1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-19 16:55:37 +01:00

Rework/global edit to enforce type templating of fermion operators.

Allows multi-precision work and paves the way for alternate BC's and such like
allowing for example G-parity which is important for K pipi programme.
In particular, can drive an extra flavour index into the fermion fields
using template types.
This commit is contained in:
Peter Boyle 2015-08-10 20:47:44 +01:00
parent a01aa156b9
commit 84a66476ab
65 changed files with 1935 additions and 1579 deletions

View File

@ -79,7 +79,7 @@ int main (int argc, char ** argv)
RealD mass=0.1;
RealD M5 =1.8;
DomainWallFermion Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
std::cout<<GridLogMessage << "Calling Dw"<<std::endl;
int ncall=10;

View File

@ -87,7 +87,7 @@ int main (int argc, char ** argv)
}
ref = -0.5*ref;
RealD mass=0.1;
WilsonFermion Dw(Umu,Grid,RBGrid,mass);
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
std::cout<<GridLogMessage << "Calling Dw"<<std::endl;
int ncall=10000;

View File

@ -177,8 +177,7 @@ void Grid_init(int *argc,char ***argv)
Grid_quiesce_nodes();
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--dslash-opt") ){
WilsonFermion::HandOptDslash=1;
WilsonFermion5D::HandOptDslash=1;
WilsonFermionStatic::HandOptDslash=1;
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--lebesgue") ){
LebesgueOrder::UseLebesgueOrder=1;

View File

@ -19,6 +19,7 @@ namespace QCD {
static const int Nd=4;
static const int Nhs=2; // half spinor
static const int Nds=8; // double stored gauge field
static const int Ngp=2; // gparity index range
//////////////////////////////////////////////////////////////////////////////
// QCD iMatrix types
@ -27,7 +28,16 @@ namespace QCD {
static const int ColourIndex = 2;
static const int SpinIndex = 1;
static const int LorentzIndex= 0;
// Useful traits is this a spin index
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
const int SpinorIndex = 2;
template<typename T> struct isSpinor {
static const bool value = (SpinorIndex==T::TensorLevel);
};
template <typename T> using IfSpinor = Invoke<std::enable_if<isSpinor<T>::value,int> > ;
template <typename T> using IfNotSpinor = Invoke<std::enable_if<!isSpinor<T>::value,int> > ;
// ChrisK very keen to add extra space for Gparity doubling.
//
@ -49,6 +59,10 @@ namespace QCD {
template<typename vtype> using iHalfSpinVector = iScalar<iVector<iScalar<vtype>, Nhs> >;
template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVector<vtype, Nc>, Nhs> >;
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
// Spin matrix
typedef iSpinMatrix<Complex > SpinMatrix;
typedef iSpinMatrix<ComplexF > SpinMatrixF;

View File

@ -17,9 +17,6 @@
////////////////////////////////////////////
#include <qcd/action/ActionBase.h>
#include <qcd/action/fermion/FermionOperator.h>
////////////////////////////////////////////
// Gauge Actions
////////////////////////////////////////////
@ -32,58 +29,118 @@
#include <qcd/action/fermion/WilsonCompressor.h> //used by all wilson type fermions
#include <qcd/action/fermion/WilsonKernels.h> //used by all wilson type fermions
////////////////////////////////////////////////////////////////////////////////////////////////////
// Explicit explicit template instantiation is still required in the .cc files
//
// - CayleyFermion5D.cc
// - PartialFractionFermion5D.cc
// - WilsonFermion5D.cc
// - WilsonKernelsHand.cc
// - ContinuedFractionFermion5D.cc
// - WilsonFermion.cc
// - WilsonKernels.cc
//
// The explicit instantiation is only avoidable if we move this source to headers and end up with include/parse/recompile
// for EVERY .cc file. This define centralises the list and restores global push of impl cases
////////////////////////////////////////////////////////////////////////////////////////////////////
#define FermOpTemplateInstantiate(A) \
template class A<WilsonImplF>; \
template class A<WilsonImplD>;
////////////////////////////////////////////
// 4D formulations
// Fermion operators / actions
////////////////////////////////////////////
#include <qcd/action/fermion/WilsonFermion.h>
#include <qcd/action/fermion/FermionOperator.h>
#include <qcd/action/fermion/WilsonFermion.h> // 4d wilson like
//#include <qcd/action/fermion/CloverFermion.h>
////////////////////////////////////////////
// 5D formulations...
////////////////////////////////////////////
#include <qcd/action/fermion/WilsonFermion5D.h> // used by all 5d overlap types
//////////
// Cayley
//////////
#include <qcd/action/fermion/CayleyFermion5D.h>
#include <qcd/action/fermion/WilsonFermion5D.h> // 5d base used by all 5d overlap types
#include <qcd/action/fermion/CayleyFermion5D.h> // Cayley types
#include <qcd/action/fermion/DomainWallFermion.h>
#include <qcd/action/fermion/DomainWallFermion.h>
#include <qcd/action/fermion/MobiusFermion.h>
#include <qcd/action/fermion/ScaledShamirFermion.h>
#include <qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h>
#include <qcd/action/fermion/MobiusZolotarevFermion.h>
#include <qcd/action/fermion/ShamirZolotarevFermion.h>
#include <qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h>
#include <qcd/action/fermion/OverlapWilsonCayleyZolotarevFermion.h>
//////////////////////
// Continued fraction
//////////////////////
#include <qcd/action/fermion/ContinuedFractionFermion5D.h>
#include <qcd/action/fermion/OverlapWilsonContfracTanhFermion.h>
#include <qcd/action/fermion/OverlapWilsonContfracZolotarevFermion.h>
#include <qcd/action/fermion/ContinuedFractionFermion5D.h> // Continued fraction
#include <qcd/action/fermion/OverlapWilsonContFracTanhFermion.h>
#include <qcd/action/fermion/OverlapWilsonContFracZolotarevFermion.h>
//////////////////////
// Partial fraction
//////////////////////
#include <qcd/action/fermion/PartialFractionFermion5D.h>
#include <qcd/action/fermion/PartialFractionFermion5D.h> // Partial fraction
#include <qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h>
#include <qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h>
////////////////////////////////////////////////////////////////////////////////////////////////////
// More maintainable to maintain the following typedef list centrally, as more "impl" targets
// are added, (e.g. extension for gparity, half precision project in comms etc..)
////////////////////////////////////////////////////////////////////////////////////////////////////
// Cayley 5d
namespace Grid {
namespace QCD {
typedef WilsonFermion<WilsonImplR> WilsonFermionR;
typedef WilsonFermion<WilsonImplF> WilsonFermionF;
typedef WilsonFermion<WilsonImplD> WilsonFermionD;
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
typedef DomainWallFermion<WilsonImplD> DomainWallFermionD;
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
typedef MobiusFermion<WilsonImplF> MobiusFermionF;
typedef MobiusFermion<WilsonImplD> MobiusFermionD;
typedef ScaledShamirFermion<WilsonImplR> ScaledShamirFermionR;
typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF;
typedef ScaledShamirFermion<WilsonImplD> ScaledShamirFermionD;
typedef MobiusZolotarevFermion<WilsonImplR> MobiusZolotarevFermionR;
typedef MobiusZolotarevFermion<WilsonImplF> MobiusZolotarevFermionF;
typedef MobiusZolotarevFermion<WilsonImplD> MobiusZolotarevFermionD;
typedef ShamirZolotarevFermion<WilsonImplR> ShamirZolotarevFermionR;
typedef ShamirZolotarevFermion<WilsonImplF> ShamirZolotarevFermionF;
typedef ShamirZolotarevFermion<WilsonImplD> ShamirZolotarevFermionD;
typedef OverlapWilsonCayleyTanhFermion<WilsonImplR> OverlapWilsonCayleyTanhFermionR;
typedef OverlapWilsonCayleyTanhFermion<WilsonImplF> OverlapWilsonCayleyTanhFermionF;
typedef OverlapWilsonCayleyTanhFermion<WilsonImplD> OverlapWilsonCayleyTanhFermionD;
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplR> OverlapWilsonCayleyZolotarevFermionR;
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplF> OverlapWilsonCayleyZolotarevFermionF;
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD> OverlapWilsonCayleyZolotarevFermionD;
// Continued fraction
typedef OverlapWilsonContFracTanhFermion<WilsonImplR> OverlapWilsonContFracTanhFermionR;
typedef OverlapWilsonContFracTanhFermion<WilsonImplF> OverlapWilsonContFracTanhFermionF;
typedef OverlapWilsonContFracTanhFermion<WilsonImplD> OverlapWilsonContFracTanhFermionD;
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplR> OverlapWilsonContFracZolotarevFermionR;
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplF> OverlapWilsonContFracZolotarevFermionF;
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD> OverlapWilsonContFracZolotarevFermionD;
// Partial fraction
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplR> OverlapWilsonPartialFractionTanhFermionR;
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplF> OverlapWilsonPartialFractionTanhFermionF;
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD> OverlapWilsonPartialFractionTanhFermionD;
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplR> OverlapWilsonPartialFractionZolotarevFermionR;
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplF> OverlapWilsonPartialFractionZolotarevFermionF;
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD> OverlapWilsonPartialFractionZolotarevFermionD;
}}
///////////////////////////////////////////////////////////////////////////////
// G5 herm -- this has to live in QCD since dirac matrix is not in the broader sector of code
///////////////////////////////////////////////////////////////////////////////
#include <qcd/action/fermion/g5HermitianLinop.h>
////////////////////////////////////////
// Pseudo fermion combinations
// Pseudo fermion combinations for HMC
////////////////////////////////////////
#include <qcd/action/pseudofermion/TwoFlavour.h>
#include <qcd/action/pseudofermion/TwoFlavourEvenOdd.h>
#endif

View File

@ -2,13 +2,14 @@
namespace Grid {
namespace QCD {
CayleyFermion5D::CayleyFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5) :
WilsonFermion5D(_Umu,
template<class Impl>
CayleyFermion5D<Impl>::CayleyFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5) :
WilsonFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
@ -17,9 +18,11 @@ namespace QCD {
{
}
void CayleyFermion5D::Meooe5D (const LatticeFermion &psi, LatticeFermion &Din)
template<class Impl>
void CayleyFermion5D<Impl>::Meooe5D (const FermionField &psi, FermionField &Din)
{
// Assemble Din
int Ls=this->Ls;
for(int s=0;s<Ls;s++){
if ( s==0 ) {
// Din = bs psi[s] + cs[s] psi[s+1}
@ -35,8 +38,10 @@ namespace QCD {
}
}
}
void CayleyFermion5D::MeooeDag5D (const LatticeFermion &psi, LatticeFermion &Din)
template<class Impl>
void CayleyFermion5D<Impl>::MeooeDag5D (const FermionField &psi, FermionField &Din)
{
int Ls=this->Ls;
for(int s=0;s<Ls;s++){
if ( s==0 ) {
axpby_ssp_pplus (Din,bs[s],psi,cs[s+1],psi,s,s+1);
@ -52,9 +57,12 @@ namespace QCD {
}
// override multiply
RealD CayleyFermion5D::M (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
RealD CayleyFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
{
LatticeFermion Din(psi._grid);
int Ls=this->Ls;
FermionField Din(psi._grid);
// Assemble Din
/*
@ -75,7 +83,7 @@ namespace QCD {
*/
Meooe5D(psi,Din);
DW(Din,chi,DaggerNo);
this->DW(Din,chi,DaggerNo);
// ((b D_W + D_w hop terms +1) on s-diag
axpby(chi,1.0,1.0,chi,psi);
@ -95,18 +103,20 @@ namespace QCD {
return norm2(chi);
}
RealD CayleyFermion5D::Mdag (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
RealD CayleyFermion5D<Impl>::Mdag (const FermionField &psi, FermionField &chi)
{
// Under adjoint
//D1+ D1- P- -> D1+^dag P+ D2-^dag
//D2- P+ D2+ P-D1-^dag D2+dag
LatticeFermion Din(psi._grid);
FermionField Din(psi._grid);
// Apply Dw
DW(psi,Din,DaggerYes);
this->DW(psi,Din,DaggerYes);
Meooe5D(Din,chi);
int Ls=this->Ls;
for(int s=0;s<Ls;s++){
// Collect the terms in DW
@ -145,13 +155,15 @@ namespace QCD {
}
// half checkerboard operations
void CayleyFermion5D::Meooe (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
void CayleyFermion5D<Impl>::Meooe (const FermionField &psi, FermionField &chi)
{
LatticeFermion tmp(psi._grid);
FermionField tmp(psi._grid);
// Assemble the 5d matrix
Meooe5D(psi,tmp);
std::cout << "Meooe Test replacement norm2 tmp = " <<norm2(tmp)<<std::endl;
int Ls=this->Ls;
for(int s=0;s<Ls;s++){
if ( s==0 ) {
// tmp = bs psi[s] + cs[s] psi[s+1}
@ -169,26 +181,28 @@ namespace QCD {
std::cout << "Meooe Test replacement norm2 tmp old = " <<norm2(tmp)<<std::endl;
// Apply 4d dslash
if ( psi.checkerboard == Odd ) {
DhopEO(tmp,chi,DaggerNo);
this->DhopEO(tmp,chi,DaggerNo);
} else {
DhopOE(tmp,chi,DaggerNo);
this->DhopOE(tmp,chi,DaggerNo);
}
}
void CayleyFermion5D::MeooeDag (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
void CayleyFermion5D<Impl>::MeooeDag (const FermionField &psi, FermionField &chi)
{
LatticeFermion tmp(psi._grid);
FermionField tmp(psi._grid);
// Apply 4d dslash
if ( psi.checkerboard == Odd ) {
DhopEO(psi,tmp,DaggerYes);
this->DhopEO(psi,tmp,DaggerYes);
} else {
DhopOE(psi,tmp,DaggerYes);
this->DhopOE(psi,tmp,DaggerYes);
}
Meooe5D(tmp,chi);
std::cout << "Meooe Test replacement norm2 chi new = " <<norm2(chi)<<std::endl;
// Assemble the 5d matrix
int Ls=this->Ls;
for(int s=0;s<Ls;s++){
if ( s==0 ) {
axpby_ssp_pplus(chi,beo[s],tmp, -ceo[s+1] ,tmp,s,s+1);
@ -205,8 +219,10 @@ namespace QCD {
}
void CayleyFermion5D::Mooee (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
void CayleyFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
for (int s=0;s<Ls;s++){
if ( s==0 ) {
axpby_ssp_pminus(chi,bee[s],psi ,-cee[s],psi,s,s+1);
@ -221,8 +237,10 @@ namespace QCD {
}
}
void CayleyFermion5D::Mdir (const LatticeFermion &psi, LatticeFermion &chi,int dir,int disp){
LatticeFermion tmp(psi._grid);
template<class Impl>
void CayleyFermion5D<Impl>::Mdir (const FermionField &psi, FermionField &chi,int dir,int disp){
int Ls=this->Ls;
FermionField tmp(psi._grid);
// Assemble the 5d matrix
for(int s=0;s<Ls;s++){
if ( s==0 ) {
@ -239,11 +257,13 @@ namespace QCD {
}
}
// Apply 4d dslash fragment
DhopDir(tmp,chi,dir,disp);
this->DhopDir(tmp,chi,dir,disp);
}
void CayleyFermion5D::MooeeDag (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
void CayleyFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
for (int s=0;s<Ls;s++){
// Assemble the 5d matrix
if ( s==0 ) {
@ -259,8 +279,10 @@ namespace QCD {
}
}
void CayleyFermion5D::MooeeInv (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
// Apply (L^{\prime})^{-1}
axpby_ssp (chi,1.0,psi, 0.0,psi,0,0); // chi[0]=psi[0]
for (int s=1;s<Ls;s++){
@ -283,8 +305,10 @@ namespace QCD {
}
}
void CayleyFermion5D::MooeeInvDag (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
void CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &chi)
{
int Ls=this->Ls;
// Apply (U^{\prime})^{-dagger}
axpby_ssp (chi,1.0,psi, 0.0,psi,0,0); // chi[0]=psi[0]
for (int s=1;s<Ls;s++){
@ -307,58 +331,64 @@ namespace QCD {
}
// force terms; five routines; default to Dhop on diagonal
void CayleyFermion5D::MDeriv (LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag)
template<class Impl>
void CayleyFermion5D<Impl>::MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
{
LatticeFermion Din(V._grid);
FermionField Din(V._grid);
if ( dag == DaggerNo ) {
// U d/du [D_w D5] V = U d/du DW D5 V
Meooe5D(V,Din);
DhopDeriv(mat,U,Din,dag);
this->DhopDeriv(mat,U,Din,dag);
} else {
// U d/du [D_w D5]^dag V = U D5^dag d/du DW^dag Y // implicit adj on U in call
Meooe5D(U,Din);
DhopDeriv(mat,Din,V,dag);
this->DhopDeriv(mat,Din,V,dag);
}
};
void CayleyFermion5D::MoeDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag)
template<class Impl>
void CayleyFermion5D<Impl>::MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
{
LatticeFermion Din(V._grid);
FermionField Din(V._grid);
if ( dag == DaggerNo ) {
// U d/du [D_w D5] V = U d/du DW D5 V
Meooe5D(V,Din);
DhopDerivOE(mat,U,Din,dag);
this->DhopDerivOE(mat,U,Din,dag);
} else {
// U d/du [D_w D5]^dag V = U D5^dag d/du DW^dag Y // implicit adj on U in call
Meooe5D(U,Din);
DhopDerivOE(mat,Din,V,dag);
this->DhopDerivOE(mat,Din,V,dag);
}
};
void CayleyFermion5D::MeoDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag)
template<class Impl>
void CayleyFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
{
LatticeFermion Din(V._grid);
FermionField Din(V._grid);
if ( dag == DaggerNo ) {
// U d/du [D_w D5] V = U d/du DW D5 V
Meooe5D(V,Din);
DhopDerivEO(mat,U,Din,dag);
this->DhopDerivEO(mat,U,Din,dag);
} else {
// U d/du [D_w D5]^dag V = U D5^dag d/du DW^dag Y // implicit adj on U in call
Meooe5D(U,Din);
DhopDerivEO(mat,Din,V,dag);
this->DhopDerivEO(mat,Din,V,dag);
}
};
// Tanh
void CayleyFermion5D::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c)
template<class Impl>
void CayleyFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c)
{
SetCoefficientsZolotarev(1.0,zdata,b,c);
}
//Zolo
void CayleyFermion5D::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata,RealD b,RealD c)
template<class Impl>
void CayleyFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata,RealD b,RealD c)
{
int Ls=this->Ls;
///////////////////////////////////////////////////////////
// The Cayley coeffs (unprec)
@ -408,8 +438,8 @@ namespace QCD {
ceo.resize(Ls);
for(int i=0;i<Ls;i++){
bee[i]=as[i]*(bs[i]*(4.0-M5) +1.0);
cee[i]=as[i]*(1.0-cs[i]*(4.0-M5));
bee[i]=as[i]*(bs[i]*(4.0-this->M5) +1.0);
cee[i]=as[i]*(1.0-cs[i]*(4.0-this->M5));
beo[i]=as[i]*bs[i];
ceo[i]=-as[i]*cs[i];
}
@ -462,6 +492,8 @@ namespace QCD {
}
}
FermOpTemplateInstantiate(CayleyFermion5D);
}}

View File

@ -5,33 +5,36 @@ namespace Grid {
namespace QCD {
class CayleyFermion5D : public WilsonFermion5D
template<class Impl>
class CayleyFermion5D : public WilsonFermion5D<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
virtual RealD M (const FermionField &in, FermionField &out);
virtual RealD Mdag (const FermionField &in, FermionField &out);
// half checkerboard operations
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out);
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Meooe (const FermionField &in, FermionField &out);
virtual void MeooeDag (const FermionField &in, FermionField &out);
virtual void Mooee (const FermionField &in, FermionField &out);
virtual void MooeeDag (const FermionField &in, FermionField &out);
virtual void MooeeInv (const FermionField &in, FermionField &out);
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
virtual void Instantiatable(void)=0;
// force terms; five routines; default to Dhop on diagonal
virtual void MDeriv (LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
virtual void MoeDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
virtual void MeoDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
// Efficient support for multigrid coarsening
virtual void Mdir (const LatticeFermion &in, LatticeFermion &out,int dir,int disp);
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
void Meooe5D (const LatticeFermion &in, LatticeFermion &out);
void MeooeDag5D (const LatticeFermion &in, LatticeFermion &out);
void Meooe5D (const FermionField &in, FermionField &out);
void MeooeDag5D (const FermionField &in, FermionField &out);
// protected:
RealD mass;
@ -56,7 +59,7 @@ namespace Grid {
std::vector<RealD> dee;
// Constructors
CayleyFermion5D(LatticeGaugeField &_Umu,
CayleyFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,

View File

@ -3,11 +3,13 @@
namespace Grid {
namespace QCD {
void ContinuedFractionFermion5D::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale)
template<class Impl>
void ContinuedFractionFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale)
{
SetCoefficientsZolotarev(1.0/scale,zdata);
}
void ContinuedFractionFermion5D::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata)
template<class Impl>
void ContinuedFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata)
{
// How to check Ls matches??
// std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
@ -16,7 +18,7 @@ namespace Grid {
// std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
// std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
// std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
int Ls = this->Ls;
assert(zdata->db==Ls);// Beta has Ls coeffs
R=(1+this->mass)/(1-this->mass);
@ -39,7 +41,7 @@ namespace Grid {
ZoloHiInv =1.0/zolo_hi;
dw_diag = (4.0-M5)*ZoloHiInv;
dw_diag = (4.0-this->M5)*ZoloHiInv;
See.resize(Ls);
Aee.resize(Ls);
@ -61,11 +63,14 @@ namespace Grid {
RealD ContinuedFractionFermion5D::M (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
RealD ContinuedFractionFermion5D<Impl>::M (const FermionField &psi, FermionField &chi)
{
LatticeFermion D(psi._grid);
int Ls = this->Ls;
DW(psi,D,DaggerNo);
FermionField D(psi._grid);
this->DW(psi,D,DaggerNo);
int sign=1;
for(int s=0;s<Ls;s++){
@ -83,15 +88,20 @@ namespace Grid {
}
return norm2(chi);
}
RealD ContinuedFractionFermion5D::Mdag (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
RealD ContinuedFractionFermion5D<Impl>::Mdag (const FermionField &psi, FermionField &chi)
{
// This matrix is already hermitian. (g5 Dw) = Dw dag g5 = (g5 Dw)dag
// The rest of matrix is symmetric.
// Can ignore "dag"
return M(psi,chi);
}
void ContinuedFractionFermion5D::Mdir (const LatticeFermion &psi, LatticeFermion &chi,int dir,int disp){
DhopDir(psi,chi,dir,disp); // Dslash on diagonal. g5 Dslash is hermitian
template<class Impl>
void ContinuedFractionFermion5D<Impl>::Mdir (const FermionField &psi, FermionField &chi,int dir,int disp){
int Ls = this->Ls;
this->DhopDir(psi,chi,dir,disp); // Dslash on diagonal. g5 Dslash is hermitian
int sign=1;
for(int s=0;s<Ls;s++){
if ( s==(Ls-1) ){
@ -102,13 +112,16 @@ namespace Grid {
sign=-sign;
}
}
void ContinuedFractionFermion5D::Meooe (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
void ContinuedFractionFermion5D<Impl>::Meooe (const FermionField &psi, FermionField &chi)
{
int Ls = this->Ls;
// Apply 4d dslash
if ( psi.checkerboard == Odd ) {
DhopEO(psi,chi,DaggerNo); // Dslash on diagonal. g5 Dslash is hermitian
this->DhopEO(psi,chi,DaggerNo); // Dslash on diagonal. g5 Dslash is hermitian
} else {
DhopOE(psi,chi,DaggerNo); // Dslash on diagonal. g5 Dslash is hermitian
this->DhopOE(psi,chi,DaggerNo); // Dslash on diagonal. g5 Dslash is hermitian
}
int sign=1;
@ -121,12 +134,16 @@ namespace Grid {
sign=-sign;
}
}
void ContinuedFractionFermion5D::MeooeDag (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
void ContinuedFractionFermion5D<Impl>::MeooeDag (const FermionField &psi, FermionField &chi)
{
Meooe(psi,chi);
this->Meooe(psi,chi);
}
void ContinuedFractionFermion5D::Mooee (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
void ContinuedFractionFermion5D<Impl>::Mooee (const FermionField &psi, FermionField &chi)
{
int Ls = this->Ls;
int sign=1;
for(int s=0;s<Ls;s++){
if ( s==0 ) {
@ -144,12 +161,16 @@ namespace Grid {
}
}
void ContinuedFractionFermion5D::MooeeDag (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
void ContinuedFractionFermion5D<Impl>::MooeeDag (const FermionField &psi, FermionField &chi)
{
Mooee(psi,chi);
this->Mooee(psi,chi);
}
void ContinuedFractionFermion5D::MooeeInv (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
void ContinuedFractionFermion5D<Impl>::MooeeInv (const FermionField &psi, FermionField &chi)
{
int Ls = this->Ls;
// Apply Linv
axpby_ssp(chi,1.0/cc_d[0],psi,0.0,psi,0,0);
for(int s=1;s<Ls;s++){
@ -165,15 +186,19 @@ namespace Grid {
axpbg5y_ssp(chi,1.0/cc_d[s],chi,-1.0*cc_d[s+1]/See[s]/cc_d[s],chi,s,s+1);
}
}
void ContinuedFractionFermion5D::MooeeInvDag (const LatticeFermion &psi, LatticeFermion &chi)
template<class Impl>
void ContinuedFractionFermion5D<Impl>::MooeeInvDag (const FermionField &psi, FermionField &chi)
{
MooeeInv(psi,chi);
this->MooeeInv(psi,chi);
}
// force terms; five routines; default to Dhop on diagonal
void ContinuedFractionFermion5D::MDeriv (LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag)
template<class Impl>
void ContinuedFractionFermion5D<Impl>::MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
{
LatticeFermion D(V._grid);
int Ls = this->Ls;
FermionField D(V._grid);
int sign=1;
for(int s=0;s<Ls;s++){
@ -184,11 +209,14 @@ namespace Grid {
}
sign=-sign;
}
DhopDeriv(mat,D,V,DaggerNo);
this->DhopDeriv(mat,D,V,DaggerNo);
};
void ContinuedFractionFermion5D::MoeDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag)
template<class Impl>
void ContinuedFractionFermion5D<Impl>::MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
{
LatticeFermion D(V._grid);
int Ls = this->Ls;
FermionField D(V._grid);
int sign=1;
for(int s=0;s<Ls;s++){
@ -199,11 +227,14 @@ namespace Grid {
}
sign=-sign;
}
DhopDerivOE(mat,D,V,DaggerNo);
this->DhopDerivOE(mat,D,V,DaggerNo);
};
void ContinuedFractionFermion5D::MeoDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag)
template<class Impl>
void ContinuedFractionFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
{
LatticeFermion D(V._grid);
int Ls = this->Ls;
FermionField D(V._grid);
int sign=1;
for(int s=0;s<Ls;s++){
@ -214,25 +245,29 @@ namespace Grid {
}
sign=-sign;
}
DhopDerivEO(mat,D,V,DaggerNo);
this->DhopDerivEO(mat,D,V,DaggerNo);
};
// Constructors
ContinuedFractionFermion5D::ContinuedFractionFermion5D(
LatticeGaugeField &_Umu,
template<class Impl>
ContinuedFractionFermion5D<Impl>::ContinuedFractionFermion5D(
GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5) :
WilsonFermion5D(_Umu,
WilsonFermion5D<Impl>(_Umu,
FiveDimGrid, FiveDimRedBlackGrid,
FourDimGrid, FourDimRedBlackGrid,M5),
mass(_mass)
{
int Ls = this->Ls;
assert((Ls&0x1)==1); // Odd Ls required
}
FermOpTemplateInstantiate(ContinuedFractionFermion5D);
}
}

View File

@ -5,35 +5,38 @@ namespace Grid {
namespace QCD {
class ContinuedFractionFermion5D : public WilsonFermion5D
template<class Impl>
class ContinuedFractionFermion5D : public WilsonFermion5D<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
virtual RealD M (const FermionField &in, FermionField &out);
virtual RealD Mdag (const FermionField &in, FermionField &out);
// half checkerboard operaions
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out);
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Meooe (const FermionField &in, FermionField &out);
virtual void MeooeDag (const FermionField &in, FermionField &out);
virtual void Mooee (const FermionField &in, FermionField &out);
virtual void MooeeDag (const FermionField &in, FermionField &out);
virtual void MooeeInv (const FermionField &in, FermionField &out);
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
// force terms; five routines; default to Dhop on diagonal
virtual void MDeriv (LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
virtual void MoeDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
virtual void MeoDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
// virtual void Instantiatable(void)=0;
virtual void Instantiatable(void) =0;
// Efficient support for multigrid coarsening
virtual void Mdir (const LatticeFermion &in, LatticeFermion &out,int dir,int disp);
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
// Constructors
ContinuedFractionFermion5D(LatticeGaugeField &_Umu,
ContinuedFractionFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,

View File

@ -7,24 +7,27 @@ namespace Grid {
namespace QCD {
class DomainWallFermion : public CayleyFermion5D
template<class Impl>
class DomainWallFermion : public CayleyFermion5D<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
virtual void Instantiatable(void) {};
// Constructors
DomainWallFermion(LatticeGaugeField &_Umu,
DomainWallFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5) :
CayleyFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
CayleyFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
RealD eps = 1.0;
@ -32,9 +35,9 @@ namespace Grid {
Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
assert(zdata->n==this->Ls);
std::cout<<GridLogMessage << "DomainWallFermion with Ls="<<Ls<<std::endl;
std::cout<<GridLogMessage << "DomainWallFermion with Ls="<<this->Ls<<std::endl;
// Call base setter
this->CayleyFermion5D::SetCoefficientsTanh(zdata,1.0,0.0);
this->SetCoefficientsTanh(zdata,1.0,0.0);
Approx::zolotarev_free(zdata);
}

View File

@ -5,15 +5,169 @@ namespace Grid {
namespace QCD {
////////////////////////////////////////////////////////////////
// Hardwire to four spinors, allow to select
// between gauge representation rank, and gparity/flavour index,
// and single/double precision.
////////////////////////////////////////////////////////////////
template<class S,int Nrepresentation=Nc>
class WilsonImpl {
public:
typedef S Simd;
template<typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Ns> >;
template<typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Nhs> >;
template<typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
template<typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd >;
template<typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds >;
typedef iImplSpinor <Simd> SiteSpinor;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplGaugeLink <Simd> SiteGaugeLink;
typedef iImplGaugeField<Simd> SiteGaugeField;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SiteGaugeLink> GaugeLinkField; // bit ugly naming; polarised gauge field, lorentz... all ugly
typedef Lattice<SiteGaugeField> GaugeField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef WilsonCompressor<SiteHalfSpinor,SiteSpinor> Compressor;
// provide the multiply by link that is differentiated between Gparity (with flavour index) and
// non-Gparity
static inline void multLink(SiteHalfSpinor &phi,const SiteDoubledGaugeField &U,const SiteHalfSpinor &chi,int mu){
mult(&phi(),&U(mu),&chi());
}
static inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
{
conformable(Uds._grid,GaugeGrid);
conformable(Umu._grid,GaugeGrid);
GaugeLinkField U(GaugeGrid);
for(int mu=0;mu<Nd;mu++){
U = PeekIndex<LorentzIndex>(Umu,mu);
PokeIndex<LorentzIndex>(Uds,U,mu);
U = adj(Cshift(U,mu,-1));
PokeIndex<LorentzIndex>(Uds,U,mu+4);
}
}
};
typedef WilsonImpl<vComplex,Nc> WilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF,Nc> WilsonImplF; // Float
typedef WilsonImpl<vComplexD,Nc> WilsonImplD; // Double
template<class S,int Nrepresentation=Nc>
class GparityWilsonImpl {
public:
typedef S Simd;
template<typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Ns>, Ngp >;
template<typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhs>, Ngp >;
template<typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd >;
template<typename vtype> using iImplGaugeLink = iScalar<iScalar<iScalar<iMatrix<vtype, Nrepresentation> > > >;
template<typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds >, Ngp >;
typedef iImplSpinor <Simd> SiteSpinor;
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
typedef iImplGaugeLink <Simd> SiteGaugeLink;
typedef iImplGaugeField<Simd> SiteGaugeField;
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
typedef Lattice<SiteSpinor> FermionField;
typedef Lattice<SiteGaugeLink> GaugeLinkField; // bit ugly naming; polarised gauge field, lorentz... all ugly
typedef Lattice<SiteGaugeField> GaugeField;
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
typedef GparityWilsonCompressor<SiteHalfSpinor,SiteSpinor> Compressor;
// provide the multiply by link that is differentiated between Gparity (with flavour index) and
// non-Gparity
static inline void multLink(SiteHalfSpinor &phi,const SiteDoubledGaugeField &U,const SiteHalfSpinor &chi,int mu){
for(int f=0;f<Ngp;f++){
mult(&phi(f),&U(f)(mu),&chi(f));
}
}
static inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
{
conformable(Uds._grid,GaugeGrid);
conformable(Umu._grid,GaugeGrid);
GaugeLinkField Utmp(GaugeGrid);
GaugeLinkField U(GaugeGrid);
GaugeLinkField Uconj(GaugeGrid);
Lattice<iScalar<vInteger> > coor(GaugeGrid);
std::vector<int> gpdirs({1,0,0,0});
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
U = PeekIndex<LorentzIndex>(Umu,mu);
Uconj = conj(U);
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
if ( gpdirs[mu] ) {
Uconj = where(coor==neglink,-Uconj,Uconj);
}
PARALLEL_FOR_LOOP
for(auto ss=U.begin();ss<U.end();ss++){
Uds[ss](0)(mu) = U[ss]();
Uds[ss](1)(mu) = Uconj[ss]();
}
U = adj(Cshift(U,mu,-1)); // correct except for spanning the boundary
Uconj = adj(Cshift(Uconj,mu,-1));
Utmp = where(coor==0,U,Uconj);
PARALLEL_FOR_LOOP
for(auto ss=U.begin();ss<U.end();ss++){
Uds[ss](1)(mu) = Utmp[ss]();
}
Utmp = where(coor==0,Uconj,U);
PARALLEL_FOR_LOOP
for(auto ss=U.begin();ss<U.end();ss++){
Uds[ss](0)(mu) = Utmp[ss]();
}
}
}
};
typedef WilsonImpl<vComplex,Nc> WilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF,Nc> WilsonImplF; // Float
typedef WilsonImpl<vComplexD,Nc> WilsonImplD; // Double
//////////////////////////////////////////////////////////////////////////////
// Four component fermions
// Should type template the vector and gauge types
// Think about multiple representations
//////////////////////////////////////////////////////////////////////////////
template<class FermionField,class GaugeField>
class FermionOperator : public CheckerBoardedSparseMatrixBase<FermionField>
template<class Impl>
class FermionOperator : public CheckerBoardedSparseMatrixBase<typename Impl::FermionField>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
@ -42,15 +196,15 @@ namespace Grid {
virtual void DhopDir(const FermionField &in, FermionField &out,int dir,int disp)=0; // implemented by WilsonFermion and WilsonFermion5D
// force terms; five routines; default to Dhop on diagonal
virtual void MDeriv (LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDeriv(mat,U,V,dag);};
virtual void MoeDeriv(LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivOE(mat,U,V,dag);};
virtual void MeoDeriv(LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivEO(mat,U,V,dag);};
virtual void MooDeriv(LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
virtual void MeeDeriv(LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDeriv(mat,U,V,dag);};
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivOE(mat,U,V,dag);};
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivEO(mat,U,V,dag);};
virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
virtual void MeeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
virtual void DhopDeriv (LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
virtual void DhopDerivEO(LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
virtual void DhopDerivOE(LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
virtual void Mdiag (const FermionField &in, FermionField &out) { Mooee(in,out);}; // Same as Mooee applied to both CB's
@ -65,4 +219,5 @@ namespace Grid {
}
}
#endif

View File

@ -7,13 +7,16 @@ namespace Grid {
namespace QCD {
class MobiusFermion : public CayleyFermion5D
template<class Impl>
class MobiusFermion : public CayleyFermion5D<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
virtual void Instantiatable(void) {};
// Constructors
MobiusFermion(LatticeGaugeField &_Umu,
MobiusFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
@ -21,7 +24,7 @@ namespace Grid {
RealD _mass,RealD _M5,
RealD b, RealD c) :
CayleyFermion5D(_Umu,
CayleyFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
@ -30,12 +33,12 @@ namespace Grid {
{
RealD eps = 1.0;
std::cout<<GridLogMessage << "MobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<Ls<<" Tanh approx"<<std::endl;
std::cout<<GridLogMessage << "MobiusFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" Tanh approx"<<std::endl;
Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
assert(zdata->n==this->Ls);
// Call base setter
this->CayleyFermion5D::SetCoefficientsTanh(zdata,b,c);
this->SetCoefficientsTanh(zdata,b,c);
Approx::zolotarev_free(zdata);

View File

@ -7,13 +7,16 @@ namespace Grid {
namespace QCD {
class MobiusZolotarevFermion : public CayleyFermion5D
template<class Impl>
class MobiusZolotarevFermion : public CayleyFermion5D<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
virtual void Instantiatable(void) {};
// Constructors
MobiusZolotarevFermion(LatticeGaugeField &_Umu,
MobiusZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
@ -22,7 +25,7 @@ namespace Grid {
RealD b, RealD c,
RealD lo, RealD hi) :
CayleyFermion5D(_Umu,
CayleyFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
@ -34,10 +37,10 @@ namespace Grid {
Approx::zolotarev_data *zdata = Approx::zolotarev(eps,this->Ls,0);
assert(zdata->n==this->Ls);
std::cout<<GridLogMessage << "MobiusZolotarevFermion (b="<<b<<",c="<<c<<") with Ls= "<<Ls<<" Zolotarev range ["<<lo<<","<<hi<<"]"<<std::endl;
std::cout<<GridLogMessage << "MobiusZolotarevFermion (b="<<b<<",c="<<c<<") with Ls= "<<this->Ls<<" Zolotarev range ["<<lo<<","<<hi<<"]"<<std::endl;
// Call base setter
this->CayleyFermion5D::SetCoefficientsZolotarev(hi,zdata,b,c);
this->SetCoefficientsZolotarev(hi,zdata,b,c);
Approx::zolotarev_free(zdata);
}

View File

@ -7,12 +7,15 @@ namespace Grid {
namespace QCD {
class OverlapWilsonCayleyTanhFermion : public MobiusFermion
template<class Impl>
class OverlapWilsonCayleyTanhFermion : public MobiusFermion<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
// Constructors
OverlapWilsonCayleyTanhFermion(LatticeGaugeField &_Umu,
OverlapWilsonCayleyTanhFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
@ -21,11 +24,11 @@ namespace Grid {
RealD scale) :
// b+c=scale, b-c = 0 <=> b =c = scale/2
MobiusFermion(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,0.5*scale,0.5*scale)
MobiusFermion<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5,0.5*scale,0.5*scale)
{
}
};

View File

@ -7,13 +7,16 @@ namespace Grid {
namespace QCD {
class OverlapWilsonCayleyZolotarevFermion : public MobiusZolotarevFermion
template<class Impl>
class OverlapWilsonCayleyZolotarevFermion : public MobiusZolotarevFermion<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
// Constructors
OverlapWilsonCayleyZolotarevFermion(LatticeGaugeField &_Umu,
OverlapWilsonCayleyZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
@ -21,7 +24,7 @@ namespace Grid {
RealD _mass,RealD _M5,
RealD lo, RealD hi) :
// b+c=1.0, b-c = 0 <=> b =c = 1/2
MobiusZolotarevFermion(_Umu,
MobiusZolotarevFermion<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,

View File

@ -7,13 +7,16 @@ namespace Grid {
namespace QCD {
class OverlapWilsonContFracTanhFermion : public ContinuedFractionFermion5D
template<class Impl>
class OverlapWilsonContFracTanhFermion : public ContinuedFractionFermion5D<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
virtual void Instantiatable(void){};
// Constructors
OverlapWilsonContFracTanhFermion(LatticeGaugeField &_Umu,
OverlapWilsonContFracTanhFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
@ -22,16 +25,16 @@ namespace Grid {
RealD scale) :
// b+c=scale, b-c = 0 <=> b =c = scale/2
ContinuedFractionFermion5D(_Umu,
ContinuedFractionFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
assert((Ls&0x1)==1); // Odd Ls required
int nrational=Ls-1;// Even rational order
assert((this->Ls&0x1)==1); // Odd Ls required
int nrational=this->Ls-1;// Even rational order
Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);// eps is ignored for higham
SetCoefficientsTanh(zdata,scale);
this->SetCoefficientsTanh(zdata,scale);
Approx::zolotarev_free(zdata);
}
};

View File

@ -7,13 +7,16 @@ namespace Grid {
namespace QCD {
class OverlapWilsonContFracZolotarevFermion : public ContinuedFractionFermion5D
template<class Impl>
class OverlapWilsonContFracZolotarevFermion : public ContinuedFractionFermion5D<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
virtual void Instantiatable(void){};
// Constructors
OverlapWilsonContFracZolotarevFermion(LatticeGaugeField &_Umu,
OverlapWilsonContFracZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
@ -22,19 +25,19 @@ namespace Grid {
RealD lo,RealD hi):
// b+c=scale, b-c = 0 <=> b =c = scale/2
ContinuedFractionFermion5D(_Umu,
ContinuedFractionFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
assert((Ls&0x1)==1); // Odd Ls required
assert((this->Ls&0x1)==1); // Odd Ls required
int nrational=Ls;// Odd rational order
int nrational=this->Ls;// Odd rational order
RealD eps = lo/hi;
Approx::zolotarev_data *zdata = Approx::zolotarev(eps,nrational,0);
SetCoefficientsZolotarev(hi,zdata);
this->SetCoefficientsZolotarev(hi,zdata);
Approx::zolotarev_free(zdata);
}

View File

@ -7,13 +7,16 @@ namespace Grid {
namespace QCD {
class OverlapWilsonPartialFractionTanhFermion : public PartialFractionFermion5D
template<class Impl>
class OverlapWilsonPartialFractionTanhFermion : public PartialFractionFermion5D<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
virtual void Instantiatable(void){};
// Constructors
OverlapWilsonPartialFractionTanhFermion(LatticeGaugeField &_Umu,
OverlapWilsonPartialFractionTanhFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
@ -22,16 +25,16 @@ namespace Grid {
RealD scale) :
// b+c=scale, b-c = 0 <=> b =c = scale/2
PartialFractionFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
PartialFractionFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
assert((Ls&0x1)==1); // Odd Ls required
int nrational=Ls-1;// Even rational order
assert((this->Ls&0x1)==1); // Odd Ls required
int nrational=this->Ls-1;// Even rational order
Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);// eps is ignored for higham
SetCoefficientsTanh(zdata,scale);
this->SetCoefficientsTanh(zdata,scale);
Approx::zolotarev_free(zdata);
}
};

View File

@ -7,13 +7,16 @@ namespace Grid {
namespace QCD {
class OverlapWilsonPartialFractionZolotarevFermion : public PartialFractionFermion5D
template<class Impl>
class OverlapWilsonPartialFractionZolotarevFermion : public PartialFractionFermion5D<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
virtual void Instantiatable(void){};
// Constructors
OverlapWilsonPartialFractionZolotarevFermion(LatticeGaugeField &_Umu,
OverlapWilsonPartialFractionZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
@ -22,19 +25,19 @@ namespace Grid {
RealD lo,RealD hi):
// b+c=scale, b-c = 0 <=> b =c = scale/2
PartialFractionFermion5D(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
PartialFractionFermion5D<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,
FourDimRedBlackGrid,_mass,_M5)
{
assert((Ls&0x1)==1); // Odd Ls required
assert((this->Ls&0x1)==1); // Odd Ls required
int nrational=Ls;// Odd rational order
int nrational=this->Ls;// Odd rational order
RealD eps = lo/hi;
Approx::zolotarev_data *zdata = Approx::zolotarev(eps,nrational,0);
SetCoefficientsZolotarev(hi,zdata);
this->SetCoefficientsZolotarev(hi,zdata);
Approx::zolotarev_free(zdata);
}

View File

@ -2,12 +2,15 @@
namespace Grid {
namespace QCD {
void PartialFractionFermion5D::Mdir (const LatticeFermion &psi, LatticeFermion &chi,int dir,int disp){
template<class Impl>
void PartialFractionFermion5D<Impl>::Mdir (const FermionField &psi, FermionField &chi,int dir,int disp){
// this does both dag and undag but is trivial; make a common helper routing
int sign = 1;
int Ls = this->Ls;
DhopDir(psi,chi,dir,disp);
this->DhopDir(psi,chi,dir,disp);
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
@ -18,15 +21,16 @@ namespace Grid {
ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
}
void PartialFractionFermion5D::Meooe_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
template<class Impl>
void PartialFractionFermion5D<Impl>::Meooe_internal(const FermionField &psi, FermionField &chi,int dag)
{
// this does both dag and undag but is trivial; make a common helper routing
int Ls = this->Ls;
int sign = dag ? (-1) : 1;
if ( psi.checkerboard == Odd ) {
DhopEO(psi,chi,DaggerNo);
this->DhopEO(psi,chi,DaggerNo);
} else {
DhopOE(psi,chi,DaggerNo);
this->DhopOE(psi,chi,DaggerNo);
}
int nblock=(Ls-1)/2;
@ -38,10 +42,12 @@ namespace Grid {
ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
}
void PartialFractionFermion5D::Mooee_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
template<class Impl>
void PartialFractionFermion5D<Impl>::Mooee_internal(const FermionField &psi, FermionField &chi,int dag)
{
// again dag and undag are trivially related
int sign = dag ? (-1) : 1;
int Ls = this->Ls;
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
@ -69,11 +75,13 @@ namespace Grid {
}
}
void PartialFractionFermion5D::MooeeInv_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
template<class Impl>
void PartialFractionFermion5D<Impl>::MooeeInv_internal(const FermionField &psi, FermionField &chi,int dag)
{
int sign = dag ? (-1) : 1;
int Ls = this->Ls;
LatticeFermion tmp(psi._grid);
FermionField tmp(psi._grid);
///////////////////////////////////////////////////////////////////////////////////////
//Linv
@ -129,10 +137,12 @@ namespace Grid {
axpby_ssp (chi, 1.0/scale,tmp,0.0,tmp,Ls-1,Ls-1);
}
void PartialFractionFermion5D::M_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
template<class Impl>
void PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, FermionField &chi,int dag)
{
LatticeFermion D(psi._grid);
FermionField D(psi._grid);
int Ls = this->Ls;
int sign = dag ? (-1) : 1;
// For partial frac Hw case (b5=c5=1) chroma quirkily computes
@ -186,7 +196,7 @@ namespace Grid {
// ( 0 -sqrt(p_i)*amax | 2 R gamma_5 + p0/amax 2H
//
DW(psi,D,DaggerNo);
this->DW(psi,D,DaggerNo);
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
@ -217,48 +227,59 @@ namespace Grid {
}
RealD PartialFractionFermion5D::M (const LatticeFermion &in, LatticeFermion &out)
template<class Impl>
RealD PartialFractionFermion5D<Impl>::M (const FermionField &in, FermionField &out)
{
M_internal(in,out,DaggerNo);
return norm2(out);
}
RealD PartialFractionFermion5D::Mdag (const LatticeFermion &in, LatticeFermion &out)
template<class Impl>
RealD PartialFractionFermion5D<Impl>::Mdag (const FermionField &in, FermionField &out)
{
M_internal(in,out,DaggerYes);
return norm2(out);
}
void PartialFractionFermion5D::Meooe (const LatticeFermion &in, LatticeFermion &out)
template<class Impl>
void PartialFractionFermion5D<Impl>::Meooe (const FermionField &in, FermionField &out)
{
Meooe_internal(in,out,DaggerNo);
}
void PartialFractionFermion5D::MeooeDag (const LatticeFermion &in, LatticeFermion &out)
template<class Impl>
void PartialFractionFermion5D<Impl>::MeooeDag (const FermionField &in, FermionField &out)
{
Meooe_internal(in,out,DaggerYes);
}
void PartialFractionFermion5D::Mooee (const LatticeFermion &in, LatticeFermion &out)
template<class Impl>
void PartialFractionFermion5D<Impl>::Mooee (const FermionField &in, FermionField &out)
{
Mooee_internal(in,out,DaggerNo);
}
void PartialFractionFermion5D::MooeeDag (const LatticeFermion &in, LatticeFermion &out)
template<class Impl>
void PartialFractionFermion5D<Impl>::MooeeDag (const FermionField &in, FermionField &out)
{
Mooee_internal(in,out,DaggerYes);
}
void PartialFractionFermion5D::MooeeInv (const LatticeFermion &in, LatticeFermion &out)
template<class Impl>
void PartialFractionFermion5D<Impl>::MooeeInv (const FermionField &in, FermionField &out)
{
MooeeInv_internal(in,out,DaggerNo);
}
void PartialFractionFermion5D::MooeeInvDag (const LatticeFermion &in, LatticeFermion &out)
template<class Impl>
void PartialFractionFermion5D<Impl>::MooeeInvDag (const FermionField &in, FermionField &out)
{
MooeeInv_internal(in,out,DaggerYes);
}
// force terms; five routines; default to Dhop on diagonal
void PartialFractionFermion5D::MDeriv (LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag)
template<class Impl>
void PartialFractionFermion5D<Impl>::MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
{
LatticeFermion D(V._grid);
int Ls = this->Ls;
FermionField D(V._grid);
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
@ -268,11 +289,14 @@ namespace Grid {
}
ag5xpby_ssp(D,p[nblock]*scale/amax,U,0.0,U,Ls-1,Ls-1);
DhopDeriv(mat,D,V,DaggerNo);
this->DhopDeriv(mat,D,V,DaggerNo);
};
void PartialFractionFermion5D::MoeDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag)
template<class Impl>
void PartialFractionFermion5D<Impl>::MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
{
LatticeFermion D(V._grid);
int Ls = this->Ls;
FermionField D(V._grid);
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
@ -282,11 +306,14 @@ namespace Grid {
}
ag5xpby_ssp(D,p[nblock]*scale/amax,U,0.0,U,Ls-1,Ls-1);
DhopDerivOE(mat,D,V,DaggerNo);
this->DhopDerivOE(mat,D,V,DaggerNo);
};
void PartialFractionFermion5D::MeoDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag)
template<class Impl>
void PartialFractionFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
{
LatticeFermion D(V._grid);
int Ls = this->Ls;
FermionField D(V._grid);
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
@ -296,13 +323,15 @@ namespace Grid {
}
ag5xpby_ssp(D,p[nblock]*scale/amax,U,0.0,U,Ls-1,Ls-1);
DhopDerivEO(mat,D,V,DaggerNo);
this->DhopDerivEO(mat,D,V,DaggerNo);
};
void PartialFractionFermion5D::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale){
template<class Impl>
void PartialFractionFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale){
SetCoefficientsZolotarev(1.0/scale,zdata);
}
void PartialFractionFermion5D::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata){
template<class Impl>
void PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata){
// check on degree matching
// std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
@ -311,12 +340,14 @@ namespace Grid {
// std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
// std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
// std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
int Ls = this->Ls;
assert(Ls == (2*zdata->da -1) );
// Part frac
// RealD R;
R=(1+mass)/(1-mass);
dw_diag = (4.0-M5);
dw_diag = (4.0-this->M5);
// std::vector<RealD> p;
// std::vector<RealD> q;
@ -336,18 +367,21 @@ namespace Grid {
}
// Constructors
PartialFractionFermion5D::PartialFractionFermion5D(LatticeGaugeField &_Umu,
template<class Impl>
PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5) :
WilsonFermion5D(_Umu,
WilsonFermion5D<Impl>(_Umu,
FiveDimGrid, FiveDimRedBlackGrid,
FourDimGrid, FourDimRedBlackGrid,M5),
mass(_mass)
{
int Ls = this->Ls;
assert((Ls&0x1)==1); // Odd Ls required
int nrational=Ls-1;
@ -366,6 +400,8 @@ namespace Grid {
}
FermOpTemplateInstantiate(PartialFractionFermion5D);
}
}

View File

@ -5,46 +5,49 @@ namespace Grid {
namespace QCD {
class PartialFractionFermion5D : public WilsonFermion5D
template<class Impl>
class PartialFractionFermion5D : public WilsonFermion5D<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
const int part_frac_chroma_convention=1;
void Meooe_internal(const LatticeFermion &in, LatticeFermion &out,int dag);
void Mooee_internal(const LatticeFermion &in, LatticeFermion &out,int dag);
void MooeeInv_internal(const LatticeFermion &in, LatticeFermion &out,int dag);
void M_internal(const LatticeFermion &in, LatticeFermion &out,int dag);
void Meooe_internal(const FermionField &in, FermionField &out,int dag);
void Mooee_internal(const FermionField &in, FermionField &out,int dag);
void MooeeInv_internal(const FermionField &in, FermionField &out,int dag);
void M_internal(const FermionField &in, FermionField &out,int dag);
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
virtual RealD M (const FermionField &in, FermionField &out);
virtual RealD Mdag (const FermionField &in, FermionField &out);
// half checkerboard operaions
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out);
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Meooe (const FermionField &in, FermionField &out);
virtual void MeooeDag (const FermionField &in, FermionField &out);
virtual void Mooee (const FermionField &in, FermionField &out);
virtual void MooeeDag (const FermionField &in, FermionField &out);
virtual void MooeeInv (const FermionField &in, FermionField &out);
virtual void MooeeInvDag (const FermionField &in, FermionField &out);
// force terms; five routines; default to Dhop on diagonal
virtual void MDeriv (LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
virtual void MoeDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
virtual void MeoDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void Instantiatable(void) =0; // ensure no make-eee
// Efficient support for multigrid coarsening
virtual void Mdir (const LatticeFermion &in, LatticeFermion &out,int dir,int disp);
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
// Constructors
PartialFractionFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5);
PartialFractionFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5);
protected:

View File

@ -7,12 +7,15 @@ namespace Grid {
namespace QCD {
class ScaledShamirFermion : public MobiusFermion
template<class Impl>
class ScaledShamirFermion : public MobiusFermion<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
// Constructors
ScaledShamirFermion(LatticeGaugeField &_Umu,
ScaledShamirFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
@ -21,7 +24,7 @@ namespace Grid {
RealD scale) :
// b+c=scale, b-c = 1 <=> 2b = scale+1; 2c = scale-1
MobiusFermion(_Umu,
MobiusFermion<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,

View File

@ -7,14 +7,17 @@ namespace Grid {
namespace QCD {
class ShamirZolotarevFermion : public MobiusZolotarevFermion
template<class Impl>
class ShamirZolotarevFermion : public MobiusZolotarevFermion<Impl>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
// Constructors
ShamirZolotarevFermion(LatticeGaugeField &_Umu,
ShamirZolotarevFermion(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
@ -23,7 +26,7 @@ namespace Grid {
RealD lo, RealD hi) :
// b+c = 1; b-c = 1 => b=1, c=0
MobiusZolotarevFermion(_Umu,
MobiusZolotarevFermion<Impl>(_Umu,
FiveDimGrid,
FiveDimRedBlackGrid,
FourDimGrid,

View File

@ -4,6 +4,7 @@
namespace Grid {
namespace QCD {
template<class SiteHalfSpinor,class SiteSpinor>
class WilsonCompressor {
public:
int mu;
@ -18,9 +19,13 @@ namespace QCD {
mu=p;
};
vHalfSpinColourVector operator () (const vSpinColourVector &in)
virtual SiteHalfSpinor operator () (const SiteSpinor &in) {
return spinproject(in);
}
SiteHalfSpinor spinproject(const SiteSpinor &in)
{
vHalfSpinColourVector ret;
SiteHalfSpinor ret;
int mudag=mu;
if (dag) {
mudag=(mu+Nd)%(2*Nd);
@ -57,5 +62,33 @@ namespace QCD {
return ret;
}
};
template<class SiteHalfSpinor,class SiteSpinor>
class GparityWilsonCompressor : public WilsonCompressor<SiteHalfSpinor,SiteSpinor>{
public:
GparityWilsonCompressor(int _dag) : WilsonCompressor<SiteHalfSpinor,SiteSpinor> (_dag){};
SiteHalfSpinor operator () (const SiteSpinor &in)
{
SiteHalfSpinor tmp = spinproject(in);
if( 0 ) tmp = flavourflip(tmp);
return tmp;
}
SiteHalfSpinor flavourflip(const SiteHalfSpinor &in) {
SiteHalfSpinor ret;
for(int f=0;f<Ngp;f++){
ret(0) = in(1);
ret(1) = in(0);
}
return ret;
}
};
}} // namespace close
#endif

View File

@ -3,269 +3,290 @@
namespace Grid {
namespace QCD {
const std::vector<int> WilsonFermion::directions ({0,1,2,3, 0, 1, 2, 3});
const std::vector<int> WilsonFermion::displacements({1,1,1,1,-1,-1,-1,-1});
const std::vector<int> WilsonFermionStatic::directions ({0,1,2,3, 0, 1, 2, 3});
const std::vector<int> WilsonFermionStatic::displacements({1,1,1,1,-1,-1,-1,-1});
int WilsonFermionStatic::HandOptDslash;
int WilsonFermion::HandOptDslash;
/////////////////////////////////
// Constructor and gauge import
/////////////////////////////////
WilsonFermion::WilsonFermion(LatticeGaugeField &_Umu,
GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid,
RealD _mass) :
_grid(&Fgrid),
_cbgrid(&Hgrid),
Stencil (&Fgrid,npoint,Even,directions,displacements),
StencilEven(&Hgrid,npoint,Even,directions,displacements), // source is Even
StencilOdd (&Hgrid,npoint,Odd ,directions,displacements), // source is Odd
mass(_mass),
Umu(&Fgrid),
UmuEven(&Hgrid),
UmuOdd (&Hgrid)
{
// Allocate the required comms buffer
comm_buf.resize(Stencil._unified_buffer_size); // this is always big enough to contain EO
ImportGauge(_Umu);
}
void WilsonFermion::ImportGauge(const LatticeGaugeField &_Umu)
{
DoubleStore(Umu,_Umu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);
}
void WilsonFermion::DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu)
{
conformable(Uds._grid,GaugeGrid());
conformable(Umu._grid,GaugeGrid());
LatticeColourMatrix U(GaugeGrid());
for(int mu=0;mu<Nd;mu++){
U = PeekIndex<LorentzIndex>(Umu,mu);
PokeIndex<LorentzIndex>(Uds,U,mu);
U = adj(Cshift(U,mu,-1));
PokeIndex<LorentzIndex>(Uds,U,mu+4);
template<class Impl>
WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu,
GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid,
RealD _mass) :
_grid(&Fgrid),
_cbgrid(&Hgrid),
Stencil (&Fgrid,npoint,Even,directions,displacements),
StencilEven(&Hgrid,npoint,Even,directions,displacements), // source is Even
StencilOdd (&Hgrid,npoint,Odd ,directions,displacements), // source is Odd
mass(_mass),
Umu(&Fgrid),
UmuEven(&Hgrid),
UmuOdd (&Hgrid)
{
// Allocate the required comms buffer
comm_buf.resize(Stencil._unified_buffer_size); // this is always big enough to contain EO
ImportGauge(_Umu);
}
}
RealD WilsonFermion::M(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,DaggerNo);
return axpy_norm(out,4+mass,in,out);
}
RealD WilsonFermion::Mdag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,DaggerYes);
return axpy_norm(out,4+mass,in,out);
}
void WilsonFermion::Meooe(const LatticeFermion &in, LatticeFermion &out)
{
if ( in.checkerboard == Odd ) {
DhopEO(in,out,DaggerNo);
} else {
DhopOE(in,out,DaggerNo);
template<class Impl>
void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
{
Impl::DoubleStore(GaugeGrid(),Umu,_Umu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);
}
}
void WilsonFermion::MeooeDag(const LatticeFermion &in, LatticeFermion &out)
{
if ( in.checkerboard == Odd ) {
DhopEO(in,out,DaggerYes);
} else {
DhopOE(in,out,DaggerYes);
}
}
void WilsonFermion::Mooee(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
out = (4.0+mass)*in;
return ;
}
void WilsonFermion::MooeeDag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
Mooee(in,out);
}
void WilsonFermion::MooeeInv(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
out = (1.0/(4.0+mass))*in;
return ;
}
void WilsonFermion::MooeeInvDag(const LatticeFermion &in, LatticeFermion &out)
{
out.checkerboard = in.checkerboard;
MooeeInv(in,out);
}
void WilsonFermion::Mdir (const LatticeFermion &in, LatticeFermion &out,int dir,int disp)
{
DhopDir(in,out,dir,disp);
}
void WilsonFermion::DhopDir(const LatticeFermion &in, LatticeFermion &out,int dir,int disp){
WilsonCompressor compressor(DaggerNo);
Stencil.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
assert( (disp==1)||(disp==-1) );
int skip = (disp==1) ? 0 : 1;
int dirdisp = dir+skip*4;
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptDhopDir(Stencil,Umu,comm_buf,sss,sss,in,out,dirdisp,dirdisp);
}
};
void WilsonFermion::DhopDirDisp(const LatticeFermion &in, LatticeFermion &out,int dirdisp,int gamma,int dag)
{
WilsonCompressor compressor(dag);
Stencil.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptDhopDir(Stencil,Umu,comm_buf,sss,sss,in,out,dirdisp,gamma);
}
};
void WilsonFermion::DhopInternal(CartesianStencil & st,LatticeDoubledGaugeField & U,
const LatticeFermion &in, LatticeFermion &out,int dag)
{
assert((dag==DaggerNo) ||(dag==DaggerYes));
WilsonCompressor compressor(dag);
st.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
if ( dag == DaggerYes ) {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptHandDhopSiteDag(st,U,comm_buf,sss,sss,in,out);
}
} else {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptDhopSiteDag(st,U,comm_buf,sss,sss,in,out);
}
}
} else {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptHandDhopSite(st,U,comm_buf,sss,sss,in,out);
}
} else {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOptDhopSite(st,U,comm_buf,sss,sss,in,out);
}
}
}
}
void WilsonFermion::DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_cbgrid); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Even);
out.checkerboard = Odd;
DhopInternal(StencilEven,UmuOdd,in,out,dag);
}
void WilsonFermion::DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_cbgrid); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Odd);
out.checkerboard = Even;
DhopInternal(StencilOdd,UmuEven,in,out,dag);
}
void WilsonFermion::Dhop(const LatticeFermion &in, LatticeFermion &out,int dag)
{
conformable(in._grid,_grid); // verifies full grid
conformable(in._grid,out._grid);
out.checkerboard = in.checkerboard;
DhopInternal(Stencil,Umu,in,out,dag);
}
void WilsonFermion::DerivInternal(CartesianStencil & st,LatticeDoubledGaugeField & U,
LatticeGaugeField &mat,const LatticeFermion &A,const LatticeFermion &B,int dag)
{
assert((dag==DaggerNo) ||(dag==DaggerYes));
WilsonCompressor compressor(dag);
LatticeColourMatrix tmp(B._grid);
LatticeFermion Btilde(B._grid);
st.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(B,comm_buf,compressor);
for(int mu=0;mu<Nd;mu++){
/////////////////////////////
// Implement the interface
/////////////////////////////
////////////////////////////////////////////////////////////////////////
// Flip gamma (1+g)<->(1-g) if dag
////////////////////////////////////////////////////////////////////////
int gamma = mu;
if ( dag ) gamma+= Nd;
////////////////////////
// Call the single hop
////////////////////////
PARALLEL_FOR_LOOP
for(int sss=0;sss<B._grid->oSites();sss++){
DiracOptDhopDir(st,U,comm_buf,sss,sss,B,Btilde,mu,gamma);
}
//////////////////////////////////////////////////
// spin trace outer product
//////////////////////////////////////////////////
tmp = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
PokeIndex<LorentzIndex>(mat,tmp,mu);
template<class Impl>
RealD WilsonFermion<Impl>::M(const FermionField &in, FermionField &out)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,DaggerNo);
return axpy_norm(out,4+mass,in,out);
}
}
void WilsonFermion::DhopDeriv(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag)
{
conformable(U._grid,_grid);
conformable(U._grid,V._grid);
conformable(U._grid,mat._grid);
mat.checkerboard = U.checkerboard;
template<class Impl>
RealD WilsonFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,DaggerYes);
return axpy_norm(out,4+mass,in,out);
}
DerivInternal(Stencil,Umu,mat,U,V,dag);
}
void WilsonFermion::DhopDerivOE(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag)
{
conformable(U._grid,_cbgrid);
conformable(U._grid,V._grid);
conformable(U._grid,mat._grid);
template<class Impl>
void WilsonFermion<Impl>::Meooe(const FermionField &in, FermionField &out)
{
if ( in.checkerboard == Odd ) {
DhopEO(in,out,DaggerNo);
} else {
DhopOE(in,out,DaggerNo);
}
}
template<class Impl>
void WilsonFermion<Impl>::MeooeDag(const FermionField &in, FermionField &out)
{
if ( in.checkerboard == Odd ) {
DhopEO(in,out,DaggerYes);
} else {
DhopOE(in,out,DaggerYes);
}
}
assert(V.checkerboard==Even);
assert(U.checkerboard==Odd);
mat.checkerboard = Odd;
template<class Impl>
void WilsonFermion<Impl>::Mooee(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
out = (4.0+mass)*in;
}
template<class Impl>
void WilsonFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
Mooee(in,out);
}
template<class Impl>
void WilsonFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
out = (1.0/(4.0+mass))*in;
}
template<class Impl>
void WilsonFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out) {
out.checkerboard = in.checkerboard;
MooeeInv(in,out);
}
///////////////////////////////////
// Internal
///////////////////////////////////
DerivInternal(StencilEven,UmuOdd,mat,U,V,dag);
}
void WilsonFermion::DhopDerivEO(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag)
{
conformable(U._grid,_cbgrid);
conformable(U._grid,V._grid);
conformable(U._grid,mat._grid);
template<class Impl>
void WilsonFermion<Impl>::DerivInternal(CartesianStencil & st,
DoubledGaugeField & U,
GaugeField &mat,
const FermionField &A,
const FermionField &B,int dag) {
assert((dag==DaggerNo) ||(dag==DaggerYes));
Compressor compressor(dag);
GaugeLinkField tmp(B._grid);
FermionField Btilde(B._grid);
st.HaloExchange<SiteSpinor,SiteHalfSpinor,Compressor>(B,comm_buf,compressor);
for(int mu=0;mu<Nd;mu++){
////////////////////////////////////////////////////////////////////////
// Flip gamma (1+g)<->(1-g) if dag
////////////////////////////////////////////////////////////////////////
int gamma = mu;
if ( dag ) gamma+= Nd;
////////////////////////
// Call the single hop
////////////////////////
PARALLEL_FOR_LOOP
for(int sss=0;sss<B._grid->oSites();sss++){
Kernels::DiracOptDhopDir(st,U,comm_buf,sss,sss,B,Btilde,mu,gamma);
}
//////////////////////////////////////////////////
// spin trace outer product
//////////////////////////////////////////////////
tmp = TraceIndex<SpinIndex>(outerProduct(Btilde,A));
PokeIndex<LorentzIndex>(mat,tmp,mu);
}
}
template<class Impl>
void WilsonFermion<Impl>::DhopDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
{
conformable(U._grid,_grid);
conformable(U._grid,V._grid);
conformable(U._grid,mat._grid);
mat.checkerboard = U.checkerboard;
DerivInternal(Stencil,Umu,mat,U,V,dag);
}
template<class Impl>
void WilsonFermion<Impl>::DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
{
conformable(U._grid,_cbgrid);
conformable(U._grid,V._grid);
conformable(U._grid,mat._grid);
assert(V.checkerboard==Even);
assert(U.checkerboard==Odd);
mat.checkerboard = Odd;
DerivInternal(StencilEven,UmuOdd,mat,U,V,dag);
}
template<class Impl>
void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
{
conformable(U._grid,_cbgrid);
conformable(U._grid,V._grid);
conformable(U._grid,mat._grid);
assert(V.checkerboard==Odd);
assert(U.checkerboard==Even);
mat.checkerboard = Even;
DerivInternal(StencilOdd,UmuEven,mat,U,V,dag);
}
assert(V.checkerboard==Odd);
assert(U.checkerboard==Even);
mat.checkerboard = Even;
template<class Impl>
void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out,int dag) {
conformable(in._grid,_grid); // verifies full grid
conformable(in._grid,out._grid);
out.checkerboard = in.checkerboard;
DhopInternal(Stencil,Umu,in,out,dag);
}
template<class Impl>
void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag) {
conformable(in._grid,_cbgrid); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Even);
out.checkerboard = Odd;
DhopInternal(StencilEven,UmuOdd,in,out,dag);
}
template<class Impl>
void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag) {
conformable(in._grid,_cbgrid); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
assert(in.checkerboard==Odd);
out.checkerboard = Even;
DhopInternal(StencilOdd,UmuEven,in,out,dag);
}
template<class Impl>
void WilsonFermion<Impl>::Mdir (const FermionField &in, FermionField &out,int dir,int disp) {
DhopDir(in,out,dir,disp);
}
template<class Impl>
void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out,int dir,int disp){
int skip = (disp==1) ? 0 : 1;
int dirdisp = dir+skip*4;
DhopDirDisp(in,out,dirdisp,dirdisp,DaggerNo);
};
template<class Impl>
void WilsonFermion<Impl>::DhopDirDisp(const FermionField &in, FermionField &out,int dirdisp,int gamma,int dag) {
Compressor compressor(dag);
Stencil.HaloExchange<SiteSpinor,SiteHalfSpinor,Compressor>(in,comm_buf,compressor);
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
Kernels::DiracOptDhopDir(Stencil,Umu,comm_buf,sss,sss,in,out,dirdisp,gamma);
}
};
DerivInternal(StencilOdd,UmuEven,mat,U,V,dag);
}
template<class Impl>
void WilsonFermion<Impl>::DhopInternal(CartesianStencil & st,DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag) {
assert((dag==DaggerNo) ||(dag==DaggerYes));
Compressor compressor(dag);
st.HaloExchange<SiteSpinor,SiteHalfSpinor,Compressor>(in,comm_buf,compressor);
if ( dag == DaggerYes ) {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
Kernels::DiracOptHandDhopSiteDag(st,U,comm_buf,sss,sss,in,out);
}
} else {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
Kernels::DiracOptDhopSiteDag(st,U,comm_buf,sss,sss,in,out);
}
}
} else {
if( HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
Kernels::DiracOptHandDhopSite(st,U,comm_buf,sss,sss,in,out);
}
} else {
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
Kernels::DiracOptDhopSite(st,U,comm_buf,sss,sss,in,out);
}
}
}
};
FermOpTemplateInstantiate(WilsonFermion);
}}

View File

@ -5,8 +5,20 @@ namespace Grid {
namespace QCD {
class WilsonFermion : public FermionOperator<LatticeFermion,LatticeGaugeField>
class WilsonFermionStatic {
public:
static int HandOptDslash; // these are a temporary hack
static int MortonOrder;
static const std::vector<int> directions ;
static const std::vector<int> displacements;
static const int npoint=8;
};
template<class Impl>
class WilsonFermion : public FermionOperator<Impl>, public WilsonFermionStatic
{
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
///////////////////////////////////////////////////////////////
@ -17,133 +29,73 @@ namespace Grid {
GridBase *FermionGrid(void) { return _grid;}
GridBase *FermionRedBlackGrid(void) { return _cbgrid;}
// override multiply
virtual RealD M (const LatticeFermion &in, LatticeFermion &out);
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out);
//////////////////////////////////////////////////////////////////
// override multiply; cut number routines if pass dagger argument
// and also make interface more uniformly consistent
//////////////////////////////////////////////////////////////////
RealD M(const FermionField &in, FermionField &out);
RealD Mdag(const FermionField &in, FermionField &out);
// half checkerboard operaions
void Meooe (const LatticeFermion &in, LatticeFermion &out);
void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out); // remain virtual so we
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out); // can derive Clover
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out); // from Wilson base
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
/////////////////////////////////////////////////////////
// half checkerboard operations
// could remain virtual so we can derive Clover from Wilson base
/////////////////////////////////////////////////////////
void Meooe(const FermionField &in, FermionField &out) ;
void MeooeDag(const FermionField &in, FermionField &out) ;
void Mooee(const FermionField &in, FermionField &out) ;
void MooeeDag(const FermionField &in, FermionField &out) ;
void MooeeInv(const FermionField &in, FermionField &out) ;
void MooeeInvDag(const FermionField &in, FermionField &out) ;
////////////////////////
//
// Force term: d/dtau S = 0
//
// It is simplest to consider the two flavour force term
//
// S[U,phi] = phidag (MdagM)^-1 phi
//
// But simplify even this to
//
// S[U,phi] = phidag MdagM phi
//
// (other options exist depending on nature of action fragment.)
//
// Require momentum be traceless anti-hermitian to move within group manifold [ P = i P^a T^a ]
//
// Define the HMC hamiltonian
//
// H = 1/2 Tr P^2 + S(U,phi)
//
// .
// U = P U (lorentz & color indices multiplied)
//
// Hence
//
// .c c c c
// U = U P = - U P (c == dagger)
//
// So, taking some liberty with implicit indices
// . . .c c
// dH/dt = 0 = Tr P P +Tr[ U dS/dU + U dS/dU ]
//
// . c c
// = Tr P P + i Tr[ P U dS/dU - U P dS/dU ]
//
// . c c
// = Tr P (P + i ( U dS/dU - P dS/dU U ]
//
// . c c
// => P = -i [ U dS/dU - dS/dU U ] generates HMC EoM
//
// Simple case work this out using S = phi^dag MdagM phi for wilson:
// c c
// dSdt = dU_xdt dSdUx + dUxdt dSdUx
//
// = Tr i P U_x [ (\phi^\dag)_x (1+g) (M \phi)_x+\mu +(\phi^\dag M^\dag)_x (1-g) \phi_{x+\mu} ]
// c
// - i U_x P [ (\phi^\dag)_x+mu (1-g) (M \phi)_x +(\phi^\dag M^\dag)_(x+\mu) (1+g) \phi_{x} ]
//
// = i [(\phi^\dag)_x ]_j P_jk [U_x(1+g) (M \phi)_x+\mu]_k (1)
// + i [(\phi^\dagM^\dag)_x]_j P_jk [U_x(1-g) (\phi)_x+\mu]_k (2)
// - i [(\phi^\dag)_x+mu (1-g) U^dag_x]_j P_jk [(M \phi)_xk (3)
// - i [(\phi^\dagM^\dag)_x+mu (1+g) U^dag_x]_j P_jk [ \phi]_xk (4)
//
// Observe that (1)* = (4)
// (2)* = (3)
//
// Write as .
// P_{kj} = - i ( [U_x(1+g) (M \phi)_x+\mu] (x) [(\phi^\dag)_x] + [U_x(1-g) (\phi)_x+\mu] (x) [(\phi^\dagM^\dag)_x] - h.c )
//
// where (x) denotes outer product in colour and spins are traced.
//
// Need only evaluate (1) and (2) [Chroma] or (2) and (4) [IroIro] and take the
// traceless anti hermitian part (of term in brackets w/o the "i")
//
// Generalisation to S=phi^dag (MdagM)^{-1} phi is simple:
//
// For more complicated DWF etc... apply product rule in differentiation
//
// Derivative interface
////////////////////////
void DhopDeriv (LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
void DhopDerivEO(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
void DhopDerivOE(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
// Extra support internal
void DerivInternal(CartesianStencil & st,
LatticeDoubledGaugeField & U,
LatticeGaugeField &mat,
const LatticeFermion &A,
const LatticeFermion &B,
int dag);
// Interface calls an internal routine
void DhopDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
///////////////////////////////////////////////////////////////
// non-hermitian hopping term; half cb or both
void Dhop (const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag);
///////////////////////////////////////////////////////////////
void Dhop(const FermionField &in, FermionField &out,int dag) ;
void DhopOE(const FermionField &in, FermionField &out,int dag) ;
void DhopEO(const FermionField &in, FermionField &out,int dag) ;
// Multigrid assistance
void Mdir (const LatticeFermion &in, LatticeFermion &out,int dir,int disp);
void DhopDir(const LatticeFermion &in, LatticeFermion &out,int dir,int disp);
void DhopDirDisp(const LatticeFermion &in, LatticeFermion &out,int dirdisp,int gamma,int dag);
///////////////////////////////////////////////////////////////
// Multigrid assistance; force term uses too
///////////////////////////////////////////////////////////////
void Mdir (const FermionField &in, FermionField &out,int dir,int disp) ;
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
void DhopDirDisp(const FermionField &in, FermionField &out,int dirdisp,int gamma,int dag) ;
///////////////////////////////////////////////////////////////
// Extra methods added by derived
///////////////////////////////////////////////////////////////
void DhopInternal(CartesianStencil & st,
LatticeDoubledGaugeField &U,
const LatticeFermion &in,
LatticeFermion &out,
int dag);
void DerivInternal(CartesianStencil & st,
DoubledGaugeField & U,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag);
void DhopInternal(CartesianStencil & st,DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag) ;
// Constructor
WilsonFermion(LatticeGaugeField &_Umu,GridCartesian &Fgrid,GridRedBlackCartesian &Hgrid,RealD _mass);
WilsonFermion(GaugeField &_Umu,
GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid,
RealD _mass) ;
// DoubleStore
virtual void ImportGauge(const LatticeGaugeField &_Umu);
void DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu);
// DoubleStore impl dependent
void ImportGauge(const GaugeField &_Umu);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
static int HandOptDslash; // these are a temporary hack
static int MortonOrder;
// protected:
public:
@ -153,26 +105,24 @@ namespace Grid {
GridBase * _grid;
GridBase * _cbgrid;
static const int npoint=8;
static const std::vector<int> directions ;
static const std::vector<int> displacements;
//Defines the stencils for even and odd
CartesianStencil Stencil;
CartesianStencil StencilEven;
CartesianStencil StencilOdd;
// Copy of the gauge field , with even and odd subsets
LatticeDoubledGaugeField Umu;
LatticeDoubledGaugeField UmuEven;
LatticeDoubledGaugeField UmuOdd;
DoubledGaugeField Umu;
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
// Comms buffer
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > comm_buf;
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
};
typedef WilsonFermion<WilsonImplF> WilsonFermionF;
typedef WilsonFermion<WilsonImplD> WilsonFermionD;
}
}
#endif

View File

@ -3,19 +3,19 @@
namespace Grid {
namespace QCD {
// S-direction is INNERMOST and takes no part in the parity.
const std::vector<int> WilsonFermion5D::directions ({1,2,3,4, 1, 2, 3, 4});
const std::vector<int> WilsonFermion5D::displacements({1,1,1,1,-1,-1,-1,-1});
int WilsonFermion5D::HandOptDslash;
// S-direction is INNERMOST and takes no part in the parity.
const std::vector<int> WilsonFermion5DStatic::directions ({1,2,3,4, 1, 2, 3, 4});
const std::vector<int> WilsonFermion5DStatic::displacements({1,1,1,1,-1,-1,-1,-1});
int WilsonFermion5DStatic::HandOptDslash;
// 5d lattice for DWF.
WilsonFermion5D::WilsonFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _M5) :
template<class Impl>
WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _M5) :
_FiveDimGrid(&FiveDimGrid),
_FiveDimRedBlackGrid(&FiveDimRedBlackGrid),
_FourDimGrid(&FourDimGrid),
@ -68,34 +68,23 @@ namespace QCD {
ImportGauge(_Umu);
}
void WilsonFermion5D::ImportGauge(const LatticeGaugeField &_Umu)
template<class Impl>
void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
{
DoubleStore(Umu,_Umu);
Impl::DoubleStore(GaugeGrid(),Umu,_Umu);
pickCheckerboard(Even,UmuEven,Umu);
pickCheckerboard(Odd ,UmuOdd,Umu);
}
void WilsonFermion5D::DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu)
{
assert(GaugeGrid()->_ndimension==4);
conformable(Uds._grid,GaugeGrid());
conformable(Umu._grid,GaugeGrid());
LatticeColourMatrix U(GaugeGrid());
for(int mu=0;mu<Nd;mu++){
U = PeekIndex<LorentzIndex>(Umu,mu);
PokeIndex<LorentzIndex>(Uds,U,mu);
U = adj(Cshift(U,mu,-1));
PokeIndex<LorentzIndex>(Uds,U,mu+4);
}
}
void WilsonFermion5D::DhopDir(const LatticeFermion &in, LatticeFermion &out,int dir5,int disp)
template<class Impl>
void WilsonFermion5D<Impl>::DhopDir(const FermionField &in, FermionField &out,int dir5,int disp)
{
int dir = dir5-1; // Maps to the ordering above in "directions" that is passed to stencil
// we drop off the innermost fifth dimension
// assert( (disp==1)||(disp==-1) );
// assert( (dir>=0)&&(dir<4) ); //must do x,y,z or t;
WilsonCompressor compressor(DaggerNo);
Stencil.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
Compressor compressor(DaggerNo);
Stencil.HaloExchange<SiteSpinor,SiteHalfSpinor,Compressor>(in,comm_buf,compressor);
int skip = (disp==1) ? 0 : 1;
@ -109,16 +98,17 @@ PARALLEL_FOR_LOOP
for(int s=0;s<Ls;s++){
int sU=ss;
int sF = s+Ls*sU;
DiracOptDhopDir(Stencil,Umu,comm_buf,sF,sU,in,out,dirdisp,dirdisp);
Kernels::DiracOptDhopDir(Stencil,Umu,comm_buf,sF,sU,in,out,dirdisp,dirdisp);
}
}
};
void WilsonFermion5D::DerivInternal(CartesianStencil & st,
LatticeDoubledGaugeField & U,
LatticeGaugeField &mat,
const LatticeFermion &A,
const LatticeFermion &B,
template<class Impl>
void WilsonFermion5D<Impl>::DerivInternal(CartesianStencil & st,
DoubledGaugeField & U,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
assert((dag==DaggerNo) ||(dag==DaggerYes));
@ -126,13 +116,13 @@ void WilsonFermion5D::DerivInternal(CartesianStencil & st,
conformable(st._grid,A._grid);
conformable(st._grid,B._grid);
WilsonCompressor compressor(dag);
Compressor compressor(dag);
LatticeColourMatrix tmp(mat._grid);
LatticeFermion Btilde(B._grid);
LatticeFermion Atilde(B._grid);
GaugeLinkField tmp(mat._grid);
FermionField Btilde(B._grid);
FermionField Atilde(B._grid);
st.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(B,comm_buf,compressor);
st.HaloExchange<SiteSpinor,SiteHalfSpinor,Compressor>(B,comm_buf,compressor);
Atilde=A;
@ -158,7 +148,7 @@ PARALLEL_FOR_LOOP
assert ( sF< B._grid->oSites());
assert ( sU< U._grid->oSites());
DiracOptDhopDir(st,U,comm_buf,sF,sU,B,Btilde,mu,gamma);
Kernels::DiracOptDhopDir(st,U,comm_buf,sF,sU,B,Btilde,mu,gamma);
////////////////////////////
// spin trace outer product
@ -176,10 +166,11 @@ PARALLEL_FOR_LOOP
}
}
void WilsonFermion5D::DhopDeriv( LatticeGaugeField &mat,
const LatticeFermion &A,
const LatticeFermion &B,
int dag)
template<class Impl>
void WilsonFermion5D<Impl>::DhopDeriv( GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A._grid,FermionGrid());
conformable(A._grid,B._grid);
@ -190,10 +181,11 @@ void WilsonFermion5D::DhopDeriv( LatticeGaugeField &mat,
DerivInternal(Stencil,Umu,mat,A,B,dag);
}
void WilsonFermion5D::DhopDerivEO(LatticeGaugeField &mat,
const LatticeFermion &A,
const LatticeFermion &B,
int dag)
template<class Impl>
void WilsonFermion5D<Impl>::DhopDerivEO(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A._grid,FermionRedBlackGrid());
conformable(GaugeRedBlackGrid(),mat._grid);
@ -206,9 +198,10 @@ void WilsonFermion5D::DhopDerivEO(LatticeGaugeField &mat,
DerivInternal(StencilOdd,UmuEven,mat,A,B,dag);
}
void WilsonFermion5D::DhopDerivOE(LatticeGaugeField &mat,
const LatticeFermion &A,
const LatticeFermion &B,
template<class Impl>
void WilsonFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A._grid,FermionRedBlackGrid());
@ -222,15 +215,16 @@ void WilsonFermion5D::DhopDerivOE(LatticeGaugeField &mat,
DerivInternal(StencilEven,UmuOdd,mat,A,B,dag);
}
void WilsonFermion5D::DhopInternal(CartesianStencil & st, LebesgueOrder &lo,
LatticeDoubledGaugeField & U,
const LatticeFermion &in, LatticeFermion &out,int dag)
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternal(CartesianStencil & st, LebesgueOrder &lo,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
// assert((dag==DaggerNo) ||(dag==DaggerYes));
WilsonCompressor compressor(dag);
Compressor compressor(dag);
st.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
st.HaloExchange<SiteSpinor,SiteHalfSpinor,Compressor>(in,comm_buf,compressor);
// Dhop takes the 4d grid from U, and makes a 5d index for fermion
// Not loop ordering and data layout.
@ -238,13 +232,13 @@ void WilsonFermion5D::DhopInternal(CartesianStencil & st, LebesgueOrder &lo,
// - per thread reuse in L1 cache for U
// - 8 linear access unit stride streams per thread for Fermion for hw prefetchable.
if ( dag == DaggerYes ) {
if( HandOptDslash ) {
if( this->HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int ss=0;ss<U._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
int sU=ss;
int sF = s+Ls*sU;
DiracOptHandDhopSiteDag(st,U,comm_buf,sF,sU,in,out);
Kernels::DiracOptHandDhopSiteDag(st,U,comm_buf,sF,sU,in,out);
}
}
} else {
@ -255,20 +249,20 @@ PARALLEL_FOR_LOOP
for(sd=0;sd<Ls;sd++){
int sU=ss;
int sF = sd+Ls*sU;
DiracOptDhopSiteDag(st,U,comm_buf,sF,sU,in,out);
Kernels::DiracOptDhopSiteDag(st,U,comm_buf,sF,sU,in,out);
}
}
}
}
} else {
if( HandOptDslash ) {
if( this->HandOptDslash ) {
PARALLEL_FOR_LOOP
for(int ss=0;ss<U._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
// int sU=lo.Reorder(ss);
int sU=ss;
int sF = s+Ls*sU;
DiracOptHandDhopSite(st,U,comm_buf,sF,sU,in,out);
Kernels::DiracOptHandDhopSite(st,U,comm_buf,sF,sU,in,out);
}
}
@ -279,13 +273,14 @@ PARALLEL_FOR_LOOP
// int sU=lo.Reorder(ss);
int sU=ss;
int sF = s+Ls*sU;
DiracOptDhopSite(st,U,comm_buf,sF,sU,in,out);
Kernels::DiracOptDhopSite(st,U,comm_buf,sF,sU,in,out);
}
}
}
}
}
void WilsonFermion5D::DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag)
template<class Impl>
void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
{
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
@ -295,7 +290,8 @@ void WilsonFermion5D::DhopOE(const LatticeFermion &in, LatticeFermion &out,int d
DhopInternal(StencilEven,LebesgueEvenOdd,UmuOdd,in,out,dag);
}
void WilsonFermion5D::DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag)
template<class Impl>
void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
conformable(in._grid,FermionRedBlackGrid()); // verifies half grid
conformable(in._grid,out._grid); // drops the cb check
@ -305,7 +301,8 @@ void WilsonFermion5D::DhopEO(const LatticeFermion &in, LatticeFermion &out,int d
DhopInternal(StencilOdd,LebesgueEvenOdd,UmuEven,in,out,dag);
}
void WilsonFermion5D::Dhop(const LatticeFermion &in, LatticeFermion &out,int dag)
template<class Impl>
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
{
conformable(in._grid,FermionGrid()); // verifies full grid
conformable(in._grid,out._grid);
@ -314,12 +311,16 @@ void WilsonFermion5D::Dhop(const LatticeFermion &in, LatticeFermion &out,int dag
DhopInternal(Stencil,Lebesgue,Umu,in,out,dag);
}
void WilsonFermion5D::DW(const LatticeFermion &in, LatticeFermion &out,int dag)
template<class Impl>
void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag)
{
out.checkerboard=in.checkerboard;
Dhop(in,out,dag); // -0.5 is included
axpy(out,4.0-M5,in,out);
}
FermOpTemplateInstantiate(WilsonFermion5D);
}}

View File

@ -14,21 +14,21 @@ namespace Grid {
// i.e. even even contains fifth dim hopping term.
//
// [DIFFERS from original CPS red black implementation parity = (x+y+z+t+s)|2 ]
////////////////////////////
//ContFrac:
// Ls always odd. Rational poly deg is either Ls or Ls-1
//PartFrac
// Ls always odd. Rational poly deg is either Ls or Ls-1
//
//Cayley: Ls always even, Rational poly deg is Ls
//
// Just set nrational as Ls. Forget about Ls-1 cases.
//
// Require odd Ls for cont and part frac
////////////////////////////
////////////////////////////////////////////////////////////////////////////////
class WilsonFermion5D : public FermionOperator<LatticeFermion,LatticeGaugeField>
class WilsonFermion5DStatic {
public:
// S-direction is INNERMOST and takes no part in the parity.
static int HandOptDslash; // these are a temporary hack
static const std::vector<int> directions;
static const std::vector<int> displacements;
const int npoint = 8;
};
template<class Impl>
class WilsonFermion5D : public FermionOperator<Impl>, public WilsonFermion5DStatic
{
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
///////////////////////////////////////////////////////////////
// Implement the abstract base
@ -39,69 +39,65 @@ namespace Grid {
GridBase *FermionRedBlackGrid(void) { return _FiveDimRedBlackGrid;}
// full checkerboard operations; leave unimplemented as abstract for now
virtual RealD M (const LatticeFermion &in, LatticeFermion &out){assert(0); return 0.0;};
virtual RealD Mdag (const LatticeFermion &in, LatticeFermion &out){assert(0); return 0.0;};
virtual RealD M (const FermionField &in, FermionField &out){assert(0); return 0.0;};
virtual RealD Mdag (const FermionField &in, FermionField &out){assert(0); return 0.0;};
// half checkerboard operations; leave unimplemented as abstract for now
virtual void Meooe (const LatticeFermion &in, LatticeFermion &out){assert(0);};
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out){assert(0);};
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out){assert(0);};
virtual void Meooe (const FermionField &in, FermionField &out){assert(0);};
virtual void Mooee (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeInv (const FermionField &in, FermionField &out){assert(0);};
virtual void MeooeDag (const LatticeFermion &in, LatticeFermion &out){assert(0);};
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out){assert(0);};
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out){assert(0);};
virtual void MeooeDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeDag (const FermionField &in, FermionField &out){assert(0);};
virtual void MooeeInvDag (const FermionField &in, FermionField &out){assert(0);};
// These can be overridden by fancy 5d chiral actions
virtual void DhopDeriv (LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
virtual void DhopDerivEO(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
virtual void DhopDerivOE(LatticeGaugeField &mat,const LatticeFermion &U,const LatticeFermion &V,int dag);
// These can be overridden by fancy 5d chiral action
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
// Implement hopping term non-hermitian hopping term; half cb or both
// Implement s-diagonal DW
void DW (const LatticeFermion &in, LatticeFermion &out,int dag);
void Dhop (const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag);
void DW (const FermionField &in, FermionField &out,int dag);
void Dhop (const FermionField &in, FermionField &out,int dag);
void DhopOE(const FermionField &in, FermionField &out,int dag);
void DhopEO(const FermionField &in, FermionField &out,int dag);
// add a DhopComm
// -- suboptimal interface will presently trigger multiple comms.
void DhopDir(const LatticeFermion &in, LatticeFermion &out,int dir,int disp);
void DhopDir(const FermionField &in, FermionField &out,int dir,int disp);
///////////////////////////////////////////////////////////////
// New methods added
///////////////////////////////////////////////////////////////
void DerivInternal(CartesianStencil & st,
LatticeDoubledGaugeField & U,
LatticeGaugeField &mat,
const LatticeFermion &A,
const LatticeFermion &B,
DoubledGaugeField & U,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag);
void DhopInternal(CartesianStencil & st,
LebesgueOrder &lo,
LatticeDoubledGaugeField &U,
const LatticeFermion &in,
LatticeFermion &out,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out,
int dag);
// Constructors
WilsonFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
double _M5);
WilsonFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
double _M5);
// DoubleStore
virtual void ImportGauge(const LatticeGaugeField &_Umu);
void DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGaugeField &Umu);
void ImportGauge(const GaugeField &_Umu);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
static int HandOptDslash; // these are a temporary hack
protected:
// Add these to the support from Wilson
@ -110,10 +106,6 @@ namespace Grid {
GridBase *_FiveDimGrid;
GridBase *_FiveDimRedBlackGrid;
static const int npoint=8;
static const std::vector<int> directions ;
static const std::vector<int> displacements;
double M5;
int Ls;
@ -123,15 +115,15 @@ namespace Grid {
CartesianStencil StencilOdd;
// Copy of the gauge field , with even and odd subsets
LatticeDoubledGaugeField Umu;
LatticeDoubledGaugeField UmuEven;
LatticeDoubledGaugeField UmuOdd;
DoubledGaugeField Umu;
DoubledGaugeField UmuEven;
DoubledGaugeField UmuOdd;
LebesgueOrder Lebesgue;
LebesgueOrder LebesgueEvenOdd;
// Comms buffer
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > comm_buf;
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > comm_buf;
};
}

View File

@ -2,23 +2,317 @@
namespace Grid {
namespace QCD {
void DiracOptDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out)
template<class Impl>
void WilsonKernels<Impl>::DiracOptDhopSite(CartesianStencil &st,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int sF,int sU,const FermionField &in, FermionField &out)
{
vHalfSpinColourVector tmp;
vHalfSpinColourVector chi;
vSpinColourVector result;
vHalfSpinColourVector Uchi;
int offset,local,perm, ptype;
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteSpinor result;
SiteHalfSpinor Uchi;
int offset,local,perm, ptype;
// Xp
int ss = sF;
offset = st._offsets [Xp][ss];
local = st._is_local[Xp][ss];
perm = st._permute[Xp][ss];
// Xp
int ss = sF;
offset = st._offsets [Xp][ss];
local = st._is_local[Xp][ss];
perm = st._permute[Xp][ss];
ptype = st._permute_type[Xp];
if ( local && perm ) {
spProjXp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjXp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Xp);
spReconXp(result,Uchi);
// Yp
offset = st._offsets [Yp][ss];
local = st._is_local[Yp][ss];
perm = st._permute[Yp][ss];
ptype = st._permute_type[Yp];
if ( local && perm ) {
spProjYp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjYp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Yp);
accumReconYp(result,Uchi);
ptype = st._permute_type[Xp];
// Zp
offset = st._offsets [Zp][ss];
local = st._is_local[Zp][ss];
perm = st._permute[Zp][ss];
ptype = st._permute_type[Zp];
if ( local && perm ) {
spProjZp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjZp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Zp);
accumReconZp(result,Uchi);
// Tp
offset = st._offsets [Tp][ss];
local = st._is_local[Tp][ss];
perm = st._permute[Tp][ss];
ptype = st._permute_type[Tp];
if ( local && perm ) {
spProjTp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjTp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Tp);
accumReconTp(result,Uchi);
// Xm
offset = st._offsets [Xm][ss];
local = st._is_local[Xm][ss];
perm = st._permute[Xm][ss];
ptype = st._permute_type[Xm];
if ( local && perm ) {
spProjXm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjXm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Xm);
accumReconXm(result,Uchi);
// Ym
offset = st._offsets [Ym][ss];
local = st._is_local[Ym][ss];
perm = st._permute[Ym][ss];
ptype = st._permute_type[Ym];
if ( local && perm ) {
spProjYm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjYm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Ym);
accumReconYm(result,Uchi);
// Zm
offset = st._offsets [Zm][ss];
local = st._is_local[Zm][ss];
perm = st._permute[Zm][ss];
ptype = st._permute_type[Zm];
if ( local && perm ) {
spProjZm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjZm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Zm);
accumReconZm(result,Uchi);
// Tm
offset = st._offsets [Tm][ss];
local = st._is_local[Tm][ss];
perm = st._permute[Tm][ss];
ptype = st._permute_type[Tm];
if ( local && perm ) {
spProjTm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjTm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Tm);
accumReconTm(result,Uchi);
vstream(out._odata[ss],result*(-0.5));
};
template<class Impl>
void WilsonKernels<Impl>::DiracOptDhopSiteDag(CartesianStencil &st,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int sF,int sU,const FermionField &in, FermionField &out)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteSpinor result;
SiteHalfSpinor Uchi;
int offset,local,perm, ptype;
// Xp
int ss=sF;
offset = st._offsets [Xm][ss];
local = st._is_local[Xm][ss];
perm = st._permute[Xm][ss];
ptype = st._permute_type[Xm];
if ( local && perm ) {
spProjXp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjXp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Xm);
spReconXp(result,Uchi);
// Yp
offset = st._offsets [Ym][ss];
local = st._is_local[Ym][ss];
perm = st._permute[Ym][ss];
ptype = st._permute_type[Ym];
if ( local && perm ) {
spProjYp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjYp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Ym);
accumReconYp(result,Uchi);
// Zp
offset = st._offsets [Zm][ss];
local = st._is_local[Zm][ss];
perm = st._permute[Zm][ss];
ptype = st._permute_type[Zm];
if ( local && perm ) {
spProjZp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjZp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Zm);
accumReconZp(result,Uchi);
// Tp
offset = st._offsets [Tm][ss];
local = st._is_local[Tm][ss];
perm = st._permute[Tm][ss];
ptype = st._permute_type[Tm];
if ( local && perm ) {
spProjTp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjTp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Tm);
accumReconTp(result,Uchi);
// Xm
offset = st._offsets [Xp][ss];
local = st._is_local[Xp][ss];
perm = st._permute[Xp][ss];
ptype = st._permute_type[Xp];
if ( local && perm ) {
spProjXm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjXm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Xp);
accumReconXm(result,Uchi);
// Ym
offset = st._offsets [Yp][ss];
local = st._is_local[Yp][ss];
perm = st._permute[Yp][ss];
ptype = st._permute_type[Yp];
if ( local && perm ) {
spProjYm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjYm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Yp);
accumReconYm(result,Uchi);
// Zm
offset = st._offsets [Zp][ss];
local = st._is_local[Zp][ss];
perm = st._permute[Zp][ss];
ptype = st._permute_type[Zp];
if ( local && perm ) {
spProjZm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjZm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Zp);
accumReconZm(result,Uchi);
// Tm
offset = st._offsets [Tp][ss];
local = st._is_local[Tp][ss];
perm = st._permute[Tp][ss];
ptype = st._permute_type[Tp];
if ( local && perm ) {
spProjTm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjTm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
Impl::multLink(Uchi,U._odata[sU],chi,Tp);
accumReconTm(result,Uchi);
vstream(out._odata[ss],result*(-0.5));
}
template<class Impl>
void WilsonKernels<Impl>::DiracOptDhopDir(CartesianStencil &st,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int sF,int sU,const FermionField &in, FermionField &out,int dir,int gamma)
{
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
SiteSpinor result;
SiteHalfSpinor Uchi;
int offset,local,perm, ptype;
int ss=sF;
offset = st._offsets [dir][ss];
local = st._is_local[dir][ss];
perm = st._permute[dir][ss];
ptype = st._permute_type[dir];
// Xp
if(gamma==Xp){
if ( local && perm ) {
spProjXp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
@ -27,14 +321,12 @@ void DiracOptDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Xp),&chi());
Impl::multLink(Uchi,U._odata[sU],chi,dir);
spReconXp(result,Uchi);
}
// Yp
offset = st._offsets [Yp][ss];
local = st._is_local[Yp][ss];
perm = st._permute[Yp][ss];
ptype = st._permute_type[Yp];
// Yp
if ( gamma==Yp ){
if ( local && perm ) {
spProjYp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
@ -43,14 +335,12 @@ void DiracOptDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Yp),&chi());
accumReconYp(result,Uchi);
// Zp
offset = st._offsets [Zp][ss];
local = st._is_local[Zp][ss];
perm = st._permute[Zp][ss];
ptype = st._permute_type[Zp];
Impl::multLink(Uchi,U._odata[sU],chi,dir);
spReconYp(result,Uchi);
}
// Zp
if ( gamma ==Zp ){
if ( local && perm ) {
spProjZp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
@ -59,14 +349,12 @@ void DiracOptDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Zp),&chi());
accumReconZp(result,Uchi);
// Tp
offset = st._offsets [Tp][ss];
local = st._is_local[Tp][ss];
perm = st._permute[Tp][ss];
ptype = st._permute_type[Tp];
Impl::multLink(Uchi,U._odata[sU],chi,dir);
spReconZp(result,Uchi);
}
// Tp
if ( gamma ==Tp ){
if ( local && perm ) {
spProjTp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
@ -75,15 +363,12 @@ void DiracOptDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Tp),&chi());
accumReconTp(result,Uchi);
// Xm
offset = st._offsets [Xm][ss];
local = st._is_local[Xm][ss];
perm = st._permute[Xm][ss];
ptype = st._permute_type[Xm];
Impl::multLink(Uchi,U._odata[sU],chi,dir);
spReconTp(result,Uchi);
}
// Xm
if ( gamma==Xm ){
if ( local && perm ) {
spProjXm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
@ -92,15 +377,12 @@ void DiracOptDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Xm),&chi());
accumReconXm(result,Uchi);
// Ym
offset = st._offsets [Ym][ss];
local = st._is_local[Ym][ss];
perm = st._permute[Ym][ss];
ptype = st._permute_type[Ym];
Impl::multLink(Uchi,U._odata[sU],chi,dir);
spReconXm(result,Uchi);
}
// Ym
if ( gamma == Ym ){
if ( local && perm ) {
spProjYm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
@ -109,14 +391,12 @@ void DiracOptDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Ym),&chi());
accumReconYm(result,Uchi);
Impl::multLink(Uchi,U._odata[sU],chi,dir);
spReconYm(result,Uchi);
}
// Zm
offset = st._offsets [Zm][ss];
local = st._is_local[Zm][ss];
perm = st._permute[Zm][ss];
ptype = st._permute_type[Zm];
// Zm
if ( gamma == Zm ){
if ( local && perm ) {
spProjZm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
@ -125,14 +405,12 @@ void DiracOptDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Zm),&chi());
accumReconZm(result,Uchi);
// Tm
offset = st._offsets [Tm][ss];
local = st._is_local[Tm][ss];
perm = st._permute[Tm][ss];
ptype = st._permute_type[Tm];
Impl::multLink(Uchi,U._odata[sU],chi,dir);
spReconZm(result,Uchi);
}
// Tm
if ( gamma==Tm ) {
if ( local && perm ) {
spProjTm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
@ -141,287 +419,13 @@ void DiracOptDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Tm),&chi());
accumReconTm(result,Uchi);
Impl::multLink(Uchi,U._odata[sU],chi,dir);
spReconTm(result,Uchi);
}
vstream(out._odata[ss],result*(-0.5));
vstream(out._odata[ss],result*(-0.5));
}
void DiracOptDhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out)
{
vHalfSpinColourVector tmp;
vHalfSpinColourVector chi;
vSpinColourVector result;
vHalfSpinColourVector Uchi;
int offset,local,perm, ptype;
// Xp
int ss=sF;
offset = st._offsets [Xm][ss];
local = st._is_local[Xm][ss];
perm = st._permute[Xm][ss];
ptype = st._permute_type[Xm];
if ( local && perm ) {
spProjXp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjXp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Xm),&chi());
spReconXp(result,Uchi);
// Yp
offset = st._offsets [Ym][ss];
local = st._is_local[Ym][ss];
perm = st._permute[Ym][ss];
ptype = st._permute_type[Ym];
if ( local && perm ) {
spProjYp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjYp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Ym),&chi());
accumReconYp(result,Uchi);
// Zp
offset = st._offsets [Zm][ss];
local = st._is_local[Zm][ss];
perm = st._permute[Zm][ss];
ptype = st._permute_type[Zm];
if ( local && perm ) {
spProjZp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjZp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Zm),&chi());
accumReconZp(result,Uchi);
// Tp
offset = st._offsets [Tm][ss];
local = st._is_local[Tm][ss];
perm = st._permute[Tm][ss];
ptype = st._permute_type[Tm];
if ( local && perm ) {
spProjTp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjTp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Tm),&chi());
accumReconTp(result,Uchi);
// Xm
offset = st._offsets [Xp][ss];
local = st._is_local[Xp][ss];
perm = st._permute[Xp][ss];
ptype = st._permute_type[Xp];
if ( local && perm )
{
spProjXm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjXm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Xp),&chi());
accumReconXm(result,Uchi);
// Ym
offset = st._offsets [Yp][ss];
local = st._is_local[Yp][ss];
perm = st._permute[Yp][ss];
ptype = st._permute_type[Yp];
if ( local && perm ) {
spProjYm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjYm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Yp),&chi());
accumReconYm(result,Uchi);
// Zm
offset = st._offsets [Zp][ss];
local = st._is_local[Zp][ss];
perm = st._permute[Zp][ss];
ptype = st._permute_type[Zp];
if ( local && perm ) {
spProjZm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjZm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Zp),&chi());
accumReconZm(result,Uchi);
// Tm
offset = st._offsets [Tp][ss];
local = st._is_local[Tp][ss];
perm = st._permute[Tp][ss];
ptype = st._permute_type[Tp];
if ( local && perm ) {
spProjTm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjTm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Tp),&chi());
accumReconTm(result,Uchi);
vstream(out._odata[ss],result*(-0.5));
}
void DiracOptDhopDir(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out,int dir,int gamma)
{
vHalfSpinColourVector tmp;
vHalfSpinColourVector chi;
vSpinColourVector result;
vHalfSpinColourVector Uchi;
int offset,local,perm, ptype;
int ss=sF;
offset = st._offsets [dir][ss];
local = st._is_local[dir][ss];
perm = st._permute[dir][ss];
ptype = st._permute_type[dir];
// Xp
if(gamma==Xp){
if ( local && perm ) {
spProjXp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjXp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](dir),&chi());
spReconXp(result,Uchi);
}
// Yp
if ( gamma==Yp ){
if ( local && perm ) {
spProjYp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjYp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](dir),&chi());
spReconYp(result,Uchi);
}
// Zp
if ( gamma ==Zp ){
if ( local && perm ) {
spProjZp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjZp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](dir),&chi());
spReconZp(result,Uchi);
}
// Tp
if ( gamma ==Tp ){
if ( local && perm ) {
spProjTp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjTp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](dir),&chi());
spReconTp(result,Uchi);
}
// Xm
if ( gamma==Xm ){
if ( local && perm ) {
spProjXm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjXm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](dir),&chi());
spReconXm(result,Uchi);
}
// Ym
if ( gamma == Ym ){
if ( local && perm ) {
spProjYm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjYm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](dir),&chi());
spReconYm(result,Uchi);
}
// Zm
if ( gamma == Zm ){
if ( local && perm ) {
spProjZm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjZm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](dir),&chi());
spReconZm(result,Uchi);
}
// Tm
if ( gamma==Tm ) {
if ( local && perm ) {
spProjTm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjTm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](dir),&chi());
spReconTm(result,Uchi);
}
vstream(out._odata[ss],result*(-0.5));
}
FermOpTemplateInstantiate(WilsonKernels);
}}

View File

@ -6,44 +6,46 @@ namespace Grid {
namespace QCD {
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Helper classes that implement Wilson stencil for a single site.
// Helper routines that implement Wilson stencil for a single site.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Generic version works for any Nc and with extra flavour indices
// namespace DiracOpt {
// These ones will need to be package intelligently. WilsonType base class
// for use by DWF etc..
void DiracOptDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
void DiracOptDhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
void DiracOptDhopDir(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out,int dirdisp,int gamma);
template<class Impl>
class WilsonKernels {
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
static void
DiracOptDhopSite(CartesianStencil &st,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int sF,int sU,const FermionField &in, FermionField &out);
// };
static void
DiracOptDhopSiteDag(CartesianStencil &st,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int sF,int sU,const FermionField &in,FermionField &out);
// Hand unrolled for Nc=3, one flavour
// namespace DiracOptHand {
// These ones will need to be package intelligently. WilsonType base class
// for use by DWF etc..
static void
DiracOptDhopDir(CartesianStencil &st,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int sF,int sU,const FermionField &in, FermionField &out,int dirdisp,int gamma);
void DiracOptHandDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
void DiracOptHandDhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
static void
DiracOptHandDhopSite(CartesianStencil &st,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int sF,int sU,const FermionField &in, FermionField &out){
DiracOptDhopSite(st,U,buf,sF,sU,in,out); // will template override for Wilson Nc=3
}
// };
static void
DiracOptHandDhopSiteDag(CartesianStencil &st,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int sF,int sU,const FermionField &in, FermionField &out){
DiracOptDhopSiteDag(st,U,buf,sF,sU,in,out); // will template override for Wilson Nc=3
}
void DiracOptHandDhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
};
}
}

View File

@ -280,48 +280,50 @@
namespace Grid {
namespace QCD {
void DiracOptHandDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out)
#if 0
template<class Simd>
void WilsonKernels<WilsonImpl<Simd,3> >::DiracOptHandDhopSite(CartesianStencil &st,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int sF,int sU,const FermionField &in, FermionField &out)
{
REGISTER vComplex result_00; // 12 regs on knc
REGISTER vComplex result_01;
REGISTER vComplex result_02;
REGISTER Simd result_00; // 12 regs on knc
REGISTER Simd result_01;
REGISTER Simd result_02;
REGISTER vComplex result_10;
REGISTER vComplex result_11;
REGISTER vComplex result_12;
REGISTER Simd result_10;
REGISTER Simd result_11;
REGISTER Simd result_12;
REGISTER vComplex result_20;
REGISTER vComplex result_21;
REGISTER vComplex result_22;
REGISTER Simd result_20;
REGISTER Simd result_21;
REGISTER Simd result_22;
REGISTER vComplex result_30;
REGISTER vComplex result_31;
REGISTER vComplex result_32; // 20 left
REGISTER Simd result_30;
REGISTER Simd result_31;
REGISTER Simd result_32; // 20 left
REGISTER vComplex Chi_00; // two spinor; 6 regs
REGISTER vComplex Chi_01;
REGISTER vComplex Chi_02;
REGISTER Simd Chi_00; // two spinor; 6 regs
REGISTER Simd Chi_01;
REGISTER Simd Chi_02;
REGISTER vComplex Chi_10;
REGISTER vComplex Chi_11;
REGISTER vComplex Chi_12; // 14 left
REGISTER Simd Chi_10;
REGISTER Simd Chi_11;
REGISTER Simd Chi_12; // 14 left
REGISTER vComplex UChi_00; // two spinor; 6 regs
REGISTER vComplex UChi_01;
REGISTER vComplex UChi_02;
REGISTER Simd UChi_00; // two spinor; 6 regs
REGISTER Simd UChi_01;
REGISTER Simd UChi_02;
REGISTER vComplex UChi_10;
REGISTER vComplex UChi_11;
REGISTER vComplex UChi_12; // 8 left
REGISTER Simd UChi_10;
REGISTER Simd UChi_11;
REGISTER Simd UChi_12; // 8 left
REGISTER vComplex U_00; // two rows of U matrix
REGISTER vComplex U_10;
REGISTER vComplex U_20;
REGISTER vComplex U_01;
REGISTER vComplex U_11;
REGISTER vComplex U_21; // 2 reg left.
REGISTER Simd U_00; // two rows of U matrix
REGISTER Simd U_10;
REGISTER Simd U_20;
REGISTER Simd U_01;
REGISTER Simd U_11;
REGISTER Simd U_21; // 2 reg left.
#define Chimu_00 Chi_00
#define Chimu_01 Chi_01
@ -360,11 +362,6 @@ void DiracOptHandDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
MULT_2SPIN(Xp);
}
XP_RECON;
// std::cout<<GridLogMessage << "XP_RECON"<<std::endl;
// std::cout<<GridLogMessage << result_00 <<" "<<result_01 <<" "<<result_02 <<std::endl;
// std::cout<<GridLogMessage << result_10 <<" "<<result_11 <<" "<<result_12 <<std::endl;
// std::cout<<GridLogMessage << result_20 <<" "<<result_21 <<" "<<result_22 <<std::endl;
// std::cout<<GridLogMessage << result_30 <<" "<<result_31 <<" "<<result_32 <<std::endl;
// Yp
offset = st._offsets [Yp][ss];
@ -446,12 +443,6 @@ void DiracOptHandDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
MULT_2SPIN(Xm);
}
XM_RECON_ACCUM;
// std::cout<<GridLogMessage << "XM_RECON_ACCUM"<<std::endl;
// std::cout<<GridLogMessage << result_00 <<" "<<result_01 <<" "<<result_02 <<std::endl;
// std::cout<<GridLogMessage << result_10 <<" "<<result_11 <<" "<<result_12 <<std::endl;
// std::cout<<GridLogMessage << result_20 <<" "<<result_21 <<" "<<result_22 <<std::endl;
// std::cout<<GridLogMessage << result_30 <<" "<<result_31 <<" "<<result_32 <<std::endl;
// Ym
offset = st._offsets [Ym][ss];
@ -530,48 +521,49 @@ void DiracOptHandDhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
}
}
void DiracOptHandDhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int ss,int sU,const LatticeFermion &in, LatticeFermion &out)
template<class Simd>
void WilsonKernels<WilsonImpl<Simd,3> >::DiracOptHandDhopSiteDag(CartesianStencil &st,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int ss,int sU,const FermionField &in, FermionField &out)
{
REGISTER vComplex result_00; // 12 regs on knc
REGISTER vComplex result_01;
REGISTER vComplex result_02;
REGISTER Simd result_00; // 12 regs on knc
REGISTER Simd result_01;
REGISTER Simd result_02;
REGISTER vComplex result_10;
REGISTER vComplex result_11;
REGISTER vComplex result_12;
REGISTER Simd result_10;
REGISTER Simd result_11;
REGISTER Simd result_12;
REGISTER vComplex result_20;
REGISTER vComplex result_21;
REGISTER vComplex result_22;
REGISTER Simd result_20;
REGISTER Simd result_21;
REGISTER Simd result_22;
REGISTER vComplex result_30;
REGISTER vComplex result_31;
REGISTER vComplex result_32; // 20 left
REGISTER Simd result_30;
REGISTER Simd result_31;
REGISTER Simd result_32; // 20 left
REGISTER vComplex Chi_00; // two spinor; 6 regs
REGISTER vComplex Chi_01;
REGISTER vComplex Chi_02;
REGISTER Simd Chi_00; // two spinor; 6 regs
REGISTER Simd Chi_01;
REGISTER Simd Chi_02;
REGISTER vComplex Chi_10;
REGISTER vComplex Chi_11;
REGISTER vComplex Chi_12; // 14 left
REGISTER Simd Chi_10;
REGISTER Simd Chi_11;
REGISTER Simd Chi_12; // 14 left
REGISTER vComplex UChi_00; // two spinor; 6 regs
REGISTER vComplex UChi_01;
REGISTER vComplex UChi_02;
REGISTER Simd UChi_00; // two spinor; 6 regs
REGISTER Simd UChi_01;
REGISTER Simd UChi_02;
REGISTER vComplex UChi_10;
REGISTER vComplex UChi_11;
REGISTER vComplex UChi_12; // 8 left
REGISTER Simd UChi_10;
REGISTER Simd UChi_11;
REGISTER Simd UChi_12; // 8 left
REGISTER vComplex U_00; // two rows of U matrix
REGISTER vComplex U_10;
REGISTER vComplex U_20;
REGISTER vComplex U_01;
REGISTER vComplex U_11;
REGISTER vComplex U_21; // 2 reg left.
REGISTER Simd U_00; // two rows of U matrix
REGISTER Simd U_10;
REGISTER Simd U_20;
REGISTER Simd U_01;
REGISTER Simd U_11;
REGISTER Simd U_21; // 2 reg left.
#define Chimu_00 Chi_00
#define Chimu_01 Chi_01
@ -752,7 +744,7 @@ void DiracOptHandDhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
TP_RECON_ACCUM;
{
vSpinColourVector & ref (out._odata[ss]);
SiteSpinor & ref (out._odata[ss]);
vstream(ref()(0)(0),result_00*(-0.5));
vstream(ref()(0)(1),result_01*(-0.5));
vstream(ref()(0)(2),result_02*(-0.5));
@ -767,4 +759,5 @@ void DiracOptHandDhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
vstream(ref()(3)(2),result_32*(-0.5));
}
}
#endif
}}

View File

@ -95,12 +95,13 @@ namespace Grid{
////////////////////////////////////////////////////////////////////////
// Two flavour pseudofermion action for any dop
////////////////////////////////////////////////////////////////////////
template<class GaugeField,class MatrixField,class FermionField>
class TwoFlavourPseudoFermionAction : public Action<GaugeField> {
template<class Impl>
class TwoFlavourPseudoFermionAction : public Action<typename Impl::GaugeField> {
private:
#include <qcd/action/fermion/FermionImplTypedefs.h>
FermionOperator<FermionField,GaugeField> & FermOp;// the basic operator
FermionOperator<Impl> & FermOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
@ -112,7 +113,7 @@ namespace Grid{
/////////////////////////////////////////////////
// Pass in required objects.
/////////////////////////////////////////////////
TwoFlavourPseudoFermionAction(FermionOperator<FermionField,GaugeField> &Op,
TwoFlavourPseudoFermionAction(FermionOperator<Impl> &Op,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS
) : FermOp(Op), DerivativeSolver(DS), ActionSolver(AS), Phi(Op.FermionGrid()) {
@ -158,7 +159,7 @@ namespace Grid{
FermionField X(FermOp.FermionGrid());
FermionField Y(FermOp.FermionGrid());
MdagMLinearOperator<FermionOperator<FermionField,GaugeField> ,FermionField> MdagMOp(FermOp);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
X=zero;
ActionSolver(MdagMOp,Phi,X);
MdagMOp.Op(X,Y);
@ -183,7 +184,7 @@ namespace Grid{
FermionField Y(FermOp.FermionGrid());
GaugeField tmp(FermOp.GaugeGrid());
MdagMLinearOperator<FermionOperator<FermionField,GaugeField> ,FermionField> MdagMOp(FermOp);
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(FermOp);
X=zero;
DerivativeSolver(MdagMOp,Phi,X);

View File

@ -4,13 +4,18 @@
namespace Grid{
namespace QCD{
template<class Matrix,class FermionField>
class SchurDifferentiableOperator : public SchurDiagMooeeOperator<Matrix,FermionField>
template<class Impl>
class SchurDifferentiableOperator : public SchurDiagMooeeOperator<FermionOperator<Impl>,typename Impl::FermionField>
{
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
public:
typedef FermionOperator<Impl> Matrix;
SchurDifferentiableOperator (Matrix &Mat) : SchurDiagMooeeOperator<Matrix,FermionField>(Mat) {};
void MpcDeriv(LatticeGaugeField &Force,const FermionField &U,const FermionField &V) {
void MpcDeriv(GaugeField &Force,const FermionField &U,const FermionField &V) {
GridBase *fgrid = this->_Mat.FermionGrid();
GridBase *fcbgrid = this->_Mat.FermionRedBlackGrid();
@ -28,8 +33,8 @@ namespace Grid{
assert(U.checkerboard==Odd);
assert(V.checkerboard==V.checkerboard);
LatticeGaugeField ForceO(ucbgrid);
LatticeGaugeField ForceE(ucbgrid);
GaugeField ForceO(ucbgrid);
GaugeField ForceE(ucbgrid);
// X^dag Der_oe MeeInv Meo Y
// Use Mooee as nontrivial but gauge field indept
@ -48,7 +53,7 @@ namespace Grid{
}
void MpcDagDeriv(LatticeGaugeField &Force,const FermionField &U,const FermionField &V) {
void MpcDagDeriv(GaugeField &Force,const FermionField &U,const FermionField &V) {
GridBase *fgrid = this->_Mat.FermionGrid();
GridBase *fcbgrid = this->_Mat.FermionRedBlackGrid();
@ -66,8 +71,8 @@ namespace Grid{
assert(V.checkerboard==Odd);
assert(V.checkerboard==V.checkerboard);
LatticeGaugeField ForceO(ucbgrid);
LatticeGaugeField ForceE(ucbgrid);
GaugeField ForceO(ucbgrid);
GaugeField ForceE(ucbgrid);
// X^dag Der_oe MeeInv Meo Y
// Use Mooee as nontrivial but gauge field indept
@ -91,12 +96,15 @@ namespace Grid{
////////////////////////////////////////////////////////////////////////
// Two flavour pseudofermion action for any EO prec dop
////////////////////////////////////////////////////////////////////////
template<class GaugeField,class MatrixField,class FermionField>
class TwoFlavourEvenOddPseudoFermionAction : public Action<GaugeField> {
template<class Impl>
class TwoFlavourEvenOddPseudoFermionAction : public Action<typename Impl::GaugeField> {
public:
#include <qcd/action/fermion/FermionImplTypedefs.h>
private:
FermionOperator<FermionField,GaugeField> & FermOp;// the basic operator
FermionOperator<Impl> & FermOp;// the basic operator
OperatorFunction<FermionField> &DerivativeSolver;
@ -109,7 +117,7 @@ namespace Grid{
/////////////////////////////////////////////////
// Pass in required objects.
/////////////////////////////////////////////////
TwoFlavourEvenOddPseudoFermionAction(FermionOperator<FermionField,GaugeField> &Op,
TwoFlavourEvenOddPseudoFermionAction(FermionOperator<Impl> &Op,
OperatorFunction<FermionField> & DS,
OperatorFunction<FermionField> & AS
) :
@ -140,7 +148,7 @@ namespace Grid{
pickCheckerboard(Even,etaEven,eta);
pickCheckerboard(Odd,etaOdd,eta);
SchurDifferentiableOperator<FermionOperator<FermionField,GaugeField>,FermionField> PCop(FermOp);
SchurDifferentiableOperator<Impl> PCop(FermOp);
FermOp.ImportGauge(U);
@ -163,7 +171,7 @@ namespace Grid{
FermionField X(FermOp.FermionRedBlackGrid());
FermionField Y(FermOp.FermionRedBlackGrid());
SchurDifferentiableOperator<FermionOperator<FermionField,GaugeField>,FermionField> PCop(FermOp);
SchurDifferentiableOperator<Impl> PCop(FermOp);
X=zero;
ActionSolver(PCop,PhiOdd,X);
@ -195,7 +203,7 @@ namespace Grid{
FermionField Y(FermOp.FermionRedBlackGrid());
GaugeField tmp(FermOp.GaugeGrid());
SchurDifferentiableOperator<FermionOperator<FermionField,GaugeField>,FermionField> PCop(FermOp);
SchurDifferentiableOperator<Impl> PCop(FermOp);
X=zero;
DerivativeSolver(PCop,PhiOdd,X);

View File

@ -4,7 +4,6 @@ namespace Grid{
namespace QCD {
const int SpinorIndex = 2;
class Gamma {

File diff suppressed because it is too large Load Diff

View File

@ -202,7 +202,6 @@ namespace Grid {
static const bool value = true;
};
}
#endif

View File

@ -1,3 +1,4 @@
find . -name "*~" -print -exec rm -f {} \;
find . -name "errs" -print -exec rm -f {} \;
find . -name "log" -print -exec rm -f {} \;
find . -name "*.bak" -print -exec rm -f {} \;

View File

@ -72,34 +72,34 @@ int main (int argc, char ** argv)
RealD mass=0.1;
RealD M5 =1.8;
std::cout<<GridLogMessage <<"DomainWallFermion test"<<std::endl;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
TestCGinversions<DomainWallFermion>(Ddwf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
TestCGinversions<DomainWallFermionR>(Ddwf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
RealD b=1.5;// Scale factor b+c=2, b-c=1
RealD c=0.5;
std::cout<<GridLogMessage <<"MobiusFermion test"<<std::endl;
MobiusFermion Dmob(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
TestCGinversions<MobiusFermion>(Dmob,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
MobiusFermionR Dmob(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
TestCGinversions<MobiusFermionR>(Dmob,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"MobiusZolotarevFermion test"<<std::endl;
MobiusZolotarevFermion Dzolo(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c,0.1,2.0);
TestCGinversions<MobiusZolotarevFermion>(Dzolo,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
MobiusZolotarevFermionR Dzolo(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c,0.1,2.0);
TestCGinversions<MobiusZolotarevFermionR>(Dzolo,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"ScaledShamirFermion test"<<std::endl;
ScaledShamirFermion Dsham(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,2.0);
TestCGinversions<ScaledShamirFermion>(Dsham,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
ScaledShamirFermionR Dsham(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,2.0);
TestCGinversions<ScaledShamirFermionR>(Dsham,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"ShamirZolotarevFermion test"<<std::endl;
ShamirZolotarevFermion Dshamz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,2.0);
TestCGinversions<ShamirZolotarevFermion>(Dshamz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
ShamirZolotarevFermionR Dshamz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,2.0);
TestCGinversions<ShamirZolotarevFermionR>(Dshamz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"OverlapWilsonCayleyTanhFermion test"<<std::endl;
OverlapWilsonCayleyTanhFermion Dov(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestCGinversions<OverlapWilsonCayleyTanhFermion>(Dov,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
OverlapWilsonCayleyTanhFermionR Dov(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestCGinversions<OverlapWilsonCayleyTanhFermionR>(Dov,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"OverlapWilsonCayleyZolotarevFermion test"<<std::endl;
OverlapWilsonCayleyZolotarevFermion Dovz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,2.0);
TestCGinversions<OverlapWilsonCayleyZolotarevFermion>(Dovz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
OverlapWilsonCayleyZolotarevFermionR Dovz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,2.0);
TestCGinversions<OverlapWilsonCayleyZolotarevFermionR>(Dovz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
Grid_finalize();
}

View File

@ -67,8 +67,8 @@ int main (int argc, char ** argv)
RealD mass=0.5;
RealD M5=1.8;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
Gamma5R5HermitianLinearOperator<DomainWallFermion,LatticeFermion> HermIndefOp(Ddwf);
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf);
HermIndefOp.Op(src,ref);
HermIndefOp.OpDiag(src,result);
@ -89,7 +89,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage<<"Calling Aggregation class" <<std::endl;
MdagMLinearOperator<DomainWallFermion,LatticeFermion> HermDefOp(Ddwf);
MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermDefOp(Ddwf);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace Aggregates(Coarse5d,FGrid);
Aggregates.CreateSubspaceRandom(RNG5);

View File

@ -49,35 +49,35 @@ int main (int argc, char ** argv)
RealD mass=0.1;
RealD M5 =1.8;
std::cout<<GridLogMessage <<"DomainWallFermion test"<<std::endl;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
TestWhat<DomainWallFermion>(Ddwf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
TestWhat<DomainWallFermionR>(Ddwf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
RealD b=1.5;// Scale factor b+c=2, b-c=1
RealD c=0.5;
std::cout<<GridLogMessage <<"MobiusFermion test"<<std::endl;
MobiusFermion Dmob(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
TestWhat<MobiusFermion>(Dmob,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
MobiusFermionR Dmob(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
TestWhat<MobiusFermionR>(Dmob,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"MobiusZolotarevFermion test"<<std::endl;
MobiusZolotarevFermion Dzolo(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c,0.1,2.0);
TestWhat<MobiusZolotarevFermion>(Dzolo,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
MobiusZolotarevFermionR Dzolo(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c,0.1,2.0);
TestWhat<MobiusZolotarevFermionR>(Dzolo,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"ScaledShamirFermion test"<<std::endl;
ScaledShamirFermion Dsham(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,2.0);
TestWhat<ScaledShamirFermion>(Dsham,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
ScaledShamirFermionR Dsham(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,2.0);
TestWhat<ScaledShamirFermionR>(Dsham,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"ShamirZolotarevFermion test"<<std::endl;
ShamirZolotarevFermion Dshamz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,2.0);
TestWhat<ShamirZolotarevFermion>(Dshamz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
ShamirZolotarevFermionR Dshamz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,2.0);
TestWhat<ShamirZolotarevFermionR>(Dshamz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"OverlapWilsonCayleyTanhFermion test"<<std::endl;
OverlapWilsonCayleyTanhFermion Dov(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestWhat<OverlapWilsonCayleyTanhFermion>(Dov,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
OverlapWilsonCayleyTanhFermionR Dov(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestWhat<OverlapWilsonCayleyTanhFermionR>(Dov,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"OverlapWilsonCayleyZolotarevFermion test"<<std::endl;
OverlapWilsonCayleyZolotarevFermion Dovz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,2.0);
TestWhat<OverlapWilsonCayleyZolotarevFermion>(Dovz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
OverlapWilsonCayleyZolotarevFermionR Dovz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,2.0);
TestWhat<OverlapWilsonCayleyZolotarevFermionR>(Dovz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
Grid_finalize();
}

View File

@ -55,8 +55,8 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building g5R5 hermitian DWF operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
Gamma5R5HermitianLinearOperator<DomainWallFermion,LatticeFermion> HermIndefOp(Ddwf);
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf);
const int nbasis = 8;
@ -67,7 +67,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<DomainWallFermion,LatticeFermion> HermDefOp(Ddwf);
MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermDefOp(Ddwf);
Subspace Aggregates(Coarse5d,FGrid);
Aggregates.CreateSubspace(RNG5,HermDefOp);

View File

@ -48,8 +48,8 @@ int main (int argc, char ** argv)
RealD M5=1.8;
{
OverlapWilsonContFracTanhFermion Dcf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
HermitianLinearOperator<OverlapWilsonContFracTanhFermion,LatticeFermion> HermIndefOp(Dcf);
OverlapWilsonContFracTanhFermionR Dcf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
HermitianLinearOperator<OverlapWilsonContFracTanhFermionR,LatticeFermion> HermIndefOp(Dcf);
HermIndefOp.Op(src,ref);
HermIndefOp.OpDiag(src,result);
@ -65,8 +65,8 @@ int main (int argc, char ** argv)
}
{
OverlapWilsonPartialFractionTanhFermion Dpf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
HermitianLinearOperator<OverlapWilsonPartialFractionTanhFermion,LatticeFermion> HermIndefOp(Dpf);
OverlapWilsonPartialFractionTanhFermionR Dpf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
HermitianLinearOperator<OverlapWilsonPartialFractionTanhFermionR,LatticeFermion> HermIndefOp(Dpf);
HermIndefOp.Op(src,ref);
HermIndefOp.OpDiag(src,result);

View File

@ -44,14 +44,14 @@ int main (int argc, char ** argv)
RealD mass=0.1;
RealD M5=1.8;
OverlapWilsonContFracTanhFermion Dcf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
OverlapWilsonContFracTanhFermionR Dcf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
ConjugateResidual<LatticeFermion> MCR(1.0e-8,10000);
MdagMLinearOperator<OverlapWilsonContFracTanhFermion,LatticeFermion> HermPosDefOp(Dcf);
MdagMLinearOperator<OverlapWilsonContFracTanhFermionR,LatticeFermion> HermPosDefOp(Dcf);
MCR(HermPosDefOp,src,result);
HermitianLinearOperator<OverlapWilsonContFracTanhFermion,LatticeFermion> HermIndefOp(Dcf);
HermitianLinearOperator<OverlapWilsonContFracTanhFermionR,LatticeFermion> HermIndefOp(Dcf);
MCR(HermIndefOp,src,result);
Grid_finalize();

View File

@ -75,21 +75,21 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage <<"OverlapWilsonContFracTanhFermion test"<<std::endl;
OverlapWilsonContFracTanhFermion Dcf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestCGinversions<OverlapWilsonContFracTanhFermion>(Dcf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
OverlapWilsonContFracTanhFermionR Dcf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestCGinversions<OverlapWilsonContFracTanhFermionR>(Dcf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"OverlapWilsonContFracZolotarevFermion test"<<std::endl;
OverlapWilsonContFracZolotarevFermion Dcfz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,6.0);
TestCGinversions<OverlapWilsonContFracZolotarevFermion>(Dcfz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
OverlapWilsonContFracZolotarevFermionR Dcfz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,6.0);
TestCGinversions<OverlapWilsonContFracZolotarevFermionR>(Dcfz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"OverlapWilsonPartialFractionTanhFermion test"<<std::endl;
OverlapWilsonPartialFractionTanhFermion Dpf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestCGinversions<OverlapWilsonPartialFractionTanhFermion>(Dpf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
OverlapWilsonPartialFractionTanhFermionR Dpf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestCGinversions<OverlapWilsonPartialFractionTanhFermionR>(Dpf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"OverlapWilsonPartialFractionZolotarevFermion test"<<std::endl;
OverlapWilsonPartialFractionZolotarevFermion Dpfz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,6.0);
TestCGinversions<OverlapWilsonPartialFractionZolotarevFermion>(Dpfz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
OverlapWilsonPartialFractionZolotarevFermionR Dpfz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,6.0);
TestCGinversions<OverlapWilsonPartialFractionZolotarevFermionR>(Dpfz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
Grid_finalize();

View File

@ -50,20 +50,20 @@ int main (int argc, char ** argv)
RealD M5 =1.8;
std::cout<<GridLogMessage <<"OverlapWilsonContFracTanhFermion test"<<std::endl;
OverlapWilsonContFracTanhFermion Dcf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestWhat<OverlapWilsonContFracTanhFermion>(Dcf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
OverlapWilsonContFracTanhFermionR Dcf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestWhat<OverlapWilsonContFracTanhFermionR>(Dcf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"OverlapWilsonContFracZolotarevFermion test"<<std::endl;
OverlapWilsonContFracZolotarevFermion Dcfz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,6.0);
TestWhat<OverlapWilsonContFracZolotarevFermion>(Dcfz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
OverlapWilsonContFracZolotarevFermionR Dcfz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,6.0);
TestWhat<OverlapWilsonContFracZolotarevFermionR>(Dcfz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"OverlapWilsonPartialFractionTanhFermion test"<<std::endl;
OverlapWilsonPartialFractionTanhFermion Dpf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestWhat<OverlapWilsonPartialFractionTanhFermion>(Dpf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
OverlapWilsonPartialFractionTanhFermionR Dpf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
TestWhat<OverlapWilsonPartialFractionTanhFermionR>(Dpf,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
std::cout<<GridLogMessage <<"OverlapWilsonPartialFractionZolotarevFermion test"<<std::endl;
OverlapWilsonPartialFractionZolotarevFermion Dpfz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,6.0);
TestWhat<OverlapWilsonPartialFractionZolotarevFermion>(Dpfz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
OverlapWilsonPartialFractionZolotarevFermionR Dpfz(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,0.1,6.0);
TestWhat<OverlapWilsonPartialFractionZolotarevFermionR>(Dpfz,FGrid,FrbGrid,UGrid,UrbGrid,mass,M5,&RNG4,&RNG5);
Grid_finalize();
}

View File

@ -42,7 +42,7 @@ int main (int argc, char ** argv)
////////////////////////////////////
RealD mass=0.01;
RealD M5=1.8;
OverlapWilsonContFracTanhFermion Dcf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
OverlapWilsonContFracTanhFermionR Dcf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
Dcf.M (phi,Mphi);
ComplexD S = innerProduct(Mphi,Mphi); // pdag MdagM p

View File

@ -45,14 +45,14 @@ int main (int argc, char ** argv)
RealD mass=0.1;
RealD M5=1.8;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
LatticeFermion src_o(FrbGrid);
LatticeFermion result_o(FrbGrid);
pickCheckerboard(Odd,src_o,src);
result_o=zero;
SchurDiagMooeeOperator<DomainWallFermion,LatticeFermion> HermOpEO(Ddwf);
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
CG(HermOpEO,src_o,result_o);

View File

@ -43,7 +43,7 @@ int main (int argc, char ** argv)
RealD mass=0.1;
RealD M5=1.8;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG);

View File

@ -43,9 +43,9 @@ int main (int argc, char ** argv)
RealD mass=0.1;
RealD M5=1.8;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
MdagMLinearOperator<DomainWallFermion,LatticeFermion> HermOp(Ddwf);
MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
CG(HermOp,src,result);

View File

@ -50,12 +50,12 @@ int main (int argc, char ** argv)
RealD mass=0.5;
RealD M5=1.8;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
MdagMLinearOperator<DomainWallFermion,LatticeFermion> HermOp(Ddwf);
MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
MCR(HermOp,src,result);
Gamma5R5HermitianLinearOperator<DomainWallFermion,LatticeFermion> g5HermOp(Ddwf);
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> g5HermOp(Ddwf);
MCR(g5HermOp,src,result);

View File

@ -58,7 +58,7 @@ int main (int argc, char ** argv)
RealD mass=0.1;
RealD M5 =1.8;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
LatticeFermion src_e (FrbGrid);
LatticeFermion src_o (FrbGrid);
@ -187,7 +187,7 @@ int main (int argc, char ** argv)
RealD t1,t2;
SchurDiagMooeeOperator<DomainWallFermion,LatticeFermion> HermOpEO(Ddwf);
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
HermOpEO.MpcDagMpc(chi_e,dchi_e,t1,t2);
HermOpEO.MpcDagMpc(chi_o,dchi_o,t1,t2);

View File

@ -42,7 +42,7 @@ int main (int argc, char ** argv)
////////////////////////////////////
RealD mass=0.01;
RealD M5=1.8;
DomainWallFermion Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionR Ddwf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
Ddwf.M (phi,Mphi);
ComplexD S = innerProduct(Mphi,Mphi); // pdag MdagM p

View File

@ -52,19 +52,19 @@ int main (int argc, char ** argv)
RealD mass=0.5;
RealD M5=1.8;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
std::cout<<GridLogMessage<<"*********************************************************"<<std::endl;
std::cout<<GridLogMessage<<"* Solving with MdagM VPGCR "<<std::endl;
std::cout<<GridLogMessage<<"*********************************************************"<<std::endl;
MdagMLinearOperator<DomainWallFermion,LatticeFermion> HermOp(Ddwf);
MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermOp(Ddwf);
result=zero;
PGCR(HermOp,src,result);
std::cout<<GridLogMessage<<"*********************************************************"<<std::endl;
std::cout<<GridLogMessage<<"* Solving with g5-VPGCR "<<std::endl;
std::cout<<GridLogMessage<<"*********************************************************"<<std::endl;
Gamma5R5HermitianLinearOperator<DomainWallFermion,LatticeFermion> g5HermOp(Ddwf);
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> g5HermOp(Ddwf);
result=zero;
PGCR(g5HermOp,src,result);

View File

@ -401,7 +401,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building g5R5 hermitian DWF operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
const int nbasis = 32;
// const int nbasis = 4;
@ -413,7 +413,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<DomainWallFermion,LatticeFermion> HermDefOp(Ddwf);
MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermDefOp(Ddwf);
Subspace Aggregates(Coarse5d,FGrid);
// Aggregates.CreateSubspace(RNG5,HermDefOp,nbasis);
assert ( (nbasis & 0x1)==0);
@ -437,7 +437,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building coarse representation of Indef operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
Gamma5R5HermitianLinearOperator<DomainWallFermion,LatticeFermion> HermIndefOp(Ddwf);
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf);
CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LDOp(*Coarse5d);
LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
@ -467,7 +467,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Building deflation preconditioner "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,DomainWallFermion> Precon(Aggregates, LDOp,HermIndefOp,Ddwf);
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,DomainWallFermionR> Precon(Aggregates, LDOp,HermIndefOp,Ddwf);
TrivialPrecon<LatticeFermion> simple;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
@ -506,7 +506,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Red Black Prec CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
SchurDiagMooeeOperator<DomainWallFermion,LatticeFermion> HermOpEO(Ddwf);
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
ConjugateGradient<LatticeFermion> pCG(1.0e-8,10000);
LatticeFermion src_o(FrbGrid);

View File

@ -25,13 +25,12 @@ int main (int argc, char ** argv)
WilsonGaugeAction<LatticeLorentzColourMatrix, LatticeColourMatrix> Waction(5.6);
Real mass=-0.77;
WilsonFermion FermOp(U,Fine,RBFine,mass);
WilsonFermionR FermOp(U,Fine,RBFine,mass);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
ConjugateGradient<LatticeFermion> CGmd(1.0e-6,10000);
TwoFlavourEvenOddPseudoFermionAction<LatticeLorentzColourMatrix, LatticeColourMatrix,LatticeFermion>
WilsonNf2(FermOp,CG,CG);
TwoFlavourEvenOddPseudoFermionAction<WilsonImplR> WilsonNf2(FermOp,CG,CG);
//Collect actions
ActionLevel Level1;

View File

@ -25,13 +25,12 @@ int main (int argc, char ** argv)
WilsonGaugeAction<LatticeLorentzColourMatrix, LatticeColourMatrix> Waction(5.6);
Real mass=-0.77;
WilsonFermion FermOp(U,Fine,RBFine,mass);
WilsonFermionR FermOp(U,Fine,RBFine,mass);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
ConjugateGradient<LatticeFermion> CGmd(1.0e-6,10000);
TwoFlavourPseudoFermionAction<LatticeLorentzColourMatrix, LatticeColourMatrix,LatticeFermion>
WilsonNf2(FermOp,CG,CG);
TwoFlavourPseudoFermionAction<WilsonImplR> WilsonNf2(FermOp,CG,CG);
//Collect actions
ActionLevel Level1;

View File

@ -42,7 +42,7 @@ int main (int argc, char ** argv)
////////////////////////////////////
RealD mass=0.01;
RealD M5=1.8;
OverlapWilsonPartialFractionTanhFermion Dpf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
OverlapWilsonPartialFractionTanhFermionR Dpf(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
Dpf.M (phi,Mphi);
ComplexD S = innerProduct(Mphi,Mphi); // pdag MdagM p

View File

@ -42,7 +42,7 @@ int main (int argc, char ** argv)
}
RealD mass=0.5;
WilsonFermion Dw(Umu,Grid,RBGrid,mass);
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
// HermitianOperator<WilsonFermion,LatticeFermion> HermOp(Dw);
// ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
@ -53,7 +53,7 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd,src_o,src);
result_o=zero;
SchurDiagMooeeOperator<WilsonFermion,LatticeFermion> HermOpEO(Dw);
SchurDiagMooeeOperator<WilsonFermionR,LatticeFermion> HermOpEO(Dw);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
CG(HermOpEO,src_o,result_o);

View File

@ -37,7 +37,7 @@ int main (int argc, char ** argv)
LatticeFermion resid(&Grid);
RealD mass=0.5;
WilsonFermion Dw(Umu,Grid,RBGrid,mass);
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG);

View File

@ -40,9 +40,9 @@ int main (int argc, char ** argv)
}
RealD mass=0.5;
WilsonFermion Dw(Umu,Grid,RBGrid,mass);
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
MdagMLinearOperator<WilsonFermion,LatticeFermion> HermOp(Dw);
MdagMLinearOperator<WilsonFermionR,LatticeFermion> HermOp(Dw);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
CG(HermOp,src,result);

View File

@ -43,9 +43,9 @@ int main (int argc, char ** argv)
}
RealD mass=0.5;
WilsonFermion Dw(Umu,Grid,RBGrid,mass);
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
MdagMLinearOperator<WilsonFermion,LatticeFermion> HermOp(Dw);
MdagMLinearOperator<WilsonFermionR,LatticeFermion> HermOp(Dw);
ConjugateResidual<LatticeFermion> MCR(1.0e-8,10000);

View File

@ -62,7 +62,7 @@ int main (int argc, char ** argv)
RealD mass=0.1;
WilsonFermion Dw(Umu,Grid,RBGrid,mass);
WilsonFermionR Dw(Umu,Grid,RBGrid,mass);
LatticeFermion src_e (&RBGrid);
LatticeFermion src_o (&RBGrid);
@ -179,7 +179,7 @@ int main (int argc, char ** argv)
pickCheckerboard(Odd ,phi_o,phi);
RealD t1,t2;
SchurDiagMooeeOperator<WilsonFermion,LatticeFermion> HermOpEO(Dw);
SchurDiagMooeeOperator<WilsonFermionR,LatticeFermion> HermOpEO(Dw);
HermOpEO.MpcDagMpc(chi_e,dchi_e,t1,t2);
HermOpEO.MpcDagMpc(chi_o,dchi_o,t1,t2);

View File

@ -38,7 +38,7 @@ int main (int argc, char ** argv)
// Unmodified matrix element
////////////////////////////////////
RealD mass=-4.0; //kills the diagonal term
WilsonFermion Dw (U, Grid,RBGrid,mass);
WilsonFermionR Dw (U, Grid,RBGrid,mass);
Dw.M (phi,Mphi);
ComplexD S = innerProduct(Mphi,Mphi); // pdag MdagM p
@ -88,7 +88,7 @@ int main (int argc, char ** argv)
}
std::cout << GridLogMessage <<"Initial mom hamiltonian is "<< Hmom <<std::endl;
Dw.DoubleStore(Dw.Umu,Uprime);
Dw.ImportGauge(Uprime);
Dw.M (phi,MphiPrime);
ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);

View File

@ -42,7 +42,7 @@ int main (int argc, char ** argv)
// Unmodified matrix element
////////////////////////////////////
RealD mass=-4.0; //kills the diagonal term
WilsonFermion Dw (U, Grid,RBGrid,mass);
WilsonFermionR Dw (U, Grid,RBGrid,mass);
Dw.M (phi,Mphi);
Dw.Mdag(phi,Mdagphi);

View File

@ -39,7 +39,7 @@ int main (int argc, char ** argv)
// Unmodified matrix element
////////////////////////////////////
RealD mass=-4.0; //kills the diagonal term
WilsonFermion Dw (U, Grid,RBGrid,mass);
WilsonFermionR Dw (U, Grid,RBGrid,mass);
Dw.M(phi,Mphi);
ComplexD S = innerProduct(phi,Mphi);