mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-11-03 21:44:33 +00:00 
			
		
		
		
	Merge branch 'feature/dirichlet-gparity' into feature/dirichlet
This commit is contained in:
		@@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/GridCore.h>
 | 
			
		||||
#include <Grid/qcd/QCD.h>
 | 
			
		||||
#include <Grid/qcd/spin/Spin.h>
 | 
			
		||||
#include <Grid/qcd/gparity/Gparity.h>
 | 
			
		||||
#include <Grid/qcd/utils/Utils.h>
 | 
			
		||||
#include <Grid/qcd/representations/Representations.h>
 | 
			
		||||
NAMESPACE_CHECK(GridQCDCore);
 | 
			
		||||
 
 | 
			
		||||
@@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB);
 | 
			
		||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
 | 
			
		||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
 | 
			
		||||
 
 | 
			
		||||
@@ -49,6 +49,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    Integer TotalInnerIterations; //Number of inner CG iterations
 | 
			
		||||
    Integer TotalOuterIterations; //Number of restarts
 | 
			
		||||
    Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
 | 
			
		||||
    RealD TrueResidual;
 | 
			
		||||
 | 
			
		||||
    //Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
 | 
			
		||||
    LinearFunction<FieldF> *guesser;
 | 
			
		||||
@@ -68,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
  void operator() (const FieldD &src_d_in, FieldD &sol_d){
 | 
			
		||||
    std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
 | 
			
		||||
    TotalInnerIterations = 0;
 | 
			
		||||
	
 | 
			
		||||
    GridStopWatch TotalTimer;
 | 
			
		||||
@@ -97,6 +99,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    FieldF sol_f(SinglePrecGrid);
 | 
			
		||||
    sol_f.Checkerboard() = cb;
 | 
			
		||||
    
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
 | 
			
		||||
    ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
 | 
			
		||||
    CG_f.ErrorOnNoConverge = false;
 | 
			
		||||
 | 
			
		||||
@@ -130,6 +133,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
	(*guesser)(src_f, sol_f);
 | 
			
		||||
 | 
			
		||||
      //Inner CG
 | 
			
		||||
      std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
 | 
			
		||||
      CG_f.Tolerance = inner_tol;
 | 
			
		||||
      InnerCGtimer.Start();
 | 
			
		||||
      CG_f(Linop_f, src_f, sol_f);
 | 
			
		||||
@@ -150,6 +154,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
    ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
 | 
			
		||||
    CG_d(Linop_d, src_d_in, sol_d);
 | 
			
		||||
    TotalFinalStepIterations = CG_d.IterationsToComplete;
 | 
			
		||||
    TrueResidual = CG_d.TrueResidual;
 | 
			
		||||
 | 
			
		||||
    TotalTimer.Stop();
 | 
			
		||||
    std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
 | 
			
		||||
 
 | 
			
		||||
@@ -52,7 +52,7 @@ public:
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) : 
 | 
			
		||||
  ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) : 
 | 
			
		||||
    MaxIterations(maxit),
 | 
			
		||||
    shifts(_shifts)
 | 
			
		||||
  { 
 | 
			
		||||
@@ -182,6 +182,9 @@ public:
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
 | 
			
		||||
    
 | 
			
		||||
  
 | 
			
		||||
  ///////////////////////////////////////
 | 
			
		||||
  // Timers
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										409
									
								
								Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										409
									
								
								Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,409 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
/*  END LEGAL */
 | 
			
		||||
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
 | 
			
		||||
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision. 
 | 
			
		||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision. 
 | 
			
		||||
//Every update_freq iterations the residual is corrected in double precision. 
 | 
			
		||||
    
 | 
			
		||||
//For safety the a final regular CG is applied to clean up if necessary
 | 
			
		||||
 | 
			
		||||
//Linop to add shift to input linop, used in cleanup CG
 | 
			
		||||
namespace ConjugateGradientMultiShiftMixedPrecSupport{
 | 
			
		||||
template<typename Field>
 | 
			
		||||
class ShiftedLinop: public LinearOperatorBase<Field>{
 | 
			
		||||
public:
 | 
			
		||||
  LinearOperatorBase<Field> &linop_base;
 | 
			
		||||
  RealD shift;
 | 
			
		||||
 | 
			
		||||
  ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
 | 
			
		||||
 | 
			
		||||
  void OpDiag (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void OpDir  (const Field &in, Field &out,int dir,int disp){ assert(0); }
 | 
			
		||||
  void OpDirAll  (const Field &in, std::vector<Field> &out){ assert(0); }
 | 
			
		||||
  
 | 
			
		||||
  void Op     (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
  void AdjOp  (const Field &in, Field &out){ assert(0); }
 | 
			
		||||
 | 
			
		||||
  void HermOp(const Field &in, Field &out){
 | 
			
		||||
    linop_base.HermOp(in, out);
 | 
			
		||||
    axpy(out, shift, in, out);
 | 
			
		||||
  }    
 | 
			
		||||
 | 
			
		||||
  void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
 | 
			
		||||
    HermOp(in,out);
 | 
			
		||||
    ComplexD dot = innerProduct(in,out);
 | 
			
		||||
    n1=real(dot);
 | 
			
		||||
    n2=norm2(out);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class FieldD, class FieldF,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
 | 
			
		||||
	 typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0> 
 | 
			
		||||
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
 | 
			
		||||
					     public OperatorFunction<FieldD>
 | 
			
		||||
{
 | 
			
		||||
public:                                                
 | 
			
		||||
 | 
			
		||||
  using OperatorFunction<FieldD>::operator();
 | 
			
		||||
 | 
			
		||||
  RealD   Tolerance;
 | 
			
		||||
  Integer MaxIterations;
 | 
			
		||||
  Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
 | 
			
		||||
  std::vector<int> IterationsToCompleteShift;  // Iterations for this shift
 | 
			
		||||
  int verbose;
 | 
			
		||||
  MultiShiftFunction shifts;
 | 
			
		||||
  std::vector<RealD> TrueResidualShift;
 | 
			
		||||
 | 
			
		||||
  int ReliableUpdateFreq; //number of iterations between reliable updates
 | 
			
		||||
 | 
			
		||||
  GridBase* SinglePrecGrid; //Grid for single-precision fields
 | 
			
		||||
  LinearOperatorBase<FieldF> &Linop_f; //single precision
 | 
			
		||||
 | 
			
		||||
  ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
 | 
			
		||||
				       GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
 | 
			
		||||
				       int _ReliableUpdateFreq
 | 
			
		||||
				       ) : 
 | 
			
		||||
    MaxIterations(maxit),  shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq)
 | 
			
		||||
  { 
 | 
			
		||||
    verbose=1;
 | 
			
		||||
    IterationsToCompleteShift.resize(_shifts.order);
 | 
			
		||||
    TrueResidualShift.resize(_shifts.order);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = src.Grid();
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
    std::vector<FieldD> results(nshift,grid);
 | 
			
		||||
    (*this)(Linop,src,results,psi);
 | 
			
		||||
  }
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
 | 
			
		||||
  {
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    (*this)(Linop,src,results);
 | 
			
		||||
  
 | 
			
		||||
    psi = shifts.norm*src;
 | 
			
		||||
    for(int i=0;i<nshift;i++){
 | 
			
		||||
      psi = psi + shifts.residues[i]*results[i];
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
 | 
			
		||||
  { 
 | 
			
		||||
    GridBase *DoublePrecGrid = src_d.Grid();
 | 
			
		||||
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // Convenience references to the info stored in "MultiShiftFunction"
 | 
			
		||||
    ////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    int nshift = shifts.order;
 | 
			
		||||
 | 
			
		||||
    std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
 | 
			
		||||
    std::vector<RealD> &mresidual(shifts.tolerances);
 | 
			
		||||
    std::vector<RealD> alpha(nshift,1.0);
 | 
			
		||||
 | 
			
		||||
    //Double precision search directions
 | 
			
		||||
    FieldD p_d(DoublePrecGrid);
 | 
			
		||||
    std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
 | 
			
		||||
 | 
			
		||||
    FieldD tmp_d(DoublePrecGrid);
 | 
			
		||||
    FieldD r_d(DoublePrecGrid);
 | 
			
		||||
    FieldD mmp_d(DoublePrecGrid);
 | 
			
		||||
 | 
			
		||||
    assert(psi_d.size()==nshift);
 | 
			
		||||
    assert(mass.size()==nshift);
 | 
			
		||||
    assert(mresidual.size()==nshift);
 | 
			
		||||
  
 | 
			
		||||
    // dynamic sized arrays on stack; 2d is a pain with vector
 | 
			
		||||
    RealD  bs[nshift];
 | 
			
		||||
    RealD  rsq[nshift];
 | 
			
		||||
    RealD  z[nshift][2];
 | 
			
		||||
    int     converged[nshift];
 | 
			
		||||
  
 | 
			
		||||
    const int       primary =0;
 | 
			
		||||
  
 | 
			
		||||
    //Primary shift fields CG iteration
 | 
			
		||||
    RealD a,b,c,d;
 | 
			
		||||
    RealD cp,bp,qq; //prev
 | 
			
		||||
  
 | 
			
		||||
    // Matrix mult fields
 | 
			
		||||
    FieldF r_f(SinglePrecGrid);
 | 
			
		||||
    FieldF p_f(SinglePrecGrid);
 | 
			
		||||
    FieldF tmp_f(SinglePrecGrid);
 | 
			
		||||
    FieldF mmp_f(SinglePrecGrid);
 | 
			
		||||
    FieldF src_f(SinglePrecGrid);
 | 
			
		||||
    precisionChange(src_f, src_d);
 | 
			
		||||
 | 
			
		||||
    // Check lightest mass
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      assert( mass[s]>= mass[primary] );
 | 
			
		||||
      converged[s]=0;
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // Wire guess to zero
 | 
			
		||||
    // Residuals "r" are src
 | 
			
		||||
    // First search direction "p" is also src
 | 
			
		||||
    cp = norm2(src_d);
 | 
			
		||||
 | 
			
		||||
    // Handle trivial case of zero src.
 | 
			
		||||
    if( cp == 0. ){
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	psi_d[s] = Zero();
 | 
			
		||||
	IterationsToCompleteShift[s] = 1;
 | 
			
		||||
	TrueResidualShift[s] = 0.;
 | 
			
		||||
      }
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int s=0;s<nshift;s++){
 | 
			
		||||
      rsq[s] = cp * mresidual[s] * mresidual[s];
 | 
			
		||||
      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
 | 
			
		||||
      ps_d[s] = src_d;
 | 
			
		||||
    }
 | 
			
		||||
    // r and p for primary
 | 
			
		||||
    r_f=src_f; //residual maintained in single
 | 
			
		||||
    p_f=src_f;
 | 
			
		||||
    p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
 | 
			
		||||
  
 | 
			
		||||
    //MdagM+m[0]
 | 
			
		||||
    Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p        d=real(dot(p, mmp)),  qq=norm2(mmp)
 | 
			
		||||
    axpy(mmp_f,mass[0],p_f,mmp_f);
 | 
			
		||||
    RealD rn = norm2(p_f);
 | 
			
		||||
    d += rn*mass[0];
 | 
			
		||||
 | 
			
		||||
    b = -cp /d;
 | 
			
		||||
  
 | 
			
		||||
    // Set up the various shift variables
 | 
			
		||||
    int       iz=0;
 | 
			
		||||
    z[0][1-iz] = 1.0;
 | 
			
		||||
    z[0][iz]   = 1.0;
 | 
			
		||||
    bs[0]      = b;
 | 
			
		||||
    for(int s=1;s<nshift;s++){
 | 
			
		||||
      z[s][1-iz] = 1.0;
 | 
			
		||||
      z[s][iz]   = 1.0/( 1.0 - b*(mass[s]-mass[0]));
 | 
			
		||||
      bs[s]      = b*z[s][iz]; 
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    // r += b[0] A.p[0]
 | 
			
		||||
    // c= norm(r)
 | 
			
		||||
    c=axpy_norm(r_f,b,mmp_f,r_f);
 | 
			
		||||
  
 | 
			
		||||
    for(int s=0;s<nshift;s++) {
 | 
			
		||||
      axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
 | 
			
		||||
    }
 | 
			
		||||
  
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    // Timers
 | 
			
		||||
    ///////////////////////////////////////
 | 
			
		||||
    GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
 | 
			
		||||
 | 
			
		||||
    SolverTimer.Start();
 | 
			
		||||
  
 | 
			
		||||
    // Iteration loop
 | 
			
		||||
    int k;
 | 
			
		||||
  
 | 
			
		||||
    for (k=1;k<=MaxIterations;k++){    
 | 
			
		||||
      a = c /cp;
 | 
			
		||||
 | 
			
		||||
      //Update double precision search direction by residual
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(r_d, r_f);
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      axpy(p_d,a,p_d,r_d); 
 | 
			
		||||
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	if ( ! converged[s] ) { 
 | 
			
		||||
	  if (s==0){
 | 
			
		||||
	    axpy(ps_d[s],a,ps_d[s],r_d);
 | 
			
		||||
	  } else{
 | 
			
		||||
	    RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
 | 
			
		||||
	    axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      PrecChangeTimer.Start();
 | 
			
		||||
      precisionChange(p_f, p_d); //get back single prec search direction for linop
 | 
			
		||||
      PrecChangeTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      cp=c;
 | 
			
		||||
      MatrixTimer.Start();  
 | 
			
		||||
      Linop_f.HermOp(p_f,mmp_f); 
 | 
			
		||||
      d=real(innerProduct(p_f,mmp_f));    
 | 
			
		||||
      MatrixTimer.Stop();  
 | 
			
		||||
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      axpy(mmp_f,mass[0],p_f,mmp_f);
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
      RealD rn = norm2(p_f);
 | 
			
		||||
      d += rn*mass[0];
 | 
			
		||||
    
 | 
			
		||||
      bp=b;
 | 
			
		||||
      b=-cp/d;
 | 
			
		||||
    
 | 
			
		||||
      // Toggle the recurrence history
 | 
			
		||||
      bs[0] = b;
 | 
			
		||||
      iz = 1-iz;
 | 
			
		||||
      ShiftTimer.Start();
 | 
			
		||||
      for(int s=1;s<nshift;s++){
 | 
			
		||||
	if((!converged[s])){
 | 
			
		||||
	  RealD z0 = z[s][1-iz];
 | 
			
		||||
	  RealD z1 = z[s][iz];
 | 
			
		||||
	  z[s][iz] = z0*z1*bp
 | 
			
		||||
	    / (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b)); 
 | 
			
		||||
	  bs[s] = b*z[s][iz]/z0; // NB sign  rel to Mike
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      ShiftTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      //Update double precision solutions
 | 
			
		||||
      AXPYTimer.Start();
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
	int ss = s;
 | 
			
		||||
	if( (!converged[s]) ) { 
 | 
			
		||||
	  axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      //Perform reliable update if necessary; otherwise update residual from single-prec mmp
 | 
			
		||||
      RealD c_f = axpy_norm(r_f,b,mmp_f,r_f);
 | 
			
		||||
      AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
      c = c_f;
 | 
			
		||||
 | 
			
		||||
      if(k % ReliableUpdateFreq == 0){
 | 
			
		||||
	//Replace r with true residual
 | 
			
		||||
	MatrixTimer.Start();  
 | 
			
		||||
	Linop_d.HermOp(psi_d[0],mmp_d); 
 | 
			
		||||
	MatrixTimer.Stop();  
 | 
			
		||||
 | 
			
		||||
	AXPYTimer.Start();
 | 
			
		||||
	axpy(mmp_d,mass[0],psi_d[0],mmp_d);
 | 
			
		||||
 | 
			
		||||
	RealD c_d = axpy_norm(r_d, -1.0, mmp_d, src_d);
 | 
			
		||||
	AXPYTimer.Stop();
 | 
			
		||||
 | 
			
		||||
	std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_f <<" with |r|^2 = "<<c_d<<std::endl;
 | 
			
		||||
	
 | 
			
		||||
	PrecChangeTimer.Start();
 | 
			
		||||
	precisionChange(r_f, r_d);
 | 
			
		||||
	PrecChangeTimer.Stop();
 | 
			
		||||
	c = c_d;
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      // Convergence checks
 | 
			
		||||
      int all_converged = 1;
 | 
			
		||||
      for(int s=0;s<nshift;s++){
 | 
			
		||||
      
 | 
			
		||||
	if ( (!converged[s]) ){
 | 
			
		||||
	  IterationsToCompleteShift[s] = k;
 | 
			
		||||
	
 | 
			
		||||
	  RealD css  = c * z[s][iz]* z[s][iz];
 | 
			
		||||
	
 | 
			
		||||
	  if(css<rsq[s]){
 | 
			
		||||
	    if ( ! converged[s] )
 | 
			
		||||
	      std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
 | 
			
		||||
	    converged[s]=1;
 | 
			
		||||
	  } else {
 | 
			
		||||
	    all_converged=0;
 | 
			
		||||
	  }
 | 
			
		||||
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      if ( all_converged ){
 | 
			
		||||
 | 
			
		||||
	SolverTimer.Stop();
 | 
			
		||||
	std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
 | 
			
		||||
	std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
 | 
			
		||||
      
 | 
			
		||||
	// Check answers 
 | 
			
		||||
	for(int s=0; s < nshift; s++) { 
 | 
			
		||||
	  Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
 | 
			
		||||
	  axpy(tmp_d,mass[s],psi_d[s],mmp_d);
 | 
			
		||||
	  axpy(r_d,-alpha[s],src_d,tmp_d);
 | 
			
		||||
	  RealD rn = norm2(r_d);
 | 
			
		||||
	  RealD cn = norm2(src_d);
 | 
			
		||||
	  TrueResidualShift[s] = std::sqrt(rn/cn);
 | 
			
		||||
	  std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
 | 
			
		||||
 | 
			
		||||
	  //If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
 | 
			
		||||
	  if(rn >= rsq[s]){
 | 
			
		||||
	    CleanupTimer.Start();
 | 
			
		||||
	    std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
 | 
			
		||||
 | 
			
		||||
	    //Setup linear operators for final cleanup
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
 | 
			
		||||
	    ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
 | 
			
		||||
					       
 | 
			
		||||
	    MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d); 
 | 
			
		||||
	    cg(src_d, psi_d[s]);
 | 
			
		||||
	    
 | 
			
		||||
	    TrueResidualShift[s] = cg.TrueResidual;
 | 
			
		||||
	    CleanupTimer.Stop();
 | 
			
		||||
	  }
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver    " << SolverTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tAXPY    " << AXPYTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tMatrix    " << MatrixTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tShift    " << ShiftTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed()     <<std::endl;
 | 
			
		||||
	std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
 | 
			
		||||
 | 
			
		||||
	IterationsToComplete = k;	
 | 
			
		||||
 | 
			
		||||
	return;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
   
 | 
			
		||||
    }
 | 
			
		||||
    // ugly hack
 | 
			
		||||
    std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
 | 
			
		||||
    //  assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
#endif
 | 
			
		||||
@@ -44,6 +44,7 @@ public:
 | 
			
		||||
				  int, MinRes);    // Must restart
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//This class is the input parameter class for some testing programs
 | 
			
		||||
struct LocalCoherenceLanczosParams : Serializable {
 | 
			
		||||
public:
 | 
			
		||||
  GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
 | 
			
		||||
@@ -155,6 +156,7 @@ public:
 | 
			
		||||
      _coarse_relax_tol(coarse_relax_tol)  
 | 
			
		||||
  {    };
 | 
			
		||||
 | 
			
		||||
  //evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
 | 
			
		||||
  int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
  {
 | 
			
		||||
    CoarseField v(B);
 | 
			
		||||
@@ -181,8 +183,16 @@ public:
 | 
			
		||||
    if( (vv<eresid*eresid) ) conv = 1;
 | 
			
		||||
    return conv;
 | 
			
		||||
  }
 | 
			
		||||
  int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
 | 
			
		||||
 | 
			
		||||
  //This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
 | 
			
		||||
  //applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
 | 
			
		||||
 | 
			
		||||
  //evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
 | 
			
		||||
  //As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
 | 
			
		||||
  //We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
 | 
			
		||||
  int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)  
 | 
			
		||||
  {
 | 
			
		||||
    evalMaxApprox = 1.0; //cf above
 | 
			
		||||
    GridBase *FineGrid = _subspace[0].Grid();    
 | 
			
		||||
    int checkerboard   = _subspace[0].Checkerboard();
 | 
			
		||||
    FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
 | 
			
		||||
@@ -201,13 +211,13 @@ public:
 | 
			
		||||
    eval   = vnum/vden;
 | 
			
		||||
    fv -= eval*fB;
 | 
			
		||||
    RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
 | 
			
		||||
 | 
			
		||||
    if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
 | 
			
		||||
    
 | 
			
		||||
    std::cout.precision(13);
 | 
			
		||||
    std::cout<<GridLogIRL  << "[" << std::setw(3)<<j<<"] "
 | 
			
		||||
	     <<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
 | 
			
		||||
	     <<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
 | 
			
		||||
	     <<std::endl;
 | 
			
		||||
    if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
 | 
			
		||||
    if( (vv<eresid*eresid) ) return 1;
 | 
			
		||||
    return 0;
 | 
			
		||||
  }
 | 
			
		||||
@@ -285,6 +295,10 @@ public:
 | 
			
		||||
    evals_coarse.resize(0);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  //The block inner product is the inner product on the fine grid locally summed over the blocks
 | 
			
		||||
  //to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
 | 
			
		||||
  //vectors under the block inner product. This step must be performed after computing the fine grid
 | 
			
		||||
  //eigenvectors and before computing the coarse grid eigenvectors.    
 | 
			
		||||
  void Orthogonalise(void ) {
 | 
			
		||||
    CoarseScalar InnerProd(_CoarseGrid);
 | 
			
		||||
    std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
 | 
			
		||||
@@ -328,6 +342,8 @@ public:
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
 | 
			
		||||
  //hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
 | 
			
		||||
  void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax) 
 | 
			
		||||
  {
 | 
			
		||||
    assert(evals_fine.size() == nbasis);
 | 
			
		||||
@@ -376,25 +392,31 @@ public:
 | 
			
		||||
    evals_fine.resize(nbasis);
 | 
			
		||||
    subspace.resize(nbasis,_FineGrid);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
 | 
			
		||||
  //cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
 | 
			
		||||
  //relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
 | 
			
		||||
  void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
 | 
			
		||||
		  int Nstop, int Nk, int Nm,RealD resid, 
 | 
			
		||||
		  RealD MaxIt, RealD betastp, int MinRes)
 | 
			
		||||
  {
 | 
			
		||||
    Chebyshev<FineField>                          Cheby(cheby_op);
 | 
			
		||||
    ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace);
 | 
			
		||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
 | 
			
		||||
    Chebyshev<FineField>                          Cheby(cheby_op); //Chebyshev of fine operator on fine grid
 | 
			
		||||
    ProjectedHermOp<Fobj,CComplex,nbasis>         Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
 | 
			
		||||
    ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
    // create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
 | 
			
		||||
    //////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth);
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
 | 
			
		||||
    Chebyshev<FineField>                                           ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
 | 
			
		||||
    ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax); 
 | 
			
		||||
 | 
			
		||||
    evals_coarse.resize(Nm);
 | 
			
		||||
    evec_coarse.resize(Nm,_CoarseGrid);
 | 
			
		||||
 | 
			
		||||
    CoarseField src(_CoarseGrid);     src=1.0; 
 | 
			
		||||
 | 
			
		||||
    //Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
 | 
			
		||||
    ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
 | 
			
		||||
    int Nconv=0;
 | 
			
		||||
    IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
 | 
			
		||||
@@ -405,6 +427,14 @@ public:
 | 
			
		||||
      std::cout << i << " Coarse eval = " << evals_coarse[i]  << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Get the fine eigenvector 'i' by reconstruction
 | 
			
		||||
  void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
 | 
			
		||||
    blockPromote(evec_coarse[i],evec,subspace);  
 | 
			
		||||
    eval = evals_coarse[i];
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -29,6 +29,8 @@ template<class Field> class PowerMethod
 | 
			
		||||
      RealD vnum = real(innerProduct(src_n,tmp)); // HermOp. 
 | 
			
		||||
      RealD vden = norm2(src_n); 
 | 
			
		||||
      RealD na = vnum/vden; 
 | 
			
		||||
 | 
			
		||||
      std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
 | 
			
		||||
      
 | 
			
		||||
      if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) { 
 | 
			
		||||
 	evalMaxApprox = na; 
 | 
			
		||||
 
 | 
			
		||||
@@ -855,7 +855,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vobj>
 | 
			
		||||
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
 | 
			
		||||
{
 | 
			
		||||
  typedef typename vobj::scalar_object sobj;
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -42,9 +42,11 @@ using namespace Grid;
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
class NerscIO : public BinaryIO { 
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  typedef Lattice<vLorentzColourMatrixD> GaugeField;
 | 
			
		||||
 | 
			
		||||
  // Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
 | 
			
		||||
  static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
 | 
			
		||||
 | 
			
		||||
  static inline void truncate(std::string file){
 | 
			
		||||
    std::ofstream fout(file,std::ios::out);
 | 
			
		||||
  }
 | 
			
		||||
@@ -203,7 +205,7 @@ public:
 | 
			
		||||
      std::cerr << " nersc_csum  " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
 | 
			
		||||
      exit(0);
 | 
			
		||||
    }
 | 
			
		||||
    assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
 | 
			
		||||
    if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
 | 
			
		||||
    assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
 | 
			
		||||
    assert(nersc_csum == header.checksum );
 | 
			
		||||
      
 | 
			
		||||
 
 | 
			
		||||
@@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
 | 
			
		||||
#define ColourIndex  (2)
 | 
			
		||||
#define SpinIndex    (1)
 | 
			
		||||
#define LorentzIndex (0)
 | 
			
		||||
#define GparityFlavourIndex (0)
 | 
			
		||||
 | 
			
		||||
// Also should make these a named enum type
 | 
			
		||||
static constexpr int DaggerNo=0;
 | 
			
		||||
@@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
 | 
			
		||||
template <typename T> using IfCoarsened    = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
 | 
			
		||||
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
 | 
			
		||||
 | 
			
		||||
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
 | 
			
		||||
 | 
			
		||||
// ChrisK very keen to add extra space for Gparity doubling.
 | 
			
		||||
//
 | 
			
		||||
// Also add domain wall index, in a way where Wilson operator 
 | 
			
		||||
@@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector      = iScalar<iVector<iVec
 | 
			
		||||
    template<typename vtype> using iSpinColourSpinColourMatrix  = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename vtype> using iGparityFlavourVector                = iVector<iScalar<iScalar<vtype> >, Ngp>;
 | 
			
		||||
template<typename vtype> using iGparitySpinColourVector       = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
 | 
			
		||||
template<typename vtype> using iGparityHalfSpinColourVector   = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
 | 
			
		||||
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
 | 
			
		||||
 | 
			
		||||
// Spin matrix
 | 
			
		||||
typedef iSpinMatrix<Complex  >          SpinMatrix;
 | 
			
		||||
@@ -176,6 +181,16 @@ typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
 | 
			
		||||
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
 | 
			
		||||
 | 
			
		||||
//G-parity flavour matrix
 | 
			
		||||
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
 | 
			
		||||
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
 | 
			
		||||
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
 | 
			
		||||
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
 | 
			
		||||
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Spin vector
 | 
			
		||||
typedef iSpinVector<Complex >           SpinVector;
 | 
			
		||||
typedef iSpinVector<ComplexF>           SpinVectorF;
 | 
			
		||||
@@ -220,6 +235,16 @@ typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
 | 
			
		||||
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
 | 
			
		||||
 | 
			
		||||
//G-parity flavour vector
 | 
			
		||||
typedef iGparityFlavourVector<Complex >         GparityFlavourVector;
 | 
			
		||||
typedef iGparityFlavourVector<ComplexF>         GparityFlavourVectorF;
 | 
			
		||||
typedef iGparityFlavourVector<ComplexD>         GparityFlavourVectorD;
 | 
			
		||||
 | 
			
		||||
typedef iGparityFlavourVector<vComplex >         vGparityFlavourVector;
 | 
			
		||||
typedef iGparityFlavourVector<vComplexF>         vGparityFlavourVectorF;
 | 
			
		||||
typedef iGparityFlavourVector<vComplexD>         vGparityFlavourVectorD;
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
// singlets
 | 
			
		||||
typedef iSinglet<Complex >         TComplex;     // FIXME This is painful. Tensor singlet complex type.
 | 
			
		||||
 
 | 
			
		||||
@@ -30,6 +30,18 @@ directory
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
  Policy implementation for G-parity boundary conditions
 | 
			
		||||
 | 
			
		||||
  Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
 | 
			
		||||
  field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
 | 
			
		||||
  with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
 | 
			
		||||
  to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
 | 
			
		||||
  either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
 | 
			
		||||
 | 
			
		||||
  Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction. 
 | 
			
		||||
  mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
 | 
			
		||||
 */
 | 
			
		||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
 | 
			
		||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
 | 
			
		||||
public:
 | 
			
		||||
@@ -113,7 +125,7 @@ public:
 | 
			
		||||
    || ((distance== 1)&&(icoor[direction]==1))
 | 
			
		||||
    || ((distance==-1)&&(icoor[direction]==0));
 | 
			
		||||
 | 
			
		||||
    permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
 | 
			
		||||
    permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
 | 
			
		||||
 | 
			
		||||
    //Apply the links
 | 
			
		||||
    int f_upper = permute_lane ? 1 : 0;
 | 
			
		||||
@@ -139,10 +151,10 @@ public:
 | 
			
		||||
    assert((distance == 1) || (distance == -1));  // nearest neighbour stencil hard code
 | 
			
		||||
    assert((sl == 1) || (sl == 2));
 | 
			
		||||
 | 
			
		||||
    if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
 | 
			
		||||
 | 
			
		||||
    //If this site is an global boundary site, perform the G-parity flavor twist
 | 
			
		||||
    if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
 | 
			
		||||
      if ( sl == 2 ) {
 | 
			
		||||
       
 | 
			
		||||
	//Only do the twist for lanes on the edge of the physical node
 | 
			
		||||
	ExtractBuffer<sobj> vals(Nsimd);
 | 
			
		||||
 | 
			
		||||
	extract(chi,vals);
 | 
			
		||||
@@ -197,6 +209,19 @@ public:
 | 
			
		||||
    reg = memory;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
 | 
			
		||||
  inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
 | 
			
		||||
    autoView(poke_f0_v, poke_f0, CpuRead);
 | 
			
		||||
    autoView(poke_f1_v, poke_f1, CpuRead);
 | 
			
		||||
    autoView(Uds_v, Uds, CpuWrite);
 | 
			
		||||
    thread_foreach(ss,poke_f0_v,{
 | 
			
		||||
	Uds_v[ss](0)(mu) = poke_f0_v[ss]();
 | 
			
		||||
	Uds_v[ss](1)(mu) = poke_f1_v[ss]();
 | 
			
		||||
      });
 | 
			
		||||
  }
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
  inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
 | 
			
		||||
  {
 | 
			
		||||
    conformable(Uds.Grid(),GaugeGrid);
 | 
			
		||||
@@ -207,14 +232,19 @@ public:
 | 
			
		||||
    GaugeLinkField Uconj(GaugeGrid);
 | 
			
		||||
   
 | 
			
		||||
    Lattice<iScalar<vInteger> > coor(GaugeGrid);
 | 
			
		||||
        
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
          
 | 
			
		||||
      LatticeCoordinate(coor,mu);
 | 
			
		||||
 | 
			
		||||
    //Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction. 
 | 
			
		||||
    //mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs        
 | 
			
		||||
    for(int mu=0;mu<Nd-1;mu++){
 | 
			
		||||
 | 
			
		||||
      if( Params.twists[mu] ){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
      }
 | 
			
		||||
          
 | 
			
		||||
      U     = PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      Uconj = conjugate(U);
 | 
			
		||||
     
 | 
			
		||||
      // Implement the isospin rotation sign on the boundary between f=1 and f=0
 | 
			
		||||
      // This phase could come from a simple bc 1,1,-1,1 ..
 | 
			
		||||
      int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
 | 
			
		||||
      if ( Params.twists[mu] ) { 
 | 
			
		||||
@@ -229,7 +259,7 @@ public:
 | 
			
		||||
	thread_foreach(ss,U_v,{
 | 
			
		||||
	    Uds_v[ss](0)(mu) = U_v[ss]();
 | 
			
		||||
	    Uds_v[ss](1)(mu) = Uconj_v[ss]();
 | 
			
		||||
	  });
 | 
			
		||||
	});
 | 
			
		||||
      }
 | 
			
		||||
          
 | 
			
		||||
      U     = adj(Cshift(U    ,mu,-1));      // correct except for spanning the boundary
 | 
			
		||||
@@ -260,6 +290,38 @@ public:
 | 
			
		||||
        });
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    { //periodic / antiperiodic temporal BCs
 | 
			
		||||
      int mu = Nd-1;
 | 
			
		||||
      int L   = GaugeGrid->GlobalDimensions()[mu];
 | 
			
		||||
      int Lmu = L - 1;
 | 
			
		||||
 | 
			
		||||
      LatticeCoordinate(coor, mu);
 | 
			
		||||
 | 
			
		||||
      U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
 | 
			
		||||
      
 | 
			
		||||
      GaugeLinkField *Upoke = &U;
 | 
			
		||||
 | 
			
		||||
      if(Params.twists[mu]){ //antiperiodic
 | 
			
		||||
	Utmp =  where(coor == Lmu, -U, U);
 | 
			
		||||
	Upoke = &Utmp;
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
      Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links      
 | 
			
		||||
      pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
 | 
			
		||||
 | 
			
		||||
      //Get the barrel-shifted field
 | 
			
		||||
      Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
 | 
			
		||||
      Upoke = &Utmp;
 | 
			
		||||
 | 
			
		||||
      if(Params.twists[mu]){
 | 
			
		||||
	U = where(coor == 0, -Utmp, Utmp);  //boundary phase
 | 
			
		||||
	Upoke = &U;
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      Uconj = conjugate(*Upoke);
 | 
			
		||||
      pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
      
 | 
			
		||||
  inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
 | 
			
		||||
@@ -298,28 +360,48 @@ public:
 | 
			
		||||
  inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
 | 
			
		||||
    assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
  inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
 | 
			
		||||
 | 
			
		||||
    int Ls = Btilde.Grid()->_fdimensions[0];
 | 
			
		||||
        
 | 
			
		||||
    GaugeLinkField tmp(mat.Grid());
 | 
			
		||||
    tmp = Zero();
 | 
			
		||||
    int Ls=Btilde.Grid()->_fdimensions[0];
 | 
			
		||||
    
 | 
			
		||||
    {
 | 
			
		||||
      autoView( tmp_v , tmp, CpuWrite);
 | 
			
		||||
      autoView( Atilde_v , Atilde, CpuRead);
 | 
			
		||||
      autoView( Btilde_v , Btilde, CpuRead);
 | 
			
		||||
      thread_for(ss,tmp.Grid()->oSites(),{
 | 
			
		||||
	  for (int s = 0; s < Ls; s++) {
 | 
			
		||||
	    int sF = s + Ls * ss;
 | 
			
		||||
	    auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
 | 
			
		||||
	    tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
 | 
			
		||||
	  }
 | 
			
		||||
	});
 | 
			
		||||
      GridBase *GaugeGrid = mat.Grid();
 | 
			
		||||
      Lattice<iScalar<vInteger> > coor(GaugeGrid);
 | 
			
		||||
 | 
			
		||||
      if( Params.twists[mu] ){
 | 
			
		||||
	LatticeCoordinate(coor,mu);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      autoView( mat_v , mat, AcceleratorWrite);
 | 
			
		||||
      autoView( Btilde_v , Btilde, AcceleratorRead);
 | 
			
		||||
      autoView( Atilde_v , Atilde, AcceleratorRead);
 | 
			
		||||
      accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{	  
 | 
			
		||||
  	  int sU=sss;
 | 
			
		||||
  	  typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
 | 
			
		||||
  	  ColorMatrixType sum;
 | 
			
		||||
  	  zeroit(sum);
 | 
			
		||||
  	  for(int s=0;s<Ls;s++){
 | 
			
		||||
  	    int sF = s+Ls*sU;
 | 
			
		||||
  	    for(int spn=0;spn<Ns;spn++){ //sum over spin
 | 
			
		||||
	      //Flavor 0
 | 
			
		||||
  	      auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
 | 
			
		||||
  	      auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
 | 
			
		||||
  	      sum = sum + outerProduct(bb,aa);
 | 
			
		||||
 | 
			
		||||
  	      //Flavor 1
 | 
			
		||||
  	      bb = coalescedRead(Btilde_v[sF](1)(spn) );
 | 
			
		||||
  	      aa = coalescedRead(Atilde_v[sF](1)(spn) );
 | 
			
		||||
  	      sum = sum + conjugate(outerProduct(bb,aa));
 | 
			
		||||
  	    }
 | 
			
		||||
  	  }	    
 | 
			
		||||
  	  coalescedWrite(mat_v[sU](mu)(), sum);
 | 
			
		||||
  	});
 | 
			
		||||
    }
 | 
			
		||||
    PokeIndex<LorentzIndex>(mat, tmp, mu);
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -37,7 +37,7 @@ NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
template<typename MomentaField>
 | 
			
		||||
struct MomentumFilterBase{
 | 
			
		||||
  virtual void applyFilter(MomentaField &P) const;
 | 
			
		||||
  virtual void applyFilter(MomentaField &P) const = 0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
//Do nothing
 | 
			
		||||
 
 | 
			
		||||
@@ -69,6 +69,11 @@ public:
 | 
			
		||||
    return PeriodicBC::ShiftStaple(Link,mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Same as Cshift for periodic BCs
 | 
			
		||||
  static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
 | 
			
		||||
    return PeriodicBC::CshiftLink(Link,mu,shift);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline bool isPeriodicGaugeField(void) { return true; }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@@ -110,6 +115,11 @@ public:
 | 
			
		||||
      return PeriodicBC::CovShiftBackward(Link, mu, field);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //If mu is a conjugate BC direction
 | 
			
		||||
  //Out(x) = U^dag_\mu(x-mu)  | x_\mu != 0
 | 
			
		||||
  //       = U^T_\mu(L-1)  | x_\mu == 0
 | 
			
		||||
  //else
 | 
			
		||||
  //Out(x) = U^dag_\mu(x-mu mod L)
 | 
			
		||||
  static inline GaugeLinkField
 | 
			
		||||
  CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
@@ -129,6 +139,13 @@ public:
 | 
			
		||||
      return PeriodicBC::CovShiftIdentityForward(Link,mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //If mu is a conjugate BC direction
 | 
			
		||||
  //Out(x) = S_\mu(x+mu)  | x_\mu != L-1
 | 
			
		||||
  //       = S*_\mu(x+mu)  | x_\mu == L-1
 | 
			
		||||
  //else
 | 
			
		||||
  //Out(x) = S_\mu(x+mu mod L)
 | 
			
		||||
  //Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
 | 
			
		||||
  static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
    assert(_conjDirs.size() == Nd);
 | 
			
		||||
@@ -138,6 +155,27 @@ public:
 | 
			
		||||
      return PeriodicBC::ShiftStaple(Link,mu);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Boundary-aware C-shift of gauge links / gauge transformation matrices
 | 
			
		||||
  //For conjugate BC direction
 | 
			
		||||
  //shift = 1
 | 
			
		||||
  //Out(x) = U_\mu(x+\hat\mu)  | x_\mu != L-1
 | 
			
		||||
  //       = U*_\mu(0)  | x_\mu == L-1
 | 
			
		||||
  //shift = -1
 | 
			
		||||
  //Out(x) = U_\mu(x-mu)  | x_\mu != 0
 | 
			
		||||
  //       = U*_\mu(L-1)  | x_\mu == 0
 | 
			
		||||
  //else
 | 
			
		||||
  //shift = 1
 | 
			
		||||
  //Out(x) = U_\mu(x+\hat\mu mod L)
 | 
			
		||||
  //shift = -1
 | 
			
		||||
  //Out(x) = U_\mu(x-\hat\mu mod L)
 | 
			
		||||
  static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
 | 
			
		||||
    assert(_conjDirs.size() == Nd);
 | 
			
		||||
    if(_conjDirs[mu]) 
 | 
			
		||||
      return ConjugateBC::CshiftLink(Link,mu,shift);
 | 
			
		||||
    else     
 | 
			
		||||
      return PeriodicBC::CshiftLink(Link,mu,shift);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static inline void       setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
 | 
			
		||||
  static inline std::vector<int> getDirections(void) { return _conjDirs; }
 | 
			
		||||
  static inline bool isPeriodicGaugeField(void) { return false; }
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										6
									
								
								Grid/qcd/gparity/Gparity.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								Grid/qcd/gparity/Gparity.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,6 @@
 | 
			
		||||
#ifndef GRID_GPARITY_H_
 | 
			
		||||
#define GRID_GPARITY_H_
 | 
			
		||||
 | 
			
		||||
#include<Grid/qcd/gparity/GparityFlavour.h>
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										34
									
								
								Grid/qcd/gparity/GparityFlavour.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								Grid/qcd/gparity/GparityFlavour.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,34 @@
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
 | 
			
		||||
    GparityFlavour(GparityFlavour::Algebra::SigmaX),
 | 
			
		||||
    GparityFlavour(GparityFlavour::Algebra::SigmaY),
 | 
			
		||||
    GparityFlavour(GparityFlavour::Algebra::SigmaZ)
 | 
			
		||||
    }};
 | 
			
		||||
 | 
			
		||||
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::Identity),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::SigmaX),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::SigmaY),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::SigmaZ),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::ProjPlus),
 | 
			
		||||
  GparityFlavour(GparityFlavour::Algebra::ProjMinus)
 | 
			
		||||
}};
 | 
			
		||||
 | 
			
		||||
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
 | 
			
		||||
    "SigmaX",
 | 
			
		||||
    "MinusSigmaX",
 | 
			
		||||
    "SigmaY",
 | 
			
		||||
    "MinusSigmaY",
 | 
			
		||||
    "SigmaZ",
 | 
			
		||||
    "MinusSigmaZ",
 | 
			
		||||
    "Identity",
 | 
			
		||||
    "MinusIdentity",
 | 
			
		||||
    "ProjPlus",
 | 
			
		||||
    "MinusProjPlus",
 | 
			
		||||
    "ProjMinus",
 | 
			
		||||
    "MinusProjMinus"}};
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
							
								
								
									
										475
									
								
								Grid/qcd/gparity/GparityFlavour.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										475
									
								
								Grid/qcd/gparity/GparityFlavour.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,475 @@
 | 
			
		||||
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
 | 
			
		||||
#define GRID_QCD_GPARITY_FLAVOUR_H
 | 
			
		||||
 | 
			
		||||
//Support for flavour-matrix operations acting on the G-parity flavour index
 | 
			
		||||
 | 
			
		||||
#include <array>
 | 
			
		||||
 | 
			
		||||
NAMESPACE_BEGIN(Grid);
 | 
			
		||||
 | 
			
		||||
class GparityFlavour {
 | 
			
		||||
  public:
 | 
			
		||||
    GRID_SERIALIZABLE_ENUM(Algebra, undef,
 | 
			
		||||
                           SigmaX, 0,
 | 
			
		||||
			   MinusSigmaX, 1,
 | 
			
		||||
                           SigmaY, 2,
 | 
			
		||||
			   MinusSigmaY, 3,
 | 
			
		||||
                           SigmaZ, 4,
 | 
			
		||||
			   MinusSigmaZ, 5,
 | 
			
		||||
			   Identity, 6,
 | 
			
		||||
			   MinusIdentity, 7,
 | 
			
		||||
			   ProjPlus, 8,
 | 
			
		||||
			   MinusProjPlus, 9,
 | 
			
		||||
			   ProjMinus, 10,
 | 
			
		||||
			   MinusProjMinus, 11
 | 
			
		||||
			   );
 | 
			
		||||
    static constexpr unsigned int nSigma = 12;
 | 
			
		||||
    static const std::array<const char *, nSigma>                name;
 | 
			
		||||
    static const std::array<const GparityFlavour, 3>             sigma_mu;
 | 
			
		||||
    static const std::array<const GparityFlavour, 6>            sigma_all;
 | 
			
		||||
    Algebra                                                      g;
 | 
			
		||||
  public:
 | 
			
		||||
  accelerator GparityFlavour(Algebra initg): g(initg) {}  
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// 0 1  x   vector
 | 
			
		||||
// 1 0
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = rhs(1);
 | 
			
		||||
  ret(1) = rhs(0);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(1,0);
 | 
			
		||||
  ret(0,1) = rhs(1,1);
 | 
			
		||||
  ret(1,0) = rhs(0,0);
 | 
			
		||||
  ret(1,1) = rhs(0,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,1);
 | 
			
		||||
  ret(0,1) = rhs(0,0);
 | 
			
		||||
  ret(1,0) = rhs(1,1);
 | 
			
		||||
  ret(1,1) = rhs(1,0);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -rhs(1);
 | 
			
		||||
  ret(1) = -rhs(0);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(1,0);
 | 
			
		||||
  ret(0,1) = -rhs(1,1);
 | 
			
		||||
  ret(1,0) = -rhs(0,0);
 | 
			
		||||
  ret(1,1) = -rhs(0,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,1);
 | 
			
		||||
  ret(0,1) = -rhs(0,0);
 | 
			
		||||
  ret(1,0) = -rhs(1,1);
 | 
			
		||||
  ret(1,1) = -rhs(1,0);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// 0 -i  x   vector
 | 
			
		||||
// i 0
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = timesMinusI(rhs(1));
 | 
			
		||||
  ret(1) = timesI(rhs(0));
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = timesMinusI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = timesI(rhs(0,0));
 | 
			
		||||
  ret(1,1) = timesI(rhs(0,1));
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = timesI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = timesMinusI(rhs(0,0));
 | 
			
		||||
  ret(1,0) = timesI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = timesMinusI(rhs(1,0));
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = timesI(rhs(1));
 | 
			
		||||
  ret(1) = timesMinusI(rhs(0));
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = timesI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = timesI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = timesMinusI(rhs(0,0));
 | 
			
		||||
  ret(1,1) = timesMinusI(rhs(0,1));
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = timesMinusI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = timesI(rhs(0,0));
 | 
			
		||||
  ret(1,0) = timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = timesI(rhs(1,0));
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// 1 0  x   vector
 | 
			
		||||
// 0 -1
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = rhs(0);
 | 
			
		||||
  ret(1) = -rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,0);
 | 
			
		||||
  ret(0,1) = rhs(0,1);
 | 
			
		||||
  ret(1,0) = -rhs(1,0);
 | 
			
		||||
  ret(1,1) = -rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,0);
 | 
			
		||||
  ret(0,1) = -rhs(0,1);
 | 
			
		||||
  ret(1,0) = rhs(1,0);
 | 
			
		||||
  ret(1,1) = -rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -rhs(0);
 | 
			
		||||
  ret(1) = rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,0);
 | 
			
		||||
  ret(0,1) = -rhs(0,1);
 | 
			
		||||
  ret(1,0) = rhs(1,0);
 | 
			
		||||
  ret(1,1) = rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,0);
 | 
			
		||||
  ret(0,1) = rhs(0,1);
 | 
			
		||||
  ret(1,0) = -rhs(1,0);
 | 
			
		||||
  ret(1,1) = rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = rhs(0);
 | 
			
		||||
  ret(1) = rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,0);
 | 
			
		||||
  ret(0,1) = rhs(0,1);
 | 
			
		||||
  ret(1,0) = rhs(1,0);
 | 
			
		||||
  ret(1,1) = rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = rhs(0,0);
 | 
			
		||||
  ret(0,1) = rhs(0,1);
 | 
			
		||||
  ret(1,0) = rhs(1,0);
 | 
			
		||||
  ret(1,1) = rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -rhs(0);
 | 
			
		||||
  ret(1) = -rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,0);
 | 
			
		||||
  ret(0,1) = -rhs(0,1);
 | 
			
		||||
  ret(1,0) = -rhs(1,0);
 | 
			
		||||
  ret(1,1) = -rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -rhs(0,0);
 | 
			
		||||
  ret(0,1) = -rhs(0,1);
 | 
			
		||||
  ret(1,0) = -rhs(1,0);
 | 
			
		||||
  ret(1,1) = -rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//G-parity flavour projection 1/2(1+\sigma_2)
 | 
			
		||||
//1 -i
 | 
			
		||||
//i  1
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
 | 
			
		||||
  ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
 | 
			
		||||
  ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
 | 
			
		||||
  ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
 | 
			
		||||
  ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
 | 
			
		||||
  ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
 | 
			
		||||
  ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//G-parity flavour projection 1/2(1-\sigma_2)
 | 
			
		||||
//1 i
 | 
			
		||||
//-i  1
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
 | 
			
		||||
  ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
 | 
			
		||||
  ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
 | 
			
		||||
  ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
 | 
			
		||||
  ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
 | 
			
		||||
  ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
 | 
			
		||||
  ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
 | 
			
		||||
  ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
template<class vtype>
 | 
			
		||||
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
 | 
			
		||||
{
 | 
			
		||||
  ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
 | 
			
		||||
  ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
 | 
			
		||||
  ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
 | 
			
		||||
  ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<class vtype> 
 | 
			
		||||
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
 | 
			
		||||
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
 | 
			
		||||
{
 | 
			
		||||
  iVector<vtype, Ngp> ret;
 | 
			
		||||
 | 
			
		||||
  switch (G.g) 
 | 
			
		||||
  {
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaX:
 | 
			
		||||
    multFlavourSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaX:
 | 
			
		||||
    multFlavourMinusSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaY:
 | 
			
		||||
    multFlavourSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaY:
 | 
			
		||||
    multFlavourMinusSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaZ:
 | 
			
		||||
    multFlavourSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaZ:
 | 
			
		||||
    multFlavourMinusSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::Identity:
 | 
			
		||||
    multFlavourIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusIdentity:
 | 
			
		||||
    multFlavourMinusIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjPlus:
 | 
			
		||||
    multFlavourProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjPlus:
 | 
			
		||||
    multFlavourMinusProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjMinus:
 | 
			
		||||
    multFlavourProjMinus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjMinus:
 | 
			
		||||
    multFlavourMinusProjMinus(ret, arg); break;
 | 
			
		||||
  default: assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vtype> 
 | 
			
		||||
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
 | 
			
		||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
 | 
			
		||||
{
 | 
			
		||||
  iMatrix<vtype, Ngp> ret;
 | 
			
		||||
 | 
			
		||||
  switch (G.g) 
 | 
			
		||||
  {
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaX:
 | 
			
		||||
    lmultFlavourSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaX:
 | 
			
		||||
    lmultFlavourMinusSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaY:
 | 
			
		||||
    lmultFlavourSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaY:
 | 
			
		||||
    lmultFlavourMinusSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaZ:
 | 
			
		||||
    lmultFlavourSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaZ:
 | 
			
		||||
    lmultFlavourMinusSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::Identity:
 | 
			
		||||
    lmultFlavourIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusIdentity:
 | 
			
		||||
    lmultFlavourMinusIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjPlus:
 | 
			
		||||
    lmultFlavourProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjPlus:
 | 
			
		||||
    lmultFlavourMinusProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjMinus:
 | 
			
		||||
    lmultFlavourProjMinus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjMinus:
 | 
			
		||||
    lmultFlavourMinusProjMinus(ret, arg); break;  
 | 
			
		||||
  default: assert(0);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<class vtype> 
 | 
			
		||||
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
 | 
			
		||||
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
 | 
			
		||||
{
 | 
			
		||||
  iMatrix<vtype, Ngp> ret;
 | 
			
		||||
 | 
			
		||||
  switch (G.g) 
 | 
			
		||||
  {
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaX:
 | 
			
		||||
    rmultFlavourSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaX:
 | 
			
		||||
    rmultFlavourMinusSigmaX(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaY:
 | 
			
		||||
    rmultFlavourSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaY:
 | 
			
		||||
    rmultFlavourMinusSigmaY(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::SigmaZ:
 | 
			
		||||
    rmultFlavourSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusSigmaZ:
 | 
			
		||||
    rmultFlavourMinusSigmaZ(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::Identity:
 | 
			
		||||
    rmultFlavourIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusIdentity:
 | 
			
		||||
    rmultFlavourMinusIdentity(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjPlus:
 | 
			
		||||
    rmultFlavourProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjPlus:
 | 
			
		||||
    rmultFlavourMinusProjPlus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::ProjMinus:
 | 
			
		||||
    rmultFlavourProjMinus(ret, arg); break;
 | 
			
		||||
  case GparityFlavour::Algebra::MinusProjMinus:
 | 
			
		||||
    rmultFlavourMinusProjMinus(ret, arg); break;
 | 
			
		||||
  default: assert(0);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAMESPACE_END(Grid);
 | 
			
		||||
 | 
			
		||||
#endif // include guard
 | 
			
		||||
@@ -88,6 +88,12 @@ namespace PeriodicBC {
 | 
			
		||||
    return CovShiftBackward(Link,mu,arg);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Boundary-aware C-shift of gauge links / gauge transformation matrices
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
 | 
			
		||||
  {
 | 
			
		||||
    return Cshift(Link, mu, shift);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@@ -158,6 +164,9 @@ namespace ConjugateBC {
 | 
			
		||||
    //    std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
 | 
			
		||||
    return Cshift(tmp,mu,-1);// moves towards positive mu
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Out(x) = U^dag_\mu(x-mu)  | x_\mu != 0
 | 
			
		||||
  //       = U^T_\mu(L-1)  | x_\mu == 0
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
 | 
			
		||||
    GridBase *grid = Link.Grid();
 | 
			
		||||
@@ -176,6 +185,9 @@ namespace ConjugateBC {
 | 
			
		||||
    return Link;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Out(x) = S_\mu(x+\hat\mu)  | x_\mu != L-1
 | 
			
		||||
  //       = S*_\mu(0)  | x_\mu == L-1
 | 
			
		||||
  //Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  ShiftStaple(const Lattice<gauge> &Link, int mu)
 | 
			
		||||
  {
 | 
			
		||||
@@ -208,6 +220,35 @@ namespace ConjugateBC {
 | 
			
		||||
    return CovShiftBackward(Link,mu,arg);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Boundary-aware C-shift of gauge links / gauge transformation matrices
 | 
			
		||||
  //shift = 1
 | 
			
		||||
  //Out(x) = U_\mu(x+\hat\mu)  | x_\mu != L-1
 | 
			
		||||
  //       = U*_\mu(0)  | x_\mu == L-1
 | 
			
		||||
  //shift = -1
 | 
			
		||||
  //Out(x) = U_\mu(x-mu)  | x_\mu != 0
 | 
			
		||||
  //       = U*_\mu(L-1)  | x_\mu == 0
 | 
			
		||||
  template<class gauge> Lattice<gauge>
 | 
			
		||||
  CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
 | 
			
		||||
  {
 | 
			
		||||
    GridBase *grid = Link.Grid();
 | 
			
		||||
    int Lmu = grid->GlobalDimensions()[mu] - 1;
 | 
			
		||||
 | 
			
		||||
    Lattice<iScalar<vInteger>> coor(grid);
 | 
			
		||||
    LatticeCoordinate(coor, mu);
 | 
			
		||||
 | 
			
		||||
    Lattice<gauge> tmp(grid);
 | 
			
		||||
    if(shift == 1){
 | 
			
		||||
      tmp = Cshift(Link, mu, 1);
 | 
			
		||||
      tmp = where(coor == Lmu, conjugate(tmp), tmp);
 | 
			
		||||
      return tmp;
 | 
			
		||||
    }else if(shift == -1){
 | 
			
		||||
      tmp = Link;
 | 
			
		||||
      tmp = where(coor == Lmu, conjugate(tmp), tmp);
 | 
			
		||||
      return Cshift(tmp, mu, -1);
 | 
			
		||||
    }else assert(0 && "Invalid shift value");
 | 
			
		||||
    return tmp; //shuts up the compiler fussing about the return type
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -40,27 +40,45 @@ public:
 | 
			
		||||
  typedef typename Gimpl::GaugeLinkField GaugeMat;
 | 
			
		||||
  typedef typename Gimpl::GaugeField GaugeLorentz;
 | 
			
		||||
 | 
			
		||||
  static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      Complex cmi(0.0,-1.0);
 | 
			
		||||
      A[mu] = Ta(U[mu]) * cmi;
 | 
			
		||||
    }
 | 
			
		||||
  //A_\mu(x) = -i Ta(U_\mu(x) )   where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag)  is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
 | 
			
		||||
  static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
 | 
			
		||||
    Complex cmi(0.0,-1.0);
 | 
			
		||||
    A = Ta(U) * cmi;
 | 
			
		||||
  }
 | 
			
		||||
  static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
 | 
			
		||||
  
 | 
			
		||||
  //The derivative of the Lie algebra field
 | 
			
		||||
  static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
 | 
			
		||||
    GridBase* grid = U[0].Grid();
 | 
			
		||||
    GaugeMat Ax(grid);
 | 
			
		||||
    GaugeMat Axm1(grid);
 | 
			
		||||
    GaugeMat Utmp(grid);
 | 
			
		||||
 | 
			
		||||
    dmuAmu=Zero();
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      if ( mu != orthog ) {
 | 
			
		||||
	dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
 | 
			
		||||
	//Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
 | 
			
		||||
	//Ax = A_\mu(x)
 | 
			
		||||
	GaugeLinkToLieAlgebraField(U[mu], Ax);
 | 
			
		||||
	
 | 
			
		||||
	//Axm1 = A_\mu(x_\mu-1)
 | 
			
		||||
	Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
 | 
			
		||||
	GaugeLinkToLieAlgebraField(Utmp, Axm1);
 | 
			
		||||
	
 | 
			
		||||
	//Derivative
 | 
			
		||||
	dmuAmu = dmuAmu + Ax - Axm1;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }  
 | 
			
		||||
 | 
			
		||||
  //Fix the gauge field Umu
 | 
			
		||||
  //0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
 | 
			
		||||
  static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
    GaugeMat xform(grid);
 | 
			
		||||
    SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog,err_on_no_converge);
 | 
			
		||||
  }
 | 
			
		||||
  static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
 | 
			
		||||
  //Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
 | 
			
		||||
@@ -123,28 +141,25 @@ public:
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << GridLogError << "Gauge fixing did not converge in " << maxiter << " iterations." << std::endl;
 | 
			
		||||
    if (err_on_no_converge) assert(0);
 | 
			
		||||
    if (err_on_no_converge)
 | 
			
		||||
      assert(0 && "Gauge fixing did not converge within the specified number of iterations");
 | 
			
		||||
  };
 | 
			
		||||
  static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
 | 
			
		||||
  static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
 | 
			
		||||
    GridBase *grid = U[0].Grid();
 | 
			
		||||
 | 
			
		||||
    std::vector<GaugeMat> A(Nd,grid);
 | 
			
		||||
    GaugeMat g(grid);
 | 
			
		||||
 | 
			
		||||
    GaugeLinkToLieAlgebraField(U,A);
 | 
			
		||||
    ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
 | 
			
		||||
 | 
			
		||||
    ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
 | 
			
		||||
 | 
			
		||||
    Real vol = grid->gSites();
 | 
			
		||||
    Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
 | 
			
		||||
 | 
			
		||||
    xform = g*xform ;
 | 
			
		||||
    SU<Nc>::GaugeTransform(U,g);
 | 
			
		||||
    SU<Nc>::GaugeTransform<Gimpl>(U,g);
 | 
			
		||||
 | 
			
		||||
    return trG;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
 | 
			
		||||
  static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
 | 
			
		||||
 | 
			
		||||
    GridBase *grid = U[0].Grid();
 | 
			
		||||
 | 
			
		||||
@@ -159,11 +174,7 @@ public:
 | 
			
		||||
 | 
			
		||||
    GaugeMat g(grid);
 | 
			
		||||
    GaugeMat dmuAmu_p(grid);
 | 
			
		||||
    std::vector<GaugeMat> A(Nd,grid);
 | 
			
		||||
 | 
			
		||||
    GaugeLinkToLieAlgebraField(U,A);
 | 
			
		||||
 | 
			
		||||
    DmuAmu(A,dmuAmu,orthog);
 | 
			
		||||
    DmuAmu(U,dmuAmu,orthog);
 | 
			
		||||
 | 
			
		||||
    std::vector<int> mask(Nd,1);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
 | 
			
		||||
@@ -207,16 +218,16 @@ public:
 | 
			
		||||
    Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
 | 
			
		||||
 | 
			
		||||
    xform = g*xform ;
 | 
			
		||||
    SU<Nc>::GaugeTransform(U,g);
 | 
			
		||||
    SU<Nc>::GaugeTransform<Gimpl>(U,g);
 | 
			
		||||
 | 
			
		||||
    return trG;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
 | 
			
		||||
  static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
 | 
			
		||||
    GridBase *grid = g.Grid();
 | 
			
		||||
    Complex cialpha(0.0,-alpha);
 | 
			
		||||
    GaugeMat ciadmam(grid);
 | 
			
		||||
    DmuAmu(A,dmuAmu,orthog);
 | 
			
		||||
    DmuAmu(U,dmuAmu,orthog);
 | 
			
		||||
    ciadmam = dmuAmu*cialpha;
 | 
			
		||||
    SU<Nc>::taExp(ciadmam,g);
 | 
			
		||||
  }  
 | 
			
		||||
 
 | 
			
		||||
@@ -694,32 +694,32 @@ public:
 | 
			
		||||
 * Adjoint rep gauge xform
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
  template<typename GaugeField,typename GaugeMat>
 | 
			
		||||
  static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    GridBase *grid = Umu.Grid();
 | 
			
		||||
    conformable(grid,g.Grid());
 | 
			
		||||
 | 
			
		||||
    GaugeMat U(grid);
 | 
			
		||||
    GaugeMat ag(grid); ag = adj(g);
 | 
			
		||||
    typename Gimpl::GaugeLinkField U(grid);
 | 
			
		||||
    typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U= PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
      U = g*U*Cshift(ag, mu, 1);
 | 
			
		||||
      U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
      PokeIndex<LorentzIndex>(Umu,U,mu);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeMat>
 | 
			
		||||
  static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    GridBase *grid = g.Grid();
 | 
			
		||||
    GaugeMat ag(grid); ag = adj(g);
 | 
			
		||||
    typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
 | 
			
		||||
    for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
      U[mu] = g*U[mu]*Cshift(ag, mu, 1);
 | 
			
		||||
      U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  template<typename GaugeField,typename GaugeMat>
 | 
			
		||||
  static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
 | 
			
		||||
  template<typename Gimpl>
 | 
			
		||||
  static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
 | 
			
		||||
    LieRandomize(pRNG,g,1.0);
 | 
			
		||||
    GaugeTransform(Umu,g);
 | 
			
		||||
    GaugeTransform<Gimpl>(Umu,g);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
 | 
			
		||||
 
 | 
			
		||||
@@ -125,6 +125,57 @@ public:
 | 
			
		||||
    return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // sum over all spatial planes of plaquette
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static void siteSpatialPlaquette(ComplexField &Plaq,
 | 
			
		||||
                            const std::vector<GaugeMat> &U) {
 | 
			
		||||
    ComplexField sitePlaq(U[0].Grid());
 | 
			
		||||
    Plaq = Zero();
 | 
			
		||||
    for (int mu = 1; mu < Nd-1; mu++) {
 | 
			
		||||
      for (int nu = 0; nu < mu; nu++) {
 | 
			
		||||
        traceDirPlaquette(sitePlaq, U, mu, nu);
 | 
			
		||||
        Plaq = Plaq + sitePlaq;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  // sum over all x,y,z and over all spatial planes of plaquette
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
 | 
			
		||||
    std::vector<GaugeMat> U(Nd, Umu.Grid());
 | 
			
		||||
    // inefficient here
 | 
			
		||||
    for (int mu = 0; mu < Nd; mu++) {
 | 
			
		||||
      U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    ComplexField Plaq(Umu.Grid());
 | 
			
		||||
 | 
			
		||||
    siteSpatialPlaquette(Plaq, U);
 | 
			
		||||
    typedef typename ComplexField::scalar_object sobj;
 | 
			
		||||
    std::vector<sobj> Tq;
 | 
			
		||||
    sliceSum(Plaq, Tq, Nd-1);
 | 
			
		||||
 | 
			
		||||
    std::vector<Real> out(Tq.size());
 | 
			
		||||
    for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // average over all x,y,z and over all spatial planes of plaquette
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
 | 
			
		||||
    std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
 | 
			
		||||
    int Lt = Umu.Grid()->FullDimensions()[Nd-1];
 | 
			
		||||
    assert(sumplaq.size() == Lt);
 | 
			
		||||
    double vol = Umu.Grid()->gSites() / Lt;
 | 
			
		||||
    double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
 | 
			
		||||
    for(int t=0;t<Lt;t++)
 | 
			
		||||
      sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
 | 
			
		||||
    return sumplaq;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
  // average over all x,y,z the temporal loop
 | 
			
		||||
  //////////////////////////////////////////////////
 | 
			
		||||
@@ -362,11 +413,11 @@ public:
 | 
			
		||||
    GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu);  // some redundant copies
 | 
			
		||||
    GaugeMat vu = v*u;
 | 
			
		||||
      //FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
 | 
			
		||||
      FS = (u*v + Cshift(vu, mu, -1));
 | 
			
		||||
      FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
 | 
			
		||||
      FS = 0.125*(FS - adj(FS));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static Real TopologicalCharge(GaugeLorentz &U){
 | 
			
		||||
  static Real TopologicalCharge(const GaugeLorentz &U){
 | 
			
		||||
    // 4d topological charge
 | 
			
		||||
    assert(Nd==4);
 | 
			
		||||
    // Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
 | 
			
		||||
@@ -389,6 +440,203 @@ public:
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N,  mu >= nu
 | 
			
		||||
  //cf  https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7  for 1x2 Wilson loop    
 | 
			
		||||
  //Clockwise ordering
 | 
			
		||||
  static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){  
 | 
			
		||||
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
 | 
			
		||||
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
 | 
			
		||||
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
 | 
			
		||||
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
 | 
			
		||||
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
 | 
			
		||||
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
 | 
			
		||||
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
 | 
			
		||||
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
 | 
			
		||||
 | 
			
		||||
    //Upper right loop
 | 
			
		||||
    GaugeMat tmp = BmuI;
 | 
			
		||||
    for(int i=1;i<M;i++)
 | 
			
		||||
      tmp = Bmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Bnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Fmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Fnu(tmp);
 | 
			
		||||
      
 | 
			
		||||
    FS = tmp;
 | 
			
		||||
 | 
			
		||||
    //Upper left loop
 | 
			
		||||
    tmp = BnuI;
 | 
			
		||||
    for(int j=1;j<N;j++)
 | 
			
		||||
      tmp = Bnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Fmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Fnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Bmu(tmp);
 | 
			
		||||
      
 | 
			
		||||
    FS = FS + tmp;
 | 
			
		||||
 | 
			
		||||
    //Lower right loop
 | 
			
		||||
    tmp = FnuI;
 | 
			
		||||
    for(int j=1;j<N;j++)
 | 
			
		||||
      tmp = Fnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Bmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Bnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Fmu(tmp);
 | 
			
		||||
      
 | 
			
		||||
    FS = FS + tmp;
 | 
			
		||||
 | 
			
		||||
    //Lower left loop
 | 
			
		||||
    tmp = FmuI;
 | 
			
		||||
    for(int i=1;i<M;i++)
 | 
			
		||||
      tmp = Fmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Fnu(tmp);
 | 
			
		||||
    for(int i=0;i<M;i++)
 | 
			
		||||
      tmp = Bmu(tmp);
 | 
			
		||||
    for(int j=0;j<N;j++)
 | 
			
		||||
      tmp = Bnu(tmp);
 | 
			
		||||
 | 
			
		||||
    FS = FS + tmp;
 | 
			
		||||
 | 
			
		||||
#undef Fmu
 | 
			
		||||
#undef Bmu
 | 
			
		||||
#undef Fnu
 | 
			
		||||
#undef Bnu
 | 
			
		||||
#undef FmuI
 | 
			
		||||
#undef BmuI
 | 
			
		||||
#undef FnuI
 | 
			
		||||
#undef BnuI
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Field strength from MxN Wilson loop
 | 
			
		||||
  //Note F_numu = - F_munu
 | 
			
		||||
  static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){  
 | 
			
		||||
    GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
 | 
			
		||||
    GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
 | 
			
		||||
    if(M == N){
 | 
			
		||||
      GaugeMat F(Umu.Grid());
 | 
			
		||||
      CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
 | 
			
		||||
      FS = 0.125 * ( F - adj(F) );
 | 
			
		||||
    }else{
 | 
			
		||||
      //Average over both orientations
 | 
			
		||||
      GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
 | 
			
		||||
      CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
 | 
			
		||||
      CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
 | 
			
		||||
      FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Topological charge contribution from MxN Wilson loops
 | 
			
		||||
  //cf  https://arxiv.org/pdf/hep-lat/9701012.pdf  Eq 6
 | 
			
		||||
  //output is the charge by timeslice: sum over timeslices to obtain the total
 | 
			
		||||
  static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
 | 
			
		||||
    assert(Nd == 4);
 | 
			
		||||
    std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
 | 
			
		||||
    //Note F_numu = - F_munu
 | 
			
		||||
    //hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu  or rho,sigma
 | 
			
		||||
    //Use nu > mu
 | 
			
		||||
    for(int mu=0;mu<Nd-1;mu++){
 | 
			
		||||
      for(int nu=mu+1; nu<Nd; nu++){
 | 
			
		||||
	F[mu][nu] = new GaugeMat(U.Grid());
 | 
			
		||||
	FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
 | 
			
		||||
 | 
			
		||||
    static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
 | 
			
		||||
    static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
 | 
			
		||||
 | 
			
		||||
    ComplexField fsum(U.Grid());
 | 
			
		||||
    fsum = Zero();
 | 
			
		||||
    for(int c=0;c<3;c++){
 | 
			
		||||
      int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
 | 
			
		||||
      int eps = signs[c];
 | 
			
		||||
      fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) ); 
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for(int mu=0;mu<Nd-1;mu++)
 | 
			
		||||
      for(int nu=mu+1; nu<Nd; nu++)
 | 
			
		||||
	delete F[mu][nu];
 | 
			
		||||
    
 | 
			
		||||
    typedef typename ComplexField::scalar_object sobj;
 | 
			
		||||
    std::vector<sobj> Tq;
 | 
			
		||||
    sliceSum(fsum, Tq, Nd-1);
 | 
			
		||||
 | 
			
		||||
    std::vector<Real> out(Tq.size());
 | 
			
		||||
    for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
  static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
 | 
			
		||||
    std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
 | 
			
		||||
    Real out(0);
 | 
			
		||||
    for(int t=0;t<Tq.size();t++) out += Tq[t];
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
 | 
			
		||||
  //Use coefficients from hep-lat/9701012
 | 
			
		||||
  //1x1 : c1=(19.-55.*c5)/9.
 | 
			
		||||
  //2x2 : c2=(1-64.*c5)/9.
 | 
			
		||||
  //1x2 : c3=(-64.+640.*c5)/45.
 | 
			
		||||
  //1x3 : c4=1./5.-2.*c5
 | 
			
		||||
  //3x3 : c5=1./20.
 | 
			
		||||
  //Output array outer index contains the loops in the above order
 | 
			
		||||
  //Inner index is the time coordinate
 | 
			
		||||
  static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
 | 
			
		||||
    static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };       
 | 
			
		||||
    std::vector<std::vector<Real> > out(5);
 | 
			
		||||
    for(int i=0;i<5;i++){	
 | 
			
		||||
      out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
 | 
			
		||||
    }
 | 
			
		||||
    return out;
 | 
			
		||||
  }   
 | 
			
		||||
 | 
			
		||||
  static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){   
 | 
			
		||||
    static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
 | 
			
		||||
    std::vector<Real> out(5);
 | 
			
		||||
    std::cout << GridLogMessage << "Computing topological charge" << std::endl;
 | 
			
		||||
    for(int i=0;i<5;i++){
 | 
			
		||||
      out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
 | 
			
		||||
      std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //Compute the 5Li topological charge
 | 
			
		||||
  static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
 | 
			
		||||
    std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
 | 
			
		||||
 | 
			
		||||
    double c5=1./20.;
 | 
			
		||||
    double c4=1./5.-2.*c5;
 | 
			
		||||
    double c3=(-64.+640.*c5)/45.;
 | 
			
		||||
    double c2=(1-64.*c5)/9.;
 | 
			
		||||
    double c1=(19.-55.*c5)/9.;
 | 
			
		||||
 | 
			
		||||
    int Lt = loops[0].size();
 | 
			
		||||
    std::vector<Real> out(Lt,0.);
 | 
			
		||||
    for(int t=0;t<Lt;t++)
 | 
			
		||||
      out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
 | 
			
		||||
    return out;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static Real TopologicalCharge5Li(const GaugeLorentz &U){
 | 
			
		||||
    std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
 | 
			
		||||
    Real Q = 0.;
 | 
			
		||||
    for(int t=0;t<Qt.size();t++) Q += Qt[t];
 | 
			
		||||
    std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
 | 
			
		||||
    return Q;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
  // Similar to above for rectangle is required
 | 
			
		||||
  //////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -325,7 +325,7 @@ int main(int argc, char ** argv)
 | 
			
		||||
 | 
			
		||||
  U_GT = U;
 | 
			
		||||
  // Make a random xform to teh gauge field
 | 
			
		||||
  SU<Nc>::RandomGaugeTransform(RNG,U_GT,g); // Unit gauge
 | 
			
		||||
  SU<Nc>::RandomGaugeTransform<PeriodicGimplR>(RNG,U_GT,g); // Unit gauge
 | 
			
		||||
 | 
			
		||||
  Field in_GT(&Grid); 
 | 
			
		||||
  Field out_GT(&Grid);
 | 
			
		||||
 
 | 
			
		||||
@@ -29,14 +29,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 ;
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
template<typename Gimpl>
 | 
			
		||||
void run(double alpha, bool do_fft_gfix){
 | 
			
		||||
  std::vector<int> seeds({1,2,3,4});
 | 
			
		||||
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  int threads = GridThread::GetThreads();
 | 
			
		||||
 | 
			
		||||
  Coordinate latt_size   = GridDefaultLatt();
 | 
			
		||||
@@ -55,10 +51,7 @@ int main (int argc, char ** argv)
 | 
			
		||||
  FFT theFFT(&GRID);
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing we can gauge fix steep descent a RGT of Unit gauge    *" <<std::endl;
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << "Using alpha=" << alpha << std::endl;
 | 
			
		||||
 | 
			
		||||
  //  int coulomb_dir = -1;
 | 
			
		||||
  int coulomb_dir = Nd-1;
 | 
			
		||||
@@ -72,81 +65,167 @@ int main (int argc, char ** argv)
 | 
			
		||||
  LatticeColourMatrix   xform1(&GRID); // Gauge xform
 | 
			
		||||
  LatticeColourMatrix   xform2(&GRID); // Gauge xform
 | 
			
		||||
  LatticeColourMatrix   xform3(&GRID); // Gauge xform
 | 
			
		||||
 | 
			
		||||
  //#########################################################################################
 | 
			
		||||
 | 
			
		||||
  std::cout<< "*********************************************************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing steepest descent fixing to Landau gauge with randomly transformed unit gauge configuration    *" <<std::endl;
 | 
			
		||||
  std::cout<< "*********************************************************************************************************" <<std::endl;
 | 
			
		||||
  
 | 
			
		||||
  SU<Nc>::ColdConfiguration(pRNG,Umu); // Unit gauge
 | 
			
		||||
  Uorg=Umu;
 | 
			
		||||
 | 
			
		||||
  Real init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Initial plaquette "<< init_plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
  //Apply a random gauge transformation to the unit gauge config
 | 
			
		||||
  Urnd=Umu;
 | 
			
		||||
  SU<Nc>::RandomGaugeTransform<Gimpl>(pRNG,Urnd,g);
 | 
			
		||||
 | 
			
		||||
  SU<Nc>::RandomGaugeTransform(pRNG,Urnd,g); // Unit gauge
 | 
			
		||||
 | 
			
		||||
  Real plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Initial plaquette "<<plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
  Real alpha=0.1;
 | 
			
		||||
 | 
			
		||||
  //Gauge fix the randomly transformed field 
 | 
			
		||||
  Umu = Urnd;
 | 
			
		||||
  FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform1,alpha,10000,1.0e-12, 1.0e-12,false);
 | 
			
		||||
  FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform1,alpha,10000,1.0e-12, 1.0e-12,false);
 | 
			
		||||
 | 
			
		||||
  // Check the gauge xform matrices
 | 
			
		||||
  Utmp=Urnd;
 | 
			
		||||
  SU<Nc>::GaugeTransform(Utmp,xform1);
 | 
			
		||||
  SU<Nc>::GaugeTransform<Gimpl>(Utmp,xform1);
 | 
			
		||||
  Utmp = Utmp - Umu;
 | 
			
		||||
  std::cout << " Norm Difference of xformed gauge "<< norm2(Utmp) << std::endl;
 | 
			
		||||
  std::cout << " Check the output gauge transformation matrices applied to the original field produce the xformed field "<< norm2(Utmp) << " (expect 0)" << std::endl;
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << std::endl;
 | 
			
		||||
  Real plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  Uorg = Uorg - Umu;
 | 
			
		||||
  std::cout << " Norm Difference "<< norm2(Uorg) << std::endl;
 | 
			
		||||
  std::cout << " Norm "<< norm2(Umu) << std::endl;
 | 
			
		||||
  std::cout << " Norm difference between a unit gauge configuration and the gauge fixed configuration "<< norm2(Uorg) << " (expect 0)" << std::endl;
 | 
			
		||||
  std::cout << " Norm of gauge fixed configuration "<< norm2(Umu) << std::endl;
 | 
			
		||||
 | 
			
		||||
  //#########################################################################################
 | 
			
		||||
  if(do_fft_gfix){
 | 
			
		||||
    std::cout<< "*************************************************************************************" <<std::endl;
 | 
			
		||||
    std::cout<< "* Testing Fourier accelerated fixing to Landau gauge with unit gauge configuration  *" <<std::endl;
 | 
			
		||||
    std::cout<< "*************************************************************************************" <<std::endl;
 | 
			
		||||
    Umu=Urnd;
 | 
			
		||||
    FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform2,alpha,10000,1.0e-12, 1.0e-12,true);
 | 
			
		||||
 | 
			
		||||
    Utmp=Urnd;
 | 
			
		||||
    SU<Nc>::GaugeTransform<Gimpl>(Utmp,xform2);
 | 
			
		||||
    Utmp = Utmp - Umu;
 | 
			
		||||
    std::cout << " Check the output gauge transformation matrices applied to the original field produce the xformed field "<< norm2(Utmp) << " (expect 0)" << std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing Fourier accelerated fixing                            *" <<std::endl;
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  Umu=Urnd;
 | 
			
		||||
  FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform2,alpha,10000,1.0e-12, 1.0e-12,true);
 | 
			
		||||
    plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
    std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  //#########################################################################################
 | 
			
		||||
 | 
			
		||||
  Utmp=Urnd;
 | 
			
		||||
  SU<Nc>::GaugeTransform(Utmp,xform2);
 | 
			
		||||
  Utmp = Utmp - Umu;
 | 
			
		||||
  std::cout << " Norm Difference of xformed gauge "<< norm2(Utmp) << std::endl;
 | 
			
		||||
  std::cout<< "******************************************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing steepest descent fixing to Landau gauge with random configuration             **" <<std::endl;
 | 
			
		||||
  std::cout<< "******************************************************************************************" <<std::endl;
 | 
			
		||||
 | 
			
		||||
  SU<Nc>::HotConfiguration(pRNG,Umu);
 | 
			
		||||
 | 
			
		||||
  plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << std::endl;
 | 
			
		||||
  init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Initial plaquette "<< init_plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing non-unit configuration                                *" <<std::endl;
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,false);
 | 
			
		||||
 | 
			
		||||
  SU<Nc>::HotConfiguration(pRNG,Umu); // Unit gauge
 | 
			
		||||
  plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Initial plaquette "<<plaq << std::endl;
 | 
			
		||||
  //#########################################################################################
 | 
			
		||||
  if(do_fft_gfix){
 | 
			
		||||
    std::cout<< "******************************************************************************************" <<std::endl;
 | 
			
		||||
    std::cout<< "* Testing Fourier accelerated fixing to Landau gauge with random configuration          **" <<std::endl;
 | 
			
		||||
    std::cout<< "******************************************************************************************" <<std::endl;
 | 
			
		||||
 | 
			
		||||
  FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,true);
 | 
			
		||||
    SU<Nc>::HotConfiguration(pRNG,Umu);
 | 
			
		||||
 | 
			
		||||
  plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << std::endl;
 | 
			
		||||
    init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
    std::cout << " Initial plaquette "<< init_plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing Fourier accelerated fixing to coulomb gauge           *" <<std::endl;
 | 
			
		||||
  std::cout<< "*****************************************************************" <<std::endl;
 | 
			
		||||
    FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,alpha,10000,1.0e-12, 1.0e-12,true);
 | 
			
		||||
 | 
			
		||||
    plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
    std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  //#########################################################################################
 | 
			
		||||
  
 | 
			
		||||
  std::cout<< "*******************************************************************************************" <<std::endl;
 | 
			
		||||
  std::cout<< "* Testing steepest descent fixing to coulomb gauge with random configuration           *" <<std::endl;
 | 
			
		||||
  std::cout<< "*******************************************************************************************" <<std::endl;
 | 
			
		||||
 | 
			
		||||
  Umu=Urnd;
 | 
			
		||||
  SU<Nc>::HotConfiguration(pRNG,Umu); // Unit gauge
 | 
			
		||||
  SU<Nc>::HotConfiguration(pRNG,Umu);
 | 
			
		||||
 | 
			
		||||
  plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Initial plaquette "<<plaq << std::endl;
 | 
			
		||||
  init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Initial plaquette "<< init_plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
  FourierAcceleratedGaugeFixer<PeriodicGimplR>::SteepestDescentGaugeFix(Umu,xform3,alpha,10000,1.0e-12, 1.0e-12,true,coulomb_dir);
 | 
			
		||||
  FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform3,alpha,10000,1.0e-12, 1.0e-12,false,coulomb_dir);
 | 
			
		||||
 | 
			
		||||
  std::cout << Umu<<std::endl;
 | 
			
		||||
  plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  plaq=WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu);
 | 
			
		||||
  std::cout << " Final plaquette "<<plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
  //#########################################################################################
 | 
			
		||||
  if(do_fft_gfix){
 | 
			
		||||
    std::cout<< "*******************************************************************************************" <<std::endl;
 | 
			
		||||
    std::cout<< "* Testing Fourier accelerated fixing to coulomb gauge with random configuration           *" <<std::endl;
 | 
			
		||||
    std::cout<< "*******************************************************************************************" <<std::endl;
 | 
			
		||||
 | 
			
		||||
    Umu=Urnd;
 | 
			
		||||
    SU<Nc>::HotConfiguration(pRNG,Umu);
 | 
			
		||||
 | 
			
		||||
    init_plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
    std::cout << " Initial plaquette "<< init_plaq << std::endl;
 | 
			
		||||
 | 
			
		||||
    FourierAcceleratedGaugeFixer<Gimpl>::SteepestDescentGaugeFix(Umu,xform3,alpha,10000,1.0e-12, 1.0e-12,true,coulomb_dir);
 | 
			
		||||
 | 
			
		||||
    plaq=WilsonLoops<Gimpl>::avgPlaquette(Umu);
 | 
			
		||||
    std::cout << " Final plaquette "<<plaq << " diff " << plaq - init_plaq << " (expect 0)" << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  double alpha=0.1; //step size
 | 
			
		||||
  std::string gimpl = "periodic";
 | 
			
		||||
  bool do_fft_gfix = true; //test fourier transformed gfix as well as steepest descent
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string sarg(argv[i]);
 | 
			
		||||
    if(sarg == "--gimpl"){
 | 
			
		||||
      assert(i<argc-1 && "--gimpl option requires an argument");
 | 
			
		||||
      gimpl = argv[i+1];
 | 
			
		||||
      if(gimpl != "periodic" && gimpl != "conjugate")
 | 
			
		||||
	assert(0 && "Invalid gimpl");
 | 
			
		||||
      if(gimpl == "conjugate")
 | 
			
		||||
	alpha = 0.025; //default alpha too large for CCBC
 | 
			
		||||
    }else if(sarg == "--no-fft-gfix"){
 | 
			
		||||
      std::cout << "Not doing the Fourier accelerated gauge fixing tests" << std::endl;
 | 
			
		||||
      do_fft_gfix = false;
 | 
			
		||||
    }else if(sarg == "--alpha"){
 | 
			
		||||
      assert(i<argc-1 && "--alpha option requires an argument");
 | 
			
		||||
      std::istringstream ss(argv[i+1]); ss >> alpha;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  if(gimpl == "periodic"){
 | 
			
		||||
    std::cout << GridLogMessage << "Using periodic boundary condition" << std::endl;
 | 
			
		||||
    run<PeriodicGimplR>(alpha, do_fft_gfix);
 | 
			
		||||
  }else{
 | 
			
		||||
    std::vector<int> conjdirs = {1,1,0,0}; //test with 2 conjugate dirs and 2 not
 | 
			
		||||
    std::cout << GridLogMessage << "Using complex conjugate boundary conditions in dimensions ";
 | 
			
		||||
    for(int i=0;i<Nd;i++)
 | 
			
		||||
      if(conjdirs[i])
 | 
			
		||||
	std::cout << i << " ";   
 | 
			
		||||
    std::cout << std::endl;
 | 
			
		||||
 | 
			
		||||
    ConjugateGimplR::setDirections(conjdirs);
 | 
			
		||||
    run<ConjugateGimplR>(alpha, do_fft_gfix);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -228,6 +228,59 @@ void checkGammaL(const Gamma::Algebra a, GridSerialRNG &rng)
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void checkChargeConjMatrix(){
 | 
			
		||||
  //Check the properties of the charge conjugation matrix
 | 
			
		||||
  //In the Grid basis C = -\gamma^2 \gamma^4
 | 
			
		||||
  SpinMatrix C = testAlgebra[Gamma::Algebra::MinusGammaY] * testAlgebra[Gamma::Algebra::GammaT];
 | 
			
		||||
  SpinMatrix mC = -C;
 | 
			
		||||
  SpinMatrix one = testAlgebra[Gamma::Algebra::Identity];
 | 
			
		||||
 | 
			
		||||
  std::cout << "Testing properties of charge conjugation matrix C = -\\gamma^2 \\gamma^4 (in Grid's basis)" << std::endl;
 | 
			
		||||
 | 
			
		||||
  //C^T = -C
 | 
			
		||||
  SpinMatrix Ct = transpose(C);
 | 
			
		||||
  std::cout << GridLogMessage << "C^T=-C ";
 | 
			
		||||
  test(Ct, mC);
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
 | 
			
		||||
  //C^\dagger = -C
 | 
			
		||||
  SpinMatrix Cdag = adj(C);
 | 
			
		||||
  std::cout << GridLogMessage << "C^dag=-C ";
 | 
			
		||||
  test(Cdag, mC);
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
 | 
			
		||||
  //C^* = C
 | 
			
		||||
  SpinMatrix Cstar = conjugate(C);
 | 
			
		||||
  std::cout << GridLogMessage << "C^*=C ";
 | 
			
		||||
  test(Cstar, C);
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
 | 
			
		||||
  //C^{-1} = -C
 | 
			
		||||
  SpinMatrix CinvC = mC * C;
 | 
			
		||||
  std::cout << GridLogMessage << "C^{-1}=-C ";
 | 
			
		||||
  test(CinvC, one);
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
 | 
			
		||||
  // C^{-1} \gamma^\mu C = -[\gamma^\mu]^T
 | 
			
		||||
  Gamma::Algebra gmu_a[4] = { Gamma::Algebra::GammaX, Gamma::Algebra::GammaY, Gamma::Algebra::GammaZ, Gamma::Algebra::GammaT };
 | 
			
		||||
  for(int mu=0;mu<4;mu++){
 | 
			
		||||
    SpinMatrix gmu = testAlgebra[gmu_a[mu]];
 | 
			
		||||
    SpinMatrix Cinv_gmu_C = mC * gmu * C;
 | 
			
		||||
    SpinMatrix mgmu_T = -transpose(gmu);
 | 
			
		||||
    std::cout << GridLogMessage << "C^{-1} \\gamma^" << mu << " C = -[\\gamma^" << mu << "]^T ";
 | 
			
		||||
    test(Cinv_gmu_C, mgmu_T);
 | 
			
		||||
    std::cout << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  //[C, \gamma^5] = 0
 | 
			
		||||
  SpinMatrix Cg5 = C * testAlgebra[Gamma::Algebra::Gamma5];
 | 
			
		||||
  SpinMatrix g5C = testAlgebra[Gamma::Algebra::Gamma5] * C;
 | 
			
		||||
  std::cout << GridLogMessage << "C \\gamma^5 = \\gamma^5 C";
 | 
			
		||||
  test(Cg5, g5C);
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main(int argc, char *argv[])
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
@@ -270,6 +323,13 @@ int main(int argc, char *argv[])
 | 
			
		||||
  {
 | 
			
		||||
    checkGammaL(i, sRNG);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "======== Charge conjugation matrix check" << std::endl;
 | 
			
		||||
  checkChargeConjMatrix();
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
@@ -55,13 +55,17 @@ static_assert(same_vComplex == 1, "Dirac Operators must have same underlying SIM
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  int nu = 0;
 | 
			
		||||
 | 
			
		||||
  int tbc_aprd = 0; //use antiperiodic BCs in the time direction?
 | 
			
		||||
  
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    if(std::string(argv[i]) == "--Gparity-dir"){
 | 
			
		||||
      std::stringstream ss; ss << argv[i+1]; ss >> nu;
 | 
			
		||||
      std::cout << GridLogMessage << "Set Gparity direction to " << nu << std::endl;
 | 
			
		||||
    }else if(std::string(argv[i]) == "--Tbc-APRD"){
 | 
			
		||||
      tbc_aprd = 1;
 | 
			
		||||
      std::cout << GridLogMessage << "Using antiperiodic BCs in the time direction" << std::endl;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -155,13 +159,18 @@ int main (int argc, char ** argv)
 | 
			
		||||
 | 
			
		||||
  //Coordinate grid for reference
 | 
			
		||||
  LatticeInteger    xcoor_1f5(FGrid_1f);
 | 
			
		||||
  LatticeCoordinate(xcoor_1f5,1+nu);
 | 
			
		||||
  LatticeCoordinate(xcoor_1f5,1+nu); //note '1+nu'! This is because for 5D fields the s-direction is direction 0
 | 
			
		||||
  Replicate(src,src_1f);
 | 
			
		||||
  src_1f   = where( xcoor_1f5 >= Integer(L), 2.0*src_1f,src_1f );
 | 
			
		||||
 | 
			
		||||
  RealD mass=0.0;
 | 
			
		||||
  RealD M5=1.8;
 | 
			
		||||
  StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS);
 | 
			
		||||
 | 
			
		||||
  //Standard Dirac op
 | 
			
		||||
  AcceleratorVector<Complex,4> bc_std(Nd, 1.0);
 | 
			
		||||
  if(tbc_aprd) bc_std[Nd-1] = -1.; //antiperiodic time BC
 | 
			
		||||
  StandardDiracOp::ImplParams std_params(bc_std);
 | 
			
		||||
  StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS, std_params);
 | 
			
		||||
 | 
			
		||||
  StandardFermionField    src_o_1f(FrbGrid_1f);
 | 
			
		||||
  StandardFermionField result_o_1f(FrbGrid_1f);
 | 
			
		||||
@@ -172,9 +181,11 @@ int main (int argc, char ** argv)
 | 
			
		||||
  ConjugateGradient<StandardFermionField> CG(1.0e-8,10000);
 | 
			
		||||
  CG(HermOpEO,src_o_1f,result_o_1f);
 | 
			
		||||
  
 | 
			
		||||
  //  const int nu = 3;
 | 
			
		||||
  //Gparity Dirac op
 | 
			
		||||
  std::vector<int> twists(Nd,0);
 | 
			
		||||
  twists[nu] = 1;
 | 
			
		||||
  if(tbc_aprd) twists[Nd-1] = 1;
 | 
			
		||||
 | 
			
		||||
  GparityDiracOp::ImplParams params;
 | 
			
		||||
  params.twists = twists;
 | 
			
		||||
  GparityDiracOp GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5 DOP_PARAMS,params);
 | 
			
		||||
@@ -271,8 +282,11 @@ int main (int argc, char ** argv)
 | 
			
		||||
  std::cout << "2f cb "<<result_o_2f.Checkerboard()<<std::endl;
 | 
			
		||||
  std::cout << "1f cb "<<result_o_1f.Checkerboard()<<std::endl;
 | 
			
		||||
 | 
			
		||||
  std::cout << " result norms " <<norm2(result_o_2f)<<" " <<norm2(result_o_1f)<<std::endl;
 | 
			
		||||
  //Compare norms
 | 
			
		||||
  std::cout << " result norms 2f: " <<norm2(result_o_2f)<<" 1f: " <<norm2(result_o_1f)<<std::endl;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  //Take the 2f solution and convert into the corresponding 1f solution (odd cb only)
 | 
			
		||||
  StandardFermionField    res0o  (FrbGrid_2f); 
 | 
			
		||||
  StandardFermionField    res1o  (FrbGrid_2f); 
 | 
			
		||||
  StandardFermionField    res0  (FGrid_2f); 
 | 
			
		||||
@@ -281,14 +295,15 @@ int main (int argc, char ** argv)
 | 
			
		||||
  res0=Zero();
 | 
			
		||||
  res1=Zero();
 | 
			
		||||
 | 
			
		||||
  res0o = PeekIndex<0>(result_o_2f,0);
 | 
			
		||||
  res1o = PeekIndex<0>(result_o_2f,1);
 | 
			
		||||
  res0o = PeekIndex<0>(result_o_2f,0); //flavor 0, odd cb
 | 
			
		||||
  res1o = PeekIndex<0>(result_o_2f,1); //flavor 1, odd cb
 | 
			
		||||
 | 
			
		||||
  std::cout << "res cb "<<res0o.Checkerboard()<<std::endl;
 | 
			
		||||
  std::cout << "res cb "<<res1o.Checkerboard()<<std::endl;
 | 
			
		||||
 | 
			
		||||
  setCheckerboard(res0,res0o);
 | 
			
		||||
  setCheckerboard(res1,res1o);
 | 
			
		||||
  //poke odd onto non-cb field
 | 
			
		||||
  setCheckerboard(res0,res0o); 
 | 
			
		||||
  setCheckerboard(res1,res1o); 
 | 
			
		||||
 | 
			
		||||
  StandardFermionField replica (FGrid_1f);
 | 
			
		||||
  StandardFermionField replica0(FGrid_1f);
 | 
			
		||||
@@ -296,12 +311,13 @@ int main (int argc, char ** argv)
 | 
			
		||||
  Replicate(res0,replica0);
 | 
			
		||||
  Replicate(res1,replica1);
 | 
			
		||||
 | 
			
		||||
  //2nd half of doubled lattice has f=1
 | 
			
		||||
  replica = where( xcoor_1f5 >= Integer(L), replica1,replica0 );
 | 
			
		||||
 | 
			
		||||
  replica0 = Zero();
 | 
			
		||||
  setCheckerboard(replica0,result_o_1f);
 | 
			
		||||
 | 
			
		||||
  std::cout << "Norm2 solutions is " <<norm2(replica)<<" "<< norm2(replica0)<<std::endl;
 | 
			
		||||
  std::cout << "Norm2 solutions 1f reconstructed from 2f: " <<norm2(replica)<<" Actual 1f: "<< norm2(replica0)<<std::endl;
 | 
			
		||||
 | 
			
		||||
  replica = replica - replica0;
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										177
									
								
								tests/core/Test_gparity_flavour.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										177
									
								
								tests/core/Test_gparity_flavour.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,177 @@
 | 
			
		||||
/*************************************************************************************
 | 
			
		||||
 | 
			
		||||
Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
Source file: ./tests/Test_gparity_flavour.cc
 | 
			
		||||
 | 
			
		||||
Copyright (C) 2015-2017
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | 
			
		||||
 | 
			
		||||
This program is free software; you can redistribute it and/or modify
 | 
			
		||||
it under the terms of the GNU General Public License as published by
 | 
			
		||||
the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
(at your option) any later version.
 | 
			
		||||
 | 
			
		||||
This program is distributed in the hope that it will be useful,
 | 
			
		||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
You should have received a copy of the GNU General Public License along
 | 
			
		||||
with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
*************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
static constexpr double                      tolerance = 1.0e-6;
 | 
			
		||||
static std::array<GparityFlavourMatrix, GparityFlavour::nSigma> testAlgebra;
 | 
			
		||||
 | 
			
		||||
void print(const GparityFlavourMatrix &g)
 | 
			
		||||
{
 | 
			
		||||
  for(int i = 0; i < Ngp; i++)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << GridLogMessage << "(";
 | 
			
		||||
    for(int j=0;j<Ngp;j++){
 | 
			
		||||
      if ( abs( g(i,j)()() ) == 0 ) {
 | 
			
		||||
        std::cout<< " 0";
 | 
			
		||||
      } else if ( abs(g(i,j)()() - Complex(0,1)) == 0){
 | 
			
		||||
        std::cout<< " i";
 | 
			
		||||
      } else if ( abs(g(i,j)()() + Complex(0,1)) == 0){
 | 
			
		||||
        std::cout<< "-i";
 | 
			
		||||
      } else if ( abs(g(i,j)()() - Complex(1,0)) == 0){
 | 
			
		||||
        std::cout<< " 1";
 | 
			
		||||
      } else if ( abs(g(i,j)()() + Complex(1,0)) == 0){
 | 
			
		||||
        std::cout<< "-1";
 | 
			
		||||
      }
 | 
			
		||||
      std::cout<<((j == Ngp-1) ? ")" : "," );
 | 
			
		||||
    }
 | 
			
		||||
    std::cout << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void createTestAlgebra(void)
 | 
			
		||||
{
 | 
			
		||||
  std::array<GparityFlavourMatrix, 3> testg;
 | 
			
		||||
  const Complex             I(0., 1.), mI(0., -1.);
 | 
			
		||||
 | 
			
		||||
  // 0 1
 | 
			
		||||
  // 1 0
 | 
			
		||||
  testg[0] = Zero();
 | 
			
		||||
  testg[0](0, 1)()() = 1.;
 | 
			
		||||
  testg[0](1, 0)()() = 1.;
 | 
			
		||||
  std::cout << GridLogMessage << "test SigmaX= " << std::endl;
 | 
			
		||||
  print(testg[0]);
 | 
			
		||||
 | 
			
		||||
  // 0 -i
 | 
			
		||||
  // i  0
 | 
			
		||||
  testg[1] = Zero();
 | 
			
		||||
  testg[1](0, 1)()() = mI;
 | 
			
		||||
  testg[1](1, 0)()() = I;
 | 
			
		||||
  std::cout << GridLogMessage << "test SigmaY= " << std::endl;
 | 
			
		||||
  print(testg[1]);
 | 
			
		||||
 | 
			
		||||
  // 1  0
 | 
			
		||||
  // 0 -1
 | 
			
		||||
  testg[2] = Zero();
 | 
			
		||||
  testg[2](0, 0)()() = 1.0;
 | 
			
		||||
  testg[2](1, 1)()() = -1.0;
 | 
			
		||||
  std::cout << GridLogMessage << "test SigmaZ= " << std::endl;
 | 
			
		||||
  print(testg[2]);
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
#define DEFINE_TEST_G(g, exp)\
 | 
			
		||||
testAlgebra[GparityFlavour::Algebra::g]        = exp; \
 | 
			
		||||
testAlgebra[GparityFlavour::Algebra::Minus##g] = -exp;
 | 
			
		||||
  
 | 
			
		||||
  DEFINE_TEST_G(SigmaX      , testg[0]);
 | 
			
		||||
  DEFINE_TEST_G(SigmaY      , testg[1]);
 | 
			
		||||
  DEFINE_TEST_G(SigmaZ      , testg[2]);
 | 
			
		||||
  DEFINE_TEST_G(Identity    , 1.);
 | 
			
		||||
 | 
			
		||||
  GparityFlavourMatrix pplus;
 | 
			
		||||
  pplus = 1.0;
 | 
			
		||||
  pplus = pplus + testg[1];
 | 
			
		||||
  pplus = pplus * 0.5;
 | 
			
		||||
 | 
			
		||||
  DEFINE_TEST_G(ProjPlus    , pplus);
 | 
			
		||||
  
 | 
			
		||||
  GparityFlavourMatrix pminus;
 | 
			
		||||
  pminus = 1.0;
 | 
			
		||||
  pminus = pminus - testg[1];
 | 
			
		||||
  pminus = pminus * 0.5;
 | 
			
		||||
 | 
			
		||||
  DEFINE_TEST_G(ProjMinus    , pminus);
 | 
			
		||||
 | 
			
		||||
#undef DEFINE_TEST_G
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename Expr>
 | 
			
		||||
void test(const Expr &a, const Expr &b)
 | 
			
		||||
{
 | 
			
		||||
  if (norm2(a - b) < tolerance)
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "[OK] ";
 | 
			
		||||
  }
 | 
			
		||||
  else
 | 
			
		||||
  {
 | 
			
		||||
    std::cout << "[fail]" << std::endl;
 | 
			
		||||
    std::cout << GridLogError << "a= " << a << std::endl;
 | 
			
		||||
    std::cout << GridLogError << "is different (tolerance= " << tolerance << ") from " << std::endl;
 | 
			
		||||
    std::cout << GridLogError << "b= " << b << std::endl;
 | 
			
		||||
    exit(EXIT_FAILURE);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void checkSigma(const GparityFlavour::Algebra a, GridSerialRNG &rng)
 | 
			
		||||
{
 | 
			
		||||
  GparityFlavourVector v;
 | 
			
		||||
  GparityFlavourMatrix m, &testg = testAlgebra[a];
 | 
			
		||||
  GparityFlavour      g(a);
 | 
			
		||||
  
 | 
			
		||||
  random(rng, v);
 | 
			
		||||
  random(rng, m);
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage << "Checking " << GparityFlavour::name[a] << ": ";
 | 
			
		||||
  std::cout << "vecmul ";
 | 
			
		||||
  test(g*v, testg*v);
 | 
			
		||||
  std::cout << "matlmul ";
 | 
			
		||||
  test(g*m, testg*m);
 | 
			
		||||
  std::cout << "matrmul ";
 | 
			
		||||
  test(m*g, m*testg);
 | 
			
		||||
  std::cout << std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main(int argc, char *argv[])
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
  
 | 
			
		||||
  Coordinate latt_size   = GridDefaultLatt();
 | 
			
		||||
  Coordinate simd_layout = GridDefaultSimd(4,vComplex::Nsimd());
 | 
			
		||||
  Coordinate mpi_layout  = GridDefaultMpi();
 | 
			
		||||
  
 | 
			
		||||
  GridCartesian Grid(latt_size,simd_layout,mpi_layout);
 | 
			
		||||
  GridSerialRNG sRNG;
 | 
			
		||||
  
 | 
			
		||||
  sRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
 | 
			
		||||
  
 | 
			
		||||
  std::cout << GridLogMessage << "======== Test algebra" << std::endl;
 | 
			
		||||
  createTestAlgebra();
 | 
			
		||||
  std::cout << GridLogMessage << "======== Multiplication operators check" << std::endl;
 | 
			
		||||
  for (int i = 0; i < GparityFlavour::nSigma; ++i)
 | 
			
		||||
  {
 | 
			
		||||
    checkSigma(i, sRNG);
 | 
			
		||||
  }
 | 
			
		||||
  std::cout << GridLogMessage << std::endl;
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
  
 | 
			
		||||
  return EXIT_SUCCESS;
 | 
			
		||||
}
 | 
			
		||||
@@ -71,26 +71,14 @@ int main (int argc, char ** argv)
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  RealD mass=0.2; //kills the diagonal term
 | 
			
		||||
  RealD M5=1.8;
 | 
			
		||||
  //  const int nu = 3;
 | 
			
		||||
  //  std::vector<int> twists(Nd,0); // twists[nu] = 1;
 | 
			
		||||
  //  GparityDomainWallFermionR::ImplParams params;  params.twists = twists;
 | 
			
		||||
  //  GparityDomainWallFermionR Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
 | 
			
		||||
 | 
			
		||||
  //  DomainWallFermionR Dw     (U,     Grid,RBGrid,mass,M5);
 | 
			
		||||
 | 
			
		||||
  const int nu = 3;
 | 
			
		||||
  const int nu = 0; //gparity direction
 | 
			
		||||
  std::vector<int> twists(Nd,0);
 | 
			
		||||
  twists[nu] = 1;
 | 
			
		||||
  twists[Nd-1] = 1; //antiperiodic in time
 | 
			
		||||
  GparityDomainWallFermionR::ImplParams params;
 | 
			
		||||
  params.twists = twists;
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  params.boundary_phases[0] = 1.0;
 | 
			
		||||
  params.boundary_phases[1] = 1.0;
 | 
			
		||||
  params.boundary_phases[2] = 1.0;
 | 
			
		||||
  params.boundary_phases[3] =- 1.0;
 | 
			
		||||
  */
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
  GparityDomainWallFermionR Dw(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
 | 
			
		||||
 | 
			
		||||
  Dw.M   (phi,Mphi);
 | 
			
		||||
 
 | 
			
		||||
@@ -71,8 +71,10 @@ int main (int argc, char ** argv)
 | 
			
		||||
  RealD mass=0.01; 
 | 
			
		||||
  RealD M5=1.8; 
 | 
			
		||||
 | 
			
		||||
  const int nu = 3;
 | 
			
		||||
  std::vector<int> twists(Nd,0);  twists[nu] = 1;
 | 
			
		||||
  const int nu = 1;
 | 
			
		||||
  std::vector<int> twists(Nd,0);
 | 
			
		||||
  twists[nu] = 1;
 | 
			
		||||
  twists[3] = 1;
 | 
			
		||||
  GparityDomainWallFermionR::ImplParams params;  params.twists = twists;
 | 
			
		||||
  GparityDomainWallFermionR Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
 | 
			
		||||
  Ddwf.M   (phi,Mphi);
 | 
			
		||||
 
 | 
			
		||||
@@ -64,8 +64,12 @@ int main (int argc, char ** argv)
 | 
			
		||||
  ////////////////////////////////////
 | 
			
		||||
  RealD mass=0.01; 
 | 
			
		||||
 | 
			
		||||
  const int nu = 3;
 | 
			
		||||
  std::vector<int> twists(Nd,0);  twists[nu] = 1;
 | 
			
		||||
  const int nu = 1;
 | 
			
		||||
  const int Lnu=latt_size[nu];
 | 
			
		||||
 | 
			
		||||
  std::vector<int> twists(Nd,0);
 | 
			
		||||
  twists[nu] = 1;
 | 
			
		||||
  twists[3]=1;
 | 
			
		||||
  GparityWilsonFermionR::ImplParams params;  params.twists = twists;
 | 
			
		||||
  GparityWilsonFermionR Wil(U,*UGrid,*UrbGrid,mass,params);
 | 
			
		||||
  Wil.M   (phi,Mphi);
 | 
			
		||||
 
 | 
			
		||||
@@ -31,14 +31,38 @@ using namespace std;
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 ;
 | 
			
		||||
 | 
			
		||||
typedef typename GparityDomainWallFermionR::FermionField FermionField;
 | 
			
		||||
template<typename Action>
 | 
			
		||||
struct Setup{};
 | 
			
		||||
 | 
			
		||||
RealD AllZero(RealD x){ return 0.;}
 | 
			
		||||
template<>
 | 
			
		||||
struct Setup<GparityMobiusFermionR>{
 | 
			
		||||
  static GparityMobiusFermionR* getAction(LatticeGaugeField &Umu,
 | 
			
		||||
					  GridCartesian* FGrid, GridRedBlackCartesian* FrbGrid, GridCartesian* UGrid, GridRedBlackCartesian* UrbGrid){
 | 
			
		||||
    RealD mass=0.01;
 | 
			
		||||
    RealD M5=1.8;
 | 
			
		||||
    RealD mob_b=1.5;
 | 
			
		||||
    GparityMobiusFermionD ::ImplParams params;
 | 
			
		||||
    std::vector<int> twists({1,1,1,0});
 | 
			
		||||
    params.twists = twists;
 | 
			
		||||
    return new GparityMobiusFermionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
template<>
 | 
			
		||||
struct Setup<DomainWallFermionR>{
 | 
			
		||||
  static DomainWallFermionR* getAction(LatticeGaugeField &Umu,
 | 
			
		||||
					  GridCartesian* FGrid, GridRedBlackCartesian* FrbGrid, GridCartesian* UGrid, GridRedBlackCartesian* UrbGrid){
 | 
			
		||||
    RealD mass=0.01;
 | 
			
		||||
    RealD M5=1.8;
 | 
			
		||||
    return new DomainWallFermionR(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
template<typename Action>
 | 
			
		||||
void run(){
 | 
			
		||||
  typedef typename Action::FermionField FermionField;
 | 
			
		||||
  const int Ls=8;
 | 
			
		||||
 | 
			
		||||
  GridCartesian         * UGrid   = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
 | 
			
		||||
@@ -56,24 +80,10 @@ int main (int argc, char ** argv)
 | 
			
		||||
  LatticeGaugeField Umu(UGrid); 
 | 
			
		||||
  SU<Nc>::HotConfiguration(RNG4, Umu);
 | 
			
		||||
 | 
			
		||||
  std::vector<LatticeColourMatrix> U(4,UGrid);
 | 
			
		||||
  for(int mu=0;mu<Nd;mu++){
 | 
			
		||||
    U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  RealD mass=0.01;
 | 
			
		||||
  RealD M5=1.8;
 | 
			
		||||
  RealD mob_b=1.5;
 | 
			
		||||
//  DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
 | 
			
		||||
  GparityMobiusFermionD ::ImplParams params;
 | 
			
		||||
  std::vector<int> twists({1,1,1,0});
 | 
			
		||||
  params.twists = twists;
 | 
			
		||||
  GparityMobiusFermionR  Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,mob_b,mob_b-1.,params);
 | 
			
		||||
 | 
			
		||||
//  MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
 | 
			
		||||
//  SchurDiagTwoOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
 | 
			
		||||
  SchurDiagTwoOperator<GparityMobiusFermionR,FermionField> HermOp(Ddwf);
 | 
			
		||||
//  SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
 | 
			
		||||
  Action *action = Setup<Action>::getAction(Umu,FGrid,FrbGrid,UGrid,UrbGrid);
 | 
			
		||||
 
 | 
			
		||||
  //MdagMLinearOperator<Action,FermionField> HermOp(Ddwf);
 | 
			
		||||
  SchurDiagTwoOperator<Action,FermionField> HermOp(*action);
 | 
			
		||||
 | 
			
		||||
  const int Nstop = 30;
 | 
			
		||||
  const int Nk = 40;
 | 
			
		||||
@@ -90,8 +100,7 @@ int main (int argc, char ** argv)
 | 
			
		||||
     PlainHermOp<FermionField> Op     (HermOp);
 | 
			
		||||
 | 
			
		||||
  ImplicitlyRestartedLanczos<FermionField> IRL(OpCheby,Op,Nstop,Nk,Nm,resid,MaxIt);
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
 
 | 
			
		||||
  std::vector<RealD>          eval(Nm);
 | 
			
		||||
  FermionField    src(FrbGrid); 
 | 
			
		||||
  gaussian(RNG5rb,src);
 | 
			
		||||
@@ -103,6 +112,28 @@ int main (int argc, char ** argv)
 | 
			
		||||
  int Nconv;
 | 
			
		||||
  IRL.calc(eval,evec,src,Nconv);
 | 
			
		||||
 | 
			
		||||
  delete action;
 | 
			
		||||
}
 | 
			
		||||
  
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc,&argv);
 | 
			
		||||
 | 
			
		||||
  std::string action = "GparityMobius";
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    if(std::string(argv[i]) == "-action"){
 | 
			
		||||
      action = argv[i+1];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if(action == "GparityMobius"){
 | 
			
		||||
    run<GparityMobiusFermionR>();
 | 
			
		||||
  }else if(action == "DWF"){
 | 
			
		||||
    run<DomainWallFermionR>();
 | 
			
		||||
  }else{
 | 
			
		||||
    std::cout << "Unknown action" << std::endl;
 | 
			
		||||
    exit(1);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										184
									
								
								tests/solver/Test_dwf_multishift_mixedprec.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										184
									
								
								tests/solver/Test_dwf_multishift_mixedprec.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,184 @@
 | 
			
		||||
    /*************************************************************************************
 | 
			
		||||
 | 
			
		||||
    Grid physics library, www.github.com/paboyle/Grid 
 | 
			
		||||
 | 
			
		||||
    Source file: ./tests/Test_dwf_multishift_mixedprec.cc
 | 
			
		||||
 | 
			
		||||
    Copyright (C) 2015
 | 
			
		||||
 | 
			
		||||
Author: Christopher Kelly <ckelly@bnl.gov>
 | 
			
		||||
 | 
			
		||||
    This program is free software; you can redistribute it and/or modify
 | 
			
		||||
    it under the terms of the GNU General Public License as published by
 | 
			
		||||
    the Free Software Foundation; either version 2 of the License, or
 | 
			
		||||
    (at your option) any later version.
 | 
			
		||||
 | 
			
		||||
    This program is distributed in the hope that it will be useful,
 | 
			
		||||
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
    GNU General Public License for more details.
 | 
			
		||||
 | 
			
		||||
    You should have received a copy of the GNU General Public License along
 | 
			
		||||
    with this program; if not, write to the Free Software Foundation, Inc.,
 | 
			
		||||
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
			
		||||
 | 
			
		||||
    See the full license in the file "LICENSE" in the top level distribution directory
 | 
			
		||||
    *************************************************************************************/
 | 
			
		||||
    /*  END LEGAL */
 | 
			
		||||
#include <Grid/Grid.h>
 | 
			
		||||
 | 
			
		||||
using namespace Grid;
 | 
			
		||||
 | 
			
		||||
template<typename SpeciesD, typename SpeciesF, typename GaugeStatisticsType>
 | 
			
		||||
void run_test(int argc, char ** argv, const typename SpeciesD::ImplParams ¶ms){
 | 
			
		||||
  const int Ls = 16;
 | 
			
		||||
  GridCartesian* UGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian* UrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_d);
 | 
			
		||||
  GridCartesian* FGrid_d = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_d);
 | 
			
		||||
  GridRedBlackCartesian* FrbGrid_d = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_d);
 | 
			
		||||
 | 
			
		||||
  GridCartesian* UGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
 | 
			
		||||
  GridRedBlackCartesian* UrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_f);
 | 
			
		||||
  GridCartesian* FGrid_f = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid_f);
 | 
			
		||||
  GridRedBlackCartesian* FrbGrid_f = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid_f);
 | 
			
		||||
 | 
			
		||||
  typedef typename SpeciesD::FermionField FermionFieldD;
 | 
			
		||||
  typedef typename SpeciesF::FermionField FermionFieldF;
 | 
			
		||||
  
 | 
			
		||||
  std::vector<int> seeds4({1, 2, 3, 4});
 | 
			
		||||
  std::vector<int> seeds5({5, 6, 7, 8});
 | 
			
		||||
  GridParallelRNG RNG5(FGrid_d);
 | 
			
		||||
  RNG5.SeedFixedIntegers(seeds5);
 | 
			
		||||
  GridParallelRNG RNG4(UGrid_d);
 | 
			
		||||
  RNG4.SeedFixedIntegers(seeds4);
 | 
			
		||||
 | 
			
		||||
  FermionFieldD src_d(FGrid_d);
 | 
			
		||||
  random(RNG5, src_d);
 | 
			
		||||
 | 
			
		||||
  LatticeGaugeFieldD Umu_d(UGrid_d);
 | 
			
		||||
 | 
			
		||||
  //CPS-created G-parity ensembles have a factor of 2 error in the plaquette that causes the read to fail unless we workaround it
 | 
			
		||||
  bool gparity_plaquette_fix = false;
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    if(std::string(argv[i]) == "--gparity_plaquette_fix"){
 | 
			
		||||
      gparity_plaquette_fix=true;
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  bool cfg_loaded=false;
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    if(std::string(argv[i]) == "--load_config"){
 | 
			
		||||
      assert(i != argc-1);
 | 
			
		||||
      std::string file = argv[i+1];
 | 
			
		||||
      NerscIO io;
 | 
			
		||||
      FieldMetaData metadata;
 | 
			
		||||
 | 
			
		||||
      if(gparity_plaquette_fix) NerscIO::exitOnReadPlaquetteMismatch() = false;
 | 
			
		||||
 | 
			
		||||
      io.readConfiguration<GaugeStatisticsType>(Umu_d, metadata, file);
 | 
			
		||||
 | 
			
		||||
      if(gparity_plaquette_fix){
 | 
			
		||||
	metadata.plaquette *= 2.; //correct header value
 | 
			
		||||
 | 
			
		||||
	//Get the true plaquette
 | 
			
		||||
	FieldMetaData tmp;
 | 
			
		||||
	GaugeStatisticsType gs; gs(Umu_d, tmp);
 | 
			
		||||
	
 | 
			
		||||
	std::cout << "After correction: plaqs " << tmp.plaquette << " " << metadata.plaquette << std::endl;
 | 
			
		||||
	assert(fabs(tmp.plaquette -metadata.plaquette ) < 1.0e-5 );
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      cfg_loaded=true;
 | 
			
		||||
      break;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  if(!cfg_loaded)
 | 
			
		||||
    SU<Nc>::HotConfiguration(RNG4, Umu_d);
 | 
			
		||||
 | 
			
		||||
  LatticeGaugeFieldF Umu_f(UGrid_f);
 | 
			
		||||
  precisionChange(Umu_f, Umu_d);
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt() << "   Ls: " << Ls << std::endl;
 | 
			
		||||
 | 
			
		||||
  RealD mass = 0.01;
 | 
			
		||||
  RealD M5 = 1.8;
 | 
			
		||||
  SpeciesD Ddwf_d(Umu_d, *FGrid_d, *FrbGrid_d, *UGrid_d, *UrbGrid_d, mass, M5, params);
 | 
			
		||||
  SpeciesF Ddwf_f(Umu_f, *FGrid_f, *FrbGrid_f, *UGrid_f, *UrbGrid_f, mass, M5, params);
 | 
			
		||||
 | 
			
		||||
  FermionFieldD src_o_d(FrbGrid_d);
 | 
			
		||||
  pickCheckerboard(Odd, src_o_d, src_d);
 | 
			
		||||
 | 
			
		||||
  SchurDiagMooeeOperator<SpeciesD, FermionFieldD> HermOpEO_d(Ddwf_d);
 | 
			
		||||
  SchurDiagMooeeOperator<SpeciesF, FermionFieldF> HermOpEO_f(Ddwf_f);
 | 
			
		||||
 | 
			
		||||
  AlgRemez remez(1e-4, 64, 50);
 | 
			
		||||
  int order = 15;
 | 
			
		||||
  remez.generateApprox(order, 1, 2); //sqrt
 | 
			
		||||
 | 
			
		||||
  MultiShiftFunction shifts(remez, 1e-10, false);
 | 
			
		||||
 | 
			
		||||
  int relup_freq = 50;
 | 
			
		||||
  double t1=usecond();
 | 
			
		||||
  ConjugateGradientMultiShiftMixedPrec<FermionFieldD,FermionFieldF> mcg(10000, shifts, FrbGrid_f, HermOpEO_f, relup_freq);
 | 
			
		||||
 | 
			
		||||
  std::vector<FermionFieldD> results_o_d(order, FrbGrid_d);
 | 
			
		||||
  mcg(HermOpEO_d, src_o_d, results_o_d);
 | 
			
		||||
  double t2=usecond();
 | 
			
		||||
 | 
			
		||||
  //Crosscheck double and mixed prec results
 | 
			
		||||
  ConjugateGradientMultiShift<FermionFieldD> dmcg(10000, shifts);
 | 
			
		||||
  std::vector<FermionFieldD> results_o_d_2(order, FrbGrid_d);
 | 
			
		||||
  dmcg(HermOpEO_d, src_o_d, results_o_d_2);
 | 
			
		||||
  double t3=usecond();
 | 
			
		||||
 | 
			
		||||
  std::cout << GridLogMessage << "Comparison of mixed prec results to double prec results |mixed - double|^2 :" << std::endl;
 | 
			
		||||
  FermionFieldD tmp(FrbGrid_d);
 | 
			
		||||
  for(int i=0;i<order;i++){
 | 
			
		||||
    RealD ndiff = axpy_norm(tmp, -1., results_o_d[i], results_o_d_2[i]);
 | 
			
		||||
    std::cout << i << " " << ndiff << std::endl;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  std::cout<<GridLogMessage << "Mixed precision algorithm: Total usec    =   "<< (t2-t1)<<std::endl;
 | 
			
		||||
  std::cout<<GridLogMessage << "Double precision algorithm: Total usec    =   "<< (t3-t2)<<std::endl;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (int argc, char ** argv)
 | 
			
		||||
{
 | 
			
		||||
  Grid_init(&argc, &argv);
 | 
			
		||||
 | 
			
		||||
  bool gparity = false;
 | 
			
		||||
  int gpdir;
 | 
			
		||||
 | 
			
		||||
  for(int i=1;i<argc;i++){
 | 
			
		||||
    std::string arg(argv[i]);
 | 
			
		||||
    if(arg == "--Gparity"){
 | 
			
		||||
      assert(i!=argc-1);
 | 
			
		||||
      gpdir = std::stoi(argv[i+1]);
 | 
			
		||||
      assert(gpdir >= 0 && gpdir <= 2); //spatial!
 | 
			
		||||
      gparity = true;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if(gparity){
 | 
			
		||||
    std::cout << "Running test with G-parity BCs in " << gpdir << " direction" << std::endl;
 | 
			
		||||
    GparityWilsonImplParams params;
 | 
			
		||||
    params.twists[gpdir] = 1;
 | 
			
		||||
    
 | 
			
		||||
    std::vector<int> conj_dirs(Nd,0);
 | 
			
		||||
    conj_dirs[gpdir] = 1;
 | 
			
		||||
    ConjugateGimplD::setDirections(conj_dirs);
 | 
			
		||||
 | 
			
		||||
    run_test<GparityDomainWallFermionD, GparityDomainWallFermionF, ConjugateGaugeStatistics>(argc,argv,params);
 | 
			
		||||
  }else{
 | 
			
		||||
    std::cout << "Running test with periodic BCs" << std::endl;
 | 
			
		||||
    WilsonImplParams params;
 | 
			
		||||
    run_test<DomainWallFermionD, DomainWallFermionF, PeriodicGaugeStatistics>(argc,argv,params);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Grid_finalize();
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user