mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-20 00:36:55 +01:00
Merge branch 'feature/dirichlet-gparity' into feature/dirichlet
This commit is contained in:
@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
|
||||
#define ColourIndex (2)
|
||||
#define SpinIndex (1)
|
||||
#define LorentzIndex (0)
|
||||
#define GparityFlavourIndex (0)
|
||||
|
||||
// Also should make these a named enum type
|
||||
static constexpr int DaggerNo=0;
|
||||
@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
|
||||
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
|
||||
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
|
||||
|
||||
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
|
||||
|
||||
// ChrisK very keen to add extra space for Gparity doubling.
|
||||
//
|
||||
// Also add domain wall index, in a way where Wilson operator
|
||||
@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVec
|
||||
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
|
||||
|
||||
|
||||
template<typename vtype> using iGparityFlavourVector = iVector<iScalar<iScalar<vtype> >, Ngp>;
|
||||
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
|
||||
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
|
||||
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
|
||||
|
||||
// Spin matrix
|
||||
typedef iSpinMatrix<Complex > SpinMatrix;
|
||||
@ -176,6 +181,16 @@ typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
|
||||
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
|
||||
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
|
||||
|
||||
//G-parity flavour matrix
|
||||
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
|
||||
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
|
||||
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
|
||||
|
||||
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
|
||||
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
|
||||
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
|
||||
|
||||
|
||||
// Spin vector
|
||||
typedef iSpinVector<Complex > SpinVector;
|
||||
typedef iSpinVector<ComplexF> SpinVectorF;
|
||||
@ -220,6 +235,16 @@ typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
|
||||
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
|
||||
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
|
||||
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
|
||||
|
||||
//G-parity flavour vector
|
||||
typedef iGparityFlavourVector<Complex > GparityFlavourVector;
|
||||
typedef iGparityFlavourVector<ComplexF> GparityFlavourVectorF;
|
||||
typedef iGparityFlavourVector<ComplexD> GparityFlavourVectorD;
|
||||
|
||||
typedef iGparityFlavourVector<vComplex > vGparityFlavourVector;
|
||||
typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF;
|
||||
typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD;
|
||||
|
||||
|
||||
// singlets
|
||||
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.
|
||||
|
@ -30,6 +30,18 @@ directory
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/*
|
||||
Policy implementation for G-parity boundary conditions
|
||||
|
||||
Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
|
||||
field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
|
||||
with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
|
||||
to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
|
||||
either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
|
||||
|
||||
Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||
mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
*/
|
||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
|
||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
|
||||
public:
|
||||
@ -113,7 +125,7 @@ public:
|
||||
|| ((distance== 1)&&(icoor[direction]==1))
|
||||
|| ((distance==-1)&&(icoor[direction]==0));
|
||||
|
||||
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
|
||||
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
|
||||
|
||||
//Apply the links
|
||||
int f_upper = permute_lane ? 1 : 0;
|
||||
@ -139,10 +151,10 @@ public:
|
||||
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
|
||||
assert((sl == 1) || (sl == 2));
|
||||
|
||||
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
|
||||
|
||||
//If this site is an global boundary site, perform the G-parity flavor twist
|
||||
if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
|
||||
if ( sl == 2 ) {
|
||||
|
||||
//Only do the twist for lanes on the edge of the physical node
|
||||
ExtractBuffer<sobj> vals(Nsimd);
|
||||
|
||||
extract(chi,vals);
|
||||
@ -197,6 +209,19 @@ public:
|
||||
reg = memory;
|
||||
}
|
||||
|
||||
|
||||
//Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
|
||||
inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
|
||||
autoView(poke_f0_v, poke_f0, CpuRead);
|
||||
autoView(poke_f1_v, poke_f1, CpuRead);
|
||||
autoView(Uds_v, Uds, CpuWrite);
|
||||
thread_foreach(ss,poke_f0_v,{
|
||||
Uds_v[ss](0)(mu) = poke_f0_v[ss]();
|
||||
Uds_v[ss](1)(mu) = poke_f1_v[ss]();
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
{
|
||||
conformable(Uds.Grid(),GaugeGrid);
|
||||
@ -207,14 +232,19 @@ public:
|
||||
GaugeLinkField Uconj(GaugeGrid);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
|
||||
LatticeCoordinate(coor,mu);
|
||||
|
||||
//Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||
for(int mu=0;mu<Nd-1;mu++){
|
||||
|
||||
if( Params.twists[mu] ){
|
||||
LatticeCoordinate(coor,mu);
|
||||
}
|
||||
|
||||
U = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
Uconj = conjugate(U);
|
||||
|
||||
// Implement the isospin rotation sign on the boundary between f=1 and f=0
|
||||
// This phase could come from a simple bc 1,1,-1,1 ..
|
||||
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
|
||||
if ( Params.twists[mu] ) {
|
||||
@ -229,7 +259,7 @@ public:
|
||||
thread_foreach(ss,U_v,{
|
||||
Uds_v[ss](0)(mu) = U_v[ss]();
|
||||
Uds_v[ss](1)(mu) = Uconj_v[ss]();
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
|
||||
@ -260,6 +290,38 @@ public:
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
{ //periodic / antiperiodic temporal BCs
|
||||
int mu = Nd-1;
|
||||
int L = GaugeGrid->GlobalDimensions()[mu];
|
||||
int Lmu = L - 1;
|
||||
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
|
||||
|
||||
GaugeLinkField *Upoke = &U;
|
||||
|
||||
if(Params.twists[mu]){ //antiperiodic
|
||||
Utmp = where(coor == Lmu, -U, U);
|
||||
Upoke = &Utmp;
|
||||
}
|
||||
|
||||
Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links
|
||||
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
|
||||
|
||||
//Get the barrel-shifted field
|
||||
Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
|
||||
Upoke = &Utmp;
|
||||
|
||||
if(Params.twists[mu]){
|
||||
U = where(coor == 0, -Utmp, Utmp); //boundary phase
|
||||
Upoke = &U;
|
||||
}
|
||||
|
||||
Uconj = conjugate(*Upoke);
|
||||
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
|
||||
}
|
||||
}
|
||||
|
||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
|
||||
@ -298,28 +360,48 @@ public:
|
||||
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
|
||||
assert(0);
|
||||
}
|
||||
|
||||
|
||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
|
||||
|
||||
int Ls = Btilde.Grid()->_fdimensions[0];
|
||||
|
||||
GaugeLinkField tmp(mat.Grid());
|
||||
tmp = Zero();
|
||||
int Ls=Btilde.Grid()->_fdimensions[0];
|
||||
|
||||
{
|
||||
autoView( tmp_v , tmp, CpuWrite);
|
||||
autoView( Atilde_v , Atilde, CpuRead);
|
||||
autoView( Btilde_v , Btilde, CpuRead);
|
||||
thread_for(ss,tmp.Grid()->oSites(),{
|
||||
for (int s = 0; s < Ls; s++) {
|
||||
int sF = s + Ls * ss;
|
||||
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
|
||||
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
|
||||
}
|
||||
});
|
||||
GridBase *GaugeGrid = mat.Grid();
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
|
||||
if( Params.twists[mu] ){
|
||||
LatticeCoordinate(coor,mu);
|
||||
}
|
||||
|
||||
autoView( mat_v , mat, AcceleratorWrite);
|
||||
autoView( Btilde_v , Btilde, AcceleratorRead);
|
||||
autoView( Atilde_v , Atilde, AcceleratorRead);
|
||||
accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{
|
||||
int sU=sss;
|
||||
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
|
||||
ColorMatrixType sum;
|
||||
zeroit(sum);
|
||||
for(int s=0;s<Ls;s++){
|
||||
int sF = s+Ls*sU;
|
||||
for(int spn=0;spn<Ns;spn++){ //sum over spin
|
||||
//Flavor 0
|
||||
auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
|
||||
auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
|
||||
sum = sum + outerProduct(bb,aa);
|
||||
|
||||
//Flavor 1
|
||||
bb = coalescedRead(Btilde_v[sF](1)(spn) );
|
||||
aa = coalescedRead(Atilde_v[sF](1)(spn) );
|
||||
sum = sum + conjugate(outerProduct(bb,aa));
|
||||
}
|
||||
}
|
||||
coalescedWrite(mat_v[sU](mu)(), sum);
|
||||
});
|
||||
}
|
||||
PokeIndex<LorentzIndex>(mat, tmp, mu);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
@ -37,7 +37,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<typename MomentaField>
|
||||
struct MomentumFilterBase{
|
||||
virtual void applyFilter(MomentaField &P) const;
|
||||
virtual void applyFilter(MomentaField &P) const = 0;
|
||||
};
|
||||
|
||||
//Do nothing
|
||||
|
@ -69,6 +69,11 @@ public:
|
||||
return PeriodicBC::ShiftStaple(Link,mu);
|
||||
}
|
||||
|
||||
//Same as Cshift for periodic BCs
|
||||
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
|
||||
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||
}
|
||||
|
||||
static inline bool isPeriodicGaugeField(void) { return true; }
|
||||
};
|
||||
|
||||
@ -110,6 +115,11 @@ public:
|
||||
return PeriodicBC::CovShiftBackward(Link, mu, field);
|
||||
}
|
||||
|
||||
//If mu is a conjugate BC direction
|
||||
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
|
||||
// = U^T_\mu(L-1) | x_\mu == 0
|
||||
//else
|
||||
//Out(x) = U^dag_\mu(x-mu mod L)
|
||||
static inline GaugeLinkField
|
||||
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
|
||||
{
|
||||
@ -129,6 +139,13 @@ public:
|
||||
return PeriodicBC::CovShiftIdentityForward(Link,mu);
|
||||
}
|
||||
|
||||
|
||||
//If mu is a conjugate BC direction
|
||||
//Out(x) = S_\mu(x+mu) | x_\mu != L-1
|
||||
// = S*_\mu(x+mu) | x_\mu == L-1
|
||||
//else
|
||||
//Out(x) = S_\mu(x+mu mod L)
|
||||
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
|
||||
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
|
||||
{
|
||||
assert(_conjDirs.size() == Nd);
|
||||
@ -138,6 +155,27 @@ public:
|
||||
return PeriodicBC::ShiftStaple(Link,mu);
|
||||
}
|
||||
|
||||
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||
//For conjugate BC direction
|
||||
//shift = 1
|
||||
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
|
||||
// = U*_\mu(0) | x_\mu == L-1
|
||||
//shift = -1
|
||||
//Out(x) = U_\mu(x-mu) | x_\mu != 0
|
||||
// = U*_\mu(L-1) | x_\mu == 0
|
||||
//else
|
||||
//shift = 1
|
||||
//Out(x) = U_\mu(x+\hat\mu mod L)
|
||||
//shift = -1
|
||||
//Out(x) = U_\mu(x-\hat\mu mod L)
|
||||
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
|
||||
assert(_conjDirs.size() == Nd);
|
||||
if(_conjDirs[mu])
|
||||
return ConjugateBC::CshiftLink(Link,mu,shift);
|
||||
else
|
||||
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||
}
|
||||
|
||||
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
|
||||
static inline std::vector<int> getDirections(void) { return _conjDirs; }
|
||||
static inline bool isPeriodicGaugeField(void) { return false; }
|
||||
|
6
Grid/qcd/gparity/Gparity.h
Normal file
6
Grid/qcd/gparity/Gparity.h
Normal file
@ -0,0 +1,6 @@
|
||||
#ifndef GRID_GPARITY_H_
|
||||
#define GRID_GPARITY_H_
|
||||
|
||||
#include<Grid/qcd/gparity/GparityFlavour.h>
|
||||
|
||||
#endif
|
34
Grid/qcd/gparity/GparityFlavour.cc
Normal file
34
Grid/qcd/gparity/GparityFlavour.cc
Normal file
@ -0,0 +1,34 @@
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaX),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaY),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaZ)
|
||||
}};
|
||||
|
||||
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
|
||||
GparityFlavour(GparityFlavour::Algebra::Identity),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaX),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaY),
|
||||
GparityFlavour(GparityFlavour::Algebra::SigmaZ),
|
||||
GparityFlavour(GparityFlavour::Algebra::ProjPlus),
|
||||
GparityFlavour(GparityFlavour::Algebra::ProjMinus)
|
||||
}};
|
||||
|
||||
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
|
||||
"SigmaX",
|
||||
"MinusSigmaX",
|
||||
"SigmaY",
|
||||
"MinusSigmaY",
|
||||
"SigmaZ",
|
||||
"MinusSigmaZ",
|
||||
"Identity",
|
||||
"MinusIdentity",
|
||||
"ProjPlus",
|
||||
"MinusProjPlus",
|
||||
"ProjMinus",
|
||||
"MinusProjMinus"}};
|
||||
|
||||
NAMESPACE_END(Grid);
|
475
Grid/qcd/gparity/GparityFlavour.h
Normal file
475
Grid/qcd/gparity/GparityFlavour.h
Normal file
@ -0,0 +1,475 @@
|
||||
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
|
||||
#define GRID_QCD_GPARITY_FLAVOUR_H
|
||||
|
||||
//Support for flavour-matrix operations acting on the G-parity flavour index
|
||||
|
||||
#include <array>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
class GparityFlavour {
|
||||
public:
|
||||
GRID_SERIALIZABLE_ENUM(Algebra, undef,
|
||||
SigmaX, 0,
|
||||
MinusSigmaX, 1,
|
||||
SigmaY, 2,
|
||||
MinusSigmaY, 3,
|
||||
SigmaZ, 4,
|
||||
MinusSigmaZ, 5,
|
||||
Identity, 6,
|
||||
MinusIdentity, 7,
|
||||
ProjPlus, 8,
|
||||
MinusProjPlus, 9,
|
||||
ProjMinus, 10,
|
||||
MinusProjMinus, 11
|
||||
);
|
||||
static constexpr unsigned int nSigma = 12;
|
||||
static const std::array<const char *, nSigma> name;
|
||||
static const std::array<const GparityFlavour, 3> sigma_mu;
|
||||
static const std::array<const GparityFlavour, 6> sigma_all;
|
||||
Algebra g;
|
||||
public:
|
||||
accelerator GparityFlavour(Algebra initg): g(initg) {}
|
||||
};
|
||||
|
||||
|
||||
|
||||
// 0 1 x vector
|
||||
// 1 0
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = rhs(1);
|
||||
ret(1) = rhs(0);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(1,0);
|
||||
ret(0,1) = rhs(1,1);
|
||||
ret(1,0) = rhs(0,0);
|
||||
ret(1,1) = rhs(0,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,1);
|
||||
ret(0,1) = rhs(0,0);
|
||||
ret(1,0) = rhs(1,1);
|
||||
ret(1,1) = rhs(1,0);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -rhs(1);
|
||||
ret(1) = -rhs(0);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(1,0);
|
||||
ret(0,1) = -rhs(1,1);
|
||||
ret(1,0) = -rhs(0,0);
|
||||
ret(1,1) = -rhs(0,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,1);
|
||||
ret(0,1) = -rhs(0,0);
|
||||
ret(1,0) = -rhs(1,1);
|
||||
ret(1,1) = -rhs(1,0);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// 0 -i x vector
|
||||
// i 0
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = timesMinusI(rhs(1));
|
||||
ret(1) = timesI(rhs(0));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesMinusI(rhs(1,0));
|
||||
ret(0,1) = timesMinusI(rhs(1,1));
|
||||
ret(1,0) = timesI(rhs(0,0));
|
||||
ret(1,1) = timesI(rhs(0,1));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesI(rhs(0,1));
|
||||
ret(0,1) = timesMinusI(rhs(0,0));
|
||||
ret(1,0) = timesI(rhs(1,1));
|
||||
ret(1,1) = timesMinusI(rhs(1,0));
|
||||
};
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = timesI(rhs(1));
|
||||
ret(1) = timesMinusI(rhs(0));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesI(rhs(1,0));
|
||||
ret(0,1) = timesI(rhs(1,1));
|
||||
ret(1,0) = timesMinusI(rhs(0,0));
|
||||
ret(1,1) = timesMinusI(rhs(0,1));
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = timesMinusI(rhs(0,1));
|
||||
ret(0,1) = timesI(rhs(0,0));
|
||||
ret(1,0) = timesMinusI(rhs(1,1));
|
||||
ret(1,1) = timesI(rhs(1,0));
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// 1 0 x vector
|
||||
// 0 -1
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = rhs(0);
|
||||
ret(1) = -rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -rhs(0);
|
||||
ret(1) = rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = rhs(0);
|
||||
ret(1) = rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = rhs(0,0);
|
||||
ret(0,1) = rhs(0,1);
|
||||
ret(1,0) = rhs(1,0);
|
||||
ret(1,1) = rhs(1,1);
|
||||
};
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -rhs(0);
|
||||
ret(1) = -rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -rhs(0,0);
|
||||
ret(0,1) = -rhs(0,1);
|
||||
ret(1,0) = -rhs(1,0);
|
||||
ret(1,1) = -rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//G-parity flavour projection 1/2(1+\sigma_2)
|
||||
//1 -i
|
||||
//i 1
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
|
||||
ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
|
||||
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
|
||||
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
|
||||
ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
|
||||
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
|
||||
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//G-parity flavour projection 1/2(1-\sigma_2)
|
||||
//1 i
|
||||
//-i 1
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
|
||||
ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
|
||||
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
|
||||
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
|
||||
ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
|
||||
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
|
||||
ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
|
||||
ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
|
||||
};
|
||||
template<class vtype>
|
||||
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||
{
|
||||
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
|
||||
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
|
||||
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
|
||||
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
|
||||
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
|
||||
{
|
||||
iVector<vtype, Ngp> ret;
|
||||
|
||||
switch (G.g)
|
||||
{
|
||||
case GparityFlavour::Algebra::SigmaX:
|
||||
multFlavourSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaX:
|
||||
multFlavourMinusSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaY:
|
||||
multFlavourSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaY:
|
||||
multFlavourMinusSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaZ:
|
||||
multFlavourSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||
multFlavourMinusSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::Identity:
|
||||
multFlavourIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusIdentity:
|
||||
multFlavourMinusIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjPlus:
|
||||
multFlavourProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjPlus:
|
||||
multFlavourMinusProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjMinus:
|
||||
multFlavourProjMinus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjMinus:
|
||||
multFlavourMinusProjMinus(ret, arg); break;
|
||||
default: assert(0);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
|
||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
|
||||
{
|
||||
iMatrix<vtype, Ngp> ret;
|
||||
|
||||
switch (G.g)
|
||||
{
|
||||
case GparityFlavour::Algebra::SigmaX:
|
||||
lmultFlavourSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaX:
|
||||
lmultFlavourMinusSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaY:
|
||||
lmultFlavourSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaY:
|
||||
lmultFlavourMinusSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaZ:
|
||||
lmultFlavourSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||
lmultFlavourMinusSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::Identity:
|
||||
lmultFlavourIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusIdentity:
|
||||
lmultFlavourMinusIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjPlus:
|
||||
lmultFlavourProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjPlus:
|
||||
lmultFlavourMinusProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjMinus:
|
||||
lmultFlavourProjMinus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjMinus:
|
||||
lmultFlavourMinusProjMinus(ret, arg); break;
|
||||
default: assert(0);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<class vtype>
|
||||
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
|
||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
|
||||
{
|
||||
iMatrix<vtype, Ngp> ret;
|
||||
|
||||
switch (G.g)
|
||||
{
|
||||
case GparityFlavour::Algebra::SigmaX:
|
||||
rmultFlavourSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaX:
|
||||
rmultFlavourMinusSigmaX(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaY:
|
||||
rmultFlavourSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaY:
|
||||
rmultFlavourMinusSigmaY(ret, arg); break;
|
||||
case GparityFlavour::Algebra::SigmaZ:
|
||||
rmultFlavourSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||
rmultFlavourMinusSigmaZ(ret, arg); break;
|
||||
case GparityFlavour::Algebra::Identity:
|
||||
rmultFlavourIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusIdentity:
|
||||
rmultFlavourMinusIdentity(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjPlus:
|
||||
rmultFlavourProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjPlus:
|
||||
rmultFlavourMinusProjPlus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::ProjMinus:
|
||||
rmultFlavourProjMinus(ret, arg); break;
|
||||
case GparityFlavour::Algebra::MinusProjMinus:
|
||||
rmultFlavourMinusProjMinus(ret, arg); break;
|
||||
default: assert(0);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif // include guard
|
@ -88,6 +88,12 @@ namespace PeriodicBC {
|
||||
return CovShiftBackward(Link,mu,arg);
|
||||
}
|
||||
|
||||
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||
template<class gauge> Lattice<gauge>
|
||||
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
|
||||
{
|
||||
return Cshift(Link, mu, shift);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -158,6 +164,9 @@ namespace ConjugateBC {
|
||||
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
|
||||
return Cshift(tmp,mu,-1);// moves towards positive mu
|
||||
}
|
||||
|
||||
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
|
||||
// = U^T_\mu(L-1) | x_\mu == 0
|
||||
template<class gauge> Lattice<gauge>
|
||||
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
|
||||
GridBase *grid = Link.Grid();
|
||||
@ -176,6 +185,9 @@ namespace ConjugateBC {
|
||||
return Link;
|
||||
}
|
||||
|
||||
//Out(x) = S_\mu(x+\hat\mu) | x_\mu != L-1
|
||||
// = S*_\mu(0) | x_\mu == L-1
|
||||
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
|
||||
template<class gauge> Lattice<gauge>
|
||||
ShiftStaple(const Lattice<gauge> &Link, int mu)
|
||||
{
|
||||
@ -208,6 +220,35 @@ namespace ConjugateBC {
|
||||
return CovShiftBackward(Link,mu,arg);
|
||||
}
|
||||
|
||||
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||
//shift = 1
|
||||
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
|
||||
// = U*_\mu(0) | x_\mu == L-1
|
||||
//shift = -1
|
||||
//Out(x) = U_\mu(x-mu) | x_\mu != 0
|
||||
// = U*_\mu(L-1) | x_\mu == 0
|
||||
template<class gauge> Lattice<gauge>
|
||||
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
|
||||
{
|
||||
GridBase *grid = Link.Grid();
|
||||
int Lmu = grid->GlobalDimensions()[mu] - 1;
|
||||
|
||||
Lattice<iScalar<vInteger>> coor(grid);
|
||||
LatticeCoordinate(coor, mu);
|
||||
|
||||
Lattice<gauge> tmp(grid);
|
||||
if(shift == 1){
|
||||
tmp = Cshift(Link, mu, 1);
|
||||
tmp = where(coor == Lmu, conjugate(tmp), tmp);
|
||||
return tmp;
|
||||
}else if(shift == -1){
|
||||
tmp = Link;
|
||||
tmp = where(coor == Lmu, conjugate(tmp), tmp);
|
||||
return Cshift(tmp, mu, -1);
|
||||
}else assert(0 && "Invalid shift value");
|
||||
return tmp; //shuts up the compiler fussing about the return type
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -40,27 +40,45 @@ public:
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
Complex cmi(0.0,-1.0);
|
||||
A[mu] = Ta(U[mu]) * cmi;
|
||||
}
|
||||
//A_\mu(x) = -i Ta(U_\mu(x) ) where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag) is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
|
||||
static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
|
||||
Complex cmi(0.0,-1.0);
|
||||
A = Ta(U) * cmi;
|
||||
}
|
||||
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
|
||||
|
||||
//The derivative of the Lie algebra field
|
||||
static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
|
||||
GridBase* grid = U[0].Grid();
|
||||
GaugeMat Ax(grid);
|
||||
GaugeMat Axm1(grid);
|
||||
GaugeMat Utmp(grid);
|
||||
|
||||
dmuAmu=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
if ( mu != orthog ) {
|
||||
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
|
||||
//Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
|
||||
//Ax = A_\mu(x)
|
||||
GaugeLinkToLieAlgebraField(U[mu], Ax);
|
||||
|
||||
//Axm1 = A_\mu(x_\mu-1)
|
||||
Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
|
||||
GaugeLinkToLieAlgebraField(Utmp, Axm1);
|
||||
|
||||
//Derivative
|
||||
dmuAmu = dmuAmu + Ax - Axm1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Fix the gauge field Umu
|
||||
//0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
|
||||
GridBase *grid = Umu.Grid();
|
||||
GaugeMat xform(grid);
|
||||
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog,err_on_no_converge);
|
||||
}
|
||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
|
||||
//Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
|
||||
|
||||
GridBase *grid = Umu.Grid();
|
||||
|
||||
@ -123,28 +141,25 @@ public:
|
||||
}
|
||||
}
|
||||
std::cout << GridLogError << "Gauge fixing did not converge in " << maxiter << " iterations." << std::endl;
|
||||
if (err_on_no_converge) assert(0);
|
||||
if (err_on_no_converge)
|
||||
assert(0 && "Gauge fixing did not converge within the specified number of iterations");
|
||||
};
|
||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
GridBase *grid = U[0].Grid();
|
||||
|
||||
std::vector<GaugeMat> A(Nd,grid);
|
||||
GaugeMat g(grid);
|
||||
|
||||
GaugeLinkToLieAlgebraField(U,A);
|
||||
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
|
||||
|
||||
ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
|
||||
|
||||
Real vol = grid->gSites();
|
||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||
|
||||
xform = g*xform ;
|
||||
SU<Nc>::GaugeTransform(U,g);
|
||||
SU<Nc>::GaugeTransform<Gimpl>(U,g);
|
||||
|
||||
return trG;
|
||||
}
|
||||
|
||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
|
||||
|
||||
GridBase *grid = U[0].Grid();
|
||||
|
||||
@ -159,11 +174,7 @@ public:
|
||||
|
||||
GaugeMat g(grid);
|
||||
GaugeMat dmuAmu_p(grid);
|
||||
std::vector<GaugeMat> A(Nd,grid);
|
||||
|
||||
GaugeLinkToLieAlgebraField(U,A);
|
||||
|
||||
DmuAmu(A,dmuAmu,orthog);
|
||||
DmuAmu(U,dmuAmu,orthog);
|
||||
|
||||
std::vector<int> mask(Nd,1);
|
||||
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
|
||||
@ -207,16 +218,16 @@ public:
|
||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||
|
||||
xform = g*xform ;
|
||||
SU<Nc>::GaugeTransform(U,g);
|
||||
SU<Nc>::GaugeTransform<Gimpl>(U,g);
|
||||
|
||||
return trG;
|
||||
}
|
||||
|
||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
|
||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
|
||||
GridBase *grid = g.Grid();
|
||||
Complex cialpha(0.0,-alpha);
|
||||
GaugeMat ciadmam(grid);
|
||||
DmuAmu(A,dmuAmu,orthog);
|
||||
DmuAmu(U,dmuAmu,orthog);
|
||||
ciadmam = dmuAmu*cialpha;
|
||||
SU<Nc>::taExp(ciadmam,g);
|
||||
}
|
||||
|
@ -694,32 +694,32 @@ public:
|
||||
* Adjoint rep gauge xform
|
||||
*/
|
||||
|
||||
template<typename GaugeField,typename GaugeMat>
|
||||
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
|
||||
template<typename Gimpl>
|
||||
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||
GridBase *grid = Umu.Grid();
|
||||
conformable(grid,g.Grid());
|
||||
|
||||
GaugeMat U(grid);
|
||||
GaugeMat ag(grid); ag = adj(g);
|
||||
typename Gimpl::GaugeLinkField U(grid);
|
||||
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U= PeekIndex<LorentzIndex>(Umu,mu);
|
||||
U = g*U*Cshift(ag, mu, 1);
|
||||
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||
PokeIndex<LorentzIndex>(Umu,U,mu);
|
||||
}
|
||||
}
|
||||
template<typename GaugeMat>
|
||||
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
|
||||
template<typename Gimpl>
|
||||
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
|
||||
GridBase *grid = g.Grid();
|
||||
GaugeMat ag(grid); ag = adj(g);
|
||||
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U[mu] = g*U[mu]*Cshift(ag, mu, 1);
|
||||
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||
}
|
||||
}
|
||||
template<typename GaugeField,typename GaugeMat>
|
||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
|
||||
template<typename Gimpl>
|
||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||
LieRandomize(pRNG,g,1.0);
|
||||
GaugeTransform(Umu,g);
|
||||
GaugeTransform<Gimpl>(Umu,g);
|
||||
}
|
||||
|
||||
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
|
||||
|
@ -125,6 +125,57 @@ public:
|
||||
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// sum over all spatial planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static void siteSpatialPlaquette(ComplexField &Plaq,
|
||||
const std::vector<GaugeMat> &U) {
|
||||
ComplexField sitePlaq(U[0].Grid());
|
||||
Plaq = Zero();
|
||||
for (int mu = 1; mu < Nd-1; mu++) {
|
||||
for (int nu = 0; nu < mu; nu++) {
|
||||
traceDirPlaquette(sitePlaq, U, mu, nu);
|
||||
Plaq = Plaq + sitePlaq;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////
|
||||
// sum over all x,y,z and over all spatial planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
|
||||
std::vector<GaugeMat> U(Nd, Umu.Grid());
|
||||
// inefficient here
|
||||
for (int mu = 0; mu < Nd; mu++) {
|
||||
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||
}
|
||||
|
||||
ComplexField Plaq(Umu.Grid());
|
||||
|
||||
siteSpatialPlaquette(Plaq, U);
|
||||
typedef typename ComplexField::scalar_object sobj;
|
||||
std::vector<sobj> Tq;
|
||||
sliceSum(Plaq, Tq, Nd-1);
|
||||
|
||||
std::vector<Real> out(Tq.size());
|
||||
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
|
||||
return out;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z and over all spatial planes of plaquette
|
||||
//////////////////////////////////////////////////
|
||||
static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
|
||||
std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
|
||||
int Lt = Umu.Grid()->FullDimensions()[Nd-1];
|
||||
assert(sumplaq.size() == Lt);
|
||||
double vol = Umu.Grid()->gSites() / Lt;
|
||||
double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
|
||||
for(int t=0;t<Lt;t++)
|
||||
sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||
return sumplaq;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// average over all x,y,z the temporal loop
|
||||
//////////////////////////////////////////////////
|
||||
@ -362,11 +413,11 @@ public:
|
||||
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
|
||||
GaugeMat vu = v*u;
|
||||
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
|
||||
FS = (u*v + Cshift(vu, mu, -1));
|
||||
FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
|
||||
FS = 0.125*(FS - adj(FS));
|
||||
}
|
||||
|
||||
static Real TopologicalCharge(GaugeLorentz &U){
|
||||
static Real TopologicalCharge(const GaugeLorentz &U){
|
||||
// 4d topological charge
|
||||
assert(Nd==4);
|
||||
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
|
||||
@ -389,6 +440,203 @@ public:
|
||||
}
|
||||
|
||||
|
||||
//Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N, mu >= nu
|
||||
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7 for 1x2 Wilson loop
|
||||
//Clockwise ordering
|
||||
static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){
|
||||
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
|
||||
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
|
||||
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
|
||||
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
|
||||
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
|
||||
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
|
||||
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
|
||||
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
|
||||
|
||||
//Upper right loop
|
||||
GaugeMat tmp = BmuI;
|
||||
for(int i=1;i<M;i++)
|
||||
tmp = Bmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Bnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Fmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Fnu(tmp);
|
||||
|
||||
FS = tmp;
|
||||
|
||||
//Upper left loop
|
||||
tmp = BnuI;
|
||||
for(int j=1;j<N;j++)
|
||||
tmp = Bnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Fmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Fnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Bmu(tmp);
|
||||
|
||||
FS = FS + tmp;
|
||||
|
||||
//Lower right loop
|
||||
tmp = FnuI;
|
||||
for(int j=1;j<N;j++)
|
||||
tmp = Fnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Bmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Bnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Fmu(tmp);
|
||||
|
||||
FS = FS + tmp;
|
||||
|
||||
//Lower left loop
|
||||
tmp = FmuI;
|
||||
for(int i=1;i<M;i++)
|
||||
tmp = Fmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Fnu(tmp);
|
||||
for(int i=0;i<M;i++)
|
||||
tmp = Bmu(tmp);
|
||||
for(int j=0;j<N;j++)
|
||||
tmp = Bnu(tmp);
|
||||
|
||||
FS = FS + tmp;
|
||||
|
||||
#undef Fmu
|
||||
#undef Bmu
|
||||
#undef Fnu
|
||||
#undef Bnu
|
||||
#undef FmuI
|
||||
#undef BmuI
|
||||
#undef FnuI
|
||||
#undef BnuI
|
||||
}
|
||||
|
||||
//Field strength from MxN Wilson loop
|
||||
//Note F_numu = - F_munu
|
||||
static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){
|
||||
GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
|
||||
GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
|
||||
if(M == N){
|
||||
GaugeMat F(Umu.Grid());
|
||||
CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
|
||||
FS = 0.125 * ( F - adj(F) );
|
||||
}else{
|
||||
//Average over both orientations
|
||||
GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
|
||||
CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
|
||||
CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
|
||||
FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
|
||||
}
|
||||
}
|
||||
|
||||
//Topological charge contribution from MxN Wilson loops
|
||||
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 6
|
||||
//output is the charge by timeslice: sum over timeslices to obtain the total
|
||||
static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
|
||||
assert(Nd == 4);
|
||||
std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
|
||||
//Note F_numu = - F_munu
|
||||
//hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu or rho,sigma
|
||||
//Use nu > mu
|
||||
for(int mu=0;mu<Nd-1;mu++){
|
||||
for(int nu=mu+1; nu<Nd; nu++){
|
||||
F[mu][nu] = new GaugeMat(U.Grid());
|
||||
FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
|
||||
}
|
||||
}
|
||||
Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
|
||||
|
||||
static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
|
||||
static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
|
||||
|
||||
ComplexField fsum(U.Grid());
|
||||
fsum = Zero();
|
||||
for(int c=0;c<3;c++){
|
||||
int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
|
||||
int eps = signs[c];
|
||||
fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) );
|
||||
}
|
||||
|
||||
for(int mu=0;mu<Nd-1;mu++)
|
||||
for(int nu=mu+1; nu<Nd; nu++)
|
||||
delete F[mu][nu];
|
||||
|
||||
typedef typename ComplexField::scalar_object sobj;
|
||||
std::vector<sobj> Tq;
|
||||
sliceSum(fsum, Tq, Nd-1);
|
||||
|
||||
std::vector<Real> out(Tq.size());
|
||||
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
|
||||
return out;
|
||||
}
|
||||
static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
|
||||
std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
|
||||
Real out(0);
|
||||
for(int t=0;t<Tq.size();t++) out += Tq[t];
|
||||
return out;
|
||||
}
|
||||
|
||||
//Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
|
||||
//Use coefficients from hep-lat/9701012
|
||||
//1x1 : c1=(19.-55.*c5)/9.
|
||||
//2x2 : c2=(1-64.*c5)/9.
|
||||
//1x2 : c3=(-64.+640.*c5)/45.
|
||||
//1x3 : c4=1./5.-2.*c5
|
||||
//3x3 : c5=1./20.
|
||||
//Output array outer index contains the loops in the above order
|
||||
//Inner index is the time coordinate
|
||||
static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
|
||||
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
|
||||
std::vector<std::vector<Real> > out(5);
|
||||
for(int i=0;i<5;i++){
|
||||
out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){
|
||||
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
|
||||
std::vector<Real> out(5);
|
||||
std::cout << GridLogMessage << "Computing topological charge" << std::endl;
|
||||
for(int i=0;i<5;i++){
|
||||
out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
|
||||
std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
//Compute the 5Li topological charge
|
||||
static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
|
||||
std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
|
||||
|
||||
double c5=1./20.;
|
||||
double c4=1./5.-2.*c5;
|
||||
double c3=(-64.+640.*c5)/45.;
|
||||
double c2=(1-64.*c5)/9.;
|
||||
double c1=(19.-55.*c5)/9.;
|
||||
|
||||
int Lt = loops[0].size();
|
||||
std::vector<Real> out(Lt,0.);
|
||||
for(int t=0;t<Lt;t++)
|
||||
out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
|
||||
return out;
|
||||
}
|
||||
|
||||
static Real TopologicalCharge5Li(const GaugeLorentz &U){
|
||||
std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
|
||||
Real Q = 0.;
|
||||
for(int t=0;t<Qt.size();t++) Q += Qt[t];
|
||||
std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
|
||||
return Q;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Similar to above for rectangle is required
|
||||
//////////////////////////////////////////////////////
|
||||
|
Reference in New Issue
Block a user