mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 01:35:36 +00:00
Merge branch 'feature/dirichlet-gparity' into feature/dirichlet
This commit is contained in:
commit
8208a6214f
@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
|||||||
#include <Grid/GridCore.h>
|
#include <Grid/GridCore.h>
|
||||||
#include <Grid/qcd/QCD.h>
|
#include <Grid/qcd/QCD.h>
|
||||||
#include <Grid/qcd/spin/Spin.h>
|
#include <Grid/qcd/spin/Spin.h>
|
||||||
|
#include <Grid/qcd/gparity/Gparity.h>
|
||||||
#include <Grid/qcd/utils/Utils.h>
|
#include <Grid/qcd/utils/Utils.h>
|
||||||
#include <Grid/qcd/representations/Representations.h>
|
#include <Grid/qcd/representations/Representations.h>
|
||||||
NAMESPACE_CHECK(GridQCDCore);
|
NAMESPACE_CHECK(GridQCDCore);
|
||||||
|
@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB);
|
|||||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
|
#include <Grid/algorithms/iterative/SchurRedBlack.h>
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||||
|
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
|
||||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
|
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
|
||||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||||
|
@ -49,6 +49,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||||
Integer TotalOuterIterations; //Number of restarts
|
Integer TotalOuterIterations; //Number of restarts
|
||||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||||
|
RealD TrueResidual;
|
||||||
|
|
||||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||||
LinearFunction<FieldF> *guesser;
|
LinearFunction<FieldF> *guesser;
|
||||||
@ -68,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
}
|
}
|
||||||
|
|
||||||
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
||||||
|
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
|
||||||
TotalInnerIterations = 0;
|
TotalInnerIterations = 0;
|
||||||
|
|
||||||
GridStopWatch TotalTimer;
|
GridStopWatch TotalTimer;
|
||||||
@ -97,6 +99,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
FieldF sol_f(SinglePrecGrid);
|
FieldF sol_f(SinglePrecGrid);
|
||||||
sol_f.Checkerboard() = cb;
|
sol_f.Checkerboard() = cb;
|
||||||
|
|
||||||
|
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
|
||||||
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
||||||
CG_f.ErrorOnNoConverge = false;
|
CG_f.ErrorOnNoConverge = false;
|
||||||
|
|
||||||
@ -130,6 +133,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
(*guesser)(src_f, sol_f);
|
(*guesser)(src_f, sol_f);
|
||||||
|
|
||||||
//Inner CG
|
//Inner CG
|
||||||
|
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
|
||||||
CG_f.Tolerance = inner_tol;
|
CG_f.Tolerance = inner_tol;
|
||||||
InnerCGtimer.Start();
|
InnerCGtimer.Start();
|
||||||
CG_f(Linop_f, src_f, sol_f);
|
CG_f(Linop_f, src_f, sol_f);
|
||||||
@ -150,6 +154,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
||||||
CG_d(Linop_d, src_d_in, sol_d);
|
CG_d(Linop_d, src_d_in, sol_d);
|
||||||
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
||||||
|
TrueResidual = CG_d.TrueResidual;
|
||||||
|
|
||||||
TotalTimer.Stop();
|
TotalTimer.Stop();
|
||||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
||||||
|
@ -52,7 +52,7 @@ public:
|
|||||||
MultiShiftFunction shifts;
|
MultiShiftFunction shifts;
|
||||||
std::vector<RealD> TrueResidualShift;
|
std::vector<RealD> TrueResidualShift;
|
||||||
|
|
||||||
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
|
ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :
|
||||||
MaxIterations(maxit),
|
MaxIterations(maxit),
|
||||||
shifts(_shifts)
|
shifts(_shifts)
|
||||||
{
|
{
|
||||||
@ -183,6 +183,9 @@ public:
|
|||||||
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
|
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
|
||||||
|
|
||||||
|
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
// Timers
|
// Timers
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
|
409
Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
Normal file
409
Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
Normal file
@ -0,0 +1,409 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
|
||||||
|
|
||||||
|
Copyright (C) 2015
|
||||||
|
|
||||||
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
||||||
|
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
|
||||||
|
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
|
||||||
|
//Every update_freq iterations the residual is corrected in double precision.
|
||||||
|
|
||||||
|
//For safety the a final regular CG is applied to clean up if necessary
|
||||||
|
|
||||||
|
//Linop to add shift to input linop, used in cleanup CG
|
||||||
|
namespace ConjugateGradientMultiShiftMixedPrecSupport{
|
||||||
|
template<typename Field>
|
||||||
|
class ShiftedLinop: public LinearOperatorBase<Field>{
|
||||||
|
public:
|
||||||
|
LinearOperatorBase<Field> &linop_base;
|
||||||
|
RealD shift;
|
||||||
|
|
||||||
|
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
|
||||||
|
|
||||||
|
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||||
|
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||||
|
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||||
|
|
||||||
|
void Op (const Field &in, Field &out){ assert(0); }
|
||||||
|
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||||
|
|
||||||
|
void HermOp(const Field &in, Field &out){
|
||||||
|
linop_base.HermOp(in, out);
|
||||||
|
axpy(out, shift, in, out);
|
||||||
|
}
|
||||||
|
|
||||||
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||||
|
HermOp(in,out);
|
||||||
|
ComplexD dot = innerProduct(in,out);
|
||||||
|
n1=real(dot);
|
||||||
|
n2=norm2(out);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<class FieldD, class FieldF,
|
||||||
|
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||||
|
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||||
|
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
|
||||||
|
public OperatorFunction<FieldD>
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
|
||||||
|
using OperatorFunction<FieldD>::operator();
|
||||||
|
|
||||||
|
RealD Tolerance;
|
||||||
|
Integer MaxIterations;
|
||||||
|
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||||
|
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||||
|
int verbose;
|
||||||
|
MultiShiftFunction shifts;
|
||||||
|
std::vector<RealD> TrueResidualShift;
|
||||||
|
|
||||||
|
int ReliableUpdateFreq; //number of iterations between reliable updates
|
||||||
|
|
||||||
|
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
||||||
|
LinearOperatorBase<FieldF> &Linop_f; //single precision
|
||||||
|
|
||||||
|
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
|
||||||
|
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
|
||||||
|
int _ReliableUpdateFreq
|
||||||
|
) :
|
||||||
|
MaxIterations(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq)
|
||||||
|
{
|
||||||
|
verbose=1;
|
||||||
|
IterationsToCompleteShift.resize(_shifts.order);
|
||||||
|
TrueResidualShift.resize(_shifts.order);
|
||||||
|
}
|
||||||
|
|
||||||
|
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
|
||||||
|
{
|
||||||
|
GridBase *grid = src.Grid();
|
||||||
|
int nshift = shifts.order;
|
||||||
|
std::vector<FieldD> results(nshift,grid);
|
||||||
|
(*this)(Linop,src,results,psi);
|
||||||
|
}
|
||||||
|
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
|
||||||
|
{
|
||||||
|
int nshift = shifts.order;
|
||||||
|
|
||||||
|
(*this)(Linop,src,results);
|
||||||
|
|
||||||
|
psi = shifts.norm*src;
|
||||||
|
for(int i=0;i<nshift;i++){
|
||||||
|
psi = psi + shifts.residues[i]*results[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
|
||||||
|
{
|
||||||
|
GridBase *DoublePrecGrid = src_d.Grid();
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
// Convenience references to the info stored in "MultiShiftFunction"
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
int nshift = shifts.order;
|
||||||
|
|
||||||
|
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
|
||||||
|
std::vector<RealD> &mresidual(shifts.tolerances);
|
||||||
|
std::vector<RealD> alpha(nshift,1.0);
|
||||||
|
|
||||||
|
//Double precision search directions
|
||||||
|
FieldD p_d(DoublePrecGrid);
|
||||||
|
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
|
||||||
|
|
||||||
|
FieldD tmp_d(DoublePrecGrid);
|
||||||
|
FieldD r_d(DoublePrecGrid);
|
||||||
|
FieldD mmp_d(DoublePrecGrid);
|
||||||
|
|
||||||
|
assert(psi_d.size()==nshift);
|
||||||
|
assert(mass.size()==nshift);
|
||||||
|
assert(mresidual.size()==nshift);
|
||||||
|
|
||||||
|
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||||
|
RealD bs[nshift];
|
||||||
|
RealD rsq[nshift];
|
||||||
|
RealD z[nshift][2];
|
||||||
|
int converged[nshift];
|
||||||
|
|
||||||
|
const int primary =0;
|
||||||
|
|
||||||
|
//Primary shift fields CG iteration
|
||||||
|
RealD a,b,c,d;
|
||||||
|
RealD cp,bp,qq; //prev
|
||||||
|
|
||||||
|
// Matrix mult fields
|
||||||
|
FieldF r_f(SinglePrecGrid);
|
||||||
|
FieldF p_f(SinglePrecGrid);
|
||||||
|
FieldF tmp_f(SinglePrecGrid);
|
||||||
|
FieldF mmp_f(SinglePrecGrid);
|
||||||
|
FieldF src_f(SinglePrecGrid);
|
||||||
|
precisionChange(src_f, src_d);
|
||||||
|
|
||||||
|
// Check lightest mass
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
assert( mass[s]>= mass[primary] );
|
||||||
|
converged[s]=0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Wire guess to zero
|
||||||
|
// Residuals "r" are src
|
||||||
|
// First search direction "p" is also src
|
||||||
|
cp = norm2(src_d);
|
||||||
|
|
||||||
|
// Handle trivial case of zero src.
|
||||||
|
if( cp == 0. ){
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
psi_d[s] = Zero();
|
||||||
|
IterationsToCompleteShift[s] = 1;
|
||||||
|
TrueResidualShift[s] = 0.;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
|
||||||
|
ps_d[s] = src_d;
|
||||||
|
}
|
||||||
|
// r and p for primary
|
||||||
|
r_f=src_f; //residual maintained in single
|
||||||
|
p_f=src_f;
|
||||||
|
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
|
||||||
|
|
||||||
|
//MdagM+m[0]
|
||||||
|
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||||
|
axpy(mmp_f,mass[0],p_f,mmp_f);
|
||||||
|
RealD rn = norm2(p_f);
|
||||||
|
d += rn*mass[0];
|
||||||
|
|
||||||
|
b = -cp /d;
|
||||||
|
|
||||||
|
// Set up the various shift variables
|
||||||
|
int iz=0;
|
||||||
|
z[0][1-iz] = 1.0;
|
||||||
|
z[0][iz] = 1.0;
|
||||||
|
bs[0] = b;
|
||||||
|
for(int s=1;s<nshift;s++){
|
||||||
|
z[s][1-iz] = 1.0;
|
||||||
|
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
|
||||||
|
bs[s] = b*z[s][iz];
|
||||||
|
}
|
||||||
|
|
||||||
|
// r += b[0] A.p[0]
|
||||||
|
// c= norm(r)
|
||||||
|
c=axpy_norm(r_f,b,mmp_f,r_f);
|
||||||
|
|
||||||
|
for(int s=0;s<nshift;s++) {
|
||||||
|
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////////////////////
|
||||||
|
// Timers
|
||||||
|
///////////////////////////////////////
|
||||||
|
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
|
||||||
|
|
||||||
|
SolverTimer.Start();
|
||||||
|
|
||||||
|
// Iteration loop
|
||||||
|
int k;
|
||||||
|
|
||||||
|
for (k=1;k<=MaxIterations;k++){
|
||||||
|
a = c /cp;
|
||||||
|
|
||||||
|
//Update double precision search direction by residual
|
||||||
|
PrecChangeTimer.Start();
|
||||||
|
precisionChange(r_d, r_f);
|
||||||
|
PrecChangeTimer.Stop();
|
||||||
|
|
||||||
|
AXPYTimer.Start();
|
||||||
|
axpy(p_d,a,p_d,r_d);
|
||||||
|
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
if ( ! converged[s] ) {
|
||||||
|
if (s==0){
|
||||||
|
axpy(ps_d[s],a,ps_d[s],r_d);
|
||||||
|
} else{
|
||||||
|
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
|
||||||
|
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
AXPYTimer.Stop();
|
||||||
|
|
||||||
|
PrecChangeTimer.Start();
|
||||||
|
precisionChange(p_f, p_d); //get back single prec search direction for linop
|
||||||
|
PrecChangeTimer.Stop();
|
||||||
|
|
||||||
|
cp=c;
|
||||||
|
MatrixTimer.Start();
|
||||||
|
Linop_f.HermOp(p_f,mmp_f);
|
||||||
|
d=real(innerProduct(p_f,mmp_f));
|
||||||
|
MatrixTimer.Stop();
|
||||||
|
|
||||||
|
AXPYTimer.Start();
|
||||||
|
axpy(mmp_f,mass[0],p_f,mmp_f);
|
||||||
|
AXPYTimer.Stop();
|
||||||
|
RealD rn = norm2(p_f);
|
||||||
|
d += rn*mass[0];
|
||||||
|
|
||||||
|
bp=b;
|
||||||
|
b=-cp/d;
|
||||||
|
|
||||||
|
// Toggle the recurrence history
|
||||||
|
bs[0] = b;
|
||||||
|
iz = 1-iz;
|
||||||
|
ShiftTimer.Start();
|
||||||
|
for(int s=1;s<nshift;s++){
|
||||||
|
if((!converged[s])){
|
||||||
|
RealD z0 = z[s][1-iz];
|
||||||
|
RealD z1 = z[s][iz];
|
||||||
|
z[s][iz] = z0*z1*bp
|
||||||
|
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
|
||||||
|
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ShiftTimer.Stop();
|
||||||
|
|
||||||
|
//Update double precision solutions
|
||||||
|
AXPYTimer.Start();
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
int ss = s;
|
||||||
|
if( (!converged[s]) ) {
|
||||||
|
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
|
||||||
|
RealD c_f = axpy_norm(r_f,b,mmp_f,r_f);
|
||||||
|
AXPYTimer.Stop();
|
||||||
|
|
||||||
|
c = c_f;
|
||||||
|
|
||||||
|
if(k % ReliableUpdateFreq == 0){
|
||||||
|
//Replace r with true residual
|
||||||
|
MatrixTimer.Start();
|
||||||
|
Linop_d.HermOp(psi_d[0],mmp_d);
|
||||||
|
MatrixTimer.Stop();
|
||||||
|
|
||||||
|
AXPYTimer.Start();
|
||||||
|
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
|
||||||
|
|
||||||
|
RealD c_d = axpy_norm(r_d, -1.0, mmp_d, src_d);
|
||||||
|
AXPYTimer.Stop();
|
||||||
|
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_f <<" with |r|^2 = "<<c_d<<std::endl;
|
||||||
|
|
||||||
|
PrecChangeTimer.Start();
|
||||||
|
precisionChange(r_f, r_d);
|
||||||
|
PrecChangeTimer.Stop();
|
||||||
|
c = c_d;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convergence checks
|
||||||
|
int all_converged = 1;
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
|
||||||
|
if ( (!converged[s]) ){
|
||||||
|
IterationsToCompleteShift[s] = k;
|
||||||
|
|
||||||
|
RealD css = c * z[s][iz]* z[s][iz];
|
||||||
|
|
||||||
|
if(css<rsq[s]){
|
||||||
|
if ( ! converged[s] )
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
|
||||||
|
converged[s]=1;
|
||||||
|
} else {
|
||||||
|
all_converged=0;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if ( all_converged ){
|
||||||
|
|
||||||
|
SolverTimer.Stop();
|
||||||
|
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
|
||||||
|
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
|
||||||
|
|
||||||
|
// Check answers
|
||||||
|
for(int s=0; s < nshift; s++) {
|
||||||
|
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
|
||||||
|
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
|
||||||
|
axpy(r_d,-alpha[s],src_d,tmp_d);
|
||||||
|
RealD rn = norm2(r_d);
|
||||||
|
RealD cn = norm2(src_d);
|
||||||
|
TrueResidualShift[s] = std::sqrt(rn/cn);
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
|
||||||
|
|
||||||
|
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
|
||||||
|
if(rn >= rsq[s]){
|
||||||
|
CleanupTimer.Start();
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
|
||||||
|
|
||||||
|
//Setup linear operators for final cleanup
|
||||||
|
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
|
||||||
|
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
|
||||||
|
|
||||||
|
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
|
||||||
|
cg(src_d, psi_d[s]);
|
||||||
|
|
||||||
|
TrueResidualShift[s] = cg.TrueResidual;
|
||||||
|
CleanupTimer.Stop();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
|
||||||
|
|
||||||
|
IterationsToComplete = k;
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
// ugly hack
|
||||||
|
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||||
|
// assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
#endif
|
@ -44,6 +44,7 @@ public:
|
|||||||
int, MinRes); // Must restart
|
int, MinRes); // Must restart
|
||||||
};
|
};
|
||||||
|
|
||||||
|
//This class is the input parameter class for some testing programs
|
||||||
struct LocalCoherenceLanczosParams : Serializable {
|
struct LocalCoherenceLanczosParams : Serializable {
|
||||||
public:
|
public:
|
||||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
||||||
@ -155,6 +156,7 @@ public:
|
|||||||
_coarse_relax_tol(coarse_relax_tol)
|
_coarse_relax_tol(coarse_relax_tol)
|
||||||
{ };
|
{ };
|
||||||
|
|
||||||
|
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
|
||||||
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||||
{
|
{
|
||||||
CoarseField v(B);
|
CoarseField v(B);
|
||||||
@ -181,8 +183,16 @@ public:
|
|||||||
if( (vv<eresid*eresid) ) conv = 1;
|
if( (vv<eresid*eresid) ) conv = 1;
|
||||||
return conv;
|
return conv;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
|
||||||
|
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
|
||||||
|
|
||||||
|
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
|
||||||
|
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
|
||||||
|
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
|
||||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||||
{
|
{
|
||||||
|
evalMaxApprox = 1.0; //cf above
|
||||||
GridBase *FineGrid = _subspace[0].Grid();
|
GridBase *FineGrid = _subspace[0].Grid();
|
||||||
int checkerboard = _subspace[0].Checkerboard();
|
int checkerboard = _subspace[0].Checkerboard();
|
||||||
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
|
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
|
||||||
@ -201,13 +211,13 @@ public:
|
|||||||
eval = vnum/vden;
|
eval = vnum/vden;
|
||||||
fv -= eval*fB;
|
fv -= eval*fB;
|
||||||
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
||||||
|
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||||
|
|
||||||
std::cout.precision(13);
|
std::cout.precision(13);
|
||||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
|
||||||
<<std::endl;
|
<<std::endl;
|
||||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
|
||||||
if( (vv<eresid*eresid) ) return 1;
|
if( (vv<eresid*eresid) ) return 1;
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
@ -285,6 +295,10 @@ public:
|
|||||||
evals_coarse.resize(0);
|
evals_coarse.resize(0);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
//The block inner product is the inner product on the fine grid locally summed over the blocks
|
||||||
|
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
|
||||||
|
//vectors under the block inner product. This step must be performed after computing the fine grid
|
||||||
|
//eigenvectors and before computing the coarse grid eigenvectors.
|
||||||
void Orthogonalise(void ) {
|
void Orthogonalise(void ) {
|
||||||
CoarseScalar InnerProd(_CoarseGrid);
|
CoarseScalar InnerProd(_CoarseGrid);
|
||||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||||
@ -328,6 +342,8 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
|
||||||
|
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
|
||||||
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
||||||
{
|
{
|
||||||
assert(evals_fine.size() == nbasis);
|
assert(evals_fine.size() == nbasis);
|
||||||
@ -376,18 +392,23 @@ public:
|
|||||||
evals_fine.resize(nbasis);
|
evals_fine.resize(nbasis);
|
||||||
subspace.resize(nbasis,_FineGrid);
|
subspace.resize(nbasis,_FineGrid);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
|
||||||
|
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
|
||||||
|
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
|
||||||
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
||||||
int Nstop, int Nk, int Nm,RealD resid,
|
int Nstop, int Nk, int Nm,RealD resid,
|
||||||
RealD MaxIt, RealD betastp, int MinRes)
|
RealD MaxIt, RealD betastp, int MinRes)
|
||||||
{
|
{
|
||||||
Chebyshev<FineField> Cheby(cheby_op);
|
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
|
||||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
|
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
|
||||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
|
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
|
||||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
|
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
|
||||||
|
|
||||||
evals_coarse.resize(Nm);
|
evals_coarse.resize(Nm);
|
||||||
@ -395,6 +416,7 @@ public:
|
|||||||
|
|
||||||
CoarseField src(_CoarseGrid); src=1.0;
|
CoarseField src(_CoarseGrid); src=1.0;
|
||||||
|
|
||||||
|
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
|
||||||
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||||
int Nconv=0;
|
int Nconv=0;
|
||||||
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
||||||
@ -405,6 +427,14 @@ public:
|
|||||||
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Get the fine eigenvector 'i' by reconstruction
|
||||||
|
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
|
||||||
|
blockPromote(evec_coarse[i],evec,subspace);
|
||||||
|
eval = evals_coarse[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
@ -30,6 +30,8 @@ template<class Field> class PowerMethod
|
|||||||
RealD vden = norm2(src_n);
|
RealD vden = norm2(src_n);
|
||||||
RealD na = vnum/vden;
|
RealD na = vnum/vden;
|
||||||
|
|
||||||
|
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
|
||||||
|
|
||||||
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
|
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
|
||||||
evalMaxApprox = na;
|
evalMaxApprox = na;
|
||||||
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
std::cout << GridLogMessage << " Approximation of largest eigenvalue: " << evalMaxApprox << std::endl;
|
||||||
|
@ -855,7 +855,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
|
|||||||
|
|
||||||
|
|
||||||
template<class vobj>
|
template<class vobj>
|
||||||
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
|
|
||||||
|
@ -42,9 +42,11 @@ using namespace Grid;
|
|||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
class NerscIO : public BinaryIO {
|
class NerscIO : public BinaryIO {
|
||||||
public:
|
public:
|
||||||
|
|
||||||
typedef Lattice<vLorentzColourMatrixD> GaugeField;
|
typedef Lattice<vLorentzColourMatrixD> GaugeField;
|
||||||
|
|
||||||
|
// Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
|
||||||
|
static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
|
||||||
|
|
||||||
static inline void truncate(std::string file){
|
static inline void truncate(std::string file){
|
||||||
std::ofstream fout(file,std::ios::out);
|
std::ofstream fout(file,std::ios::out);
|
||||||
}
|
}
|
||||||
@ -203,7 +205,7 @@ public:
|
|||||||
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
|
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
|
||||||
exit(0);
|
exit(0);
|
||||||
}
|
}
|
||||||
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
|
if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
|
||||||
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
|
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
|
||||||
assert(nersc_csum == header.checksum );
|
assert(nersc_csum == header.checksum );
|
||||||
|
|
||||||
|
@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
|
|||||||
#define ColourIndex (2)
|
#define ColourIndex (2)
|
||||||
#define SpinIndex (1)
|
#define SpinIndex (1)
|
||||||
#define LorentzIndex (0)
|
#define LorentzIndex (0)
|
||||||
|
#define GparityFlavourIndex (0)
|
||||||
|
|
||||||
// Also should make these a named enum type
|
// Also should make these a named enum type
|
||||||
static constexpr int DaggerNo=0;
|
static constexpr int DaggerNo=0;
|
||||||
@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
|
|||||||
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
|
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
|
||||||
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
|
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
|
||||||
|
|
||||||
|
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
|
||||||
|
|
||||||
// ChrisK very keen to add extra space for Gparity doubling.
|
// ChrisK very keen to add extra space for Gparity doubling.
|
||||||
//
|
//
|
||||||
// Also add domain wall index, in a way where Wilson operator
|
// Also add domain wall index, in a way where Wilson operator
|
||||||
@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVec
|
|||||||
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
|
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
|
||||||
|
|
||||||
|
|
||||||
|
template<typename vtype> using iGparityFlavourVector = iVector<iScalar<iScalar<vtype> >, Ngp>;
|
||||||
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
|
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
|
||||||
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
|
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
|
||||||
|
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
|
||||||
|
|
||||||
// Spin matrix
|
// Spin matrix
|
||||||
typedef iSpinMatrix<Complex > SpinMatrix;
|
typedef iSpinMatrix<Complex > SpinMatrix;
|
||||||
@ -176,6 +181,16 @@ typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
|
|||||||
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
|
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
|
||||||
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
|
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
|
||||||
|
|
||||||
|
//G-parity flavour matrix
|
||||||
|
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
|
||||||
|
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
|
||||||
|
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
|
||||||
|
|
||||||
|
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
|
||||||
|
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
|
||||||
|
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
|
||||||
|
|
||||||
|
|
||||||
// Spin vector
|
// Spin vector
|
||||||
typedef iSpinVector<Complex > SpinVector;
|
typedef iSpinVector<Complex > SpinVector;
|
||||||
typedef iSpinVector<ComplexF> SpinVectorF;
|
typedef iSpinVector<ComplexF> SpinVectorF;
|
||||||
@ -221,6 +236,16 @@ typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
|
|||||||
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
|
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
|
||||||
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
|
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
|
||||||
|
|
||||||
|
//G-parity flavour vector
|
||||||
|
typedef iGparityFlavourVector<Complex > GparityFlavourVector;
|
||||||
|
typedef iGparityFlavourVector<ComplexF> GparityFlavourVectorF;
|
||||||
|
typedef iGparityFlavourVector<ComplexD> GparityFlavourVectorD;
|
||||||
|
|
||||||
|
typedef iGparityFlavourVector<vComplex > vGparityFlavourVector;
|
||||||
|
typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF;
|
||||||
|
typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD;
|
||||||
|
|
||||||
|
|
||||||
// singlets
|
// singlets
|
||||||
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.
|
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.
|
||||||
typedef iSinglet<ComplexF> TComplexF; // FIXME This is painful. Tensor singlet complex type.
|
typedef iSinglet<ComplexF> TComplexF; // FIXME This is painful. Tensor singlet complex type.
|
||||||
|
@ -30,6 +30,18 @@ directory
|
|||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
/*
|
||||||
|
Policy implementation for G-parity boundary conditions
|
||||||
|
|
||||||
|
Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
|
||||||
|
field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
|
||||||
|
with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
|
||||||
|
to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
|
||||||
|
either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
|
||||||
|
|
||||||
|
Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||||
|
mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||||
|
*/
|
||||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
|
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
|
||||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
|
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
|
||||||
public:
|
public:
|
||||||
@ -113,7 +125,7 @@ public:
|
|||||||
|| ((distance== 1)&&(icoor[direction]==1))
|
|| ((distance== 1)&&(icoor[direction]==1))
|
||||||
|| ((distance==-1)&&(icoor[direction]==0));
|
|| ((distance==-1)&&(icoor[direction]==0));
|
||||||
|
|
||||||
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
|
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
|
||||||
|
|
||||||
//Apply the links
|
//Apply the links
|
||||||
int f_upper = permute_lane ? 1 : 0;
|
int f_upper = permute_lane ? 1 : 0;
|
||||||
@ -139,10 +151,10 @@ public:
|
|||||||
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
|
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
|
||||||
assert((sl == 1) || (sl == 2));
|
assert((sl == 1) || (sl == 2));
|
||||||
|
|
||||||
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
|
//If this site is an global boundary site, perform the G-parity flavor twist
|
||||||
|
if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
|
||||||
if ( sl == 2 ) {
|
if ( sl == 2 ) {
|
||||||
|
//Only do the twist for lanes on the edge of the physical node
|
||||||
ExtractBuffer<sobj> vals(Nsimd);
|
ExtractBuffer<sobj> vals(Nsimd);
|
||||||
|
|
||||||
extract(chi,vals);
|
extract(chi,vals);
|
||||||
@ -197,6 +209,19 @@ public:
|
|||||||
reg = memory;
|
reg = memory;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
|
||||||
|
inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
|
||||||
|
autoView(poke_f0_v, poke_f0, CpuRead);
|
||||||
|
autoView(poke_f1_v, poke_f1, CpuRead);
|
||||||
|
autoView(Uds_v, Uds, CpuWrite);
|
||||||
|
thread_foreach(ss,poke_f0_v,{
|
||||||
|
Uds_v[ss](0)(mu) = poke_f0_v[ss]();
|
||||||
|
Uds_v[ss](1)(mu) = poke_f1_v[ss]();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||||
{
|
{
|
||||||
conformable(Uds.Grid(),GaugeGrid);
|
conformable(Uds.Grid(),GaugeGrid);
|
||||||
@ -208,13 +233,18 @@ public:
|
|||||||
|
|
||||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||||
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
//Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||||
|
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||||
|
for(int mu=0;mu<Nd-1;mu++){
|
||||||
|
|
||||||
|
if( Params.twists[mu] ){
|
||||||
LatticeCoordinate(coor,mu);
|
LatticeCoordinate(coor,mu);
|
||||||
|
}
|
||||||
|
|
||||||
U = PeekIndex<LorentzIndex>(Umu,mu);
|
U = PeekIndex<LorentzIndex>(Umu,mu);
|
||||||
Uconj = conjugate(U);
|
Uconj = conjugate(U);
|
||||||
|
|
||||||
|
// Implement the isospin rotation sign on the boundary between f=1 and f=0
|
||||||
// This phase could come from a simple bc 1,1,-1,1 ..
|
// This phase could come from a simple bc 1,1,-1,1 ..
|
||||||
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
|
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
|
||||||
if ( Params.twists[mu] ) {
|
if ( Params.twists[mu] ) {
|
||||||
@ -260,6 +290,38 @@ public:
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
{ //periodic / antiperiodic temporal BCs
|
||||||
|
int mu = Nd-1;
|
||||||
|
int L = GaugeGrid->GlobalDimensions()[mu];
|
||||||
|
int Lmu = L - 1;
|
||||||
|
|
||||||
|
LatticeCoordinate(coor, mu);
|
||||||
|
|
||||||
|
U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
|
||||||
|
|
||||||
|
GaugeLinkField *Upoke = &U;
|
||||||
|
|
||||||
|
if(Params.twists[mu]){ //antiperiodic
|
||||||
|
Utmp = where(coor == Lmu, -U, U);
|
||||||
|
Upoke = &Utmp;
|
||||||
|
}
|
||||||
|
|
||||||
|
Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links
|
||||||
|
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
|
||||||
|
|
||||||
|
//Get the barrel-shifted field
|
||||||
|
Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
|
||||||
|
Upoke = &Utmp;
|
||||||
|
|
||||||
|
if(Params.twists[mu]){
|
||||||
|
U = where(coor == 0, -Utmp, Utmp); //boundary phase
|
||||||
|
Upoke = &U;
|
||||||
|
}
|
||||||
|
|
||||||
|
Uconj = conjugate(*Upoke);
|
||||||
|
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
|
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
|
||||||
@ -300,27 +362,47 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
|
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
|
||||||
|
int Ls=Btilde.Grid()->_fdimensions[0];
|
||||||
|
|
||||||
int Ls = Btilde.Grid()->_fdimensions[0];
|
|
||||||
|
|
||||||
GaugeLinkField tmp(mat.Grid());
|
|
||||||
tmp = Zero();
|
|
||||||
{
|
{
|
||||||
autoView( tmp_v , tmp, CpuWrite);
|
GridBase *GaugeGrid = mat.Grid();
|
||||||
autoView( Atilde_v , Atilde, CpuRead);
|
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||||
autoView( Btilde_v , Btilde, CpuRead);
|
|
||||||
thread_for(ss,tmp.Grid()->oSites(),{
|
if( Params.twists[mu] ){
|
||||||
for (int s = 0; s < Ls; s++) {
|
LatticeCoordinate(coor,mu);
|
||||||
int sF = s + Ls * ss;
|
|
||||||
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
|
|
||||||
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
autoView( mat_v , mat, AcceleratorWrite);
|
||||||
|
autoView( Btilde_v , Btilde, AcceleratorRead);
|
||||||
|
autoView( Atilde_v , Atilde, AcceleratorRead);
|
||||||
|
accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{
|
||||||
|
int sU=sss;
|
||||||
|
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
|
||||||
|
ColorMatrixType sum;
|
||||||
|
zeroit(sum);
|
||||||
|
for(int s=0;s<Ls;s++){
|
||||||
|
int sF = s+Ls*sU;
|
||||||
|
for(int spn=0;spn<Ns;spn++){ //sum over spin
|
||||||
|
//Flavor 0
|
||||||
|
auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
|
||||||
|
auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
|
||||||
|
sum = sum + outerProduct(bb,aa);
|
||||||
|
|
||||||
|
//Flavor 1
|
||||||
|
bb = coalescedRead(Btilde_v[sF](1)(spn) );
|
||||||
|
aa = coalescedRead(Atilde_v[sF](1)(spn) );
|
||||||
|
sum = sum + conjugate(outerProduct(bb,aa));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
coalescedWrite(mat_v[sU](mu)(), sum);
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
PokeIndex<LorentzIndex>(mat, tmp, mu);
|
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffReal> GparityWilsonImplR; // Real.. whichever prec
|
typedef GparityWilsonImpl<vComplex , FundamentalRepresentation,CoeffReal> GparityWilsonImplR; // Real.. whichever prec
|
||||||
|
@ -37,7 +37,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
|
|
||||||
template<typename MomentaField>
|
template<typename MomentaField>
|
||||||
struct MomentumFilterBase{
|
struct MomentumFilterBase{
|
||||||
virtual void applyFilter(MomentaField &P) const;
|
virtual void applyFilter(MomentaField &P) const = 0;
|
||||||
};
|
};
|
||||||
|
|
||||||
//Do nothing
|
//Do nothing
|
||||||
|
@ -69,6 +69,11 @@ public:
|
|||||||
return PeriodicBC::ShiftStaple(Link,mu);
|
return PeriodicBC::ShiftStaple(Link,mu);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Same as Cshift for periodic BCs
|
||||||
|
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
|
||||||
|
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||||
|
}
|
||||||
|
|
||||||
static inline bool isPeriodicGaugeField(void) { return true; }
|
static inline bool isPeriodicGaugeField(void) { return true; }
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -110,6 +115,11 @@ public:
|
|||||||
return PeriodicBC::CovShiftBackward(Link, mu, field);
|
return PeriodicBC::CovShiftBackward(Link, mu, field);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//If mu is a conjugate BC direction
|
||||||
|
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
|
||||||
|
// = U^T_\mu(L-1) | x_\mu == 0
|
||||||
|
//else
|
||||||
|
//Out(x) = U^dag_\mu(x-mu mod L)
|
||||||
static inline GaugeLinkField
|
static inline GaugeLinkField
|
||||||
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
|
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
|
||||||
{
|
{
|
||||||
@ -129,6 +139,13 @@ public:
|
|||||||
return PeriodicBC::CovShiftIdentityForward(Link,mu);
|
return PeriodicBC::CovShiftIdentityForward(Link,mu);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//If mu is a conjugate BC direction
|
||||||
|
//Out(x) = S_\mu(x+mu) | x_\mu != L-1
|
||||||
|
// = S*_\mu(x+mu) | x_\mu == L-1
|
||||||
|
//else
|
||||||
|
//Out(x) = S_\mu(x+mu mod L)
|
||||||
|
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
|
||||||
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
|
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
|
||||||
{
|
{
|
||||||
assert(_conjDirs.size() == Nd);
|
assert(_conjDirs.size() == Nd);
|
||||||
@ -138,6 +155,27 @@ public:
|
|||||||
return PeriodicBC::ShiftStaple(Link,mu);
|
return PeriodicBC::ShiftStaple(Link,mu);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||||
|
//For conjugate BC direction
|
||||||
|
//shift = 1
|
||||||
|
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
|
||||||
|
// = U*_\mu(0) | x_\mu == L-1
|
||||||
|
//shift = -1
|
||||||
|
//Out(x) = U_\mu(x-mu) | x_\mu != 0
|
||||||
|
// = U*_\mu(L-1) | x_\mu == 0
|
||||||
|
//else
|
||||||
|
//shift = 1
|
||||||
|
//Out(x) = U_\mu(x+\hat\mu mod L)
|
||||||
|
//shift = -1
|
||||||
|
//Out(x) = U_\mu(x-\hat\mu mod L)
|
||||||
|
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
|
||||||
|
assert(_conjDirs.size() == Nd);
|
||||||
|
if(_conjDirs[mu])
|
||||||
|
return ConjugateBC::CshiftLink(Link,mu,shift);
|
||||||
|
else
|
||||||
|
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||||
|
}
|
||||||
|
|
||||||
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
|
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
|
||||||
static inline std::vector<int> getDirections(void) { return _conjDirs; }
|
static inline std::vector<int> getDirections(void) { return _conjDirs; }
|
||||||
static inline bool isPeriodicGaugeField(void) { return false; }
|
static inline bool isPeriodicGaugeField(void) { return false; }
|
||||||
|
6
Grid/qcd/gparity/Gparity.h
Normal file
6
Grid/qcd/gparity/Gparity.h
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
#ifndef GRID_GPARITY_H_
|
||||||
|
#define GRID_GPARITY_H_
|
||||||
|
|
||||||
|
#include<Grid/qcd/gparity/GparityFlavour.h>
|
||||||
|
|
||||||
|
#endif
|
34
Grid/qcd/gparity/GparityFlavour.cc
Normal file
34
Grid/qcd/gparity/GparityFlavour.cc
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
#include <Grid/Grid.h>
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::SigmaX),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::SigmaY),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::SigmaZ)
|
||||||
|
}};
|
||||||
|
|
||||||
|
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::Identity),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::SigmaX),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::SigmaY),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::SigmaZ),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::ProjPlus),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::ProjMinus)
|
||||||
|
}};
|
||||||
|
|
||||||
|
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
|
||||||
|
"SigmaX",
|
||||||
|
"MinusSigmaX",
|
||||||
|
"SigmaY",
|
||||||
|
"MinusSigmaY",
|
||||||
|
"SigmaZ",
|
||||||
|
"MinusSigmaZ",
|
||||||
|
"Identity",
|
||||||
|
"MinusIdentity",
|
||||||
|
"ProjPlus",
|
||||||
|
"MinusProjPlus",
|
||||||
|
"ProjMinus",
|
||||||
|
"MinusProjMinus"}};
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
475
Grid/qcd/gparity/GparityFlavour.h
Normal file
475
Grid/qcd/gparity/GparityFlavour.h
Normal file
@ -0,0 +1,475 @@
|
|||||||
|
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
|
||||||
|
#define GRID_QCD_GPARITY_FLAVOUR_H
|
||||||
|
|
||||||
|
//Support for flavour-matrix operations acting on the G-parity flavour index
|
||||||
|
|
||||||
|
#include <array>
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
class GparityFlavour {
|
||||||
|
public:
|
||||||
|
GRID_SERIALIZABLE_ENUM(Algebra, undef,
|
||||||
|
SigmaX, 0,
|
||||||
|
MinusSigmaX, 1,
|
||||||
|
SigmaY, 2,
|
||||||
|
MinusSigmaY, 3,
|
||||||
|
SigmaZ, 4,
|
||||||
|
MinusSigmaZ, 5,
|
||||||
|
Identity, 6,
|
||||||
|
MinusIdentity, 7,
|
||||||
|
ProjPlus, 8,
|
||||||
|
MinusProjPlus, 9,
|
||||||
|
ProjMinus, 10,
|
||||||
|
MinusProjMinus, 11
|
||||||
|
);
|
||||||
|
static constexpr unsigned int nSigma = 12;
|
||||||
|
static const std::array<const char *, nSigma> name;
|
||||||
|
static const std::array<const GparityFlavour, 3> sigma_mu;
|
||||||
|
static const std::array<const GparityFlavour, 6> sigma_all;
|
||||||
|
Algebra g;
|
||||||
|
public:
|
||||||
|
accelerator GparityFlavour(Algebra initg): g(initg) {}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// 0 1 x vector
|
||||||
|
// 1 0
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = rhs(1);
|
||||||
|
ret(1) = rhs(0);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = rhs(1,0);
|
||||||
|
ret(0,1) = rhs(1,1);
|
||||||
|
ret(1,0) = rhs(0,0);
|
||||||
|
ret(1,1) = rhs(0,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = rhs(0,1);
|
||||||
|
ret(0,1) = rhs(0,0);
|
||||||
|
ret(1,0) = rhs(1,1);
|
||||||
|
ret(1,1) = rhs(1,0);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = -rhs(1);
|
||||||
|
ret(1) = -rhs(0);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -rhs(1,0);
|
||||||
|
ret(0,1) = -rhs(1,1);
|
||||||
|
ret(1,0) = -rhs(0,0);
|
||||||
|
ret(1,1) = -rhs(0,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -rhs(0,1);
|
||||||
|
ret(0,1) = -rhs(0,0);
|
||||||
|
ret(1,0) = -rhs(1,1);
|
||||||
|
ret(1,1) = -rhs(1,0);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// 0 -i x vector
|
||||||
|
// i 0
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = timesMinusI(rhs(1));
|
||||||
|
ret(1) = timesI(rhs(0));
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = timesMinusI(rhs(1,0));
|
||||||
|
ret(0,1) = timesMinusI(rhs(1,1));
|
||||||
|
ret(1,0) = timesI(rhs(0,0));
|
||||||
|
ret(1,1) = timesI(rhs(0,1));
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = timesI(rhs(0,1));
|
||||||
|
ret(0,1) = timesMinusI(rhs(0,0));
|
||||||
|
ret(1,0) = timesI(rhs(1,1));
|
||||||
|
ret(1,1) = timesMinusI(rhs(1,0));
|
||||||
|
};
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = timesI(rhs(1));
|
||||||
|
ret(1) = timesMinusI(rhs(0));
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = timesI(rhs(1,0));
|
||||||
|
ret(0,1) = timesI(rhs(1,1));
|
||||||
|
ret(1,0) = timesMinusI(rhs(0,0));
|
||||||
|
ret(1,1) = timesMinusI(rhs(0,1));
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = timesMinusI(rhs(0,1));
|
||||||
|
ret(0,1) = timesI(rhs(0,0));
|
||||||
|
ret(1,0) = timesMinusI(rhs(1,1));
|
||||||
|
ret(1,1) = timesI(rhs(1,0));
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// 1 0 x vector
|
||||||
|
// 0 -1
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = rhs(0);
|
||||||
|
ret(1) = -rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = rhs(0,0);
|
||||||
|
ret(0,1) = rhs(0,1);
|
||||||
|
ret(1,0) = -rhs(1,0);
|
||||||
|
ret(1,1) = -rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = rhs(0,0);
|
||||||
|
ret(0,1) = -rhs(0,1);
|
||||||
|
ret(1,0) = rhs(1,0);
|
||||||
|
ret(1,1) = -rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = -rhs(0);
|
||||||
|
ret(1) = rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -rhs(0,0);
|
||||||
|
ret(0,1) = -rhs(0,1);
|
||||||
|
ret(1,0) = rhs(1,0);
|
||||||
|
ret(1,1) = rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -rhs(0,0);
|
||||||
|
ret(0,1) = rhs(0,1);
|
||||||
|
ret(1,0) = -rhs(1,0);
|
||||||
|
ret(1,1) = rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = rhs(0);
|
||||||
|
ret(1) = rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = rhs(0,0);
|
||||||
|
ret(0,1) = rhs(0,1);
|
||||||
|
ret(1,0) = rhs(1,0);
|
||||||
|
ret(1,1) = rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = rhs(0,0);
|
||||||
|
ret(0,1) = rhs(0,1);
|
||||||
|
ret(1,0) = rhs(1,0);
|
||||||
|
ret(1,1) = rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = -rhs(0);
|
||||||
|
ret(1) = -rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -rhs(0,0);
|
||||||
|
ret(0,1) = -rhs(0,1);
|
||||||
|
ret(1,0) = -rhs(1,0);
|
||||||
|
ret(1,1) = -rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -rhs(0,0);
|
||||||
|
ret(0,1) = -rhs(0,1);
|
||||||
|
ret(1,0) = -rhs(1,0);
|
||||||
|
ret(1,1) = -rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
//G-parity flavour projection 1/2(1+\sigma_2)
|
||||||
|
//1 -i
|
||||||
|
//i 1
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
|
||||||
|
ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
|
||||||
|
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
|
||||||
|
ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
|
||||||
|
ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
|
||||||
|
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
|
||||||
|
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
|
||||||
|
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
|
||||||
|
ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
|
||||||
|
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
|
||||||
|
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
|
||||||
|
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
|
||||||
|
ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
|
||||||
|
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
|
||||||
|
ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
//G-parity flavour projection 1/2(1-\sigma_2)
|
||||||
|
//1 i
|
||||||
|
//-i 1
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
|
||||||
|
ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
|
||||||
|
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
|
||||||
|
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
|
||||||
|
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
|
||||||
|
ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
|
||||||
|
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
|
||||||
|
ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
|
||||||
|
ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
|
||||||
|
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
|
||||||
|
ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
|
||||||
|
ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
|
||||||
|
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
|
||||||
|
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
|
||||||
|
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
|
||||||
|
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
|
||||||
|
{
|
||||||
|
iVector<vtype, Ngp> ret;
|
||||||
|
|
||||||
|
switch (G.g)
|
||||||
|
{
|
||||||
|
case GparityFlavour::Algebra::SigmaX:
|
||||||
|
multFlavourSigmaX(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaX:
|
||||||
|
multFlavourMinusSigmaX(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::SigmaY:
|
||||||
|
multFlavourSigmaY(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaY:
|
||||||
|
multFlavourMinusSigmaY(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::SigmaZ:
|
||||||
|
multFlavourSigmaZ(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||||
|
multFlavourMinusSigmaZ(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::Identity:
|
||||||
|
multFlavourIdentity(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusIdentity:
|
||||||
|
multFlavourMinusIdentity(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::ProjPlus:
|
||||||
|
multFlavourProjPlus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusProjPlus:
|
||||||
|
multFlavourMinusProjPlus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::ProjMinus:
|
||||||
|
multFlavourProjMinus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusProjMinus:
|
||||||
|
multFlavourMinusProjMinus(ret, arg); break;
|
||||||
|
default: assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
|
||||||
|
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
|
||||||
|
{
|
||||||
|
iMatrix<vtype, Ngp> ret;
|
||||||
|
|
||||||
|
switch (G.g)
|
||||||
|
{
|
||||||
|
case GparityFlavour::Algebra::SigmaX:
|
||||||
|
lmultFlavourSigmaX(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaX:
|
||||||
|
lmultFlavourMinusSigmaX(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::SigmaY:
|
||||||
|
lmultFlavourSigmaY(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaY:
|
||||||
|
lmultFlavourMinusSigmaY(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::SigmaZ:
|
||||||
|
lmultFlavourSigmaZ(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||||
|
lmultFlavourMinusSigmaZ(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::Identity:
|
||||||
|
lmultFlavourIdentity(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusIdentity:
|
||||||
|
lmultFlavourMinusIdentity(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::ProjPlus:
|
||||||
|
lmultFlavourProjPlus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusProjPlus:
|
||||||
|
lmultFlavourMinusProjPlus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::ProjMinus:
|
||||||
|
lmultFlavourProjMinus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusProjMinus:
|
||||||
|
lmultFlavourMinusProjMinus(ret, arg); break;
|
||||||
|
default: assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
|
||||||
|
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
|
||||||
|
{
|
||||||
|
iMatrix<vtype, Ngp> ret;
|
||||||
|
|
||||||
|
switch (G.g)
|
||||||
|
{
|
||||||
|
case GparityFlavour::Algebra::SigmaX:
|
||||||
|
rmultFlavourSigmaX(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaX:
|
||||||
|
rmultFlavourMinusSigmaX(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::SigmaY:
|
||||||
|
rmultFlavourSigmaY(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaY:
|
||||||
|
rmultFlavourMinusSigmaY(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::SigmaZ:
|
||||||
|
rmultFlavourSigmaZ(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||||
|
rmultFlavourMinusSigmaZ(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::Identity:
|
||||||
|
rmultFlavourIdentity(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusIdentity:
|
||||||
|
rmultFlavourMinusIdentity(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::ProjPlus:
|
||||||
|
rmultFlavourProjPlus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusProjPlus:
|
||||||
|
rmultFlavourMinusProjPlus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::ProjMinus:
|
||||||
|
rmultFlavourProjMinus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusProjMinus:
|
||||||
|
rmultFlavourMinusProjMinus(ret, arg); break;
|
||||||
|
default: assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
#endif // include guard
|
@ -88,6 +88,12 @@ namespace PeriodicBC {
|
|||||||
return CovShiftBackward(Link,mu,arg);
|
return CovShiftBackward(Link,mu,arg);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||||
|
template<class gauge> Lattice<gauge>
|
||||||
|
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
|
||||||
|
{
|
||||||
|
return Cshift(Link, mu, shift);
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -158,6 +164,9 @@ namespace ConjugateBC {
|
|||||||
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
|
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
|
||||||
return Cshift(tmp,mu,-1);// moves towards positive mu
|
return Cshift(tmp,mu,-1);// moves towards positive mu
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
|
||||||
|
// = U^T_\mu(L-1) | x_\mu == 0
|
||||||
template<class gauge> Lattice<gauge>
|
template<class gauge> Lattice<gauge>
|
||||||
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
|
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
|
||||||
GridBase *grid = Link.Grid();
|
GridBase *grid = Link.Grid();
|
||||||
@ -176,6 +185,9 @@ namespace ConjugateBC {
|
|||||||
return Link;
|
return Link;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Out(x) = S_\mu(x+\hat\mu) | x_\mu != L-1
|
||||||
|
// = S*_\mu(0) | x_\mu == L-1
|
||||||
|
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
|
||||||
template<class gauge> Lattice<gauge>
|
template<class gauge> Lattice<gauge>
|
||||||
ShiftStaple(const Lattice<gauge> &Link, int mu)
|
ShiftStaple(const Lattice<gauge> &Link, int mu)
|
||||||
{
|
{
|
||||||
@ -208,6 +220,35 @@ namespace ConjugateBC {
|
|||||||
return CovShiftBackward(Link,mu,arg);
|
return CovShiftBackward(Link,mu,arg);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||||
|
//shift = 1
|
||||||
|
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
|
||||||
|
// = U*_\mu(0) | x_\mu == L-1
|
||||||
|
//shift = -1
|
||||||
|
//Out(x) = U_\mu(x-mu) | x_\mu != 0
|
||||||
|
// = U*_\mu(L-1) | x_\mu == 0
|
||||||
|
template<class gauge> Lattice<gauge>
|
||||||
|
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
|
||||||
|
{
|
||||||
|
GridBase *grid = Link.Grid();
|
||||||
|
int Lmu = grid->GlobalDimensions()[mu] - 1;
|
||||||
|
|
||||||
|
Lattice<iScalar<vInteger>> coor(grid);
|
||||||
|
LatticeCoordinate(coor, mu);
|
||||||
|
|
||||||
|
Lattice<gauge> tmp(grid);
|
||||||
|
if(shift == 1){
|
||||||
|
tmp = Cshift(Link, mu, 1);
|
||||||
|
tmp = where(coor == Lmu, conjugate(tmp), tmp);
|
||||||
|
return tmp;
|
||||||
|
}else if(shift == -1){
|
||||||
|
tmp = Link;
|
||||||
|
tmp = where(coor == Lmu, conjugate(tmp), tmp);
|
||||||
|
return Cshift(tmp, mu, -1);
|
||||||
|
}else assert(0 && "Invalid shift value");
|
||||||
|
return tmp; //shuts up the compiler fussing about the return type
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -40,27 +40,45 @@ public:
|
|||||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||||
|
|
||||||
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
|
//A_\mu(x) = -i Ta(U_\mu(x) ) where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag) is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
|
||||||
for(int mu=0;mu<Nd;mu++){
|
static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
|
||||||
Complex cmi(0.0,-1.0);
|
Complex cmi(0.0,-1.0);
|
||||||
A[mu] = Ta(U[mu]) * cmi;
|
A = Ta(U) * cmi;
|
||||||
}
|
}
|
||||||
}
|
|
||||||
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
|
//The derivative of the Lie algebra field
|
||||||
|
static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
|
||||||
|
GridBase* grid = U[0].Grid();
|
||||||
|
GaugeMat Ax(grid);
|
||||||
|
GaugeMat Axm1(grid);
|
||||||
|
GaugeMat Utmp(grid);
|
||||||
|
|
||||||
dmuAmu=Zero();
|
dmuAmu=Zero();
|
||||||
for(int mu=0;mu<Nd;mu++){
|
for(int mu=0;mu<Nd;mu++){
|
||||||
if ( mu != orthog ) {
|
if ( mu != orthog ) {
|
||||||
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
|
//Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
|
||||||
|
//Ax = A_\mu(x)
|
||||||
|
GaugeLinkToLieAlgebraField(U[mu], Ax);
|
||||||
|
|
||||||
|
//Axm1 = A_\mu(x_\mu-1)
|
||||||
|
Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
|
||||||
|
GaugeLinkToLieAlgebraField(Utmp, Axm1);
|
||||||
|
|
||||||
|
//Derivative
|
||||||
|
dmuAmu = dmuAmu + Ax - Axm1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Fix the gauge field Umu
|
||||||
|
//0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
|
||||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
|
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
|
||||||
GridBase *grid = Umu.Grid();
|
GridBase *grid = Umu.Grid();
|
||||||
GaugeMat xform(grid);
|
GaugeMat xform(grid);
|
||||||
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog,err_on_no_converge);
|
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog,err_on_no_converge);
|
||||||
}
|
}
|
||||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
|
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
|
||||||
|
//Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
|
||||||
|
|
||||||
GridBase *grid = Umu.Grid();
|
GridBase *grid = Umu.Grid();
|
||||||
|
|
||||||
@ -123,28 +141,25 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
std::cout << GridLogError << "Gauge fixing did not converge in " << maxiter << " iterations." << std::endl;
|
std::cout << GridLogError << "Gauge fixing did not converge in " << maxiter << " iterations." << std::endl;
|
||||||
if (err_on_no_converge) assert(0);
|
if (err_on_no_converge)
|
||||||
|
assert(0 && "Gauge fixing did not converge within the specified number of iterations");
|
||||||
};
|
};
|
||||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
|
||||||
GridBase *grid = U[0].Grid();
|
GridBase *grid = U[0].Grid();
|
||||||
|
|
||||||
std::vector<GaugeMat> A(Nd,grid);
|
|
||||||
GaugeMat g(grid);
|
GaugeMat g(grid);
|
||||||
|
ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
|
||||||
GaugeLinkToLieAlgebraField(U,A);
|
|
||||||
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
|
|
||||||
|
|
||||||
|
|
||||||
Real vol = grid->gSites();
|
Real vol = grid->gSites();
|
||||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||||
|
|
||||||
xform = g*xform ;
|
xform = g*xform ;
|
||||||
SU<Nc>::GaugeTransform(U,g);
|
SU<Nc>::GaugeTransform<Gimpl>(U,g);
|
||||||
|
|
||||||
return trG;
|
return trG;
|
||||||
}
|
}
|
||||||
|
|
||||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
|
||||||
|
|
||||||
GridBase *grid = U[0].Grid();
|
GridBase *grid = U[0].Grid();
|
||||||
|
|
||||||
@ -159,11 +174,7 @@ public:
|
|||||||
|
|
||||||
GaugeMat g(grid);
|
GaugeMat g(grid);
|
||||||
GaugeMat dmuAmu_p(grid);
|
GaugeMat dmuAmu_p(grid);
|
||||||
std::vector<GaugeMat> A(Nd,grid);
|
DmuAmu(U,dmuAmu,orthog);
|
||||||
|
|
||||||
GaugeLinkToLieAlgebraField(U,A);
|
|
||||||
|
|
||||||
DmuAmu(A,dmuAmu,orthog);
|
|
||||||
|
|
||||||
std::vector<int> mask(Nd,1);
|
std::vector<int> mask(Nd,1);
|
||||||
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
|
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
|
||||||
@ -207,16 +218,16 @@ public:
|
|||||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||||
|
|
||||||
xform = g*xform ;
|
xform = g*xform ;
|
||||||
SU<Nc>::GaugeTransform(U,g);
|
SU<Nc>::GaugeTransform<Gimpl>(U,g);
|
||||||
|
|
||||||
return trG;
|
return trG;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
|
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
|
||||||
GridBase *grid = g.Grid();
|
GridBase *grid = g.Grid();
|
||||||
Complex cialpha(0.0,-alpha);
|
Complex cialpha(0.0,-alpha);
|
||||||
GaugeMat ciadmam(grid);
|
GaugeMat ciadmam(grid);
|
||||||
DmuAmu(A,dmuAmu,orthog);
|
DmuAmu(U,dmuAmu,orthog);
|
||||||
ciadmam = dmuAmu*cialpha;
|
ciadmam = dmuAmu*cialpha;
|
||||||
SU<Nc>::taExp(ciadmam,g);
|
SU<Nc>::taExp(ciadmam,g);
|
||||||
}
|
}
|
||||||
|
@ -694,32 +694,32 @@ public:
|
|||||||
* Adjoint rep gauge xform
|
* Adjoint rep gauge xform
|
||||||
*/
|
*/
|
||||||
|
|
||||||
template<typename GaugeField,typename GaugeMat>
|
template<typename Gimpl>
|
||||||
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
|
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||||
GridBase *grid = Umu.Grid();
|
GridBase *grid = Umu.Grid();
|
||||||
conformable(grid,g.Grid());
|
conformable(grid,g.Grid());
|
||||||
|
|
||||||
GaugeMat U(grid);
|
typename Gimpl::GaugeLinkField U(grid);
|
||||||
GaugeMat ag(grid); ag = adj(g);
|
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||||
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
for(int mu=0;mu<Nd;mu++){
|
||||||
U= PeekIndex<LorentzIndex>(Umu,mu);
|
U= PeekIndex<LorentzIndex>(Umu,mu);
|
||||||
U = g*U*Cshift(ag, mu, 1);
|
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||||
PokeIndex<LorentzIndex>(Umu,U,mu);
|
PokeIndex<LorentzIndex>(Umu,U,mu);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
template<typename GaugeMat>
|
template<typename Gimpl>
|
||||||
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
|
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
|
||||||
GridBase *grid = g.Grid();
|
GridBase *grid = g.Grid();
|
||||||
GaugeMat ag(grid); ag = adj(g);
|
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||||
for(int mu=0;mu<Nd;mu++){
|
for(int mu=0;mu<Nd;mu++){
|
||||||
U[mu] = g*U[mu]*Cshift(ag, mu, 1);
|
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
template<typename GaugeField,typename GaugeMat>
|
template<typename Gimpl>
|
||||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
|
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||||
LieRandomize(pRNG,g,1.0);
|
LieRandomize(pRNG,g,1.0);
|
||||||
GaugeTransform(Umu,g);
|
GaugeTransform<Gimpl>(Umu,g);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
|
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
|
||||||
|
@ -125,6 +125,57 @@ public:
|
|||||||
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////
|
||||||
|
// sum over all spatial planes of plaquette
|
||||||
|
//////////////////////////////////////////////////
|
||||||
|
static void siteSpatialPlaquette(ComplexField &Plaq,
|
||||||
|
const std::vector<GaugeMat> &U) {
|
||||||
|
ComplexField sitePlaq(U[0].Grid());
|
||||||
|
Plaq = Zero();
|
||||||
|
for (int mu = 1; mu < Nd-1; mu++) {
|
||||||
|
for (int nu = 0; nu < mu; nu++) {
|
||||||
|
traceDirPlaquette(sitePlaq, U, mu, nu);
|
||||||
|
Plaq = Plaq + sitePlaq;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////
|
||||||
|
// sum over all x,y,z and over all spatial planes of plaquette
|
||||||
|
//////////////////////////////////////////////////
|
||||||
|
static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
|
||||||
|
std::vector<GaugeMat> U(Nd, Umu.Grid());
|
||||||
|
// inefficient here
|
||||||
|
for (int mu = 0; mu < Nd; mu++) {
|
||||||
|
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||||
|
}
|
||||||
|
|
||||||
|
ComplexField Plaq(Umu.Grid());
|
||||||
|
|
||||||
|
siteSpatialPlaquette(Plaq, U);
|
||||||
|
typedef typename ComplexField::scalar_object sobj;
|
||||||
|
std::vector<sobj> Tq;
|
||||||
|
sliceSum(Plaq, Tq, Nd-1);
|
||||||
|
|
||||||
|
std::vector<Real> out(Tq.size());
|
||||||
|
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////
|
||||||
|
// average over all x,y,z and over all spatial planes of plaquette
|
||||||
|
//////////////////////////////////////////////////
|
||||||
|
static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
|
||||||
|
std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
|
||||||
|
int Lt = Umu.Grid()->FullDimensions()[Nd-1];
|
||||||
|
assert(sumplaq.size() == Lt);
|
||||||
|
double vol = Umu.Grid()->gSites() / Lt;
|
||||||
|
double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
|
||||||
|
for(int t=0;t<Lt;t++)
|
||||||
|
sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||||
|
return sumplaq;
|
||||||
|
}
|
||||||
|
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
// average over all x,y,z the temporal loop
|
// average over all x,y,z the temporal loop
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
@ -362,11 +413,11 @@ public:
|
|||||||
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
|
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
|
||||||
GaugeMat vu = v*u;
|
GaugeMat vu = v*u;
|
||||||
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
|
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
|
||||||
FS = (u*v + Cshift(vu, mu, -1));
|
FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
|
||||||
FS = 0.125*(FS - adj(FS));
|
FS = 0.125*(FS - adj(FS));
|
||||||
}
|
}
|
||||||
|
|
||||||
static Real TopologicalCharge(GaugeLorentz &U){
|
static Real TopologicalCharge(const GaugeLorentz &U){
|
||||||
// 4d topological charge
|
// 4d topological charge
|
||||||
assert(Nd==4);
|
assert(Nd==4);
|
||||||
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
|
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
|
||||||
@ -389,6 +440,203 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N, mu >= nu
|
||||||
|
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7 for 1x2 Wilson loop
|
||||||
|
//Clockwise ordering
|
||||||
|
static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){
|
||||||
|
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
|
||||||
|
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
|
||||||
|
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
|
||||||
|
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
|
||||||
|
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
|
||||||
|
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
|
||||||
|
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
|
||||||
|
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
|
||||||
|
|
||||||
|
//Upper right loop
|
||||||
|
GaugeMat tmp = BmuI;
|
||||||
|
for(int i=1;i<M;i++)
|
||||||
|
tmp = Bmu(tmp);
|
||||||
|
for(int j=0;j<N;j++)
|
||||||
|
tmp = Bnu(tmp);
|
||||||
|
for(int i=0;i<M;i++)
|
||||||
|
tmp = Fmu(tmp);
|
||||||
|
for(int j=0;j<N;j++)
|
||||||
|
tmp = Fnu(tmp);
|
||||||
|
|
||||||
|
FS = tmp;
|
||||||
|
|
||||||
|
//Upper left loop
|
||||||
|
tmp = BnuI;
|
||||||
|
for(int j=1;j<N;j++)
|
||||||
|
tmp = Bnu(tmp);
|
||||||
|
for(int i=0;i<M;i++)
|
||||||
|
tmp = Fmu(tmp);
|
||||||
|
for(int j=0;j<N;j++)
|
||||||
|
tmp = Fnu(tmp);
|
||||||
|
for(int i=0;i<M;i++)
|
||||||
|
tmp = Bmu(tmp);
|
||||||
|
|
||||||
|
FS = FS + tmp;
|
||||||
|
|
||||||
|
//Lower right loop
|
||||||
|
tmp = FnuI;
|
||||||
|
for(int j=1;j<N;j++)
|
||||||
|
tmp = Fnu(tmp);
|
||||||
|
for(int i=0;i<M;i++)
|
||||||
|
tmp = Bmu(tmp);
|
||||||
|
for(int j=0;j<N;j++)
|
||||||
|
tmp = Bnu(tmp);
|
||||||
|
for(int i=0;i<M;i++)
|
||||||
|
tmp = Fmu(tmp);
|
||||||
|
|
||||||
|
FS = FS + tmp;
|
||||||
|
|
||||||
|
//Lower left loop
|
||||||
|
tmp = FmuI;
|
||||||
|
for(int i=1;i<M;i++)
|
||||||
|
tmp = Fmu(tmp);
|
||||||
|
for(int j=0;j<N;j++)
|
||||||
|
tmp = Fnu(tmp);
|
||||||
|
for(int i=0;i<M;i++)
|
||||||
|
tmp = Bmu(tmp);
|
||||||
|
for(int j=0;j<N;j++)
|
||||||
|
tmp = Bnu(tmp);
|
||||||
|
|
||||||
|
FS = FS + tmp;
|
||||||
|
|
||||||
|
#undef Fmu
|
||||||
|
#undef Bmu
|
||||||
|
#undef Fnu
|
||||||
|
#undef Bnu
|
||||||
|
#undef FmuI
|
||||||
|
#undef BmuI
|
||||||
|
#undef FnuI
|
||||||
|
#undef BnuI
|
||||||
|
}
|
||||||
|
|
||||||
|
//Field strength from MxN Wilson loop
|
||||||
|
//Note F_numu = - F_munu
|
||||||
|
static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){
|
||||||
|
GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
|
||||||
|
GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
|
||||||
|
if(M == N){
|
||||||
|
GaugeMat F(Umu.Grid());
|
||||||
|
CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
|
||||||
|
FS = 0.125 * ( F - adj(F) );
|
||||||
|
}else{
|
||||||
|
//Average over both orientations
|
||||||
|
GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
|
||||||
|
CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
|
||||||
|
CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
|
||||||
|
FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//Topological charge contribution from MxN Wilson loops
|
||||||
|
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 6
|
||||||
|
//output is the charge by timeslice: sum over timeslices to obtain the total
|
||||||
|
static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
|
||||||
|
assert(Nd == 4);
|
||||||
|
std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
|
||||||
|
//Note F_numu = - F_munu
|
||||||
|
//hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu or rho,sigma
|
||||||
|
//Use nu > mu
|
||||||
|
for(int mu=0;mu<Nd-1;mu++){
|
||||||
|
for(int nu=mu+1; nu<Nd; nu++){
|
||||||
|
F[mu][nu] = new GaugeMat(U.Grid());
|
||||||
|
FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
|
||||||
|
|
||||||
|
static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
|
||||||
|
static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
|
||||||
|
|
||||||
|
ComplexField fsum(U.Grid());
|
||||||
|
fsum = Zero();
|
||||||
|
for(int c=0;c<3;c++){
|
||||||
|
int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
|
||||||
|
int eps = signs[c];
|
||||||
|
fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) );
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int mu=0;mu<Nd-1;mu++)
|
||||||
|
for(int nu=mu+1; nu<Nd; nu++)
|
||||||
|
delete F[mu][nu];
|
||||||
|
|
||||||
|
typedef typename ComplexField::scalar_object sobj;
|
||||||
|
std::vector<sobj> Tq;
|
||||||
|
sliceSum(fsum, Tq, Nd-1);
|
||||||
|
|
||||||
|
std::vector<Real> out(Tq.size());
|
||||||
|
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
|
||||||
|
std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
|
||||||
|
Real out(0);
|
||||||
|
for(int t=0;t<Tq.size();t++) out += Tq[t];
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
//Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
|
||||||
|
//Use coefficients from hep-lat/9701012
|
||||||
|
//1x1 : c1=(19.-55.*c5)/9.
|
||||||
|
//2x2 : c2=(1-64.*c5)/9.
|
||||||
|
//1x2 : c3=(-64.+640.*c5)/45.
|
||||||
|
//1x3 : c4=1./5.-2.*c5
|
||||||
|
//3x3 : c5=1./20.
|
||||||
|
//Output array outer index contains the loops in the above order
|
||||||
|
//Inner index is the time coordinate
|
||||||
|
static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
|
||||||
|
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
|
||||||
|
std::vector<std::vector<Real> > out(5);
|
||||||
|
for(int i=0;i<5;i++){
|
||||||
|
out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
|
||||||
|
}
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){
|
||||||
|
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
|
||||||
|
std::vector<Real> out(5);
|
||||||
|
std::cout << GridLogMessage << "Computing topological charge" << std::endl;
|
||||||
|
for(int i=0;i<5;i++){
|
||||||
|
out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
|
||||||
|
std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
|
||||||
|
}
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
//Compute the 5Li topological charge
|
||||||
|
static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
|
||||||
|
std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
|
||||||
|
|
||||||
|
double c5=1./20.;
|
||||||
|
double c4=1./5.-2.*c5;
|
||||||
|
double c3=(-64.+640.*c5)/45.;
|
||||||
|
double c2=(1-64.*c5)/9.;
|
||||||
|
double c1=(19.-55.*c5)/9.;
|
||||||
|
|
||||||
|
int Lt = loops[0].size();
|
||||||
|
std::vector<Real> out(Lt,0.);
|
||||||
|
for(int t=0;t<Lt;t++)
|
||||||
|
out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
static Real TopologicalCharge5Li(const GaugeLorentz &U){
|
||||||
|
std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
|
||||||
|
Real Q = 0.;
|
||||||
|
for(int t=0;t<Qt.size();t++) Q += Qt[t];
|
||||||
|
std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
|
||||||
|
return Q;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////
|
||||||
// Similar to above for rectangle is required
|
// Similar to above for rectangle is required
|
||||||
//////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////
|
||||||
|
@ -325,7 +325,7 @@ int main(int argc, char ** argv)
|
|||||||
|
|
||||||
U_GT = U;
|
U_GT = U;
|
||||||
// Make a random xform to teh gauge field
|
// Make a random xform to teh gauge field
|
||||||
SU<Nc>::RandomGaugeTransform(RNG,U_GT,g); // Unit gauge
|
SU<Nc>::RandomGaugeTransform<PeriodicGimplR>(RNG,U_GT,g); // Unit gauge
|
||||||
|
|
||||||
Field in_GT(&Grid);
|
Field in_GT(&Grid);
|
||||||
Field out_GT(&Grid);
|
Field out_GT(&Grid);
|
||||||
|
@ -29,14 +29,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|||||||
#include <Grid/Grid.h>
|
#include <Grid/Grid.h>
|
||||||
|
|
||||||
using namespace Grid;
|
using namespace Grid;
|
||||||
;
|
|
||||||
|
|
||||||
int main (int argc, char ** argv)
|
template<typename Gimpl>
|
||||||
{
|
void run(double alpha, bool do_fft_gfix){
|
||||||
std::vector<int> seeds({1,2,3,4});
|
std::vector<int> seeds({1,2,3,4});
|
||||||
|
|
||||||
Grid_init(&argc,&argv);
|
|
||||||
|
|
||||||
int threads = GridThread::GetThreads();
|
int threads = GridThread::GetThreads();
|
||||||
|
|
||||||
Coordinate latt_size = GridDefaultLatt();
|
Coordinate latt_size = GridDefaultLatt();
|
||||||
@ -55,10 +51,7 @@ int main (int argc, char ** argv)
|
|||||||
FFT theFFT(&GRID);
|
FFT theFFT(&GRID);
|
||||||
|
|
||||||
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
|
||||||
|
std::cout<<GridLogMessage << "Using alpha=" << alpha << std::endl;
|
||||||
std::cout<< "*****************************************************************" <<std::endl;
|
|
||||||
std::cout<< "* Testing we can gauge fix steep descent a RGT of Unit gauge *" <<std::endl;
|
|
||||||
std::cout<< "*****************************************************************" <<std::endl;
|
|
||||||
|
|
||||||
// int coulomb_dir = -1;
|
// int coulomb_dir = -1;
|
||||||
int coulomb_dir = Nd-1;
|
int coulomb_dir = Nd-1;
|
||||||
@ -73,80 +66,166 @@ int main (int argc, char ** argv)
|
|||||||
LatticeColourMatrix xform2(&GRID); // Gauge xform
|
LatticeColourMatrix xform2(&GRID); // Gauge xform
|
||||||
LatticeColourMatrix xform3(&GRID); // Gauge xform
|
LatticeColourMatrix xform3(&GRID); // Gauge xform
|
||||||
|
|
||||||
|
//#########################################################################################
|
||||||
|
|
||||||
|
std::cout<< "*********************************************************************************************************" <<std::endl;
|
||||||
|
std::cout<< "* Testing steepest descent fixing to Landau gauge with randomly transformed unit gauge configuration *" <<std::endl;
|
||||||
|
std::cout<< "*********************************************************************************************************" <<std::endl;
|
||||||
|
|
||||||
SU<Nc>::ColdConfiguration(pRNG,Umu); // Unit gauge
|
SU<Nc>::ColdConfiguration(pRNG,Umu); // Unit gauge
|
||||||
Uorg=Umu;
|
Uorg=Umu;
|
||||||
|
|
||||||
|
Real init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||||
|
std::cout << " Initial plaquette "<< init_plaq << std::endl;
|
||||||
|
|
||||||
|
//Apply a random gauge transformation to the unit gauge config
|
||||||
Urnd=Umu;
|
Urnd=Umu;
|
||||||
|
SU<Nc>::RandomGaugeTransform<Gimpl>(pRNG,Urnd,g);
|
||||||
|
|
||||||
SU<Nc>::RandomGaugeTransform(pRNG,Urnd,g); // Unit gauge
|
//Gauge fix the randomly transformed field
|
||||||
|
|
||||||
Real plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
|
||||||
std::cout << " Initial plaquette "<<plaq << std::endl;
|
|
||||||
|
|
||||||
Real alpha=0.1;
|
|
||||||
|
|
||||||
Umu = Urnd;
|
Umu = Urnd;
|
||||||
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform1,alpha,10000,1.0e-12, 1.0e-12,false);
|
FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform1,alpha,10000,1.0e-12, 1.0e-12,false);
|
||||||
|
|
||||||
// Check the gauge xform matrices
|
// Check the gauge xform matrices
|
||||||
Utmp=Urnd;
|
Utmp=Urnd;
|
||||||
SU<Nc>::GaugeTransform(Utmp,xform1);
|
SU<Nc>::GaugeTransform<Gimpl>(Utmp,xform1);
|
||||||
Utmp = Utmp - Umu;
|
Utmp = Utmp - Umu;
|
||||||
std::cout << " Norm Difference of xformed gauge "<< norm2(Utmp) << std::endl;
|
std::cout << " Check the output gauge transformation matrices applied to the original field produce the xformed field "<< norm2(Utmp) << " (expect 0)" << std::endl;
|
||||||
|
|
||||||
|
|
||||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
Real plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||||
std::cout << " Final plaquette "<<plaq << std::endl;
|
std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
|
||||||
|
|
||||||
Uorg = Uorg - Umu;
|
Uorg = Uorg - Umu;
|
||||||
std::cout << " Norm Difference "<< norm2(Uorg) << std::endl;
|
std::cout << " Norm difference between a unit gauge configuration and the gauge fixed configuration "<< norm2(Uorg) << " (expect 0)" << std::endl;
|
||||||
std::cout << " Norm "<< norm2(Umu) << std::endl;
|
std::cout << " Norm of gauge fixed configuration "<< norm2(Umu) << std::endl;
|
||||||
|
|
||||||
|
//#########################################################################################
|
||||||
std::cout<< "*****************************************************************" <<std::endl;
|
if(do_fft_gfix){
|
||||||
std::cout<< "* Testing Fourier accelerated fixing *" <<std::endl;
|
std::cout<< "*************************************************************************************" <<std::endl;
|
||||||
std::cout<< "*****************************************************************" <<std::endl;
|
std::cout<< "* Testing Fourier accelerated fixing to Landau gauge with unit gauge configuration *" <<std::endl;
|
||||||
|
std::cout<< "*************************************************************************************" <<std::endl;
|
||||||
Umu=Urnd;
|
Umu=Urnd;
|
||||||
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform2,alpha,10000,1.0e-12, 1.0e-12,true);
|
FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform2,alpha,10000,1.0e-12, 1.0e-12,true);
|
||||||
|
|
||||||
Utmp=Urnd;
|
Utmp=Urnd;
|
||||||
SU<Nc>::GaugeTransform(Utmp,xform2);
|
SU<Nc>::GaugeTransform<Gimpl>(Utmp,xform2);
|
||||||
Utmp = Utmp - Umu;
|
Utmp = Utmp - Umu;
|
||||||
std::cout << " Norm Difference of xformed gauge "<< norm2(Utmp) << std::endl;
|
std::cout << " Check the output gauge transformation matrices applied to the original field produce the xformed field "<< norm2(Utmp) << " (expect 0)" << std::endl;
|
||||||
|
|
||||||
|
|
||||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||||
std::cout << " Final plaquette "<<plaq << std::endl;
|
std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
|
||||||
|
}
|
||||||
|
//#########################################################################################
|
||||||
|
|
||||||
std::cout<< "*****************************************************************" <<std::endl;
|
std::cout<< "******************************************************************************************" <<std::endl;
|
||||||
std::cout<< "* Testing non-unit configuration *" <<std::endl;
|
std::cout<< "* Testing steepest descent fixing to Landau gauge with random configuration **" <<std::endl;
|
||||||
std::cout<< "*****************************************************************" <<std::endl;
|
std::cout<< "******************************************************************************************" <<std::endl;
|
||||||
|
|
||||||
SU<Nc>::HotConfiguration(pRNG,Umu); // Unit gauge
|
SU<Nc>::HotConfiguration(pRNG,Umu);
|
||||||
|
|
||||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||||
std::cout << " Initial plaquette "<<plaq << std::endl;
|
std::cout << " Initial plaquette "<< init_plaq << std::endl;
|
||||||
|
|
||||||
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,true);
|
FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,false);
|
||||||
|
|
||||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||||
std::cout << " Final plaquette "<<plaq << std::endl;
|
std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
|
||||||
|
|
||||||
std::cout<< "*****************************************************************" <<std::endl;
|
//#########################################################################################
|
||||||
std::cout<< "* Testing Fourier accelerated fixing to coulomb gauge *" <<std::endl;
|
if(do_fft_gfix){
|
||||||
std::cout<< "*****************************************************************" <<std::endl;
|
std::cout<< "******************************************************************************************" <<std::endl;
|
||||||
|
std::cout<< "* Testing Fourier accelerated fixing to Landau gauge with random configuration **" <<std::endl;
|
||||||
|
std::cout<< "******************************************************************************************" <<std::endl;
|
||||||
|
|
||||||
|
SU<Nc>::HotConfiguration(pRNG,Umu);
|
||||||
|
|
||||||
|
init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||||
|
std::cout << " Initial plaquette "<< init_plaq << std::endl;
|
||||||
|
|
||||||
|
FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,true);
|
||||||
|
|
||||||
|
plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||||
|
std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
|
||||||
|
}
|
||||||
|
//#########################################################################################
|
||||||
|
|
||||||
|
std::cout<< "*******************************************************************************************" <<std::endl;
|
||||||
|
std::cout<< "* Testing steepest descent fixing to coulomb gauge with random configuration *" <<std::endl;
|
||||||
|
std::cout<< "*******************************************************************************************" <<std::endl;
|
||||||
|
|
||||||
Umu=Urnd;
|
Umu=Urnd;
|
||||||
SU<Nc>::HotConfiguration(pRNG,Umu); // Unit gauge
|
SU<Nc>::HotConfiguration(pRNG,Umu);
|
||||||
|
|
||||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||||
std::cout << " Initial plaquette "<<plaq << std::endl;
|
std::cout << " Initial plaquette "<< init_plaq << std::endl;
|
||||||
|
|
||||||
FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform3,alpha,10000,1.0e-12, 1.0e-12,true,coulomb_dir);
|
FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform3,alpha,10000,1.0e-12, 1.0e-12,false,coulomb_dir);
|
||||||
|
|
||||||
std::cout << Umu<<std::endl;
|
plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||||
|
std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
|
||||||
|
|
||||||
plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
|
|
||||||
std::cout << " Final plaquette "<<plaq << std::endl;
|
//#########################################################################################
|
||||||
|
if(do_fft_gfix){
|
||||||
|
std::cout<< "*******************************************************************************************" <<std::endl;
|
||||||
|
std::cout<< "* Testing Fourier accelerated fixing to coulomb gauge with random configuration *" <<std::endl;
|
||||||
|
std::cout<< "*******************************************************************************************" <<std::endl;
|
||||||
|
|
||||||
|
Umu=Urnd;
|
||||||
|
SU<Nc>::HotConfiguration(pRNG,Umu);
|
||||||
|
|
||||||
|
init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||||
|
std::cout << " Initial plaquette "<< init_plaq << std::endl;
|
||||||
|
|
||||||
|
FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform3,alpha,10000,1.0e-12, 1.0e-12,true,coulomb_dir);
|
||||||
|
|
||||||
|
plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
|
||||||
|
std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int main (int argc, char ** argv)
|
||||||
|
{
|
||||||
|
Grid_init(&argc,&argv);
|
||||||
|
|
||||||
|
double alpha=0.1; //step size
|
||||||
|
std::string gimpl = "periodic";
|
||||||
|
bool do_fft_gfix = true; //test fourier transformed gfix as well as steepest descent
|
||||||
|
for(int i=1;i<argc;i++){
|
||||||
|
std::string sarg(argv[i]);
|
||||||
|
if(sarg == "--gimpl"){
|
||||||
|
assert(i<argc-1 && "--gimpl option requires an argument");
|
||||||
|
gimpl = argv[i+1];
|
||||||
|
if(gimpl != "periodic" && gimpl != "conjugate")
|
||||||
|
assert(0 && "Invalid gimpl");
|
||||||
|
if(gimpl == "conjugate")
|
||||||
|
alpha = 0.025; //default alpha too large for CCBC
|
||||||
|
}else if(sarg == "--no-fft-gfix"){
|
||||||
|
std::cout << "Not doing the Fourier accelerated gauge fixing tests" << std::endl;
|
||||||
|
do_fft_gfix = false;
|
||||||
|
}else if(sarg == "--alpha"){
|
||||||
|
assert(i<argc-1 && "--alpha option requires an argument");
|
||||||
|
std::istringstream ss(argv[i+1]); ss >> alpha;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
if(gimpl == "periodic"){
|
||||||
|
std::cout << GridLogMessage << "Using periodic boundary condition" << std::endl;
|
||||||
|
run<PeriodicGimplR>(alpha, do_fft_gfix);
|
||||||
|
}else{
|
||||||
|
std::vector<int> conjdirs = {1,1,0,0}; //test with 2 conjugate dirs and 2 not
|
||||||
|
std::cout << GridLogMessage << "Using complex conjugate boundary conditions in dimensions ";
|
||||||
|
for(int i=0;i<Nd;i++)
|
||||||
|
if(conjdirs[i])
|
||||||
|
std::cout << i << " ";
|
||||||
|
std::cout << std::endl;
|
||||||
|
|
||||||
|
ConjugateGimplR::setDirections(conjdirs);
|
||||||
|
run<ConjugateGimplR>(alpha, do_fft_gfix);
|
||||||
|
}
|
||||||
|
|
||||||
Grid_finalize();
|
Grid_finalize();
|
||||||
}
|
}
|
||||||
|
@ -228,6 +228,59 @@ void checkGammaL(const Gamma::Algebra a, GridSerialRNG &rng)
|
|||||||
std::cout << std::endl;
|
std::cout << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void checkChargeConjMatrix(){
|
||||||
|
//Check the properties of the charge conjugation matrix
|
||||||
|
//In the Grid basis C = -\gamma^2 \gamma^4
|
||||||
|
SpinMatrix C = testAlgebra[Gamma::Algebra::MinusGammaY] * testAlgebra[Gamma::Algebra::GammaT];
|
||||||
|
SpinMatrix mC = -C;
|
||||||
|
SpinMatrix one = testAlgebra[Gamma::Algebra::Identity];
|
||||||
|
|
||||||
|
std::cout << "Testing properties of charge conjugation matrix C = -\\gamma^2 \\gamma^4 (in Grid's basis)" << std::endl;
|
||||||
|
|
||||||
|
//C^T = -C
|
||||||
|
SpinMatrix Ct = transpose(C);
|
||||||
|
std::cout << GridLogMessage << "C^T=-C ";
|
||||||
|
test(Ct, mC);
|
||||||
|
std::cout << std::endl;
|
||||||
|
|
||||||
|
//C^\dagger = -C
|
||||||
|
SpinMatrix Cdag = adj(C);
|
||||||
|
std::cout << GridLogMessage << "C^dag=-C ";
|
||||||
|
test(Cdag, mC);
|
||||||
|
std::cout << std::endl;
|
||||||
|
|
||||||
|
//C^* = C
|
||||||
|
SpinMatrix Cstar = conjugate(C);
|
||||||
|
std::cout << GridLogMessage << "C^*=C ";
|
||||||
|
test(Cstar, C);
|
||||||
|
std::cout << std::endl;
|
||||||
|
|
||||||
|
//C^{-1} = -C
|
||||||
|
SpinMatrix CinvC = mC * C;
|
||||||
|
std::cout << GridLogMessage << "C^{-1}=-C ";
|
||||||
|
test(CinvC, one);
|
||||||
|
std::cout << std::endl;
|
||||||
|
|
||||||
|
// C^{-1} \gamma^\mu C = -[\gamma^\mu]^T
|
||||||
|
Gamma::Algebra gmu_a[4] = { Gamma::Algebra::GammaX, Gamma::Algebra::GammaY, Gamma::Algebra::GammaZ, Gamma::Algebra::GammaT };
|
||||||
|
for(int mu=0;mu<4;mu++){
|
||||||
|
SpinMatrix gmu = testAlgebra[gmu_a[mu]];
|
||||||
|
SpinMatrix Cinv_gmu_C = mC * gmu * C;
|
||||||
|
SpinMatrix mgmu_T = -transpose(gmu);
|
||||||
|
std::cout << GridLogMessage << "C^{-1} \\gamma^" << mu << " C = -[\\gamma^" << mu << "]^T ";
|
||||||
|
test(Cinv_gmu_C, mgmu_T);
|
||||||
|
std::cout << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
//[C, \gamma^5] = 0
|
||||||
|
SpinMatrix Cg5 = C * testAlgebra[Gamma::Algebra::Gamma5];
|
||||||
|
SpinMatrix g5C = testAlgebra[Gamma::Algebra::Gamma5] * C;
|
||||||
|
std::cout << GridLogMessage << "C \\gamma^5 = \\gamma^5 C";
|
||||||
|
test(Cg5, g5C);
|
||||||
|
std::cout << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
int main(int argc, char *argv[])
|
int main(int argc, char *argv[])
|
||||||
{
|
{
|
||||||
Grid_init(&argc,&argv);
|
Grid_init(&argc,&argv);
|
||||||
@ -271,6 +324,13 @@ int main(int argc, char *argv[])
|
|||||||
checkGammaL(i, sRNG);
|
checkGammaL(i, sRNG);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "======== Charge conjugation matrix check" << std::endl;
|
||||||
|
checkChargeConjMatrix();
|
||||||
|
std::cout << GridLogMessage << std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Grid_finalize();
|
Grid_finalize();
|
||||||
|
|
||||||
return EXIT_SUCCESS;
|
return EXIT_SUCCESS;
|
||||||
|
@ -55,6 +55,7 @@ static_assert(same_vComplex == 1, "Dirac Operators must have same underlying SIM
|
|||||||
int main (int argc, char ** argv)
|
int main (int argc, char ** argv)
|
||||||
{
|
{
|
||||||
int nu = 0;
|
int nu = 0;
|
||||||
|
int tbc_aprd = 0; //use antiperiodic BCs in the time direction?
|
||||||
|
|
||||||
Grid_init(&argc,&argv);
|
Grid_init(&argc,&argv);
|
||||||
|
|
||||||
@ -62,6 +63,9 @@ int main (int argc, char ** argv)
|
|||||||
if(std::string(argv[i]) == "--Gparity-dir"){
|
if(std::string(argv[i]) == "--Gparity-dir"){
|
||||||
std::stringstream ss; ss << argv[i+1]; ss >> nu;
|
std::stringstream ss; ss << argv[i+1]; ss >> nu;
|
||||||
std::cout << GridLogMessage << "Set Gparity direction to " << nu << std::endl;
|
std::cout << GridLogMessage << "Set Gparity direction to " << nu << std::endl;
|
||||||
|
}else if(std::string(argv[i]) == "--Tbc-APRD"){
|
||||||
|
tbc_aprd = 1;
|
||||||
|
std::cout << GridLogMessage << "Using antiperiodic BCs in the time direction" << std::endl;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -155,13 +159,18 @@ int main (int argc, char ** argv)
|
|||||||
|
|
||||||
//Coordinate grid for reference
|
//Coordinate grid for reference
|
||||||
LatticeInteger xcoor_1f5(FGrid_1f);
|
LatticeInteger xcoor_1f5(FGrid_1f);
|
||||||
LatticeCoordinate(xcoor_1f5,1+nu);
|
LatticeCoordinate(xcoor_1f5,1+nu); //note '1+nu'! This is because for 5D fields the s-direction is direction 0
|
||||||
Replicate(src,src_1f);
|
Replicate(src,src_1f);
|
||||||
src_1f = where( xcoor_1f5 >= Integer(L), 2.0*src_1f,src_1f );
|
src_1f = where( xcoor_1f5 >= Integer(L), 2.0*src_1f,src_1f );
|
||||||
|
|
||||||
RealD mass=0.0;
|
RealD mass=0.0;
|
||||||
RealD M5=1.8;
|
RealD M5=1.8;
|
||||||
StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS);
|
|
||||||
|
//Standard Dirac op
|
||||||
|
AcceleratorVector<Complex,4> bc_std(Nd, 1.0);
|
||||||
|
if(tbc_aprd) bc_std[Nd-1] = -1.; //antiperiodic time BC
|
||||||
|
StandardDiracOp::ImplParams std_params(bc_std);
|
||||||
|
StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS, std_params);
|
||||||
|
|
||||||
StandardFermionField src_o_1f(FrbGrid_1f);
|
StandardFermionField src_o_1f(FrbGrid_1f);
|
||||||
StandardFermionField result_o_1f(FrbGrid_1f);
|
StandardFermionField result_o_1f(FrbGrid_1f);
|
||||||
@ -172,9 +181,11 @@ int main (int argc, char ** argv)
|
|||||||
ConjugateGradient<StandardFermionField> CG(1.0e-8,10000);
|
ConjugateGradient<StandardFermionField> CG(1.0e-8,10000);
|
||||||
CG(HermOpEO,src_o_1f,result_o_1f);
|
CG(HermOpEO,src_o_1f,result_o_1f);
|
||||||
|
|
||||||
// const int nu = 3;
|
//Gparity Dirac op
|
||||||
std::vector<int> twists(Nd,0);
|
std::vector<int> twists(Nd,0);
|
||||||
twists[nu] = 1;
|
twists[nu] = 1;
|
||||||
|
if(tbc_aprd) twists[Nd-1] = 1;
|
||||||
|
|
||||||
GparityDiracOp::ImplParams params;
|
GparityDiracOp::ImplParams params;
|
||||||
params.twists = twists;
|
params.twists = twists;
|
||||||
GparityDiracOp GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5 DOP_PARAMS,params);
|
GparityDiracOp GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5 DOP_PARAMS,params);
|
||||||
@ -271,8 +282,11 @@ int main (int argc, char ** argv)
|
|||||||
std::cout << "2f cb "<<result_o_2f.Checkerboard()<<std::endl;
|
std::cout << "2f cb "<<result_o_2f.Checkerboard()<<std::endl;
|
||||||
std::cout << "1f cb "<<result_o_1f.Checkerboard()<<std::endl;
|
std::cout << "1f cb "<<result_o_1f.Checkerboard()<<std::endl;
|
||||||
|
|
||||||
std::cout << " result norms " <<norm2(result_o_2f)<<" " <<norm2(result_o_1f)<<std::endl;
|
//Compare norms
|
||||||
|
std::cout << " result norms 2f: " <<norm2(result_o_2f)<<" 1f: " <<norm2(result_o_1f)<<std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
//Take the 2f solution and convert into the corresponding 1f solution (odd cb only)
|
||||||
StandardFermionField res0o (FrbGrid_2f);
|
StandardFermionField res0o (FrbGrid_2f);
|
||||||
StandardFermionField res1o (FrbGrid_2f);
|
StandardFermionField res1o (FrbGrid_2f);
|
||||||
StandardFermionField res0 (FGrid_2f);
|
StandardFermionField res0 (FGrid_2f);
|
||||||
@ -281,12 +295,13 @@ int main (int argc, char ** argv)
|
|||||||
res0=Zero();
|
res0=Zero();
|
||||||
res1=Zero();
|
res1=Zero();
|
||||||
|
|
||||||
res0o = PeekIndex<0>(result_o_2f,0);
|
res0o = PeekIndex<0>(result_o_2f,0); //flavor 0, odd cb
|
||||||
res1o = PeekIndex<0>(result_o_2f,1);
|
res1o = PeekIndex<0>(result_o_2f,1); //flavor 1, odd cb
|
||||||
|
|
||||||
std::cout << "res cb "<<res0o.Checkerboard()<<std::endl;
|
std::cout << "res cb "<<res0o.Checkerboard()<<std::endl;
|
||||||
std::cout << "res cb "<<res1o.Checkerboard()<<std::endl;
|
std::cout << "res cb "<<res1o.Checkerboard()<<std::endl;
|
||||||
|
|
||||||
|
//poke odd onto non-cb field
|
||||||
setCheckerboard(res0,res0o);
|
setCheckerboard(res0,res0o);
|
||||||
setCheckerboard(res1,res1o);
|
setCheckerboard(res1,res1o);
|
||||||
|
|
||||||
@ -296,12 +311,13 @@ int main (int argc, char ** argv)
|
|||||||
Replicate(res0,replica0);
|
Replicate(res0,replica0);
|
||||||
Replicate(res1,replica1);
|
Replicate(res1,replica1);
|
||||||
|
|
||||||
|
//2nd half of doubled lattice has f=1
|
||||||
replica = where( xcoor_1f5 >= Integer(L), replica1,replica0 );
|
replica = where( xcoor_1f5 >= Integer(L), replica1,replica0 );
|
||||||
|
|
||||||
replica0 = Zero();
|
replica0 = Zero();
|
||||||
setCheckerboard(replica0,result_o_1f);
|
setCheckerboard(replica0,result_o_1f);
|
||||||
|
|
||||||
std::cout << "Norm2 solutions is " <<norm2(replica)<<" "<< norm2(replica0)<<std::endl;
|
std::cout << "Norm2 solutions 1f reconstructed from 2f: " <<norm2(replica)<<" Actual 1f: "<< norm2(replica0)<<std::endl;
|
||||||
|
|
||||||
replica = replica - replica0;
|
replica = replica - replica0;
|
||||||
|
|
||||||
|
177
tests/core/Test_gparity_flavour.cc
Normal file
177
tests/core/Test_gparity_flavour.cc
Normal file
@ -0,0 +1,177 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./tests/Test_gparity_flavour.cc
|
||||||
|
|
||||||
|
Copyright (C) 2015-2017
|
||||||
|
|
||||||
|
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#include <Grid/Grid.h>
|
||||||
|
|
||||||
|
using namespace Grid;
|
||||||
|
|
||||||
|
static constexpr double tolerance = 1.0e-6;
|
||||||
|
static std::array<GparityFlavourMatrix, GparityFlavour::nSigma> testAlgebra;
|
||||||
|
|
||||||
|
void print(const GparityFlavourMatrix &g)
|
||||||
|
{
|
||||||
|
for(int i = 0; i < Ngp; i++)
|
||||||
|
{
|
||||||
|
std::cout << GridLogMessage << "(";
|
||||||
|
for(int j=0;j<Ngp;j++){
|
||||||
|
if ( abs( g(i,j)()() ) == 0 ) {
|
||||||
|
std::cout<< " 0";
|
||||||
|
} else if ( abs(g(i,j)()() - Complex(0,1)) == 0){
|
||||||
|
std::cout<< " i";
|
||||||
|
} else if ( abs(g(i,j)()() + Complex(0,1)) == 0){
|
||||||
|
std::cout<< "-i";
|
||||||
|
} else if ( abs(g(i,j)()() - Complex(1,0)) == 0){
|
||||||
|
std::cout<< " 1";
|
||||||
|
} else if ( abs(g(i,j)()() + Complex(1,0)) == 0){
|
||||||
|
std::cout<< "-1";
|
||||||
|
}
|
||||||
|
std::cout<<((j == Ngp-1) ? ")" : "," );
|
||||||
|
}
|
||||||
|
std::cout << std::endl;
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
void createTestAlgebra(void)
|
||||||
|
{
|
||||||
|
std::array<GparityFlavourMatrix, 3> testg;
|
||||||
|
const Complex I(0., 1.), mI(0., -1.);
|
||||||
|
|
||||||
|
// 0 1
|
||||||
|
// 1 0
|
||||||
|
testg[0] = Zero();
|
||||||
|
testg[0](0, 1)()() = 1.;
|
||||||
|
testg[0](1, 0)()() = 1.;
|
||||||
|
std::cout << GridLogMessage << "test SigmaX= " << std::endl;
|
||||||
|
print(testg[0]);
|
||||||
|
|
||||||
|
// 0 -i
|
||||||
|
// i 0
|
||||||
|
testg[1] = Zero();
|
||||||
|
testg[1](0, 1)()() = mI;
|
||||||
|
testg[1](1, 0)()() = I;
|
||||||
|
std::cout << GridLogMessage << "test SigmaY= " << std::endl;
|
||||||
|
print(testg[1]);
|
||||||
|
|
||||||
|
// 1 0
|
||||||
|
// 0 -1
|
||||||
|
testg[2] = Zero();
|
||||||
|
testg[2](0, 0)()() = 1.0;
|
||||||
|
testg[2](1, 1)()() = -1.0;
|
||||||
|
std::cout << GridLogMessage << "test SigmaZ= " << std::endl;
|
||||||
|
print(testg[2]);
|
||||||
|
|
||||||
|
|
||||||
|
#define DEFINE_TEST_G(g, exp)\
|
||||||
|
testAlgebra[GparityFlavour::Algebra::g] = exp; \
|
||||||
|
testAlgebra[GparityFlavour::Algebra::Minus##g] = -exp;
|
||||||
|
|
||||||
|
DEFINE_TEST_G(SigmaX , testg[0]);
|
||||||
|
DEFINE_TEST_G(SigmaY , testg[1]);
|
||||||
|
DEFINE_TEST_G(SigmaZ , testg[2]);
|
||||||
|
DEFINE_TEST_G(Identity , 1.);
|
||||||
|
|
||||||
|
GparityFlavourMatrix pplus;
|
||||||
|
pplus = 1.0;
|
||||||
|
pplus = pplus + testg[1];
|
||||||
|
pplus = pplus * 0.5;
|
||||||
|
|
||||||
|
DEFINE_TEST_G(ProjPlus , pplus);
|
||||||
|
|
||||||
|
GparityFlavourMatrix pminus;
|
||||||
|
pminus = 1.0;
|
||||||
|
pminus = pminus - testg[1];
|
||||||
|
pminus = pminus * 0.5;
|
||||||
|
|
||||||
|
DEFINE_TEST_G(ProjMinus , pminus);
|
||||||
|
|
||||||
|
#undef DEFINE_TEST_G
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Expr>
|
||||||
|
void test(const Expr &a, const Expr &b)
|
||||||
|
{
|
||||||
|
if (norm2(a - b) < tolerance)
|
||||||
|
{
|
||||||
|
std::cout << "[OK] ";
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
std::cout << "[fail]" << std::endl;
|
||||||
|
std::cout << GridLogError << "a= " << a << std::endl;
|
||||||
|
std::cout << GridLogError << "is different (tolerance= " << tolerance << ") from " << std::endl;
|
||||||
|
std::cout << GridLogError << "b= " << b << std::endl;
|
||||||
|
exit(EXIT_FAILURE);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void checkSigma(const GparityFlavour::Algebra a, GridSerialRNG &rng)
|
||||||
|
{
|
||||||
|
GparityFlavourVector v;
|
||||||
|
GparityFlavourMatrix m, &testg = testAlgebra[a];
|
||||||
|
GparityFlavour g(a);
|
||||||
|
|
||||||
|
random(rng, v);
|
||||||
|
random(rng, m);
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "Checking " << GparityFlavour::name[a] << ": ";
|
||||||
|
std::cout << "vecmul ";
|
||||||
|
test(g*v, testg*v);
|
||||||
|
std::cout << "matlmul ";
|
||||||
|
test(g*m, testg*m);
|
||||||
|
std::cout << "matrmul ";
|
||||||
|
test(m*g, m*testg);
|
||||||
|
std::cout << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char *argv[])
|
||||||
|
{
|
||||||
|
Grid_init(&argc,&argv);
|
||||||
|
|
||||||
|
Coordinate latt_size = GridDefaultLatt();
|
||||||
|
Coordinate simd_layout = GridDefaultSimd(4,vComplex::Nsimd());
|
||||||
|
Coordinate mpi_layout = GridDefaultMpi();
|
||||||
|
|
||||||
|
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
||||||
|
GridSerialRNG sRNG;
|
||||||
|
|
||||||
|
sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "======== Test algebra" << std::endl;
|
||||||
|
createTestAlgebra();
|
||||||
|
std::cout << GridLogMessage << "======== Multiplication operators check" << std::endl;
|
||||||
|
for (int i = 0; i < GparityFlavour::nSigma; ++i)
|
||||||
|
{
|
||||||
|
checkSigma(i, sRNG);
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << std::endl;
|
||||||
|
|
||||||
|
Grid_finalize();
|
||||||
|
|
||||||
|
return EXIT_SUCCESS;
|
||||||
|
}
|
@ -71,26 +71,14 @@ int main (int argc, char ** argv)
|
|||||||
////////////////////////////////////
|
////////////////////////////////////
|
||||||
RealD mass=0.2; //kills the diagonal term
|
RealD mass=0.2; //kills the diagonal term
|
||||||
RealD M5=1.8;
|
RealD M5=1.8;
|
||||||
// const int nu = 3;
|
|
||||||
// std::vector<int> twists(Nd,0); // twists[nu] = 1;
|
|
||||||
// GparityDomainWallFermionR::ImplParams params; params.twists = twists;
|
|
||||||
// GparityDomainWallFermionR Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
|
|
||||||
|
|
||||||
// DomainWallFermionR Dw (U, Grid,RBGrid,mass,M5);
|
const int nu = 0; //gparity direction
|
||||||
|
|
||||||
const int nu = 3;
|
|
||||||
std::vector<int> twists(Nd,0);
|
std::vector<int> twists(Nd,0);
|
||||||
twists[nu] = 1;
|
twists[nu] = 1;
|
||||||
|
twists[Nd-1] = 1; //antiperiodic in time
|
||||||
GparityDomainWallFermionR::ImplParams params;
|
GparityDomainWallFermionR::ImplParams params;
|
||||||
params.twists = twists;
|
params.twists = twists;
|
||||||
|
|
||||||
/*
|
|
||||||
params.boundary_phases[0] = 1.0;
|
|
||||||
params.boundary_phases[1] = 1.0;
|
|
||||||
params.boundary_phases[2] = 1.0;
|
|
||||||
params.boundary_phases[3] =- 1.0;
|
|
||||||
*/
|
|
||||||
|
|
||||||
GparityDomainWallFermionR Dw(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
|
GparityDomainWallFermionR Dw(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
|
||||||
|
|
||||||
Dw.M (phi,Mphi);
|
Dw.M (phi,Mphi);
|
||||||
|
@ -71,8 +71,10 @@ int main (int argc, char ** argv)
|
|||||||
RealD mass=0.01;
|
RealD mass=0.01;
|
||||||
RealD M5=1.8;
|
RealD M5=1.8;
|
||||||
|
|
||||||
const int nu = 3;
|
const int nu = 1;
|
||||||
std::vector<int> twists(Nd,0); twists[nu] = 1;
|
std::vector<int> twists(Nd,0);
|
||||||
|
twists[nu] = 1;
|
||||||
|
twists[3] = 1;
|
||||||
GparityDomainWallFermionR::ImplParams params; params.twists = twists;
|
GparityDomainWallFermionR::ImplParams params; params.twists = twists;
|
||||||
GparityDomainWallFermionR Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
|
GparityDomainWallFermionR Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
|
||||||
Ddwf.M (phi,Mphi);
|
Ddwf.M (phi,Mphi);
|
||||||
|
@ -64,8 +64,12 @@ int main (int argc, char ** argv)
|
|||||||
////////////////////////////////////
|
////////////////////////////////////
|
||||||
RealD mass=0.01;
|
RealD mass=0.01;
|
||||||
|
|
||||||
const int nu = 3;
|
const int nu = 1;
|
||||||
std::vector<int> twists(Nd,0); twists[nu] = 1;
|
const int Lnu=latt_size[nu];
|
||||||
|
|
||||||
|
std::vector<int> twists(Nd,0);
|
||||||
|
twists[nu] = 1;
|
||||||
|
twists[3]=1;
|
||||||
GparityWilsonFermionR::ImplParams params; params.twists = twists;
|
GparityWilsonFermionR::ImplParams params; params.twists = twists;
|
||||||
GparityWilsonFermionR Wil(U,*UGrid,*UrbGrid,mass,params);
|
GparityWilsonFermionR Wil(U,*UGrid,*UrbGrid,mass,params);
|
||||||
Wil.M (phi,Mphi);
|
Wil.M (phi,Mphi);
|
||||||
|
@ -31,14 +31,38 @@ using namespace std;
|
|||||||
using namespace Grid;
|
using namespace Grid;
|
||||||
;
|
;
|
||||||
|
|
||||||
typedef typename GparityDomainWallFermionR::FermionField FermionField;
|
template<typename Action>
|
||||||
|
struct Setup{};
|
||||||
|
|
||||||
RealD AllZero(RealD x){ return 0.;}
|
template<>
|
||||||
|
struct Setup<GparityMobiusFermionR>{
|
||||||
|
static GparityMobiusFermionR* getAction(LatticeGaugeField &Umu,
|
||||||
|
GridCartesian* FGrid, GridRedBlackCartesian* FrbGrid, GridCartesian* UGrid, GridRedBlackCartesian* UrbGrid){
|
||||||
|
RealD mass=0.01;
|
||||||
|
RealD M5=1.8;
|
||||||
|
RealD mob_b=1.5;
|
||||||
|
GparityMobiusFermionD ::ImplParams params;
|
||||||
|
std::vector<int> twists({1,1,1,0});
|
||||||
|
params.twists = twists;
|
||||||
|
return new GparityMobiusFermionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
int main (int argc, char ** argv)
|
template<>
|
||||||
{
|
struct Setup<DomainWallFermionR>{
|
||||||
Grid_init(&argc,&argv);
|
static DomainWallFermionR* getAction(LatticeGaugeField &Umu,
|
||||||
|
GridCartesian* FGrid, GridRedBlackCartesian* FrbGrid, GridCartesian* UGrid, GridRedBlackCartesian* UrbGrid){
|
||||||
|
RealD mass=0.01;
|
||||||
|
RealD M5=1.8;
|
||||||
|
return new DomainWallFermionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
template<typename Action>
|
||||||
|
void run(){
|
||||||
|
typedef typename Action::FermionField FermionField;
|
||||||
const int Ls=8;
|
const int Ls=8;
|
||||||
|
|
||||||
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||||||
@ -56,24 +80,10 @@ int main (int argc, char ** argv)
|
|||||||
LatticeGaugeField Umu(UGrid);
|
LatticeGaugeField Umu(UGrid);
|
||||||
SU<Nc>::HotConfiguration(RNG4, Umu);
|
SU<Nc>::HotConfiguration(RNG4, Umu);
|
||||||
|
|
||||||
std::vector<LatticeColourMatrix> U(4,UGrid);
|
Action *action = Setup<Action>::getAction(Umu,FGrid,FrbGrid,UGrid,UrbGrid);
|
||||||
for(int mu=0;mu<Nd;mu++){
|
|
||||||
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
|
|
||||||
}
|
|
||||||
|
|
||||||
RealD mass=0.01;
|
//MdagMLinearOperator<Action,FermionField> HermOp(Ddwf);
|
||||||
RealD M5=1.8;
|
SchurDiagTwoOperator<Action,FermionField> HermOp(*action);
|
||||||
RealD mob_b=1.5;
|
|
||||||
// DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
|
|
||||||
GparityMobiusFermionD ::ImplParams params;
|
|
||||||
std::vector<int> twists({1,1,1,0});
|
|
||||||
params.twists = twists;
|
|
||||||
GparityMobiusFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
|
|
||||||
|
|
||||||
// MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
|
|
||||||
// SchurDiagTwoOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
|
|
||||||
SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf);
|
|
||||||
// SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
|
|
||||||
|
|
||||||
const int Nstop = 30;
|
const int Nstop = 30;
|
||||||
const int Nk = 40;
|
const int Nk = 40;
|
||||||
@ -91,7 +101,6 @@ int main (int argc, char ** argv)
|
|||||||
|
|
||||||
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Nstop,Nk,Nm,resid,MaxIt);
|
ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Nstop,Nk,Nm,resid,MaxIt);
|
||||||
|
|
||||||
|
|
||||||
std::vector<RealD> eval(Nm);
|
std::vector<RealD> eval(Nm);
|
||||||
FermionField src(FrbGrid);
|
FermionField src(FrbGrid);
|
||||||
gaussian(RNG5rb,src);
|
gaussian(RNG5rb,src);
|
||||||
@ -103,6 +112,28 @@ int main (int argc, char ** argv)
|
|||||||
int Nconv;
|
int Nconv;
|
||||||
IRL.calc(eval,evec,src,Nconv);
|
IRL.calc(eval,evec,src,Nconv);
|
||||||
|
|
||||||
|
delete action;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main (int argc, char ** argv)
|
||||||
|
{
|
||||||
|
Grid_init(&argc,&argv);
|
||||||
|
|
||||||
|
std::string action = "GparityMobius";
|
||||||
|
for(int i=1;i<argc;i++){
|
||||||
|
if(std::string(argv[i]) == "-action"){
|
||||||
|
action = argv[i+1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if(action == "GparityMobius"){
|
||||||
|
run<GparityMobiusFermionR>();
|
||||||
|
}else if(action == "DWF"){
|
||||||
|
run<DomainWallFermionR>();
|
||||||
|
}else{
|
||||||
|
std::cout << "Unknown action" << std::endl;
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
|
||||||
Grid_finalize();
|
Grid_finalize();
|
||||||
}
|
}
|
||||||
|
184
tests/solver/Test_dwf_multishift_mixedprec.cc
Normal file
184
tests/solver/Test_dwf_multishift_mixedprec.cc
Normal file
@ -0,0 +1,184 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./tests/Test_dwf_multishift_mixedprec.cc
|
||||||
|
|
||||||
|
Copyright (C) 2015
|
||||||
|
|
||||||
|
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#include <Grid/Grid.h>
|
||||||
|
|
||||||
|
using namespace Grid;
|
||||||
|
|
||||||
|
template<typename SpeciesD, typename SpeciesF, typename GaugeStatisticsType>
|
||||||
|
void run_test(int argc, char ** argv, const typename SpeciesD::ImplParams ¶ms){
|
||||||
|
const int Ls = 16;
|
||||||
|
GridCartesian* UGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi());
|
||||||
|
GridRedBlackCartesian* UrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_d);
|
||||||
|
GridCartesian* FGrid_d = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_d);
|
||||||
|
GridRedBlackCartesian* FrbGrid_d = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_d);
|
||||||
|
|
||||||
|
GridCartesian* UGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
|
||||||
|
GridRedBlackCartesian* UrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_f);
|
||||||
|
GridCartesian* FGrid_f = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_f);
|
||||||
|
GridRedBlackCartesian* FrbGrid_f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_f);
|
||||||
|
|
||||||
|
typedef typename SpeciesD::FermionField FermionFieldD;
|
||||||
|
typedef typename SpeciesF::FermionField FermionFieldF;
|
||||||
|
|
||||||
|
std::vector<int> seeds4({1, 2, 3, 4});
|
||||||
|
std::vector<int> seeds5({5, 6, 7, 8});
|
||||||
|
GridParallelRNG RNG5(FGrid_d);
|
||||||
|
RNG5.SeedFixedIntegers(seeds5);
|
||||||
|
GridParallelRNG RNG4(UGrid_d);
|
||||||
|
RNG4.SeedFixedIntegers(seeds4);
|
||||||
|
|
||||||
|
FermionFieldD src_d(FGrid_d);
|
||||||
|
random(RNG5, src_d);
|
||||||
|
|
||||||
|
LatticeGaugeFieldD Umu_d(UGrid_d);
|
||||||
|
|
||||||
|
//CPS-created G-parity ensembles have a factor of 2 error in the plaquette that causes the read to fail unless we workaround it
|
||||||
|
bool gparity_plaquette_fix = false;
|
||||||
|
for(int i=1;i<argc;i++){
|
||||||
|
if(std::string(argv[i]) == "--gparity_plaquette_fix"){
|
||||||
|
gparity_plaquette_fix=true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool cfg_loaded=false;
|
||||||
|
for(int i=1;i<argc;i++){
|
||||||
|
if(std::string(argv[i]) == "--load_config"){
|
||||||
|
assert(i != argc-1);
|
||||||
|
std::string file = argv[i+1];
|
||||||
|
NerscIO io;
|
||||||
|
FieldMetaData metadata;
|
||||||
|
|
||||||
|
if(gparity_plaquette_fix) NerscIO::exitOnReadPlaquetteMismatch() = false;
|
||||||
|
|
||||||
|
io.readConfiguration<GaugeStatisticsType>(Umu_d, metadata, file);
|
||||||
|
|
||||||
|
if(gparity_plaquette_fix){
|
||||||
|
metadata.plaquette *= 2.; //correct header value
|
||||||
|
|
||||||
|
//Get the true plaquette
|
||||||
|
FieldMetaData tmp;
|
||||||
|
GaugeStatisticsType gs; gs(Umu_d, tmp);
|
||||||
|
|
||||||
|
std::cout << "After correction: plaqs " << tmp.plaquette << " " << metadata.plaquette << std::endl;
|
||||||
|
assert(fabs(tmp.plaquette -metadata.plaquette ) < 1.0e-5 );
|
||||||
|
}
|
||||||
|
|
||||||
|
cfg_loaded=true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if(!cfg_loaded)
|
||||||
|
SU<Nc>::HotConfiguration(RNG4, Umu_d);
|
||||||
|
|
||||||
|
LatticeGaugeFieldF Umu_f(UGrid_f);
|
||||||
|
precisionChange(Umu_f, Umu_d);
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt() << " Ls: " << Ls << std::endl;
|
||||||
|
|
||||||
|
RealD mass = 0.01;
|
||||||
|
RealD M5 = 1.8;
|
||||||
|
SpeciesD Ddwf_d(Umu_d, *FGrid_d, *FrbGrid_d, *UGrid_d, *UrbGrid_d, mass, M5, params);
|
||||||
|
SpeciesF Ddwf_f(Umu_f, *FGrid_f, *FrbGrid_f, *UGrid_f, *UrbGrid_f, mass, M5, params);
|
||||||
|
|
||||||
|
FermionFieldD src_o_d(FrbGrid_d);
|
||||||
|
pickCheckerboard(Odd, src_o_d, src_d);
|
||||||
|
|
||||||
|
SchurDiagMooeeOperator<SpeciesD, FermionFieldD> HermOpEO_d(Ddwf_d);
|
||||||
|
SchurDiagMooeeOperator<SpeciesF, FermionFieldF> HermOpEO_f(Ddwf_f);
|
||||||
|
|
||||||
|
AlgRemez remez(1e-4, 64, 50);
|
||||||
|
int order = 15;
|
||||||
|
remez.generateApprox(order, 1, 2); //sqrt
|
||||||
|
|
||||||
|
MultiShiftFunction shifts(remez, 1e-10, false);
|
||||||
|
|
||||||
|
int relup_freq = 50;
|
||||||
|
double t1=usecond();
|
||||||
|
ConjugateGradientMultiShiftMixedPrec<FermionFieldD,FermionFieldF> mcg(10000, shifts, FrbGrid_f, HermOpEO_f, relup_freq);
|
||||||
|
|
||||||
|
std::vector<FermionFieldD> results_o_d(order, FrbGrid_d);
|
||||||
|
mcg(HermOpEO_d, src_o_d, results_o_d);
|
||||||
|
double t2=usecond();
|
||||||
|
|
||||||
|
//Crosscheck double and mixed prec results
|
||||||
|
ConjugateGradientMultiShift<FermionFieldD> dmcg(10000, shifts);
|
||||||
|
std::vector<FermionFieldD> results_o_d_2(order, FrbGrid_d);
|
||||||
|
dmcg(HermOpEO_d, src_o_d, results_o_d_2);
|
||||||
|
double t3=usecond();
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "Comparison of mixed prec results to double prec results |mixed - double|^2 :" << std::endl;
|
||||||
|
FermionFieldD tmp(FrbGrid_d);
|
||||||
|
for(int i=0;i<order;i++){
|
||||||
|
RealD ndiff = axpy_norm(tmp, -1., results_o_d[i], results_o_d_2[i]);
|
||||||
|
std::cout << i << " " << ndiff << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout<<GridLogMessage << "Mixed precision algorithm: Total usec = "<< (t2-t1)<<std::endl;
|
||||||
|
std::cout<<GridLogMessage << "Double precision algorithm: Total usec = "<< (t3-t2)<<std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
int main (int argc, char ** argv)
|
||||||
|
{
|
||||||
|
Grid_init(&argc, &argv);
|
||||||
|
|
||||||
|
bool gparity = false;
|
||||||
|
int gpdir;
|
||||||
|
|
||||||
|
for(int i=1;i<argc;i++){
|
||||||
|
std::string arg(argv[i]);
|
||||||
|
if(arg == "--Gparity"){
|
||||||
|
assert(i!=argc-1);
|
||||||
|
gpdir = std::stoi(argv[i+1]);
|
||||||
|
assert(gpdir >= 0 && gpdir <= 2); //spatial!
|
||||||
|
gparity = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if(gparity){
|
||||||
|
std::cout << "Running test with G-parity BCs in " << gpdir << " direction" << std::endl;
|
||||||
|
GparityWilsonImplParams params;
|
||||||
|
params.twists[gpdir] = 1;
|
||||||
|
|
||||||
|
std::vector<int> conj_dirs(Nd,0);
|
||||||
|
conj_dirs[gpdir] = 1;
|
||||||
|
ConjugateGimplD::setDirections(conj_dirs);
|
||||||
|
|
||||||
|
run_test<GparityDomainWallFermionD, GparityDomainWallFermionF, ConjugateGaugeStatistics>(argc,argv,params);
|
||||||
|
}else{
|
||||||
|
std::cout << "Running test with periodic BCs" << std::endl;
|
||||||
|
WilsonImplParams params;
|
||||||
|
run_test<DomainWallFermionD, DomainWallFermionF, PeriodicGaugeStatistics>(argc,argv,params);
|
||||||
|
}
|
||||||
|
|
||||||
|
Grid_finalize();
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user