mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-17 15:27:06 +01:00
Rework/global edit to enforce type templating of fermion operators.
Allows multi-precision work and paves the way for alternate BC's and such like allowing for example G-parity which is important for K pipi programme. In particular, can drive an extra flavour index into the fermion fields using template types.
This commit is contained in:
@ -5,15 +5,169 @@ namespace Grid {
|
||||
|
||||
namespace QCD {
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Hardwire to four spinors, allow to select
|
||||
// between gauge representation rank, and gparity/flavour index,
|
||||
// and single/double precision.
|
||||
////////////////////////////////////////////////////////////////
|
||||
|
||||
template<class S,int Nrepresentation=Nc>
|
||||
class WilsonImpl {
|
||||
public:
|
||||
|
||||
typedef S Simd;
|
||||
|
||||
template<typename vtype> using iImplSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Ns> >;
|
||||
template<typename vtype> using iImplHalfSpinor = iScalar<iVector<iVector<vtype, Nrepresentation>, Nhs> >;
|
||||
|
||||
template<typename vtype> using iImplGaugeLink = iScalar<iScalar<iMatrix<vtype, Nrepresentation> > >;
|
||||
template<typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd >;
|
||||
template<typename vtype> using iImplDoubledGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds >;
|
||||
|
||||
typedef iImplSpinor <Simd> SiteSpinor;
|
||||
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
||||
typedef iImplGaugeLink <Simd> SiteGaugeLink;
|
||||
typedef iImplGaugeField<Simd> SiteGaugeField;
|
||||
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
|
||||
|
||||
typedef Lattice<SiteSpinor> FermionField;
|
||||
typedef Lattice<SiteGaugeLink> GaugeLinkField; // bit ugly naming; polarised gauge field, lorentz... all ugly
|
||||
typedef Lattice<SiteGaugeField> GaugeField;
|
||||
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
|
||||
|
||||
typedef WilsonCompressor<SiteHalfSpinor,SiteSpinor> Compressor;
|
||||
|
||||
// provide the multiply by link that is differentiated between Gparity (with flavour index) and
|
||||
// non-Gparity
|
||||
static inline void multLink(SiteHalfSpinor &phi,const SiteDoubledGaugeField &U,const SiteHalfSpinor &chi,int mu){
|
||||
mult(&phi(),&U(mu),&chi());
|
||||
}
|
||||
|
||||
static inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
{
|
||||
conformable(Uds._grid,GaugeGrid);
|
||||
conformable(Umu._grid,GaugeGrid);
|
||||
GaugeLinkField U(GaugeGrid);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
U = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
PokeIndex<LorentzIndex>(Uds,U,mu);
|
||||
U = adj(Cshift(U,mu,-1));
|
||||
PokeIndex<LorentzIndex>(Uds,U,mu+4);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
typedef WilsonImpl<vComplex,Nc> WilsonImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF,Nc> WilsonImplF; // Float
|
||||
typedef WilsonImpl<vComplexD,Nc> WilsonImplD; // Double
|
||||
|
||||
|
||||
|
||||
template<class S,int Nrepresentation=Nc>
|
||||
class GparityWilsonImpl {
|
||||
public:
|
||||
|
||||
typedef S Simd;
|
||||
|
||||
template<typename vtype> using iImplSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Ns>, Ngp >;
|
||||
template<typename vtype> using iImplHalfSpinor = iVector<iVector<iVector<vtype, Nrepresentation>, Nhs>, Ngp >;
|
||||
template<typename vtype> using iImplGaugeField = iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nd >;
|
||||
|
||||
template<typename vtype> using iImplGaugeLink = iScalar<iScalar<iScalar<iMatrix<vtype, Nrepresentation> > > >;
|
||||
template<typename vtype> using iImplDoubledGaugeField = iVector<iVector<iScalar<iMatrix<vtype, Nrepresentation> >, Nds >, Ngp >;
|
||||
|
||||
typedef iImplSpinor <Simd> SiteSpinor;
|
||||
typedef iImplHalfSpinor<Simd> SiteHalfSpinor;
|
||||
typedef iImplGaugeLink <Simd> SiteGaugeLink;
|
||||
typedef iImplGaugeField<Simd> SiteGaugeField;
|
||||
typedef iImplDoubledGaugeField<Simd> SiteDoubledGaugeField;
|
||||
|
||||
typedef Lattice<SiteSpinor> FermionField;
|
||||
typedef Lattice<SiteGaugeLink> GaugeLinkField; // bit ugly naming; polarised gauge field, lorentz... all ugly
|
||||
typedef Lattice<SiteGaugeField> GaugeField;
|
||||
typedef Lattice<SiteDoubledGaugeField> DoubledGaugeField;
|
||||
|
||||
typedef GparityWilsonCompressor<SiteHalfSpinor,SiteSpinor> Compressor;
|
||||
|
||||
// provide the multiply by link that is differentiated between Gparity (with flavour index) and
|
||||
// non-Gparity
|
||||
static inline void multLink(SiteHalfSpinor &phi,const SiteDoubledGaugeField &U,const SiteHalfSpinor &chi,int mu){
|
||||
for(int f=0;f<Ngp;f++){
|
||||
mult(&phi(f),&U(f)(mu),&chi(f));
|
||||
}
|
||||
}
|
||||
|
||||
static inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||
{
|
||||
conformable(Uds._grid,GaugeGrid);
|
||||
conformable(Umu._grid,GaugeGrid);
|
||||
|
||||
GaugeLinkField Utmp(GaugeGrid);
|
||||
GaugeLinkField U(GaugeGrid);
|
||||
GaugeLinkField Uconj(GaugeGrid);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||
|
||||
std::vector<int> gpdirs({1,0,0,0});
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
|
||||
LatticeCoordinate(coor,mu);
|
||||
|
||||
U = PeekIndex<LorentzIndex>(Umu,mu);
|
||||
Uconj = conj(U);
|
||||
|
||||
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
|
||||
|
||||
if ( gpdirs[mu] ) {
|
||||
Uconj = where(coor==neglink,-Uconj,Uconj);
|
||||
}
|
||||
PARALLEL_FOR_LOOP
|
||||
for(auto ss=U.begin();ss<U.end();ss++){
|
||||
Uds[ss](0)(mu) = U[ss]();
|
||||
Uds[ss](1)(mu) = Uconj[ss]();
|
||||
}
|
||||
|
||||
|
||||
U = adj(Cshift(U,mu,-1)); // correct except for spanning the boundary
|
||||
Uconj = adj(Cshift(Uconj,mu,-1));
|
||||
|
||||
Utmp = where(coor==0,U,Uconj);
|
||||
PARALLEL_FOR_LOOP
|
||||
for(auto ss=U.begin();ss<U.end();ss++){
|
||||
Uds[ss](1)(mu) = Utmp[ss]();
|
||||
}
|
||||
|
||||
Utmp = where(coor==0,Uconj,U);
|
||||
PARALLEL_FOR_LOOP
|
||||
for(auto ss=U.begin();ss<U.end();ss++){
|
||||
Uds[ss](0)(mu) = Utmp[ss]();
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
typedef WilsonImpl<vComplex,Nc> WilsonImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF,Nc> WilsonImplF; // Float
|
||||
typedef WilsonImpl<vComplexD,Nc> WilsonImplD; // Double
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Four component fermions
|
||||
// Should type template the vector and gauge types
|
||||
// Think about multiple representations
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
template<class FermionField,class GaugeField>
|
||||
class FermionOperator : public CheckerBoardedSparseMatrixBase<FermionField>
|
||||
template<class Impl>
|
||||
class FermionOperator : public CheckerBoardedSparseMatrixBase<typename Impl::FermionField>
|
||||
{
|
||||
public:
|
||||
#include <qcd/action/fermion/FermionImplTypedefs.h>
|
||||
public:
|
||||
|
||||
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
|
||||
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
|
||||
@ -42,15 +196,15 @@ namespace Grid {
|
||||
virtual void DhopDir(const FermionField &in, FermionField &out,int dir,int disp)=0; // implemented by WilsonFermion and WilsonFermion5D
|
||||
|
||||
// force terms; five routines; default to Dhop on diagonal
|
||||
virtual void MDeriv (LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDeriv(mat,U,V,dag);};
|
||||
virtual void MoeDeriv(LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivOE(mat,U,V,dag);};
|
||||
virtual void MeoDeriv(LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivEO(mat,U,V,dag);};
|
||||
virtual void MooDeriv(LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
|
||||
virtual void MeeDeriv(LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
|
||||
virtual void MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDeriv(mat,U,V,dag);};
|
||||
virtual void MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivOE(mat,U,V,dag);};
|
||||
virtual void MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){DhopDerivEO(mat,U,V,dag);};
|
||||
virtual void MooDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
|
||||
virtual void MeeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){mat=zero;};
|
||||
|
||||
virtual void DhopDeriv (LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
|
||||
virtual void DhopDerivEO(LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
|
||||
virtual void DhopDerivOE(LatticeGaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
|
||||
virtual void DhopDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
|
||||
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
|
||||
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)=0;
|
||||
|
||||
|
||||
virtual void Mdiag (const FermionField &in, FermionField &out) { Mooee(in,out);}; // Same as Mooee applied to both CB's
|
||||
@ -65,4 +219,5 @@ namespace Grid {
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user