << nt << "*" << N_i << "*" << N_j
<< " (filesize " << sizeString(nt*N_i*N_j*sizeof(HADRONS_A2AM_IO_TYPE))
<< "/momentum/bilinear)" << std::endl;
auto &ph = envGet(std::vector<ComplexField>, momphName_);
if (!hasPhase_)
{
startTimer("Momentum phases");
for (unsigned int j = 0; j < nmom; ++j)
{
Complex i(0.0,1.0);
std::vector<Real> p;
envGetTmp(ComplexField, coor);
ph[j] = Zero();
for(unsigned int mu = 0; mu < mom_[j].size(); mu++)
{
LatticeCoordinate(coor, mu);
ph[j] = ph[j] + (mom_[j][mu]/env().getDim(mu))*coor;
}
ph[j] = exp((Real)(2*M_PI)*i*ph[j]);
}
hasPhase_ = true;
stopTimer("Momentum phases");
}
auto ionameFn = [this](const unsigned int m, const unsigned int g)
{
std::stringstream ss;
ss << gamma_[g] << "_";
for (unsigned int mu = 0; mu < mom_[m].size(); ++mu)
{
ss << mom_[m][mu] << ((mu == mom_[m].size() - 1) ? "" : "_");
}
return ss.str();
};
auto filenameFn = [this, &ionameFn](const unsigned int m, const unsigned int g)
{
return par().output + "." + std::to_string(vm().getTrajectory())
+ "/" + ionameFn(m, g) + ".h5";
};
auto metadataFn = [this](const unsigned int m, const unsigned int g)
{
A2AMesonFieldMetadata md;
for (auto pmu: mom_[m])
{
md.momentum.push_back(pmu);
}
md.gamma = gamma_[g];
return md;
};
Kernel kernel(gamma_, ph, envGetGrid(FermionField));
envGetTmp(Computation, computation);
computation.execute(left, right, kernel, ionameFn, filenameFn, metadataFn);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2AMesonField_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/Baryon.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/Baryon.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TBaryon<FIMPL,FIMPL,FIMPL>;

View File

@ -1,330 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/Baryon.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Felix Erben <felix.erben@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_Baryon_hpp_
#define Hadrons_MContraction_Baryon_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Grid/qcd/utils/BaryonUtils.h>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Baryon *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<Gamma::Algebra, Gamma::Algebra> GammaAB;
typedef std::pair<GammaAB, GammaAB> GammaABPair;
class BaryonPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(BaryonPar,
std::string, q1,
std::string, q2,
std::string, q3,
std::string, gammas,
std::string, quarks,
std::string, prefactors,
std::string, parity,
std::string, sink,
std::string, output);
};
template <typename FImpl1, typename FImpl2, typename FImpl3>
class TBaryon: public Module<BaryonPar>
{
public:
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
FERM_TYPE_ALIASES(FImpl3, 3);
BASIC_TYPE_ALIASES(ScalarImplCR, Scalar);
SINK_TYPE_ALIASES(Scalar);
class Metadata: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Metadata,
Gamma::Algebra, gammaA_left,
Gamma::Algebra, gammaB_left,
Gamma::Algebra, gammaA_right,
Gamma::Algebra, gammaB_right,
std::string, quarks,
std::string, prefactors,
int, parity);
};
typedef Correlator<Metadata> Result;
public:
// constructor
TBaryon(const std::string name);
// destructor
virtual ~TBaryon(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<GammaABPair> &gammaList);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
// Which gamma algebra was specified
Gamma::Algebra al;
};
MODULE_REGISTER_TMP(Baryon, ARG(TBaryon<FIMPL, FIMPL, FIMPL>), MContraction);
/******************************************************************************
* TBaryon implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
TBaryon<FImpl1, FImpl2, FImpl3>::TBaryon(const std::string name)
: Module<BaryonPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TBaryon<FImpl1, FImpl2, FImpl3>::getInput(void)
{
std::vector<std::string> input = {par().q1, par().q2, par().q3, par().sink};
return input;
}
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TBaryon<FImpl1, FImpl2, FImpl3>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TBaryon<FImpl1, FImpl2,FImpl3>::parseGammaString(std::vector<GammaABPair> &gammaList)
{
gammaList.clear();
std::string gammaString = par().gammas;
//Shorthands for standard baryon operators
gammaString = regex_replace(gammaString, std::regex("j12"),"(Identity SigmaXZ)");
gammaString = regex_replace(gammaString, std::regex("j32X"),"(Identity MinusGammaZGamma5)");
gammaString = regex_replace(gammaString, std::regex("j32Y"),"(Identity GammaT)");
gammaString = regex_replace(gammaString, std::regex("j32Z"),"(Identity GammaXGamma5)");
//Shorthands for less common baryon operators
gammaString = regex_replace(gammaString, std::regex("j12_alt1"),"(Gamma5 MinusSigmaYT)");
gammaString = regex_replace(gammaString, std::regex("j12_alt2"),"(Identity GammaYGamma5)");
//A single gamma matrix
std::regex rex_g("([0-9a-zA-Z]+)");
//The full string we expect
std::regex rex("( *\\(( *\\(([0-9a-zA-Z]+) +([0-9a-zA-Z]+) *\\)){2} *\\) *)+");
std::smatch sm;
std::regex_match(gammaString, sm, rex);
assert(sm[0].matched && "invalid gamma structure.");
auto gamma_begin = std::sregex_iterator(gammaString.begin(), gammaString.end(), rex_g);
auto gamma_end = std::sregex_iterator();
int nGamma = std::distance(gamma_begin, gamma_end);
//couldn't find out how to count the size in the iterator, other than looping through it...
/* int nGamma=0;
for (std::sregex_iterator i = gamma_begin; i != gamma_end; ++i) {
nGamma++;
}
*/
gammaList.resize(nGamma/4);
std::vector<std::string> gS;
gS.resize(nGamma);
//even more ugly workarounds here...
int iG=0;
for (std::sregex_iterator i = gamma_begin; i != gamma_end; ++i) {
std::smatch match = *i;
gS[iG] = match.str();
iG++;
}
for (int i = 0; i < gammaList.size(); i++){
std::vector<Gamma::Algebra> gS1 = strToVec<Gamma::Algebra>(gS[4*i]);
std::vector<Gamma::Algebra> gS2 = strToVec<Gamma::Algebra>(gS[4*i+1]);
std::vector<Gamma::Algebra> gS3 = strToVec<Gamma::Algebra>(gS[4*i+2]);
std::vector<Gamma::Algebra> gS4 = strToVec<Gamma::Algebra>(gS[4*i+3]);
gammaList[i].first.first=gS1[0];
gammaList[i].first.second=gS2[0];
gammaList[i].second.first=gS3[0];
gammaList[i].second.second=gS4[0];
}
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TBaryon<FImpl1, FImpl2, FImpl3>::setup(void)
{
envTmpLat(LatticeComplex, "c");
envTmpLat(LatticeComplex, "c2");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TBaryon<FImpl1, FImpl2, FImpl3>::execute(void)
{
std::vector<std::string> quarks = strToVec<std::string>(par().quarks);
std::vector<double> prefactors = strToVec<double>(par().prefactors);
int nQ=quarks.size();
const int parity {par().parity.size()>0 ? std::stoi(par().parity) : 1};
std::vector<GammaABPair> gammaList;
parseGammaString(gammaList);
assert(prefactors.size()==nQ && "number of prefactors needs to match number of quark-structures.");
for (int iQ = 0; iQ < nQ; iQ++)
assert(quarks[iQ].size()==3 && "quark-structures must consist of 3 quarks each.");
LOG(Message) << "Computing baryon contractions '" << getName() << "'" << std::endl;
for (int iQ1 = 0; iQ1 < nQ; iQ1++)
for (int iQ2 = 0; iQ2 < nQ; iQ2++)
LOG(Message) << prefactors[iQ1]*prefactors[iQ2] << "*<" << quarks[iQ1] << "|" << quarks[iQ2] << ">" << std::endl;
LOG(Message) << " using quarks " << par().q1 << "', " << par().q2 << "', and '" << par().q3 << std::endl;
for (int iG = 0; iG < gammaList.size(); iG++)
LOG(Message) << "' with (Gamma^A,Gamma^B)_left = ( " << gammaList[iG].first.first << " , " << gammaList[iG].first.second << "') and (Gamma^A,Gamma^B)_right = ( " << gammaList[iG].second.first << " , " << gammaList[iG].second.second << ")" << std::endl;
LOG(Message) << "and parity " << parity << " using sink " << par().sink << "." << std::endl;
envGetTmp(LatticeComplex, c);
envGetTmp(LatticeComplex, c2);
int nt = env().getDim(Tp);
std::vector<TComplex> buf;
TComplex cs;
TComplex ch;
std::vector<Result> result;
Result r;
r.info.parity = parity;
r.info.quarks = par().quarks;
r.info.prefactors = par().prefactors;
if (envHasType(SlicedPropagator1, par().q1) and
envHasType(SlicedPropagator2, par().q2) and
envHasType(SlicedPropagator3, par().q3))
{
auto &q1 = envGet(SlicedPropagator1, par().q1);
auto &q2 = envGet(SlicedPropagator2, par().q2);
auto &q3 = envGet(SlicedPropagator3, par().q3);
for (unsigned int i = 0; i < gammaList.size(); ++i)
{
r.info.gammaA_left = gammaList[i].first.first;
r.info.gammaB_left = gammaList[i].first.second;
r.info.gammaA_right = gammaList[i].second.first;
r.info.gammaB_right = gammaList[i].second.second;
Gamma gAl(gammaList[i].first.first);
Gamma gBl(gammaList[i].first.second);
Gamma gAr(gammaList[i].second.first);
Gamma gBr(gammaList[i].second.second);
LOG(Message) << "(propagator already sinked)" << std::endl;
r.corr.clear();
for (unsigned int t = 0; t < buf.size(); ++t)
{
cs = Zero();
for (int iQ1 = 0; iQ1 < nQ; iQ1++){
for (int iQ2 = 0; iQ2 < nQ; iQ2++){
BaryonUtils<FIMPL>::ContractBaryons_Sliced(q1[t],q2[t],q3[t],gAl,gBl,gAr,gBr,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,ch);
cs += prefactors[iQ1]*prefactors[iQ2]*ch;
}
}
r.corr.push_back(TensorRemove(cs));
}
result.push_back(r);
}
}
else
{
auto &q1 = envGet(PropagatorField1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
auto &q3 = envGet(PropagatorField3, par().q3);
for (unsigned int i = 0; i < gammaList.size(); ++i)
{
r.info.gammaA_left = gammaList[i].first.first;
r.info.gammaB_left = gammaList[i].first.second;
r.info.gammaA_right = gammaList[i].second.first;
r.info.gammaB_right = gammaList[i].second.second;
Gamma gAl(gammaList[i].first.first);
Gamma gBl(gammaList[i].first.second);
Gamma gAr(gammaList[i].second.first);
Gamma gBr(gammaList[i].second.second);
std::string ns;
ns = vm().getModuleNamespace(env().getObjectModule(par().sink));
if (ns == "MSource")
{
c=Zero();
for (int iQ1 = 0; iQ1 < nQ; iQ1++){
for (int iQ2 = 0; iQ2 < nQ; iQ2++){
BaryonUtils<FIMPL>::ContractBaryons(q1,q2,q3,gAl,gBl,gAr,gBr,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,c2);
c+=prefactors[iQ1]*prefactors[iQ2]*c2;
}
}
PropagatorField1 &sink = envGet(PropagatorField1, par().sink);
auto test = closure(trace(sink*c));
sliceSum(test, buf, Tp);
}
else if (ns == "MSink")
{
c=Zero();
for (int iQ1 = 0; iQ1 < nQ; iQ1++){
for (int iQ2 = 0; iQ2 < nQ; iQ2++){
BaryonUtils<FIMPL>::ContractBaryons(q1,q2,q3,gAl,gBl,gAr,gBr,quarks[iQ1].c_str(),quarks[iQ2].c_str(),parity,c2);
c+=prefactors[iQ1]*prefactors[iQ2]*c2;
}
}
SinkFnScalar &sink = envGet(SinkFnScalar, par().sink);
buf = sink(c);
}
r.corr.clear();
for (unsigned int t = 0; t < buf.size(); ++t)
{
r.corr.push_back(TensorRemove(buf[t]));
}
result.push_back(r);
}
}
saveResult(par().output, "baryon", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_Baryon_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/DiscLoop.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/DiscLoop.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TDiscLoop<FIMPL>;

View File

@ -1,143 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/DiscLoop.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_DiscLoop_hpp_
#define Hadrons_MContraction_DiscLoop_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* DiscLoop *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class DiscLoopPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(DiscLoopPar,
std::string, q_loop,
Gamma::Algebra, gamma,
std::string, output);
};
template <typename FImpl>
class TDiscLoop: public Module<DiscLoopPar>
{
FERM_TYPE_ALIASES(FImpl,);
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma,
std::vector<Complex>, corr);
};
public:
// constructor
TDiscLoop(const std::string name);
// destructor
virtual ~TDiscLoop(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(DiscLoop, TDiscLoop<FIMPL>, MContraction);
/******************************************************************************
* TDiscLoop implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TDiscLoop<FImpl>::TDiscLoop(const std::string name)
: Module<DiscLoopPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TDiscLoop<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().q_loop};
return in;
}
template <typename FImpl>
std::vector<std::string> TDiscLoop<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TDiscLoop<FImpl>::setup(void)
{
envTmpLat(LatticeComplex, "c");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TDiscLoop<FImpl>::execute(void)
{
LOG(Message) << "Computing disconnected loop contraction '" << getName()
<< "' using '" << par().q_loop << "' with " << par().gamma
<< " insertion." << std::endl;
auto &q_loop = envGet(PropagatorField, par().q_loop);
Gamma gamma(par().gamma);
std::vector<TComplex> buf;
Result result;
envGetTmp(LatticeComplex, c);
c = trace(gamma*q_loop);
sliceSum(c, buf, Tp);
result.gamma = par().gamma;
result.corr.resize(buf.size());
for (unsigned int t = 0; t < buf.size(); ++t)
{
result.corr[t] = TensorRemove(buf[t]);
}
saveResult(par().output, "disc", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_DiscLoop_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/Gamma3pt.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/Gamma3pt.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TGamma3pt<FIMPL,FIMPL,FIMPL>;

View File

@ -1,216 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/Gamma3pt.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_Gamma3pt_hpp_
#define Hadrons_MContraction_Gamma3pt_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
* 3pt contraction with gamma matrix insertion.
*
* Schematic:
*
* q2 q3
* /----<------*------<----¬
* / gamma \
* / \
* i * * f
* \ /
* \ /
* \----------->----------/
* q1
*
* trace(g5*q1*adj(q2)*g5*gamma*q3)
*
* options:
* - q1: sink smeared propagator, source at i
* - q2: propagator, source at i
* - q3: propagator, source at f
* - gammas: gamma matrices to insert
* (space-separated strings e.g. "GammaT GammaX GammaY")
* - tSnk: sink position for propagator q1.
*
*/
/******************************************************************************
* Gamma3pt *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class Gamma3ptPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Gamma3ptPar,
std::string, q1,
std::string, q2,
std::string, q3,
std::string, gamma,
unsigned int, tSnk,
std::string, output);
};
template <typename FImpl1, typename FImpl2, typename FImpl3>
class TGamma3pt: public Module<Gamma3ptPar>
{
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
FERM_TYPE_ALIASES(FImpl3, 3);
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma,
std::vector<Complex>, corr);
};
public:
// constructor
TGamma3pt(const std::string name);
// destructor
virtual ~TGamma3pt(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<Gamma::Algebra> &gammaList);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Gamma3pt, ARG(TGamma3pt<FIMPL, FIMPL, FIMPL>), MContraction);
/******************************************************************************
* TGamma3pt implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
TGamma3pt<FImpl1, FImpl2, FImpl3>::TGamma3pt(const std::string name)
: Module<Gamma3ptPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TGamma3pt<FImpl1, FImpl2, FImpl3>::getInput(void)
{
std::vector<std::string> in = {par().q1, par().q2, par().q3};
return in;
}
template <typename FImpl1, typename FImpl2, typename FImpl3>
std::vector<std::string> TGamma3pt<FImpl1, FImpl2, FImpl3>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TGamma3pt<FImpl1, FImpl2, FImpl3>::setup(void)
{
envTmpLat(LatticeComplex, "c");
}
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TGamma3pt<FImpl1, FImpl2, FImpl3>::parseGammaString(std::vector<Gamma::Algebra> &gammaList)
{
gammaList.clear();
// Determine gamma matrices to insert at source/sink.
if (par().gamma.compare("all") == 0)
{
// Do all contractions.
for (unsigned int i = 1; i < Gamma::nGamma; i += 2)
{
gammaList.push_back((Gamma::Algebra)i);
}
}
else
{
// Parse individual contractions from input string.
gammaList = strToVec<Gamma::Algebra>(par().gamma);
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2, typename FImpl3>
void TGamma3pt<FImpl1, FImpl2, FImpl3>::execute(void)
{
LOG(Message) << "Computing 3pt contractions '" << getName() << "' using"
<< " quarks '" << par().q1 << "', '" << par().q2 << "' and '"
<< par().q3 << "', with " << par().gamma << " insertions."
<< std::endl;
// Initialise variables. q2 and q3 are normal propagators, q1 may be
// sink smeared.
auto &q1 = envGet(SlicedPropagator1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
auto &q3 = envGet(PropagatorField2, par().q3);
Gamma g5(Gamma::Algebra::Gamma5);
std::vector<Gamma::Algebra> gammaList;
std::vector<TComplex> buf;
std::vector<Result> result;
int nt = env().getDim(Tp);
parseGammaString(gammaList);
result.resize(gammaList.size());
for (unsigned int i = 0; i < result.size(); ++i)
{
result[i].gamma = gammaList[i];
result[i].corr.resize(nt);
}
// Extract relevant timeslice of sinked propagator q1, then contract &
// sum over all spacial positions of gamma insertion.
SitePropagator1 q1Snk = q1[par().tSnk];
envGetTmp(LatticeComplex, c);
for (unsigned int i = 0; i < result.size(); ++i)
{
Gamma gamma(gammaList[i]);
c = trace(g5*q1Snk*adj(q2)*(g5*gamma)*q3);
sliceSum(c, buf, Tp);
for (unsigned int t = 0; t < buf.size(); ++t)
{
result[i].corr[t] = TensorRemove(buf[t]);
}
}
saveResult(par().output, "gamma3pt", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_Gamma3pt_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/Meson.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/Meson.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TMeson<FIMPL,FIMPL>;

View File

@ -1,249 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/Meson.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: Vera Guelpers <vmg1n14@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_Meson_hpp_
#define Hadrons_MContraction_Meson_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
Meson contractions
-----------------------------
* options:
- q1: input propagator 1 (string)
- q2: input propagator 2 (string)
- gammas: gamma products to insert at sink & source, pairs of gamma matrices
(space-separated strings) in round brackets (i.e. (g_sink g_src)),
in a sequence (e.g. "(Gamma5 Gamma5)(Gamma5 GammaT)").
Special values: "all" - perform all possible contractions.
- sink: module to compute the sink to use in contraction (string).
*/
/******************************************************************************
* TMeson *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<Gamma::Algebra, Gamma::Algebra> GammaPair;
class MesonPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MesonPar,
std::string, q1,
std::string, q2,
std::string, gammas,
std::string, sink,
std::string, output);
};
template <typename FImpl1, typename FImpl2>
class TMeson: public Module<MesonPar>
{
public:
FERM_TYPE_ALIASES(FImpl1, 1);
FERM_TYPE_ALIASES(FImpl2, 2);
BASIC_TYPE_ALIASES(ScalarImplCR, Scalar);
SINK_TYPE_ALIASES(Scalar);
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma_snk,
Gamma::Algebra, gamma_src,
std::vector<Complex>, corr);
};
public:
// constructor
TMeson(const std::string name);
// destructor
virtual ~TMeson(void) {};
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<GammaPair> &gammaList);
protected:
// execution
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Meson, ARG(TMeson<FIMPL, FIMPL>), MContraction);
/******************************************************************************
* TMeson implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
TMeson<FImpl1, FImpl2>::TMeson(const std::string name)
: Module<MesonPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
std::vector<std::string> TMeson<FImpl1, FImpl2>::getInput(void)
{
std::vector<std::string> input = {par().q1, par().q2, par().sink};
return input;
}
template <typename FImpl1, typename FImpl2>
std::vector<std::string> TMeson<FImpl1, FImpl2>::getOutput(void)
{
std::vector<std::string> output = {};
return output;
}
template <typename FImpl1, typename FImpl2>
void TMeson<FImpl1, FImpl2>::parseGammaString(std::vector<GammaPair> &gammaList)
{
gammaList.clear();
// Determine gamma matrices to insert at source/sink.
if (par().gammas.compare("all") == 0)
{
// Do all contractions.
for (unsigned int i = 1; i < Gamma::nGamma; i += 2)
{
for (unsigned int j = 1; j < Gamma::nGamma; j += 2)
{
gammaList.push_back(std::make_pair((Gamma::Algebra)i,
(Gamma::Algebra)j));
}
}
}
else
{
// Parse individual contractions from input string.
gammaList = strToVec<GammaPair>(par().gammas);
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl1, typename FImpl2>
void TMeson<FImpl1, FImpl2>::setup(void)
{
envTmpLat(LatticeComplex, "c");
}
// execution ///////////////////////////////////////////////////////////////////
#define mesonConnected(q1, q2, gSnk, gSrc) \
(g5*(gSnk))*(q1)*(adj(gSrc)*g5)*adj(q2)
template <typename FImpl1, typename FImpl2>
void TMeson<FImpl1, FImpl2>::execute(void)
{
LOG(Message) << "Computing meson contractions '" << getName() << "' using"
<< " quarks '" << par().q1 << "' and '" << par().q2 << "'"
<< std::endl;
std::vector<TComplex> buf;
std::vector<Result> result;
Gamma g5(Gamma::Algebra::Gamma5);
std::vector<GammaPair> gammaList;
int nt = env().getDim(Tp);
parseGammaString(gammaList);
result.resize(gammaList.size());
for (unsigned int i = 0; i < result.size(); ++i)
{
result[i].gamma_snk = gammaList[i].first;
result[i].gamma_src = gammaList[i].second;
result[i].corr.resize(nt);
}
if (envHasType(SlicedPropagator1, par().q1) and
envHasType(SlicedPropagator2, par().q2))
{
auto &q1 = envGet(SlicedPropagator1, par().q1);
auto &q2 = envGet(SlicedPropagator2, par().q2);
LOG(Message) << "(propagator already sinked)" << std::endl;
for (unsigned int i = 0; i < result.size(); ++i)
{
Gamma gSnk(gammaList[i].first);
Gamma gSrc(gammaList[i].second);
for (unsigned int t = 0; t < nt; ++t)
{
result[i].corr[t] = TensorRemove(trace(mesonConnected(q1[t], q2[t], gSnk, gSrc)));
}
}
}
else
{
auto &q1 = envGet(PropagatorField1, par().q1);
auto &q2 = envGet(PropagatorField2, par().q2);
envGetTmp(LatticeComplex, c);
LOG(Message) << "(using sink '" << par().sink << "')" << std::endl;
for (unsigned int i = 0; i < result.size(); ++i)
{
Gamma gSnk(gammaList[i].first);
Gamma gSrc(gammaList[i].second);
std::string ns;
ns = vm().getModuleNamespace(env().getObjectModule(par().sink));
if (ns == "MSource")
{
PropagatorField1 &sink = envGet(PropagatorField1, par().sink);
c = trace(mesonConnected(q1, q2, gSnk, gSrc)*sink);
sliceSum(c, buf, Tp);
}
else if (ns == "MSink")
{
SinkFnScalar &sink = envGet(SinkFnScalar, par().sink);
c = trace(mesonConnected(q1, q2, gSnk, gSrc));
buf = sink(c);
}
for (unsigned int t = 0; t < buf.size(); ++t)
{
result[i].corr[t] = TensorRemove(buf[t]);
}
}
}
saveResult(par().output, "meson", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_Meson_hpp_

View File

@ -1,7 +0,0 @@
#include <Hadrons/Modules/MContraction/SigmaToNucleonEye.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TSigmaToNucleonEye<FIMPL>;

View File

@ -1,218 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/SigmaToNucleonEye.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Felix Erben <felix.erben@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_SigmaToNucleonEye_hpp_
#define Hadrons_MContraction_SigmaToNucleonEye_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Grid/qcd/utils/BaryonUtils.h>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* SigmaToNucleonEye *
******************************************************************************/
/*
* Sigma-to-nucleon 3-pt diagrams, eye topologies.
*
* Schematics: qqLoop |
* /->-¬ |
* / \ | qsTi G qdTf
* \ / | /---->------*------>----¬
* qsTi \ / qdTf | / /-*-¬ \
* /----->-----* *----->----¬ | / / G \ \
* * G G * | * \ / qqLoop *
* |\ /| | |\ \-<-/ /|
* | \ / | | | \ / |
* | \---------->---------/ | | | \----------->----------/ |
* \ quSpec / | \ quSpec /
* \ / | \ /
* \---------->---------/ | \----------->----------/
* quSpec | quSpec
*
* analogously to the rare-kaon naming, the left diagram is named 'one-trace' and
* the diagram on the right 'two-trace'
*
* Propagators:
* * qqLoop
* * quSpec, source at ti
* * qdTf, source at tf
* * qsTi, source at ti
*/
BEGIN_MODULE_NAMESPACE(MContraction)
class SigmaToNucleonEyePar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(SigmaToNucleonEyePar,
std::string, qqLoop,
std::string, quSpec,
std::string, qdTf,
std::string, qsTi,
unsigned int, tf,
std::string, sink,
std::string, output);
};
template <typename FImpl>
class TSigmaToNucleonEye: public Module<SigmaToNucleonEyePar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
BASIC_TYPE_ALIASES(ScalarImplCR, Scalar);
SINK_TYPE_ALIASES(Scalar);
typedef typename SpinMatrixField::vector_object::scalar_object SpinMatrix;
class Metadata: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Metadata,
Gamma::Algebra, gammaH,
Gamma::Algebra, gammaASigma,
Gamma::Algebra, gammaBSigma,
Gamma::Algebra, gammaANucl,
Gamma::Algebra, gammaBNucl,
int, trace);
};
typedef Correlator<Metadata, SpinMatrix> Result;
public:
// constructor
TSigmaToNucleonEye(const std::string name);
// destructor
virtual ~TSigmaToNucleonEye(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
// Which gamma algebra was specified
Gamma::Algebra al;
};
MODULE_REGISTER_TMP(SigmaToNucleonEye, ARG(TSigmaToNucleonEye<FIMPL>), MContraction);
/******************************************************************************
* TSigmaToNucleonEye implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TSigmaToNucleonEye<FImpl>::TSigmaToNucleonEye(const std::string name)
: Module<SigmaToNucleonEyePar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TSigmaToNucleonEye<FImpl>::getInput(void)
{
std::vector<std::string> input = {par().qqLoop, par().quSpec, par().qdTf, par().qsTi, par().sink};
return input;
}
template <typename FImpl>
std::vector<std::string> TSigmaToNucleonEye<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TSigmaToNucleonEye<FImpl>::setup(void)
{
envTmpLat(SpinMatrixField, "c");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TSigmaToNucleonEye<FImpl>::execute(void)
{
const Gamma GammaB(Gamma::Algebra::SigmaXZ); // C*gamma_5
const Gamma Id(Gamma::Algebra::Identity); // C*gamma_5
LOG(Message) << "Computing sigma-to-nucleon contractions '" << getName() << "'" << std::endl;
LOG(Message) << "' with (Gamma^A,Gamma^B)_sigma = ( Identity, C*gamma_5 ) and (Gamma^A,Gamma^B)_nucl = ( Identity, C*gamma_5 )" << std::endl;
LOG(Message) << " using sink " << par().sink << "." << std::endl;
envGetTmp(SpinMatrixField, c);
std::vector<SpinMatrix> buf;
std::vector<Result> result;
Result r;
r.info.gammaASigma = Id.g;
r.info.gammaBSigma = GammaB.g;
r.info.gammaANucl = Id.g;
r.info.gammaBNucl = GammaB.g;
auto &qqLoop = envGet(PropagatorField, par().qqLoop);
auto &quSpec = envGet(SlicedPropagator, par().quSpec);
auto &qdTf = envGet(PropagatorField, par().qdTf);
auto &qsTi = envGet(PropagatorField, par().qsTi);
auto qut = quSpec[par().tf];
for (auto &G: Gamma::gall)
{
r.info.gammaH = G.g;
//Operator Q1, equivalent to the two-trace case in the rare-kaons module
c=Zero();
BaryonUtils<FIMPL>::Sigma_to_Nucleon_Eye(qqLoop,qut,qdTf,qsTi,G,GammaB,GammaB,"Q1",c);
sliceSum(c,buf,Tp);
r.corr.clear();
for (unsigned int t = 0; t < buf.size(); ++t)
{
r.corr.push_back(buf[t]);
}
r.info.trace = 2;
result.push_back(r);
//Operator Q2, equivalent to the one-trace case in the rare-kaons module
c=Zero();
BaryonUtils<FIMPL>::Sigma_to_Nucleon_Eye(qqLoop,qut,qdTf,qsTi,G,GammaB,GammaB,"Q2",c);
sliceSum(c,buf,Tp);
r.corr.clear();
for (unsigned int t = 0; t < buf.size(); ++t)
{
r.corr.push_back(buf[t]);
}
r.info.trace = 1;
result.push_back(r);
}
saveResult(par().output, "stnEye", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_SigmaToNucleonEye_hpp_

View File

@ -1,7 +0,0 @@
#include <Hadrons/Modules/MContraction/SigmaToNucleonNonEye.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TSigmaToNucleonNonEye<FIMPL>;

View File

@ -1,224 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/SigmaToNucleonNonEye.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Felix Erben <felix.erben@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_SigmaToNucleonNonEye_hpp_
#define Hadrons_MContraction_SigmaToNucleonNonEye_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Grid/qcd/utils/BaryonUtils.h>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* SigmaToNucleonNonEye *
******************************************************************************/
/*
* Sigma-to-Nucleon 3-pt diagrams, non-eye topologies.
*
* Schematic:
* qsTi quTf | qsTi qdTf
* /-->--¬ /-->--¬ | /-->--¬ /-->--¬
* / \ / \ | / \ / \
* / \ / \ | / \ / \
* / \ / \ | / \ / \
* * * G * | * G * * G *
* |\ * G | | |\ / \ /|
* | \ / \ /| | | \ / \ / |
* | \ / \ / | | | \ / \ / |
* | \ / \ / | | | \-->--/ \-->--/ |
* \ \-->--/ \-->--/ / | \ quTi quTf /
* \ quTi qdTf / | \ /
* \ / | \ /
* \--------->----------/ | \--------->-----------/
* quSpec | quSpec
*
*
* analogously to the rare-kaon naming, the left diagram is named 'one-trace' and
* the diagram on the right 'two-trace'
*
* Propagators:
* * quTi, source at ti
* * quTf, source at tf
* * quSpec, source at ti
* * qdTf, source at tf
* * qsTi, source at ti
*/
BEGIN_MODULE_NAMESPACE(MContraction)
class SigmaToNucleonNonEyePar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(SigmaToNucleonNonEyePar,
std::string, quTi,
std::string, quTf,
std::string, quSpec,
std::string, qdTf,
std::string, qsTi,
unsigned int, tf,
std::string, sink,
std::string, output);
};
template <typename FImpl>
class TSigmaToNucleonNonEye: public Module<SigmaToNucleonNonEyePar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
BASIC_TYPE_ALIASES(ScalarImplCR, Scalar);
SINK_TYPE_ALIASES(Scalar);
typedef typename SpinMatrixField::vector_object::scalar_object SpinMatrix;
class Metadata: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Metadata,
Gamma::Algebra, gammaH,
Gamma::Algebra, gammaASigma,
Gamma::Algebra, gammaBSigma,
Gamma::Algebra, gammaANucl,
Gamma::Algebra, gammaBNucl,
int, trace);
};
typedef Correlator<Metadata, SpinMatrix> Result;
public:
// constructor
TSigmaToNucleonNonEye(const std::string name);
// destructor
virtual ~TSigmaToNucleonNonEye(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
// Which gamma algebra was specified
Gamma::Algebra al;
};
MODULE_REGISTER_TMP(SigmaToNucleonNonEye, ARG(TSigmaToNucleonNonEye<FIMPL>), MContraction);
/******************************************************************************
* TSigmaToNucleonNonEye implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TSigmaToNucleonNonEye<FImpl>::TSigmaToNucleonNonEye(const std::string name)
: Module<SigmaToNucleonNonEyePar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TSigmaToNucleonNonEye<FImpl>::getInput(void)
{
std::vector<std::string> input = {par().quTi, par().quTf, par().quSpec, par().qdTf, par().qsTi, par().sink};
return input;
}
template <typename FImpl>
std::vector<std::string> TSigmaToNucleonNonEye<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TSigmaToNucleonNonEye<FImpl>::setup(void)
{
envTmpLat(SpinMatrixField, "c");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TSigmaToNucleonNonEye<FImpl>::execute(void)
{
const Gamma GammaB(Gamma::Algebra::SigmaXZ); // C*gamma_5
const Gamma Id(Gamma::Algebra::Identity); // C*gamma_5
LOG(Message) << "Computing sigma-to-nucleon contractions '" << getName() << "'" << std::endl;
LOG(Message) << "' with (Gamma^A,Gamma^B)_sigma = ( Identity, C*gamma_5 ) and (Gamma^A,Gamma^B)_nucl = ( Identity, C*gamma_5 )" << std::endl;
LOG(Message) << " using sink " << par().sink << "." << std::endl;
envGetTmp(SpinMatrixField, c);
std::vector<SpinMatrix> buf;
std::vector<Result> result;
Result r;
r.info.gammaASigma = Id.g;
r.info.gammaBSigma = GammaB.g;
r.info.gammaANucl = Id.g;
r.info.gammaBNucl = GammaB.g;
auto &quTi = envGet(PropagatorField, par().quTi);
auto &quTf = envGet(PropagatorField, par().quTf);
auto &quSpec = envGet(SlicedPropagator, par().quSpec);
auto &qdTf = envGet(PropagatorField, par().qdTf);
auto &qsTi = envGet(PropagatorField, par().qsTi);
auto qut = quSpec[par().tf];
for (auto &G: Gamma::gall)
{
r.info.gammaH = G.g;
//Operator Q1, equivalent to the two-trace case in the rare-kaons module
c=Zero();
BaryonUtils<FIMPL>::Sigma_to_Nucleon_NonEye(quTi,quTf,qut,qdTf,qsTi,G,GammaB,GammaB,"Q1",c);
sliceSum(c,buf,Tp);
r.corr.clear();
for (unsigned int t = 0; t < buf.size(); ++t)
{
r.corr.push_back(buf[t]);
}
r.info.trace = 2;
result.push_back(r);
//Operator Q2, equivalent to the one-trace case in the rare-kaons module
c=Zero();
BaryonUtils<FIMPL>::Sigma_to_Nucleon_NonEye(quTi,quTf,qut,qdTf,qsTi,G,GammaB,GammaB,"Q2",c);
sliceSum(c,buf,Tp);
r.corr.clear();
for (unsigned int t = 0; t < buf.size(); ++t)
{
r.corr.push_back(buf[t]);
}
r.info.trace = 1;
result.push_back(r);
}
saveResult(par().output, "stnNonEye", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_SigmaToNucleonNonEye_hpp_

View File

@ -1,34 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/WeakEye3pt.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/WeakEye3pt.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TWeakEye3pt<FIMPL>;

View File

@ -1,200 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/WeakEye3pt.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_WeakEye3pt_hpp_
#define Hadrons_MContraction_WeakEye3pt_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
* Weak Hamiltonian meson 3-pt diagrams, eye topologies.
*
* Schematics: loop |
* /-<-¬ |
* / \ | qbl G qbr
* \ / | /----<------*------<----¬
* qbl \ / qbr | / /-*-¬ \
* /-----<-----* *-----<----¬ | / / G \ \
* gIn * G G * gOut | gIn * \ / loop * gOut
* \ / | \ \->-/ /
* \ / | \ /
* \---------->---------/ | \----------->----------/
* qs | qs
* |
* one trace | two traces
*
* one trace : tr(qbr*gOut*qs*adj(gIn)*g5*adj(qbl)*g5*G*loop*G)
* two traces: tr(qbr*gOut*qs*adj(gIn)*g5*adj(qbl)*g5*G)*tr(loop*G)
*
*/
BEGIN_MODULE_NAMESPACE(MContraction)
class WeakEye3ptPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WeakEye3ptPar,
std::string, qBarLeft,
std::string, qBarRight,
std::string, qSpectator,
std::string, loop,
unsigned int, tOut,
Gamma::Algebra, gammaIn,
Gamma::Algebra, gammaOut,
std::string, output);
};
template <typename FImpl>
class TWeakEye3pt: public Module<WeakEye3ptPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
class Metadata: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Metadata,
Gamma::Algebra, in,
Gamma::Algebra, out,
Gamma::Algebra, op,
unsigned int, trace);
};
typedef Correlator<Metadata> Result;
public:
// constructor
TWeakEye3pt(const std::string name);
// destructor
virtual ~TWeakEye3pt(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(WeakEye3pt, TWeakEye3pt<FIMPL>, MContraction);
/******************************************************************************
* TWeakEye3pt implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TWeakEye3pt<FImpl>::TWeakEye3pt(const std::string name)
: Module<WeakEye3ptPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TWeakEye3pt<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().qBarLeft, par().qBarRight,
par().qSpectator, par().loop};
return in;
}
template <typename FImpl>
std::vector<std::string> TWeakEye3pt<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWeakEye3pt<FImpl>::setup(void)
{
envTmpLat(ComplexField, "corr");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWeakEye3pt<FImpl>::execute(void)
{
LOG(Message) << "Computing mesonic weak 3pt contractions, eye topologies" << std::endl;
LOG(Message) << "gIn : " << par().gammaIn << std::endl;
LOG(Message) << "gOut: " << par().gammaOut << std::endl;
LOG(Message) << "tOut: " << par().tOut << std::endl;
LOG(Message) << "qbl : " << par().qBarLeft << std::endl;
LOG(Message) << "qbr : " << par().qBarRight << std::endl;
LOG(Message) << "qs : " << par().qSpectator << std::endl;
LOG(Message) << "loop: " << par().loop << std::endl;
std::vector<Result> result;
Result r;
auto &qbl = envGet(PropagatorField, par().qBarLeft);
auto &qbr = envGet(PropagatorField, par().qBarRight);
auto &loop = envGet(PropagatorField, par().loop);
auto &qs = envGet(SlicedPropagator, par().qSpectator);
auto qst = qs[par().tOut];
Gamma gIn(par().gammaIn), gOut(par().gammaOut);
Gamma g5(Gamma::Algebra::Gamma5);
envGetTmp(ComplexField, corr);
r.info.in = par().gammaIn;
r.info.out = par().gammaOut;
for (auto &G: Gamma::gall)
{
SlicedComplex buf;
r.info.op = G.g;
// one trace
corr = trace(qbr*gOut*qst*adj(gIn)*g5*adj(qbl)*g5*G*loop*G);
sliceSum(corr, buf, Tp);
r.corr.clear();
for (unsigned int t = 0; t < buf.size(); ++t)
{
r.corr.push_back(TensorRemove(buf[t]));
}
r.info.trace = 1;
result.push_back(r);
// two traces
corr = trace(qbr*gOut*qst*adj(gIn)*g5*adj(qbl)*g5*G)*trace(loop*G);
sliceSum(corr, buf, Tp);
r.corr.clear();
for (unsigned int t = 0; t < buf.size(); ++t)
{
r.corr.push_back(TensorRemove(buf[t]));
}
r.info.trace = 2;
result.push_back(r);
}
saveResult(par().output, "weakEye3pt", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_WeakEye3pt_hpp_

View File

@ -1,36 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/WeakMesonDecayKl2.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/WeakMesonDecayKl2.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TWeakMesonDecayKl2<FIMPL>;

View File

@ -1,185 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/WeakMesonDecayKl2.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_WeakMesonDecayKl2_hpp_
#define Hadrons_MContraction_WeakMesonDecayKl2_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
* Kl2 contraction
* -----------------------------
*
* contraction for Kl2 decay, including the lepton
*
* trace(q1*adj(q2)*g5*gL[mu]) * (gL[mu] * lepton)_{a,b}
*
* with open spinor indices (a,b) for the lepton part
*
* q1 lepton
* /------------\ /------------
* / \ /
* / \H_W/
* g_5 * * *
* \ /
* \ /
* \____________/
* q2
*
* * options:
* - q1: input propagator 1 (string)
* - q2: input propagator 2 (string)
* - lepton: input lepton (string)
*/
/******************************************************************************
* TWeakMesonDecayKl2 *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class WeakMesonDecayKl2Par: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WeakMesonDecayKl2Par,
std::string, q1,
std::string, q2,
std::string, lepton,
std::string, output);
};
template <typename FImpl>
class TWeakMesonDecayKl2: public Module<WeakMesonDecayKl2Par>
{
public:
FERM_TYPE_ALIASES(FImpl,);
typedef typename SpinMatrixField::vector_object::scalar_object SpinMatrix;
class Result: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
std::vector<SpinMatrix>, corr);
};
public:
// constructor
TWeakMesonDecayKl2(const std::string name);
// destructor
virtual ~TWeakMesonDecayKl2(void) {};
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// execution
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(WeakMesonDecayKl2, TWeakMesonDecayKl2<FIMPL>, MContraction);
/******************************************************************************
* TWeakMesonDecayKl2 implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TWeakMesonDecayKl2<FImpl>::TWeakMesonDecayKl2(const std::string name)
: Module<WeakMesonDecayKl2Par>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TWeakMesonDecayKl2<FImpl>::getInput(void)
{
std::vector<std::string> input = {par().q1, par().q2, par().lepton};
return input;
}
template <typename FImpl>
std::vector<std::string> TWeakMesonDecayKl2<FImpl>::getOutput(void)
{
std::vector<std::string> output = {};
return output;
}
// setup ////////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWeakMesonDecayKl2<FImpl>::setup(void)
{
envTmpLat(ComplexField, "c");
envTmpLat(PropagatorField, "prop_buf");
envCreateLat(PropagatorField, getName());
envTmpLat(SpinMatrixField, "buf");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWeakMesonDecayKl2<FImpl>::execute(void)
{
LOG(Message) << "Computing QED Kl2 contractions '" << getName() << "' using"
<< " quarks '" << par().q1 << "' and '" << par().q2 << "' and"
<< "lepton '" << par().lepton << "'" << std::endl;
Gamma g5(Gamma::Algebra::Gamma5);
int nt = env().getDim(Tp);
std::vector<SpinMatrix> res_summed;
Result r;
auto &res = envGet(PropagatorField, getName()); res = Zero();
auto &q1 = envGet(PropagatorField, par().q1);
auto &q2 = envGet(PropagatorField, par().q2);
auto &lepton = envGet(PropagatorField, par().lepton);
envGetTmp(SpinMatrixField, buf);
envGetTmp(ComplexField, c);
envGetTmp(PropagatorField, prop_buf);
for (unsigned int mu = 0; mu < 4; ++mu)
{
c = Zero();
//hadronic part: trace(q1*adj(q2)*g5*gL[mu])
c = trace(q1*adj(q2)*g5*GammaL(Gamma::gmu[mu]));
prop_buf = 1.;
//multiply lepton part
res += c * prop_buf * GammaL(Gamma::gmu[mu]) * lepton;
}
buf = peekColour(res, 0, 0);
sliceSum(buf, r.corr, Tp);
saveResult(par().output, "weakdecay", r);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_WeakMesonDecayKl2_hpp_

View File

@ -1,34 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/WeakNonEye3pt.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/WeakNonEye3pt.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TWeakNonEye3pt<FIMPL>;

View File

@ -1,198 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MContraction/WeakNonEye3pt.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_WeakNonEye3pt_hpp_
#define Hadrons_MContraction_WeakNonEye3pt_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*
* Weak Hamiltonian meson 3-pt diagrams, non-eye topologies.
*
* Schematic:
* qbl qbr | qbl qbr
* /--<--¬ /--<--¬ | /--<--¬ /--<--¬
* / \ / \ | / \ / \
* / \ / \ | / \ / \
* / \ / \ | / \ / \
* gIn * * G * gOut | gIn * G * * G * gOut
* \ * G | | \ / \ /
* \ / \ / | \ / \ /
* \ / \ / | \ / \ /
* \ / \ / | \-->--/ \-->--/
* \-->--/ \-->--/ | ql qr
* ql qr |
* one trace | two traces
*
* one trace : tr(ql*adj(gIn)*g5*adj(qbl)*g5*G*qbr*gOut*g5*adj(qr)*g5*G)
* two traces: tr(ql*adj(gIn)*g5*adj(qbl)*g5*G)*tr(qbr*gOut*g5*adj(qr)*g5*G)
*
*/
BEGIN_MODULE_NAMESPACE(MContraction)
class WeakNonEye3ptPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WeakNonEye3ptPar,
std::string, qLeft,
std::string, qBarLeft,
std::string, qRight,
std::string, qBarRight,
Gamma::Algebra, gammaIn,
Gamma::Algebra, gammaOut,
std::string, output);
};
template <typename FImpl>
class TWeakNonEye3pt: public Module<WeakNonEye3ptPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
class Metadata: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Metadata,
Gamma::Algebra, in,
Gamma::Algebra, out,
Gamma::Algebra, op,
unsigned int, trace);
};
typedef Correlator<Metadata> Result;
public:
// constructor
TWeakNonEye3pt(const std::string name);
// destructor
virtual ~TWeakNonEye3pt(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(WeakNonEye3pt, TWeakNonEye3pt<FIMPL>, MContraction);
/******************************************************************************
* TWeakNonEye3pt implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TWeakNonEye3pt<FImpl>::TWeakNonEye3pt(const std::string name)
: Module<WeakNonEye3ptPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TWeakNonEye3pt<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().qLeft, par().qBarLeft,
par().qRight, par().qBarRight};
return in;
}
template <typename FImpl>
std::vector<std::string> TWeakNonEye3pt<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWeakNonEye3pt<FImpl>::setup(void)
{
envTmpLat(ComplexField, "corr");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TWeakNonEye3pt<FImpl>::execute(void)
{
LOG(Message) << "Computing mesonic weak 3pt contractions, non-eye topologies" << std::endl;
LOG(Message) << "gIn : " << par().gammaIn << std::endl;
LOG(Message) << "gOut: " << par().gammaOut << std::endl;
LOG(Message) << "ql : " << par().qLeft << std::endl;
LOG(Message) << "qbl : " << par().qBarLeft << std::endl;
LOG(Message) << "qr : " << par().qRight << std::endl;
LOG(Message) << "qbr : " << par().qBarRight << std::endl;
std::vector<Result> result;
Result r;
auto &ql = envGet(PropagatorField, par().qLeft);
auto &qbl = envGet(PropagatorField, par().qBarLeft);
auto &qr = envGet(PropagatorField, par().qRight);
auto &qbr = envGet(PropagatorField, par().qBarRight);
Gamma gIn(par().gammaIn), gOut(par().gammaOut);
Gamma g5(Gamma::Algebra::Gamma5);
envGetTmp(ComplexField, corr);
r.info.in = par().gammaIn;
r.info.out = par().gammaOut;
for (auto &G: Gamma::gall)
{
SlicedComplex buf;
r.info.op = G.g;
// one trace
corr = trace(ql*adj(gIn)*g5*adj(qbl)*g5*G*qbr*gOut*g5*adj(qr)*g5*G);
sliceSum(corr, buf, Tp);
r.corr.clear();
for (unsigned int t = 0; t < buf.size(); ++t)
{
r.corr.push_back(TensorRemove(buf[t]));
}
r.info.trace = 1;
result.push_back(r);
// two traces
corr = trace(ql*adj(gIn)*g5*adj(qbl)*g5*G)*trace(qbr*gOut*g5*adj(qr)*g5*G);
sliceSum(corr, buf, Tp);
r.corr.clear();
for (unsigned int t = 0; t < buf.size(); ++t)
{
r.corr.push_back(TensorRemove(buf[t]));
}
r.info.trace = 2;
result.push_back(r);
}
saveResult(par().output, "weakNonEye3pt", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_WeakNonEye3pt_hpp_

View File

@ -1,124 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/Distil.hpp
Copyright (C) 2015-2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MDistil_Distil_hpp_
#define Hadrons_MDistil_Distil_hpp_
#include <Hadrons/NamedTensor.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/Solver.hpp>
#include <Hadrons/A2AVectors.hpp>
#include <Hadrons/DilutedNoise.hpp>
BEGIN_HADRONS_NAMESPACE
BEGIN_MODULE_NAMESPACE(MDistil)
/******************************************************************************
Distillation code that is common across modules
Documentation on how to use this code available at
* https://aportelli.github.io/Hadrons-doc/#/mdistil *
Notation for (stochastic) DistilParameters taken from 1104.3870:
TI is interlaced dilution in time (corresponding to Nt = time-dimension of the lattice)
LI is interlaced dilution in laplacian-eigenvector space (corresponding to nvec)
SI is interlaced dilution in spin (corresponding to Ns, taken from Grid, usually Ns=4)
This code automatically computes perambulators using exact distillation if
* (TI,LI,SI) = (Nt,nvec,Ns) *
In this case, nnoise=1 and Noises is set to an array of values =1 as well.
tsrc then specifies the only timeslice on which the sources are supported.
(( for stochastic distillation, the vaue of tsrc has no meaning in this code ))
******************************************************************************/
struct DistilParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(DistilParameters,
int, nvec,
int, nnoise,
int, tsrc,
int, TI,
int, LI,
int, SI )
};
/******************************************************************************
Make a lower dimensional grid in preparation for local slice operations
******************************************************************************/
inline void MakeLowerDimGrid( std::unique_ptr<GridCartesian> &up, GridCartesian * gridHD )
{
int nd{static_cast<int>(gridHD->_ndimension)};
Coordinate latt_size = gridHD->_gdimensions;
latt_size[nd-1] = 1;
Coordinate simd_layout = GridDefaultSimd(nd-1, vComplex::Nsimd());
simd_layout.push_back( 1 );
Coordinate mpi_layout = gridHD->_processors;
mpi_layout[nd-1] = 1;
up.reset( new GridCartesian(latt_size,simd_layout,mpi_layout,*gridHD) );
}
/*************************************************************************************
Rotate eigenvectors into our phase convention
First component of first eigenvector is real and positive
*************************************************************************************/
inline void RotateEigen(std::vector<LatticeColourVector> & evec)
{
ColourVector cv0;
auto grid = evec[0].Grid();
Coordinate siteFirst(grid->Nd(),0);
peekSite(cv0, evec[0], siteFirst);
const std::complex<Real> cplx0{cv0()()(0).real(), cv0()()(0).imag()};
if( cplx0.imag() == 0 )
LOG(Message) << "RotateEigen() : Site 0 : " << cplx0 << " => already meets phase convention" << std::endl;
else
{
const Real cplx0_mag{ std::abs(cplx0) };
const std::complex<Real> std_phase{std::conj(cplx0/cplx0_mag)};
LOG(Message) << "RotateEigen() : Site 0 : |" << cplx0 << "|=" << cplx0_mag
<< " => phase=" << (std::arg(std_phase) / M_PI) << " pi" << std::endl;
{
const Grid::Complex phase{std_phase.real(),std_phase.imag()};
for( int k = 0 ; k < evec.size() ; k++ )
evec[k] *= phase;
// Get rid of the rounding error in imaginary phase on the very first site
peekSite(cv0, evec[0], siteFirst);
cv0()()(0).imag(0); // this should be zero after the phase multiply - force it to be so
pokeSite(cv0, evec[0], siteFirst);
}
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif

View File

@ -1,7 +0,0 @@
#include <Hadrons/Modules/MDistil/DistilPar.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MDistil;
template class Grid::Hadrons::MDistil::TDistilPar<FIMPL>;

View File

@ -1,97 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/DistilPar.hpp
Copyright (C) 2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MDistil_DistilPar_hpp_
#define Hadrons_MDistil_DistilPar_hpp_
#include <Hadrons/Modules/MDistil/Distil.hpp>
BEGIN_HADRONS_NAMESPACE
BEGIN_MODULE_NAMESPACE(MDistil)
/******************************************************************************
* DistilPar *
******************************************************************************/
template <typename FImpl>
class TDistilPar: public Module<DistilParameters>
{
public:
// constructor
TDistilPar(const std::string name);
// destructor
virtual ~TDistilPar(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(DistilPar, TDistilPar<FIMPL>, MDistil);
/******************************************************************************
* TDistilPar implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TDistilPar<FImpl>::TDistilPar(const std::string name) : Module<DistilParameters>(name) {}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TDistilPar<FImpl>::getInput(void)
{
return {};
}
template <typename FImpl>
std::vector<std::string> TDistilPar<FImpl>::getOutput(void)
{
return {getName()};
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TDistilPar<FImpl>::setup(void)
{
envCreate(DistilParameters, getName(), 1, par() );
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TDistilPar<FImpl>::execute(void)
{
// Nothing to do. setup() created and initialised the output object
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif

View File

@ -1,36 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/DistilVectors.cc
Copyright (C) 2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MDistil/DistilVectors.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MDistil;
template class Grid::Hadrons::MDistil::TDistilVectors<FIMPL>;

View File

@ -1,243 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/DistilVectors.hpp
Copyright (C) 2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MDistil_DistilVectors_hpp_
#define Hadrons_MDistil_DistilVectors_hpp_
#include <Hadrons/Modules/MDistil/Distil.hpp>
BEGIN_HADRONS_NAMESPACE
BEGIN_MODULE_NAMESPACE(MDistil)
/******************************************************************************
* DistilVectors *
* (Create rho and/or phi vectors) *
******************************************************************************/
class DistilVectorsPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(DistilVectorsPar,
std::string, noise,
std::string, perambulator,
std::string, lapevec,
std::string, rho,
std::string, phi,
std::string, DistilParams);
};
template <typename FImpl>
class TDistilVectors: public Module<DistilVectorsPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
// constructor
TDistilVectors(const std::string name);
// destructor
virtual ~TDistilVectors(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
protected:
std::unique_ptr<GridCartesian> grid3d; // Owned by me, so I must delete it
public:
// These variables contain parameters
std::string RhoName;
std::string PhiName;
};
MODULE_REGISTER_TMP(DistilVectors, TDistilVectors<FIMPL>, MDistil);
/******************************************************************************
* TDistilVectors implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TDistilVectors<FImpl>::TDistilVectors(const std::string name) : Module<DistilVectorsPar>(name) {}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TDistilVectors<FImpl>::getInput(void)
{
return {par().noise,par().perambulator,par().lapevec,par().DistilParams};
}
template <typename FImpl>
std::vector<std::string> TDistilVectors<FImpl>::getOutput(void)
{
RhoName = par().rho;
PhiName = par().phi;
if (RhoName.empty() && PhiName.empty())
{
HADRONS_ERROR(Argument,"No output specified");
}
std::vector<std::string> out;
if (!RhoName.empty())
out.push_back(RhoName);
if (!PhiName.empty())
out.push_back(PhiName);
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TDistilVectors<FImpl>::setup(void)
{
// We expect the perambulator to have been created with these indices
auto &perambulator = envGet(PerambTensor, par().perambulator);
if (!perambulator.ValidateIndexNames())
{
HADRONS_ERROR(Range,"Perambulator index names bad");
}
const DistilParameters &dp{envGet(DistilParameters, par().DistilParams)};
const int Nt{env().getDim(Tdir)};
const bool full_tdil{ dp.TI == Nt };
const int Nt_inv{ full_tdil ? 1 : dp.TI };
if (!RhoName.empty())
envCreate(std::vector<FermionField>, RhoName, 1, dp.nnoise*dp.LI*dp.SI*Nt_inv, envGetGrid(FermionField));
if (!PhiName.empty())
envCreate(std::vector<FermionField>, PhiName, 1, dp.nnoise*dp.LI*dp.SI*Nt_inv, envGetGrid(FermionField));
Coordinate latt_size = GridDefaultLatt();
Coordinate mpi_layout = GridDefaultMpi();
Coordinate simd_layout_3 = GridDefaultSimd(Nd-1, vComplex::Nsimd());
latt_size[Nd-1] = 1;
simd_layout_3.push_back( 1 );
mpi_layout[Nd-1] = 1;
GridCartesian * const grid4d{env().getGrid()};
MakeLowerDimGrid(grid3d, grid4d);
envTmp(LatticeSpinColourVector, "source4d",1,LatticeSpinColourVector(grid4d));
envTmp(LatticeSpinColourVector, "source3d",1,LatticeSpinColourVector(grid3d.get()));
envTmp(LatticeColourVector, "source3d_nospin",1,LatticeColourVector(grid3d.get()));
envTmp(LatticeSpinColourVector, "sink3d",1,LatticeSpinColourVector(grid3d.get()));
envTmp(LatticeColourVector, "evec3d",1,LatticeColourVector(grid3d.get()));
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TDistilVectors<FImpl>::execute(void)
{
auto &noise = envGet(NoiseTensor, par().noise);
auto &perambulator = envGet(PerambTensor, par().perambulator);
auto &epack = envGet(Grid::Hadrons::EigenPack<LatticeColourVector>, par().lapevec);
const DistilParameters &dp{envGet(DistilParameters, par().DistilParams)};
envGetTmp(LatticeSpinColourVector, source4d);
envGetTmp(LatticeSpinColourVector, source3d);
envGetTmp(LatticeColourVector, source3d_nospin);
envGetTmp(LatticeSpinColourVector, sink3d);
envGetTmp(LatticeColourVector, evec3d);
GridCartesian * const grid4d{env().getGrid()};
const int Ntlocal{ grid4d->LocalDimensions()[3] };
const int Ntfirst{ grid4d->LocalStarts()[3] };
const int Nt{env().getDim(Tdir)};
const bool full_tdil{ dp.TI == Nt };
const int Nt_inv{ full_tdil ? 1 : dp.TI };
int vecindex;
if (!RhoName.empty())
{
auto &rho = envGet(std::vector<FermionField>, RhoName);
for (int inoise = 0; inoise < dp.nnoise; inoise++)
{
for (int dk = 0; dk < dp.LI; dk++)
{
for (int dt = 0; dt < Nt_inv; dt++)
{
for (int ds = 0; ds < dp.SI; ds++)
{
vecindex = inoise + dp.nnoise * (dk + dp.LI * (ds + dp.SI * dt));
rho[vecindex] = 0;
for (int it = dt; it < Nt; it += dp.TI)
{
const int t_inv{full_tdil ? dp.tsrc : it};
if (t_inv >= Ntfirst && t_inv < Ntfirst + Ntlocal)
{
for (int ik = dk; ik < dp.nvec; ik += dp.LI)
{
for (int is = ds; is < Ns; is += dp.SI)
{
ExtractSliceLocal(evec3d,epack.evec[ik],0,t_inv-Ntfirst,Tdir);
source3d_nospin = evec3d * noise.tensor(inoise, t_inv, ik, is);
source3d=0;
pokeSpin(source3d,source3d_nospin,is);
source4d=0;
InsertSliceLocal(source3d,source4d,0,t_inv-Ntfirst,Tdir);
rho[vecindex] += source4d;
}
}
}
}
}
}
}
}
}
if (!PhiName.empty())
{
auto &phi = envGet(std::vector<FermionField>, PhiName);
for (int inoise = 0; inoise < dp.nnoise; inoise++)
{
for (int dk = 0; dk < dp.LI; dk++)
{
for (int dt = 0; dt < Nt_inv; dt++)
{
for (int ds = 0; ds < dp.SI; ds++)
{
vecindex = inoise + dp.nnoise * (dk + dp.LI * (ds + dp.SI * dt));
phi[vecindex] = 0;
for (int t = Ntfirst; t < Ntfirst + Ntlocal; t++)
{
sink3d=0;
for (int ivec = 0; ivec < dp.nvec; ivec++)
{
ExtractSliceLocal(evec3d,epack.evec[ivec],0,t-Ntfirst,Tdir);
sink3d += evec3d * perambulator.tensor(t, ivec, dk, inoise,dt,ds);
}
InsertSliceLocal(sink3d,phi[vecindex],0,t-Ntfirst,Tdir);
}
}
}
}
}
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MDistil_DistilVectors_hpp_

View File

@ -1,36 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/LapEvec.cc
Copyright (C) 2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MDistil/LapEvec.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MDistil;
template class Grid::Hadrons::MDistil::TLapEvec<GIMPL>;

View File

@ -1,354 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/LapEvec.hpp
Copyright (C) 2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MDistil_LapEvec_hpp_
#define Hadrons_MDistil_LapEvec_hpp_
#include <Hadrons/Modules/MDistil/Distil.hpp>
BEGIN_HADRONS_NAMESPACE
BEGIN_MODULE_NAMESPACE(MDistil)
/******************************************************************************
Laplacian eigenvectors - parameters
Computes the eigenvectors of the 3D-Laplacian, built from stout-smeared
gauge links with the specified number of steps and smearing parameter rho.
The smearing is only applied to the spatial components of the gauge field,
i.e. rho_{4i} = rho_{i4} = rho_{44} = 0.
Chebyshev-preconditioning is needed for convergence of the nvec lowest
eigenvectors.
******************************************************************************/
struct StoutParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(StoutParameters,
int, steps,
double, rho)
StoutParameters() = default;
template <class ReaderClass> StoutParameters(Reader<ReaderClass>& Reader){read(Reader,"StoutSmearing",*this);}
};
struct ChebyshevParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyshevParameters,
int, PolyOrder,
double, alpha,
double, beta)
ChebyshevParameters() = default;
template <class ReaderClass> ChebyshevParameters(Reader<ReaderClass>& Reader){read(Reader,"Chebyshev",*this);}
};
struct LanczosParameters: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
int, Nvec,
int, Nk,
int, Np,
int, MaxIt,
double, resid,
int, IRLLog)
LanczosParameters() = default;
template <class ReaderClass> LanczosParameters(Reader<ReaderClass>& Reader){read(Reader,"Lanczos",*this);}
};
// These are the actual parameters passed to the module during construction
struct LapEvecPar: Serializable {
GRID_SERIALIZABLE_CLASS_MEMBERS(LapEvecPar
,std::string, gauge
,StoutParameters, Stout
,ChebyshevParameters, Cheby
,LanczosParameters, Lanczos
,std::string, FileName)
};
/******************************************************************************
Laplacian eigenvectors - Module (class) definition
******************************************************************************/
template <typename GImpl>
class TLapEvec: public Module<LapEvecPar>
{
public:
GAUGE_TYPE_ALIASES(GImpl,);
// constructor
TLapEvec(const std::string name);
// destructor
virtual ~TLapEvec(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
protected:
std::unique_ptr<GridCartesian> gridLD; // Owned by me, so I must delete it
};
MODULE_REGISTER_TMP(LapEvec, TLapEvec<GIMPL>, MDistil);
/******************************************************************************
TLapEvec implementation
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename GImpl>
TLapEvec<GImpl>::TLapEvec(const std::string name) : Module<LapEvecPar>(name) {}
// dependencies/products ///////////////////////////////////////////////////////
template <typename GImpl>
std::vector<std::string> TLapEvec<GImpl>::getInput(void)
{
return std::vector<std::string>{par().gauge};
}
template <typename GImpl>
std::vector<std::string> TLapEvec<GImpl>::getOutput(void)
{
return {getName()}; // This is the higher dimensional eigenpack
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename GImpl>
void TLapEvec<GImpl>::setup(void)
{
GridCartesian * gridHD = env().getGrid();
MakeLowerDimGrid(gridLD,gridHD);
const int Ntlocal{gridHD->LocalDimensions()[Tdir]};
// Temporaries
envTmpLat(GaugeField, "Umu_stout");
envTmpLat(GaugeField, "Umu_smear");
envTmp(LatticeGaugeField, "UmuNoTime",1,LatticeGaugeField(gridLD.get()));
envTmp(LatticeColourVector, "src",1,LatticeColourVector(gridLD.get()));
envTmp(std::vector<LapEvecs>, "eig",1,std::vector<LapEvecs>(Ntlocal));
// Output objects
envCreate(LapEvecs, getName(), 1, par().Lanczos.Nvec, gridHD);
}
/*************************************************************************************
-Grad^2 (Peardon, 2009, pg 2, equation 3, https://arxiv.org/abs/0905.2160)
Field Type of field the operator will be applied to
GaugeField Gauge field the operator will smear using
*************************************************************************************/
template<typename Field, typename GaugeField=LatticeGaugeField>
class Laplacian3D : public LinearOperatorBase<Field>, public LinearFunction<Field> {
typedef typename GaugeField::vector_type vCoeff_t;
public:
int nd; // number of spatial dimensions
std::vector<Lattice<iColourMatrix<vCoeff_t> > > U;
// Construct this operator given a gauge field and the number of dimensions it should act on
Laplacian3D( GaugeField& gf, int dimSpatial = Tdir ) : nd{dimSpatial}
{
if (dimSpatial<1)
{
HADRONS_ERROR(Range,"Must be at least one spatial dimension");
}
for (int mu = 0 ; mu < nd ; mu++)
U.push_back(PeekIndex<LorentzIndex>(gf,mu));
}
// Apply this operator to "in", return result in "out"
void operator()(const Field& in, Field& out) {
if (nd > in.Grid()->Nd())
{
HADRONS_ERROR(Range,"nd too large");
}
conformable( in, out );
out = ( ( Real ) ( 2 * nd ) ) * in;
Field tmp_(in.Grid());
typedef typename GaugeField::vector_type vCoeff_t;
for (int mu = 0 ; mu < nd ; mu++)
{
out -= U[mu] * Cshift( in, mu, 1);
tmp_ = adj( U[mu] ) * in;
out -= Cshift(tmp_,mu,-1);
}
}
void OpDiag (const Field &in, Field &out) { HADRONS_ERROR(Definition, "OpDiag() undefined"); };
void OpDir (const Field &in, Field &out,int dir,int disp) { HADRONS_ERROR(Definition, "OpDir() undefined"); };
void Op (const Field &in, Field &out) { HADRONS_ERROR(Definition, "Op() undefined"); };
void AdjOp (const Field &in, Field &out) { HADRONS_ERROR(Definition, "AdjOp() undefined"); };
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2) { HADRONS_ERROR(Definition, "HermOpAndNorm() undefined"); };
void HermOp(const Field &in, Field &out) { operator()(in,out); };
};
template<typename Field>
class Laplacian3DHerm : public LinearFunction<Field> {
public:
OperatorFunction<Field> & poly_;
LinearOperatorBase<Field> &Linop_;
Laplacian3DHerm(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
: poly_{poly}, Linop_{linop} {}
void operator()(const Field& in, Field& out)
{
poly_(Linop_,in,out);
}
};
/******************************************************************************
Calculate low-mode eigenvalues of the Laplacian
******************************************************************************/
// execution ///////////////////////////////////////////////////////////////////
template <typename GImpl>
void TLapEvec<GImpl>::execute(void)
{
const ChebyshevParameters &ChebPar{par().Cheby};
const LanczosParameters &LPar{par().Lanczos};
// Disable IRL logging if requested
LOG(Message) << "IRLLog=" << LPar.IRLLog << std::endl;
const int PreviousIRLLogState{GridLogIRL.isActive()};
GridLogIRL.Active( LPar.IRLLog == 0 ? 0 : 1 );
// Stout smearing
envGetTmp(GaugeField, Umu_smear);
Umu_smear = envGet(GaugeField, par().gauge); // The smeared field starts off as the Gauge field
LOG(Message) << "Initial plaquette: " << WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu_smear) << std::endl;
const StoutParameters &Stout{par().Stout};
if( Stout.steps )
{
envGetTmp(GaugeField, Umu_stout);
Smear_Stout<PeriodicGimplR> LS(Stout.rho, Tdir); // spatial smearing only
for (int i = 0; i < Stout.steps; i++) {
LS.smear(Umu_stout, Umu_smear);
Umu_smear = Umu_stout;
}
LOG(Message) << "Smeared plaquette: " << WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu_smear) << std::endl;
}
////////////////////////////////////////////////////////////////////////
// Invert nabla operator separately on each time-slice
////////////////////////////////////////////////////////////////////////
auto & eig4d = envGet(LapEvecs, getName() );
envGetTmp(std::vector<LapEvecs>, eig); // Eigenpack for each timeslice
envGetTmp(LatticeGaugeField, UmuNoTime); // Gauge field without time dimension
envGetTmp(LatticeColourVector, src);
GridCartesian * gridHD = env().getGrid();
const int Ntlocal{gridHD->LocalDimensions()[Tdir]};
const int Ntfirst{gridHD->LocalStarts()[Tdir]};
uint32_t ConvergenceErrors{0};
const int NtFull{env().getDim(Tdir)};
TimesliceEvals Evals{ NtFull, LPar.Nvec };
for (int t = 0; t < NtFull; t++)
for (int v = 0; v < LPar.Nvec; v++)
Evals.tensor( t, v ) = 0;
for (int t = 0; t < Ntlocal; t++ )
{
LOG(Message) << "------------------------------------------------------------" << std::endl;
LOG(Message) << " Compute eigenpack, local timeslice = " << t << " / " << Ntlocal << std::endl;
LOG(Message) << "------------------------------------------------------------" << std::endl;
eig[t].resize(LPar.Nk+LPar.Np,gridLD.get());
// Construct smearing operator
ExtractSliceLocal(UmuNoTime,Umu_smear,0,t,Tdir); // switch to 3d/4d objects
Laplacian3D<LatticeColourVector> Nabla(UmuNoTime);
LOG(Message) << "Chebyshev preconditioning to order " << ChebPar.PolyOrder
<< " with parameters (alpha,beta) = (" << ChebPar.alpha << "," << ChebPar.beta << ")" << std::endl;
Chebyshev<LatticeColourVector> Cheb(ChebPar.alpha,ChebPar.beta,ChebPar.PolyOrder);
// Construct source vector according to Test_dwf_compressed_lanczos.cc
src = 11.0; // NB: This is a dummy parameter and just needs to be non-zero
RealD nn = norm2(src);
nn = Grid::sqrt(nn);
src = src * (1.0/nn);
Laplacian3DHerm<LatticeColourVector> NablaCheby(Cheb,Nabla);
ImplicitlyRestartedLanczos<LatticeColourVector>
IRL(NablaCheby,Nabla,LPar.Nvec,LPar.Nk,LPar.Nk+LPar.Np,LPar.resid,LPar.MaxIt);
int Nconv = 0;
IRL.calc(eig[t].eval,eig[t].evec,src,Nconv);
if (Nconv < LPar.Nvec)
{
// NB: Can't assert here since we are processing local slices - i.e. not all nodes would assert
ConvergenceErrors = 1;
LOG(Error) << "MDistil::LapEvec : Not enough eigenvectors converged. If this occurs in practice, we should modify the eigensolver to iterate once more to ensure the second convergence test does not take us below the requested number of eigenvectors" << std::endl;
}
if( Nconv != LPar.Nvec )
eig[t].resize(LPar.Nvec, gridLD.get());
RotateEigen( eig[t].evec ); // Rotate the eigenvectors into our phase convention
for (int i=0;i<LPar.Nvec;i++){
InsertSliceLocal(eig[t].evec[i],eig4d.evec[i],0,t,Tdir);
if(t==0 && Ntfirst==0)
eig4d.eval[i] = eig[t].eval[i]; // TODO: Discuss: is this needed? Is there a better way?
if(gridLD->IsBoss()) // Only do this on one node per timeslice, so a global sum will work
Evals.tensor(t + Ntfirst,i) = eig[t].eval[i];
}
}
GridLogIRL.Active( PreviousIRLLogState );
gridHD->GlobalSum(ConvergenceErrors);
if(ConvergenceErrors!=0)
{
HADRONS_ERROR(Program,"The eingensolver failed to find enough eigenvectors on at least one node");
}
// Now write out the 4d eigenvectors
std::string sEigenPackName(par().FileName);
if( !sEigenPackName.empty() )
{
eig4d.record.solverXml = parString();
ModuleBase * b{vm().getModule(par().gauge)};
std::string sOperatorXml{ "<module><id><type>" };
sOperatorXml.append( b->getRegisteredName() );
sOperatorXml.append( "</type></id><options>" );
sOperatorXml.append( b->parString() );
sOperatorXml.append( "</options></module>" );
eig4d.record.operatorXml = sOperatorXml;
sEigenPackName.append(1, '.');
std::size_t NameLen{ sEigenPackName.length() };
const std::string sTrajNum{std::to_string(vm().getTrajectory())};
sEigenPackName.append(sTrajNum);
eig4d.write(sEigenPackName,false);
// Communicate eig[t].evec to boss-node, save into new object evecs
gridHD->GlobalSumVector(EigenIO::getFirstScalar(Evals.tensor),
static_cast<int>(EigenIO::getScalarCount(Evals.tensor)));
if(gridHD->IsBoss())
{
sEigenPackName.resize(NameLen);
sEigenPackName.append("evals.");
sEigenPackName.append(sTrajNum);
Evals.write( sEigenPackName );
}
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MDistil_LapEvec_hpp_

View File

@ -1,36 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/Noises.cc
Copyright (C) 2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MDistil/Noises.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MDistil;
template class Grid::Hadrons::MDistil::TNoises<FIMPL>;

View File

@ -1,146 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/Noises.hpp
Copyright (C) 2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MDistil_Noises_hpp_
#define Hadrons_MDistil_Noises_hpp_
#include <Hadrons/Modules/MDistil/Distil.hpp>
BEGIN_HADRONS_NAMESPACE
BEGIN_MODULE_NAMESPACE(MDistil)
/******************************************************************************
* Noises *
******************************************************************************/
class NoisesPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(NoisesPar,
std::string, DistilParams,
std::string, NoiseFileName)
};
template <typename FImpl>
class TNoises: public Module<NoisesPar>
{
public:
// constructor
TNoises(const std::string name);
// destructor
virtual ~TNoises(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Noises, TNoises<FIMPL>, MDistil);
/******************************************************************************
* TNoises implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TNoises<FImpl>::TNoises(const std::string name) : Module<NoisesPar>(name) {}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TNoises<FImpl>::getInput(void)
{
return {par().DistilParams};
}
template <typename FImpl>
std::vector<std::string> TNoises<FImpl>::getOutput(void)
{
return {getName()};
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TNoises<FImpl>::setup(void)
{
const DistilParameters &dp{envGet(DistilParameters, par().DistilParams)};
const int Nt{env().getDim(Tdir)};
std::cout << dp.nnoise << dp.nvec << Nt << Ns << std::endl;
envCreate(NoiseTensor, getName(), 1, dp.nnoise, Nt, dp.nvec, Ns);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TNoises<FImpl>::execute(void)
{
const DistilParameters &dp{envGet(DistilParameters, par().DistilParams)};
const int Nt{env().getDim(Tdir)};
const bool full_tdil{ dp.TI == Nt };
const bool exact_distillation{ full_tdil && dp.LI == dp.nvec };
// We use our own seeds so we can specify different noises per quark
Real rn;
auto &noise = envGet(NoiseTensor, getName());
for (int inoise = 0; inoise < dp.nnoise; inoise++)
{
for (int t = 0; t < Nt; t++)
{
for (int ivec = 0; ivec < dp.nvec; ivec++)
{
for (int is = 0; is < Ns; is++)
{
if (exact_distillation)
{
noise.tensor(inoise, t, ivec, is) = 1.;
}
else
{
random(rngSerial(),rn);
// We could use a greater number of complex roots of unity
// ... but this seems to work well
noise.tensor(inoise, t, ivec, is) = (rn > 0.5) ? -1 : 1;
}
}
}
}
}
if (env().getGrid()->IsBoss())
{
std::string sName {par().NoiseFileName};
sName.append(".");
sName.append(std::to_string(vm().getTrajectory()));
noise.write(sName.c_str());
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif

View File

@ -1,36 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/PerambFromSolve.cc
Copyright (C) 2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MDistil/PerambFromSolve.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MDistil;
template class Grid::Hadrons::MDistil::TPerambFromSolve<FIMPL>;

View File

@ -1,183 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/PerambFromSolve.hpp
Copyright (C) 2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MDistil_PerambFromSolve_hpp_
#define Hadrons_MDistil_PerambFromSolve_hpp_
#include <Hadrons/Modules/MDistil/Distil.hpp>
BEGIN_HADRONS_NAMESPACE
BEGIN_MODULE_NAMESPACE(MDistil)
/******************************************************************************
* PerambFromSolve
This module computes a perambulator from an already completed solve.
Optionally, the number of eigenvectors used in the perambulator and the
parameter LI can be chosen to be lower than the ones in the solve, allowing
for a study of the signal with different values of nvec.
LI_reduced : value of LI actually used in the computation
nvec_reduced: value of nvec actually used in the computation
LI : value of LI used to compute the 'solve'
nvec : value of nvec used to compute the 'solve'
******************************************************************************/
class PerambFromSolvePar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(PerambFromSolvePar,
std::string, lapevec,
std::string, PerambFileName,
std::string, solve,
int, nvec_reduced,
int, LI_reduced,
std::string, DistilParams);
};
template <typename FImpl>
class TPerambFromSolve: public Module<PerambFromSolvePar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
// constructor
TPerambFromSolve(const std::string name);
// destructor
virtual ~TPerambFromSolve(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
protected:
std::unique_ptr<GridCartesian> grid3d; // Owned by me, so I must delete it
};
MODULE_REGISTER_TMP(PerambFromSolve, TPerambFromSolve<FIMPL>, MDistil);
/******************************************************************************
* TPerambFromSolve implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TPerambFromSolve<FImpl>::TPerambFromSolve(const std::string name) : Module<PerambFromSolvePar>(name){}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TPerambFromSolve<FImpl>::getInput(void)
{
return {par().solve, par().lapevec, par().DistilParams};
}
template <typename FImpl>
std::vector<std::string> TPerambFromSolve<FImpl>::getOutput(void)
{
return std::vector<std::string>{getName()};
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TPerambFromSolve<FImpl>::setup(void)
{
const DistilParameters & dp{envGet(MDistil::DistilParameters, par().DistilParams)};
const int Nt{env().getDim(Tdir)};
const bool full_tdil{ dp.TI == Nt };
const int Nt_inv{ full_tdil ? 1 : dp.TI };
MakeLowerDimGrid( grid3d, env().getGrid() );
const int nvec_reduced{par().nvec_reduced};
const int LI_reduced{ par().LI_reduced};
envCreate(PerambTensor, getName(), 1, Nt,nvec_reduced,LI_reduced,dp.nnoise,Nt_inv,dp.SI);
envCreate(NoiseTensor, getName() + "_noise", 1, dp.nnoise, Nt, dp.nvec, Ns );
envTmp(LatticeColourVector, "result3d_nospin",1,LatticeColourVector(grid3d.get()));
envTmp(LatticeColourVector, "evec3d",1,LatticeColourVector(grid3d.get()));
envTmpLat(LatticeColourVector, "result4d_nospin");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TPerambFromSolve<FImpl>::execute(void)
{
GridCartesian * grid4d = env().getGrid();
const int Ntlocal{grid4d->LocalDimensions()[3]};
const int Ntfirst{grid4d->LocalStarts()[3]};
const DistilParameters &dp{envGet(DistilParameters, par().DistilParams)};
const int Nt{env().getDim(Tdir)};
const bool full_tdil{ dp.TI == Nt };
const int Nt_inv{ full_tdil ? 1 : dp.TI };
const int nvec_reduced{par().nvec_reduced};
const int LI_reduced{ par().LI_reduced};
auto &perambulator = envGet(PerambTensor, getName());
auto &solve = envGet(std::vector<FermionField>, par().solve);
auto &epack = envGet(Grid::Hadrons::EigenPack<LatticeColourVector>, par().lapevec);
envGetTmp(LatticeColourVector, result4d_nospin);
envGetTmp(LatticeColourVector, result3d_nospin);
envGetTmp(LatticeColourVector, evec3d);
for (int inoise = 0; inoise < dp.nnoise; inoise++)
{
for (int dk = 0; dk < LI_reduced; dk++)
{
for (int dt = 0; dt < Nt_inv; dt++)
{
for (int ds = 0; ds < dp.SI; ds++)
{
for (int is = 0; is < Ns; is++)
{
result4d_nospin = peekSpin(solve[inoise+dp.nnoise*(dk+dp.LI*(dt+Nt_inv*ds))],is);
for (int t = Ntfirst; t < Ntfirst + Ntlocal; t++)
{
ExtractSliceLocal(result3d_nospin,result4d_nospin,0,t-Ntfirst,Tdir);
for (int ivec = 0; ivec < nvec_reduced; ivec++)
{
ExtractSliceLocal(evec3d,epack.evec[ivec],0,t-Ntfirst,Tdir);
pokeSpin(perambulator.tensor(t, ivec, dk, inoise,dt,ds),static_cast<Complex>(innerProduct(evec3d, result3d_nospin)),is);
LOG(Message) << "perambulator(t, ivec, dk, inoise,dt,ds)(is) = (" << t << "," << ivec << "," << dk << "," << inoise << "," << dt << "," << ds << ")(" << is << ") = " << perambulator.tensor(t, ivec, dk, inoise,dt,ds)()(is)() << std::endl;
}
}
}
}
}
}
}
if(grid4d->IsBoss())
{
std::string sPerambName{par().PerambFileName};
sPerambName.append( "." );
sPerambName.append( std::to_string(vm().getTrajectory()));
perambulator.write(sPerambName.c_str());
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MDistil_PerambFromSolve_hpp_

View File

@ -1,61 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/Perambulator.cc
Copyright (C) 2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MDistil/Perambulator.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MDistil;
template class Grid::Hadrons::MDistil::TPerambulator<FIMPL>;
template class Grid::Hadrons::MDistil::TPerambulator<ZFIMPL>;
BEGIN_HADRONS_NAMESPACE
// Global constants for distillation
#ifdef HAVE_HDF5
extern const std::string NamedTensorFileExtension{".h5"};
#else
extern const std::string NamedTensorFileExtension{".dat"};
#endif
BEGIN_MODULE_NAMESPACE(MDistil)
const std::string NoiseTensor::Name__{"Noises"};
const std::array<std::string, 4> NoiseTensor::DefaultIndexNames__{"nNoise", "nT", "nVec", "nS"};
const std::string PerambTensor::Name__{"Perambulator"};
const std::array<std::string, 6> PerambTensor::DefaultIndexNames__{"nT", "nVec", "LI", "nNoise", "nT_inv", "SI"};
const std::string TimesliceEvals::Name__{"TimesliceEigenValues"};
const std::array<std::string, 2> TimesliceEvals::DefaultIndexNames__{"nT", "nVec"};
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE

View File

@ -1,288 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MDistil/Perambulator.hpp
Copyright (C) 2019
Author: Felix Erben <ferben@ed.ac.uk>
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MDistil_Perambulator_hpp_
#define Hadrons_MDistil_Perambulator_hpp_
#include <Hadrons/Modules/MDistil/Distil.hpp>
BEGIN_HADRONS_NAMESPACE
BEGIN_MODULE_NAMESPACE(MDistil)
/******************************************************************************
* Perambulator *
******************************************************************************/
class PerambulatorPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(PerambulatorPar,
std::string, lapevec,
std::string, solver,
std::string, noise,
std::string, PerambFileName,
std::string, UnsmearedSinkFileName,
std::string, DistilParams);
};
template <typename FImpl>
class TPerambulator: public Module<PerambulatorPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
SOLVER_TYPE_ALIASES(FImpl,);
// constructor
TPerambulator(const std::string name);
// destructor
virtual ~TPerambulator(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
protected:
std::unique_ptr<GridCartesian> grid3d; // Owned by me, so I must delete it
unsigned int Ls_;
};
MODULE_REGISTER_TMP(Perambulator, TPerambulator<FIMPL>, MDistil);
MODULE_REGISTER_TMP(ZPerambulator, TPerambulator<ZFIMPL>, MDistil);
/******************************************************************************
* TPerambulator implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TPerambulator<FImpl>::TPerambulator(const std::string name) : Module<PerambulatorPar>(name) {}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TPerambulator<FImpl>::getInput(void)
{
return {par().lapevec, par().solver, par().noise, par().DistilParams};
}
static const std::string UnsmearedSink{ "_unsmeared_sink" };
template <typename FImpl>
std::vector<std::string> TPerambulator<FImpl>::getOutput(void)
{
// Always return perambulator with name of module
std::string objName{ getName() };
std::vector<std::string> output{ objName };
// If unsmeared sink is specified, then output that as well
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
if( !UnsmearedSinkFileName.empty() )
{
objName.append( UnsmearedSink );
output.push_back( objName );
}
return output;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TPerambulator<FImpl>::setup(void)
{
MakeLowerDimGrid(grid3d, env().getGrid());
const DistilParameters &dp = envGet(DistilParameters, par().DistilParams);
const int Nt{env().getDim(Tdir)};
const bool full_tdil{ dp.TI == Nt };
const int Nt_inv{ full_tdil ? 1 : dp.TI };
std::string objName{ getName() };
envCreate(PerambTensor, objName, 1, Nt, dp.nvec, dp.LI, dp.nnoise, Nt_inv, dp.SI);
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
if( !UnsmearedSinkFileName.empty() )
{
objName.append( UnsmearedSink );
envCreate(std::vector<FermionField>, objName, 1, dp.nnoise*dp.LI*Ns*Nt_inv,
envGetGrid(FermionField));
}
envTmpLat(LatticeSpinColourVector, "dist_source");
envTmpLat(LatticeSpinColourVector, "source4d");
envTmp(LatticeSpinColourVector, "source3d",1,LatticeSpinColourVector(grid3d.get()));
envTmp(LatticeColourVector, "source3d_nospin",1,LatticeColourVector(grid3d.get()));
envTmpLat(LatticeSpinColourVector, "result4d");
envTmpLat(LatticeColourVector, "result4d_nospin");
envTmp(LatticeColourVector, "result3d_nospin",1,LatticeColourVector(grid3d.get()));
envTmp(LatticeColourVector, "evec3d",1,LatticeColourVector(grid3d.get()));
Ls_ = env().getObjectLs(par().solver);
envTmpLat(FermionField, "v4dtmp");
envTmpLat(FermionField, "v5dtmp", Ls_);
envTmpLat(FermionField, "v5dtmp_sol", Ls_);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TPerambulator<FImpl>::execute(void)
{
const DistilParameters &dp{ envGet(DistilParameters, par().DistilParams) };
const int Nt{env().getDim(Tdir)};
const bool full_tdil{ dp.TI == Nt };
const int Nt_inv{ full_tdil ? 1 : dp.TI };
auto &solver=envGet(Solver, par().solver);
auto &mat = solver.getFMat();
envGetTmp(FermionField, v4dtmp);
envGetTmp(FermionField, v5dtmp);
envGetTmp(FermionField, v5dtmp_sol);
auto &noise = envGet(NoiseTensor, par().noise);
std::string objName{ getName() };
auto &perambulator = envGet(PerambTensor, objName);
auto &epack = envGet(LapEvecs, par().lapevec);
objName.append( UnsmearedSink );
const std::string UnsmearedSinkFileName{ par().UnsmearedSinkFileName };
const bool bSaveUnsmearedSink( !UnsmearedSinkFileName.empty() );
envGetTmp(LatticeSpinColourVector, dist_source);
envGetTmp(LatticeSpinColourVector, source4d);
envGetTmp(LatticeSpinColourVector, source3d);
envGetTmp(LatticeColourVector, source3d_nospin);
envGetTmp(LatticeSpinColourVector, result4d);
envGetTmp(LatticeColourVector, result4d_nospin);
envGetTmp(LatticeColourVector, result3d_nospin);
envGetTmp(LatticeColourVector, evec3d);
GridCartesian * const grid4d{ env().getGrid() }; // Owned by environment (so I won't delete it)
const int Ntlocal{grid4d->LocalDimensions()[3]};
const int Ntfirst{grid4d->LocalStarts()[3]};
for (int inoise = 0; inoise < dp.nnoise; inoise++)
{
for (int dk = 0; dk < dp.LI; dk++)
{
for (int dt = 0; dt < Nt_inv; dt++)
{
for (int ds = 0; ds < dp.SI; ds++)
{
LOG(Message) << "LapH source vector from noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl;
dist_source = 0;
evec3d = 0;
for (int it = dt; it < Nt; it += dp.TI)
{
const int t_inv{full_tdil ? dp.tsrc : it};
if( t_inv >= Ntfirst && t_inv < Ntfirst + Ntlocal )
{
for (int ik = dk; ik < dp.nvec; ik += dp.LI)
{
for (int is = ds; is < Ns; is += dp.SI)
{
ExtractSliceLocal(evec3d,epack.evec[ik],0,t_inv-Ntfirst,Tdir);
source3d_nospin = evec3d * noise.tensor(inoise, t_inv, ik, is);
source3d=0;
pokeSpin(source3d,source3d_nospin,is);
source4d=0;
InsertSliceLocal(source3d,source4d,0,t_inv-Ntfirst,Tdir);
dist_source += source4d;
}
}
}
}
result4d=0;
v4dtmp = dist_source;
if (Ls_ == 1)
solver(result4d, v4dtmp);
else
{
mat.ImportPhysicalFermionSource(v4dtmp, v5dtmp);
solver(v5dtmp_sol, v5dtmp);
mat.ExportPhysicalFermionSolution(v5dtmp_sol, v4dtmp);
result4d = v4dtmp;
}
if( bSaveUnsmearedSink )
{
auto &unsmeared_sink = envGet(std::vector<FermionField>, objName);
unsmeared_sink[inoise+dp.nnoise*(dk+dp.LI*(dt+Nt_inv*ds))] = result4d;
}
for (int is = 0; is < Ns; is++)
{
result4d_nospin = peekSpin(result4d,is);
for (int t = Ntfirst; t < Ntfirst + Ntlocal; t++)
{
ExtractSliceLocal(result3d_nospin,result4d_nospin,0,t-Ntfirst,Tdir);
for (int ivec = 0; ivec < dp.nvec; ivec++)
{
ExtractSliceLocal(evec3d,epack.evec[ivec],0,t-Ntfirst,Tdir);
pokeSpin(perambulator.tensor(t, ivec, dk, inoise,dt,ds),static_cast<Complex>(innerProduct(evec3d, result3d_nospin)),is);
}
}
}
}
}
}
}
// Now share my timeslice data with other members of the grid
const int NumSlices{grid4d->_processors[Tdir] / grid3d->_processors[Tdir]};
if (NumSlices > 1)
{
LOG(Debug) << "Sharing perambulator data with other nodes" << std::endl;
const int MySlice {grid4d->_processor_coor[Tdir]};
const int SliceCount {static_cast<int>(perambulator.tensor.size()/NumSlices)};
PerambTensor::Scalar * const MyData {perambulator.tensor.data()+MySlice*SliceCount};
Coordinate coor(Nd);
for (int i = 0 ; i < Tdir ; i++) coor[i] = grid4d->_processor_coor[i];
std::vector<CommsRequest_t> reqs(0);
for (int i = 1; i < NumSlices ; i++)
{
coor[Tdir] = (MySlice+i)%NumSlices;
const int SendRank { grid4d->RankFromProcessorCoor(coor) };
const int RecvSlice { ( MySlice - i + NumSlices ) % NumSlices };
coor[Tdir] = RecvSlice;
const auto RecvRank = grid4d->RankFromProcessorCoor(coor);
grid4d->SendToRecvFromBegin(reqs,MyData,SendRank, perambulator.tensor.data()
+ RecvSlice*SliceCount,RecvRank,SliceCount*sizeof(PerambTensor::Scalar));
}
grid4d->SendToRecvFromComplete(reqs);
}
// Save the perambulator to disk from the boss node
if (grid4d->IsBoss())
{
std::string sPerambName {par().PerambFileName};
sPerambName.append(".");
sPerambName.append(std::to_string(vm().getTrajectory()));
perambulator.write(sPerambName.c_str());
}
//Save the unsmeared sinks if filename specified
if (bSaveUnsmearedSink)
{
LOG(Message) << "Writing unsmeared sink to " << UnsmearedSinkFileName << std::endl;
auto &unsmeared_sink = envGet(std::vector<FermionField>, objName);
A2AVectorsIo::write(UnsmearedSinkFileName, unsmeared_sink, false, vm().getTrajectory());
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MDistil_Perambulator_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MFermion/EMLepton.cc
Copyright (C) 2015-2019
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MFermion/EMLepton.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MFermion;
template class Grid::Hadrons::MFermion::TEMLepton<FIMPL>;

View File

@ -1,315 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MFermion/EMLepton.hpp
Copyright (C) 2015-2019
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MFermion_EMLepton_hpp_
#define Hadrons_MFermion_EMLepton_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/*******************************************************************************
*
* Calculates a free lepton propagator with a sequential insertion of
* i*\gamma_mu A_mu with a photon field A_mu
*
* L(x) = \sum_y S(x,y) i*\gamma_mu*A_mu S(y,xl) \delta_{(tl-x0),dt}
*
* with a wall source for the lepton at tl
*
* In addition outputs the propagator without photon vertex
*
* L^{free}(x) = S(x,xl) \delta_{(tl-x0),dt}
*
*
* options:
* - action: fermion action used for propagator (string)
* - emField: photon field A_mu (string)
* - mass: input mass for the lepton propagator
* - boundary: boundary conditions for the lepton propagator, e.g. "1 1 1 -1"
* - twist: twisted boundary for lepton propagator, e.g. "0.0 0.0 0.0 0.5"
* - deltat: list of source-sink separations
*
*******************************************************************************/
/******************************************************************************
* EMLepton *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MFermion)
class EMLeptonPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(EMLeptonPar,
std::string, action,
std::string, emField,
double, mass,
std::string , boundary,
std::string, twist,
std::vector<unsigned int>, deltat);
};
template <typename FImpl>
class TEMLepton: public Module<EMLeptonPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
typedef PhotonR::GaugeField EmField;
public:
// constructor
TEMLepton(const std::string name);
// destructor
virtual ~TEMLepton(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
unsigned int Ls_;
};
MODULE_REGISTER_TMP(EMLepton, TEMLepton<FIMPL>, MFermion);
/******************************************************************************
* TEMLepton implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TEMLepton<FImpl>::TEMLepton(const std::string name)
: Module<EMLeptonPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TEMLepton<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().action, par().emField};
return in;
}
template <typename FImpl>
std::vector<std::string> TEMLepton<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
for(int i=0; i<par().deltat.size(); i++)
{
out.push_back(std::to_string(par().deltat[i]) + "_" + getName() + "_free");
out.push_back(std::to_string(par().deltat[i]) + "_" + getName());
}
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TEMLepton<FImpl>::setup(void)
{
Ls_ = env().getObjectLs(par().action);
for(int i=0; i<par().deltat.size(); i++)
{
envCreateLat(PropagatorField, std::to_string(par().deltat[i]) + "_" + getName() + "_free");
envCreateLat(PropagatorField, std::to_string(par().deltat[i]) + "_" + getName());
}
envTmpLat(FermionField, "source", Ls_);
envTmpLat(FermionField, "sol", Ls_);
envTmpLat(FermionField, "tmp");
envTmpLat(PropagatorField, "sourcetmp");
envTmpLat(PropagatorField, "proptmp");
envTmpLat(PropagatorField, "freetmp");
envTmp(Lattice<iScalar<vInteger>>, "tlat",1, envGetGrid(LatticeComplex));
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TEMLepton<FImpl>::execute(void)
{
LOG(Message) << "Computing free fermion propagator '" << getName() << "'"
<< std::endl;
auto &mat = envGet(FMat, par().action);
RealD mass = par().mass;
Complex ci(0.0,1.0);
envGetTmp(FermionField, source);
envGetTmp(FermionField, sol);
envGetTmp(FermionField, tmp);
LOG(Message) << "Calculating a lepton Propagator with sequential Aslash insertion with lepton mass "
<< mass << " using the action '" << par().action
<< "' for fixed source-sink separation of " << par().deltat << std::endl;
envGetTmp(Lattice<iScalar<vInteger>>, tlat);
LatticeCoordinate(tlat, Tp);
std::vector<double> twist = strToVec<double>(par().twist);
if(twist.size() != Nd)
{
HADRONS_ERROR(Size, "number of twist angles does not match number of dimensions");
}
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
if(boundary.size() != Nd)
{
HADRONS_ERROR(Size, "number of boundary conditions does not match number of dimensions");
}
auto &stoch_photon = envGet(EmField, par().emField);
unsigned int nt = env().getDim(Tp);
envGetTmp(PropagatorField, proptmp);
envGetTmp(PropagatorField, freetmp);
envGetTmp(PropagatorField, sourcetmp);
std::vector<int> position;
SitePropagator id;
id = 1.;
unsigned int tl=0;
//wallsource at tl
sourcetmp = 1.;
sourcetmp = where((tlat == tl), sourcetmp, 0.*sourcetmp);
//free propagator from pt source
for (unsigned int s = 0; s < Ns; ++s)
{
LOG(Message) << "Calculation for spin= " << s << std::endl;
if (Ls_ == 1)
{
PropToFerm<FImpl>(source, sourcetmp, s, 0);
}
else
{
PropToFerm<FImpl>(tmp, sourcetmp, s, 0);
// 5D source if action is 5d
mat.ImportPhysicalFermionSource(tmp, source);
}
sol = Zero();
mat.FreePropagator(source,sol,mass,boundary,twist);
if (Ls_ == 1)
{
FermToProp<FImpl>(freetmp, sol, s, 0);
}
// create 4D propagators from 5D one if necessary
if (Ls_ > 1)
{
mat.ExportPhysicalFermionSolution(sol, tmp);
FermToProp<FImpl>(freetmp, tmp, s, 0);
}
}
for(unsigned int dt=0;dt<par().deltat.size();dt++){
PropagatorField &lep = envGet(PropagatorField, std::to_string(par().deltat[dt]) + "_" + getName() + "_free");
for(tl=0;tl<nt;tl++){
//shift free propagator to different source positions
//account for possible anti-periodic boundary in time
proptmp = Cshift(freetmp,Tp, -tl);
proptmp = where( tlat < tl, boundary[Tp]*proptmp, proptmp);
// free propagator for fixed source-sink separation
lep = where(tlat == (tl-par().deltat[dt]+nt)%nt, proptmp, lep);
}
//account for possible anti-periodic boundary in time
lep = where( tlat >= nt-par().deltat[dt], boundary[Tp]*lep, lep);
}
for(tl=0;tl<nt;tl++){
//shift free propagator to different source positions
//account for possible anti-periodic boundary in time
proptmp = Cshift(freetmp,Tp, -tl);
proptmp = where( tlat < tl, boundary[Tp]*proptmp, proptmp);
// i*A_mu*gamma_mu
sourcetmp = Zero();
for(unsigned int mu=0;mu<=3;mu++)
{
Gamma gmu(Gamma::gmu[mu]);
sourcetmp += ci * PeekIndex<LorentzIndex>(stoch_photon, mu) * (gmu * proptmp );
}
proptmp = Zero();
//sequential propagator from i*Aslash*S
LOG(Message) << "Sequential propagator for t= " << tl << std::endl;
for (unsigned int s = 0; s < Ns; ++s)
{
LOG(Message) << "Calculation for spin= " << s << std::endl;
if (Ls_ == 1)
{
PropToFerm<FImpl>(source, sourcetmp, s, 0);
}
else
{
PropToFerm<FImpl>(tmp, sourcetmp, s, 0);
// 5D source if action is 5d
mat.ImportPhysicalFermionSource(tmp, source);
}
sol = Zero();
mat.FreePropagator(source,sol,mass,boundary,twist);
if (Ls_ == 1)
{
FermToProp<FImpl>(proptmp, sol, s, 0);
}
// create 4D propagators from 5D one if necessary
if (Ls_ > 1)
{
mat.ExportPhysicalFermionSolution(sol, tmp);
FermToProp<FImpl>(proptmp, tmp, s, 0);
}
}
// keep the result for the desired delta t
for(unsigned int dt=0;dt<par().deltat.size();dt++){
PropagatorField &Aslashlep = envGet(PropagatorField, std::to_string(par().deltat[dt]) + "_" + getName());
Aslashlep = where(tlat == (tl-par().deltat[dt]+nt)%nt, proptmp, Aslashlep);
}
}
//account for possible anti-periodic boundary in time
for(unsigned int dt=0;dt<par().deltat.size();dt++){
PropagatorField &Aslashlep = envGet(PropagatorField, std::to_string(par().deltat[dt]) + "_" + getName());
Aslashlep = where( tlat >= nt-par().deltat[dt], boundary[Tp]*Aslashlep, Aslashlep);
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MFermion_EMLepton_hpp_

View File

@ -1,36 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MFermion/FreeProp.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <vmg1n14@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MFermion/FreeProp.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MFermion;
template class Grid::Hadrons::MFermion::TFreeProp<FIMPL>;

View File

@ -1,197 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MFermion/FreeProp.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <vmg1n14@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MFermion_FreeProp_hpp_
#define Hadrons_MFermion_FreeProp_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* FreeProp *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MFermion)
class FreePropPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(FreePropPar,
std::string, source,
std::string, action,
double, mass,
std::string , boundary,
std::string, twist);
};
template <typename FImpl>
class TFreeProp: public Module<FreePropPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
public:
// constructor
TFreeProp(const std::string name);
// destructor
virtual ~TFreeProp(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
unsigned int Ls_;
};
MODULE_REGISTER_TMP(FreeProp, TFreeProp<FIMPL>, MFermion);
/******************************************************************************
* TFreeProp implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TFreeProp<FImpl>::TFreeProp(const std::string name)
: Module<FreePropPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TFreeProp<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().source, par().action};
return in;
}
template <typename FImpl>
std::vector<std::string> TFreeProp<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName(), getName() + "_5d"};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TFreeProp<FImpl>::setup(void)
{
Ls_ = env().getObjectLs(par().action);
envCreateLat(PropagatorField, getName());
envTmpLat(FermionField, "source", Ls_);
envTmpLat(FermionField, "sol", Ls_);
envTmpLat(FermionField, "tmp");
if (Ls_ > 1)
{
envCreateLat(PropagatorField, getName() + "_5d", Ls_);
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TFreeProp<FImpl>::execute(void)
{
LOG(Message) << "Computing free fermion propagator '" << getName() << "'"
<< std::endl;
std::string propName = (Ls_ == 1) ? getName() : (getName() + "_5d");
auto &prop = envGet(PropagatorField, propName);
auto &fullSrc = envGet(PropagatorField, par().source);
auto &mat = envGet(FMat, par().action);
RealD mass = par().mass;
envGetTmp(FermionField, source);
envGetTmp(FermionField, sol);
envGetTmp(FermionField, tmp);
LOG(Message) << "Calculating a free Propagator with mass " << mass
<< " using the action '" << par().action
<< "' on source '" << par().source << "'" << std::endl;
for (unsigned int s = 0; s < Ns; ++s)
for (unsigned int c = 0; c < FImpl::Dimension; ++c)
{
LOG(Message) << "Calculation for spin= " << s << ", color= " << c
<< std::endl;
// source conversion for 4D sources
if (!env().isObject5d(par().source))
{
if (Ls_ == 1)
{
PropToFerm<FImpl>(source, fullSrc, s, c);
}
else
{
PropToFerm<FImpl>(tmp, fullSrc, s, c);
mat.ImportPhysicalFermionSource(tmp, source);
}
}
// source conversion for 5D sources
else
{
if (Ls_ != env().getObjectLs(par().source))
{
HADRONS_ERROR(Size, "Ls mismatch between quark action and source");
}
else
{
PropToFerm<FImpl>(source, fullSrc, s, c);
}
}
sol = Zero();
std::vector<double> twist = strToVec<double>(par().twist);
if(twist.size() != Nd)
{
HADRONS_ERROR(Size, "number of twist angles does not match number of dimensions");
}
std::vector<Complex> boundary = strToVec<Complex>(par().boundary);
if(boundary.size() != Nd)
{
HADRONS_ERROR(Size, "number of boundary conditions does not match number of dimensions");
}
mat.FreePropagator(source,sol,mass,boundary,twist);
FermToProp<FImpl>(prop, sol, s, c);
// create 4D propagators from 5D one if necessary
if (Ls_ > 1)
{
PropagatorField &p4d = envGet(PropagatorField, getName());
mat.ExportPhysicalFermionSolution(sol, tmp);
FermToProp<FImpl>(p4d, tmp, s, c);
}
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MFermion_FreeProp_hpp_

View File

@ -1,35 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MFermion/GaugeProp.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MFermion/GaugeProp.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MFermion;
template class Grid::Hadrons::MFermion::TGaugeProp<FIMPL>;
template class Grid::Hadrons::MFermion::TGaugeProp<ZFIMPL>;

View File

@ -1,196 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MFermion/GaugeProp.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Lanny91 <andrew.lawson@gmail.com>
Author: pretidav <david.preti@csic.es>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MFermion_GaugeProp_hpp_
#define Hadrons_MFermion_GaugeProp_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/Solver.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* GaugeProp *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MFermion)
class GaugePropPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(GaugePropPar,
std::string, source,
std::string, solver);
};
template <typename FImpl>
class TGaugeProp: public Module<GaugePropPar>
{
public:
FERM_TYPE_ALIASES(FImpl,);
SOLVER_TYPE_ALIASES(FImpl,);
public:
// constructor
TGaugeProp(const std::string name);
// destructor
virtual ~TGaugeProp(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
unsigned int Ls_;
Solver *solver_{nullptr};
};
MODULE_REGISTER_TMP(GaugeProp, TGaugeProp<FIMPL>, MFermion);
MODULE_REGISTER_TMP(ZGaugeProp, TGaugeProp<ZFIMPL>, MFermion);
/******************************************************************************
* TGaugeProp implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TGaugeProp<FImpl>::TGaugeProp(const std::string name)
: Module<GaugePropPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TGaugeProp<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().source, par().solver};
return in;
}
template <typename FImpl>
std::vector<std::string> TGaugeProp<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName(), getName() + "_5d"};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TGaugeProp<FImpl>::setup(void)
{
Ls_ = env().getObjectLs(par().solver);
envCreateLat(PropagatorField, getName());
envTmpLat(FermionField, "tmp");
if (Ls_ > 1)
{
envTmpLat(FermionField, "source", Ls_);
envTmpLat(FermionField, "sol", Ls_);
envCreateLat(PropagatorField, getName() + "_5d", Ls_);
}
else
{
envTmpLat(FermionField, "source");
envTmpLat(FermionField, "sol");
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TGaugeProp<FImpl>::execute(void)
{
LOG(Message) << "Computing quark propagator '" << getName() << "'"
<< std::endl;
std::string propName = (Ls_ == 1) ? getName() : (getName() + "_5d");
auto &prop = envGet(PropagatorField, propName);
auto &fullSrc = envGet(PropagatorField, par().source);
auto &solver = envGet(Solver, par().solver);
auto &mat = solver.getFMat();
envGetTmp(FermionField, source);
envGetTmp(FermionField, sol);
envGetTmp(FermionField, tmp);
LOG(Message) << "Inverting using solver '" << par().solver
<< "' on source '" << par().source << "'" << std::endl;
for (unsigned int s = 0; s < Ns; ++s)
for (unsigned int c = 0; c < FImpl::Dimension; ++c)
{
LOG(Message) << "Inversion for spin= " << s << ", color= " << c
<< std::endl;
// source conversion for 4D sources
LOG(Message) << "Import source" << std::endl;
if (!env().isObject5d(par().source))
{
if (Ls_ == 1)
{
PropToFerm<FImpl>(source, fullSrc, s, c);
}
else
{
PropToFerm<FImpl>(tmp, fullSrc, s, c);
mat.ImportPhysicalFermionSource(tmp, source);
}
}
// source conversion for 5D sources
else
{
if (Ls_ != env().getObjectLs(par().source))
{
HADRONS_ERROR(Size, "Ls mismatch between quark action and source");
}
else
{
PropToFerm<FImpl>(source, fullSrc, s, c);
}
}
sol = Zero();
LOG(Message) << "Solve" << std::endl;
solver(sol, source);
LOG(Message) << "Export solution" << std::endl;
FermToProp<FImpl>(prop, sol, s, c);
// create 4D propagators from 5D one if necessary
if (Ls_ > 1)
{
PropagatorField &p4d = envGet(PropagatorField, getName());
mat.ExportPhysicalFermionSolution(sol, tmp);
FermToProp<FImpl>(p4d, tmp, s, c);
}
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MFermion_GaugeProp_hpp_

View File

@ -1,36 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MGauge/Electrify.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
Author: Vera Guelpers <vmg1n14@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MGauge/Electrify.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MGauge;
template class Grid::Hadrons::MGauge::TElectrify<GIMPL>;

View File

@ -1,153 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MGauge/Electrify.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <Vera.Guelpers@ed.ac.uk>
Author: Vera Guelpers <vmg1n14@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MGauge_Electrify_hpp_
#define Hadrons_MGauge_Electrify_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Electrify gauge *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MGauge)
/****************************************************************************
* Electrify a gauge field:
*
* Ue_mu(x) = U_mu(x)*exp(ieqA_mu(x))
*
* with
*
* - gauge: U_mu(x): gauge field
* - emField: A_mu(x): electromagnetic photon field
* - e: value for the elementary charge
* - q: charge in units of e
*
*****************************************************************************/
class ElectrifyPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(ElectrifyPar,
std::string, gauge,
std::string, emField,
double, e,
double, charge);
};
template <typename GImpl>
class TElectrify: public Module<ElectrifyPar>
{
public:
GAUGE_TYPE_ALIASES(GImpl,);
public:
typedef PhotonR::GaugeField EmField;
public:
// constructor
TElectrify(const std::string name);
// destructor
virtual ~TElectrify(void) {};
// dependencies/products
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER_TMP(Electrify, TElectrify<GIMPL>, MGauge);
/******************************************************************************
* TElectrify implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename GImpl>
TElectrify<GImpl>::TElectrify(const std::string name)
: Module<ElectrifyPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename GImpl>
std::vector<std::string> TElectrify<GImpl>::getInput(void)
{
std::vector<std::string> in = {par().gauge, par().emField};
return in;
}
template <typename GImpl>
std::vector<std::string> TElectrify<GImpl>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename GImpl>
void TElectrify<GImpl>::setup(void)
{
envCreateLat(GaugeField, getName());
envTmpLat(LatticeComplex, "eiAmu");
}
// execution ///////////////////////////////////////////////////////////////////
template <typename GImpl>
void TElectrify<GImpl>::execute(void)
{
LOG(Message) << "Electrify the gauge field " << par().gauge << " using the photon field "
<< par().emField << " with charge e*q= " << par().e << "*" << par().charge << std::endl;
auto &Ue = envGet(GaugeField, getName());
auto &U = envGet(GaugeField, par().gauge);
auto &A = envGet(EmField, par().emField);
envGetTmp(LatticeComplex, eiAmu);
Complex i(0.0,1.0);
for(unsigned int mu = 0; mu < env().getNd(); mu++)
{
eiAmu = exp(i * (Real)(par().e * par().charge) * PeekIndex<LorentzIndex>(A, mu));
PokeIndex<LorentzIndex>(Ue, PeekIndex<LorentzIndex>(U, mu) * eiAmu, mu);
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MGauge_Electrify_hpp_

View File

@ -1,79 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MGauge/FundtoHirep.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: pretidav <david.preti@csic.es>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MGauge/FundtoHirep.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MGauge;
// constructor /////////////////////////////////////////////////////////////////
template <class Rep>
TFundtoHirep<Rep>::TFundtoHirep(const std::string name)
: Module<FundtoHirepPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <class Rep>
std::vector<std::string> TFundtoHirep<Rep>::getInput(void)
{
std::vector<std::string> in = {par().gaugeconf};
return in;
}
template <class Rep>
std::vector<std::string> TFundtoHirep<Rep>::getOutput(void)
{
std::vector<std::string> out = {getName()};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename Rep>
void TFundtoHirep<Rep>::setup(void)
{
envCreateLat(Rep::LatticeField, getName());
}
// execution ///////////////////////////////////////////////////////////////////
template <class Rep>
void TFundtoHirep<Rep>::execute(void)
{
LOG(Message) << "Transforming Representation" << std::endl;
auto &U = envGet(LatticeGaugeField, par().gaugeconf);
auto &URep = envGet(Rep::LatticeField, getName());
Rep TargetRepresentation(U._grid);
TargetRepresentation.update_representation(U);
URep = TargetRepresentation.U;
}

View File

@ -1,76 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MGauge/FundtoHirep.hpp
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: pretidav <david.preti@csic.es>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MGauge_FundtoHirep_hpp_
#define Hadrons_MGauge_FundtoHirep_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* Load a NERSC configuration *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MGauge)
class FundtoHirepPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(FundtoHirepPar,
std::string, gaugeconf);
};
template <class Rep>
class TFundtoHirep: public Module<FundtoHirepPar>
{
public:
// constructor
TFundtoHirep(const std::string name);
// destructor
virtual ~TFundtoHirep(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
void setup(void);
// execution
void execute(void);
};
//MODULE_REGISTER_TMP(FundtoAdjoint, TFundtoHirep<AdjointRepresentation>, MGauge);
//MODULE_REGISTER_TMP(FundtoTwoIndexSym, TFundtoHirep<TwoIndexSymmetricRepresentation>, MGauge);
//MODULE_REGISTER_TMP(FundtoTwoIndexAsym, TFundtoHirep<TwoIndexAntiSymmetricRepresentation>, MGauge);
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MGauge_FundtoHirep_hpp_

View File

@ -1,36 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Modules/MGauge/GaugeFix.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MGauge/GaugeFix.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MGauge;
template class Grid::Hadrons::MGauge::TGaugeFix<GIMPL>;

Some files were not shown because too many files have changed in this diff Show More