1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 01:05:38 +01:00

True Hierachical multigrid for DWF

This commit is contained in:
Peter Boyle 2020-01-27 13:45:10 -05:00
parent 2b5de5bba5
commit 852fc1b001

View File

@ -1,3 +1,5 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -29,357 +31,174 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
//#include <algorithms/iterative/PrecConjugateResidual.h>
using namespace std;
using namespace Grid;
/* Params
* Grid:
* block1(4)
* block2(4)
*
* Subspace
* * Fine : Subspace(nbasis,hi,lo,order,first,step) -- 32, 60,0.02,500,100,100
* * Coarse: Subspace(nbasis,hi,lo,order,first,step) -- 32, 18,0.02,500,100,100
class myclass: Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(myclass,
int, domaindecompose,
int, domainsize,
int, order,
int, Ls,
double, mq,
double, lo,
double, hi,
int, steps);
myclass(){};
};
* Smoother:
* * Fine: Cheby(hi, lo, order) -- 60,0.5,10
* * Coarse: Cheby(hi, lo, order) -- 12,0.1,4
* Lanczos:
* CoarseCoarse IRL( Nk, Nm, Nstop, poly(lo,hi,order)) 24,36,24,0.002,4.0,61
*/
RealD InverseApproximation(RealD x){
return 1.0/x;
}
template<class Fobj,class CComplex,int nbasis, class Matrix, class Guesser>
template<class Field,class Matrix> class ChebyshevSmoother : public LinearFunction<Field>
{
public:
typedef LinearOperatorBase<Field> FineOperator;
Matrix & _SmootherMatrix;
FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator,Matrix &SmootherMatrix) :
_SmootherOperator(SmootherOperator),
_SmootherMatrix(SmootherMatrix),
Cheby(_lo,_hi,_ord,InverseApproximation)
{};
void operator() (const Field &in, Field &out)
{
Field tmp(in.Grid());
MdagMLinearOperator<Matrix,Field> MdagMOp(_SmootherMatrix);
_SmootherOperator.AdjOp(in,tmp);
Cheby(MdagMOp,tmp,out);
}
};
template<class Field,class Matrix> class MirsSmoother : public LinearFunction<Field>
{
public:
typedef LinearOperatorBase<Field> FineOperator;
Matrix & SmootherMatrix;
FineOperator & SmootherOperator;
RealD tol;
RealD shift;
int maxit;
MirsSmoother(RealD _shift,RealD _tol,int _maxit,FineOperator &_SmootherOperator,Matrix &_SmootherMatrix) :
shift(_shift),tol(_tol),maxit(_maxit),
SmootherOperator(_SmootherOperator),
SmootherMatrix(_SmootherMatrix)
{};
void operator() (const Field &in, Field &out)
{
ZeroGuesser<Field> Guess;
ConjugateGradient<Field> CG(tol,maxit,false);
Field src(in.Grid());
ShiftedMdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(SmootherMatrix,shift);
SmootherOperator.AdjOp(in,src);
Guess(src,out);
CG(MdagMOp,src,out);
}
};
template<class Fobj,class CComplex,int nbasis, class Matrix, class Guesser, class CoarseSolver>
class MultiGridPreconditioner : public LinearFunction< Lattice<Fobj> > {
public:
typedef Aggregation<Fobj,CComplex,nbasis> Aggregates;
typedef CoarsenedMatrix<Fobj,CComplex,nbasis> CoarseOperator;
typedef typename Aggregation<Fobj,CComplex,nbasis>::siteVector siteVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseScalar CoarseScalar;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix;
typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField;
typedef LinearOperatorBase<FineField> FineOperator;
typedef LinearFunction <FineField> FineSmoother;
Aggregates & _Aggregates;
CoarseOperator & _CoarseOperator;
Matrix & _FineMatrix;
FineOperator & _FineOperator;
Matrix & _SmootherMatrix;
FineOperator & _SmootherOperator;
Guesser & _Guess;
FineSmoother & _Smoother;
CoarseSolver & _CoarseSolve;
double cheby_hi;
double cheby_lo;
int cheby_ord;
int level; void Level(int lv) {level = lv; };
myclass _params;
#define GridLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level <<" "
// Constructor
MultiGridPreconditioner(Aggregates &Agg, CoarseOperator &Coarse,
FineOperator &Fine,Matrix &FineMatrix,
FineOperator &Smooth,Matrix &SmootherMatrix,
FineSmoother &Smoother,
Guesser &Guess_,
myclass params_)
CoarseSolver &CoarseSolve_)
: _Aggregates(Agg),
_CoarseOperator(Coarse),
_FineOperator(Fine),
_FineMatrix(FineMatrix),
_SmootherOperator(Smooth),
_SmootherMatrix(SmootherMatrix),
_Smoother(Smoother),
_Guess(Guess_),
_params(params_)
_CoarseSolve(CoarseSolve_),
level(1) { }
virtual void operator()(const FineField &in, FineField & out)
{
}
void PowerMethod(const FineField &in) {
FineField p1(in.Grid());
FineField p2(in.Grid());
MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
p1=in;
for(int i=0;i<50;i++){
RealD absp1=std::sqrt(norm2(p1));
fMdagMOp.HermOp(p1,p2);// this is the G5 herm bit
// _FineOperator.Op(p1,p2);// this is the G5 herm bit
RealD absp2=std::sqrt(norm2(p2));
if(i%10==9)
std::cout<<GridLogMessage << "Power method on mdagm "<<i<<" " << absp2/absp1<<std::endl;
p1=p2*(1.0/std::sqrt(absp2));
}
}
void operator()(const FineField &in, FineField & out ) {
operatorCheby(in,out);
//operatorADEF2(in,out);
}
////////////////////////////////////////////////////////////////////////
// ADEF2: [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
// ADEF1: [MP+Q ] in =M [1 - A Q] in + Q in
////////////////////////////////////////////////////////////////////////
#if 1
void operatorADEF2(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Ctmp(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid());
ConjugateGradient<CoarseVector> CG(1.0e-3,100,false);
ConjugateGradient<FineField> fCG(1.0e-3,10,false);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
FineField tmp(in.Grid());
FineField res(in.Grid());
FineField Min(in.Grid());
// Monitor completeness of low mode space
_Aggregates.ProjectToSubspace (Csrc,in);
_Aggregates.PromoteFromSubspace(Csrc,out);
std::cout<<GridLogMessage<<"Coarse Grid Preconditioner\nCompleteness in: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
_FineOperator.Op(in,tmp);// this is the G5 herm bit
fCG(fMdagMOp,tmp,Min); // solves MdagM = g5 M g5M
// Monitor completeness of low mode space
_Aggregates.ProjectToSubspace (Csrc,Min);
_Aggregates.PromoteFromSubspace(Csrc,out);
std::cout<<GridLogMessage<<"Completeness Min: "<<std::sqrt(norm2(out)/norm2(Min))<<std::endl;
_FineOperator.Op(Min,tmp);
tmp = in - tmp; // in - A Min
_Aggregates.ProjectToSubspace (Csrc,tmp);
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
_Guess(Ctmp,Csol);
CG(MdagMOp,Ctmp,Csol);
HermOp.Op(Csol,Ctmp);
Ctmp=Ctmp-Csrc;
std::cout<<GridLogMessage<<"coarse space true residual "<<std::sqrt(norm2(Ctmp)/norm2(Csrc))<<std::endl;
_Aggregates.PromoteFromSubspace(Csol,out);
_FineOperator.Op(out,res);
res=res-tmp;
std::cout<<GridLogMessage<<"promoted sol residual "<<std::sqrt(norm2(res)/norm2(tmp))<<std::endl;
_Aggregates.ProjectToSubspace (Csrc,res);
std::cout<<GridLogMessage<<"coarse space proj of residual "<<norm2(Csrc)<<std::endl;
out = out+Min; // additive coarse space correction
// out = Min; // no additive coarse space correction
_FineOperator.Op(out,tmp);
tmp=tmp-in; // tmp is new residual
std::cout<<GridLogMessage<< " Preconditioner in " << norm2(in)<<std::endl;
std::cout<<GridLogMessage<< " Preconditioner out " << norm2(out)<<std::endl;
std::cout<<GridLogMessage<<"preconditioner thinks residual is "<<std::sqrt(norm2(tmp)/norm2(in))<<std::endl;
}
#endif
// ADEF1: [MP+Q ] in =M [1 - A Q] in + Q in
#if 1
void operatorADEF1(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Ctmp(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid()); Csol=Zero();
ConjugateGradient<CoarseVector> CG(1.0e-10,100000);
ConjugateGradient<FineField> fCG(1.0e-3,1000);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix,0.1);
FineField tmp(in.Grid());
FineField res(in.Grid());
FineField Qin(in.Grid());
// Monitor completeness of low mode space
// _Aggregates.ProjectToSubspace (Csrc,in);
// _Aggregates.PromoteFromSubspace(Csrc,out);
// std::cout<<GridLogMessage<<"Coarse Grid Preconditioner\nCompleteness in: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
_Aggregates.ProjectToSubspace (Csrc,in);
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
CG(MdagMOp,Ctmp,Csol);
_Aggregates.PromoteFromSubspace(Csol,Qin);
// Qin=0;
_FineOperator.Op(Qin,tmp);// A Q in
tmp = in - tmp; // in - A Q in
_FineOperator.Op(tmp,res);// this is the G5 herm bit
fCG(fMdagMOp,res,out); // solves MdagM = g5 M g5M
out = out + Qin;
_FineOperator.Op(out,tmp);
tmp=tmp-in; // tmp is new residual
std::cout<<GridLogMessage<<"preconditioner thinks residual is "<<std::sqrt(norm2(tmp)/norm2(in))<<std::endl;
}
#endif
void SmootherTest (const FineField & in){
FineField vec1(in.Grid());
FineField vec2(in.Grid());
RealD lo[3] = { 0.5, 1.0, 2.0};
// MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0);
RealD Ni,r;
Ni = norm2(in);
for(int ilo=0;ilo<3;ilo++){
for(int ord=5;ord<50;ord*=2){
std::cout << " lo "<<lo[ilo]<<" order "<<ord<<std::endl;
_SmootherOperator.AdjOp(in,vec1);
Chebyshev<FineField> Cheby (lo[ilo],70.0,ord,InverseApproximation);
Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M
_FineOperator.Op(vec2,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<<std::endl;
}
}
}
void operatorCheby(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Ctmp(_CoarseOperator.Grid());
CoarseVector Ctmp1(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid());
ConjugateGradient<CoarseVector> CG(5.0e-2,100000);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
// MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0);
FineField vec1(in.Grid());
FineField vec2(in.Grid());
Chebyshev<FineField> Cheby (_params.lo,_params.hi,_params.order,InverseApproximation);
Chebyshev<FineField> ChebyAccu(_params.lo,_params.hi,_params.order,InverseApproximation);
double t;
// Fine Smoother
t=-usecond();
_Smoother(in,out);
t+=usecond();
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
// _Aggregates.ProjectToSubspace (Csrc,in);
// _Aggregates.PromoteFromSubspace(Csrc,out);
// std::cout<<GridLogMessage<<"Completeness: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
// ofstream fout("smoother");
// Cheby.csv(fout);
// Update the residual
_FineOperator.Op(out,vec1); sub(vec1, in ,vec1);
// V11 multigrid.
// Use a fixed chebyshev and hope hermiticity helps.
// To make a working smoother for indefinite operator
// must multiply by "Mdag" (ouch loses all low mode content)
// and apply to poly approx of (mdagm)^-1.
// so that we end up with an odd polynomial.
RealD Ni = norm2(in);
std::cout<<GridLogMessage << "Smoother calling Cheby" <<std::endl;
_SmootherOperator.AdjOp(in,vec1);// this is the G5 herm bit
ChebyAccu(fMdagMOp,vec1,out); // solves MdagM = g5 M g5M
std::cout<<GridLogMessage << "Smoother called Cheby" <<std::endl;
// Update with residual for out
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
RealD r = norm2(vec1);
std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl;
std::cout<<GridLogMessage << "ProjectToSubspace" <<std::endl;
// Fine to Coarse
t=-usecond();
_Aggregates.ProjectToSubspace (Csrc,vec1);
std::cout<<GridLogMessage << "ProjectToSubspaceDone" <<std::endl;
HermOp.AdjOp(Csrc,Ctmp1);// Normal equations
t+=usecond();
GridLogLevel << "Project to coarse took "<< t/1000.0<< "ms" <<std::endl;
_Guess(Ctmp1,Csol);
CG(MdagMOp,Ctmp1,Csol);
// Coarse correction
t=-usecond();
_CoarseSolve(Csrc,Csol);
t+=usecond();
GridLogLevel << "Coarse solve took "<< t/1000.0<< "ms" <<std::endl;
//////////////////////////////
// Recompute true residual
//////////////////////////////
MdagMOp.HermOp(Csol,Ctmp);
Ctmp = Ctmp1 - Ctmp; // r=Csrc - M^dagM sol // This is already computed inside CG
HermOp.AdjOp(Ctmp,Ctmp1);// Normal equations
_Guess(Ctmp1,Ctmp); // sol = sol' + MdagM^-1 (Csrc' - MdagM sol')
Csol = Csol + Ctmp;
// Coarse to Fine
t=-usecond();
_Aggregates.PromoteFromSubspace(Csol,vec1);
add(out,out,vec1);
t+=usecond();
GridLogLevel << "Promote to this level took "<< t/1000.0<< "ms" <<std::endl;
std::cout<<GridLogMessage << "PromoteFromSubspace" <<std::endl;
_Aggregates.PromoteFromSubspace(Csol,vec1); // Ass^{-1} [in - A Min]_s
// Q = Q[in - A Min]
std::cout<<GridLogMessage << "PromoteFromSubspaceDone" <<std::endl;
out = out+vec1;
// Residual
_FineOperator.Op(out,vec1); sub(vec1 ,in , vec1);
// Three preconditioner smoothing -- hermitian if C3 = C1
// Recompute error
_FineOperator.Op(out,vec1);// this is the G5 herm bit
std::cout<<GridLogMessage << "FineOp" <<std::endl;
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout<<GridLogMessage << "Coarse resid "<<std::sqrt(r/Ni)<<std::endl;
// Reapply smoother
std::cout<<GridLogMessage << "Smoother calling Cheby" <<std::endl;
_SmootherOperator.Op(vec1,vec2); // this is the G5 herm bit
ChebyAccu(fMdagMOp,vec2,vec1); // solves MdagM = g5 M g5M
std::cout<<GridLogMessage << "Smoother called Cheby" <<std::endl;
out =out+vec1;
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<<std::endl;
// Fine Smoother
t=-usecond();
_Smoother(vec1,vec2);
t+=usecond();
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
add( out,out,vec2);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
myclass params;
myclass cparams;
XmlReader RD("params.xml");
read(RD,"params",params);
std::cout<<"Params: Order "<<params.order<<"["<<params.lo<<","<<params.hi<<"]"<< " steps "<<params.steps<<std::endl;
const int Ls=params.Ls;
const int Ls=16;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
@ -391,15 +210,22 @@ int main (int argc, char ** argv)
// Construct a coarsened grid; utility for this?
///////////////////////////////////////////////////
std::vector<int> block ({2,2,2,2});
std::vector<int> blockc ({2,2,2,2});
const int nbasis= 32;
const int nbasisc= 32;
auto clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/block[d];
}
auto cclatt = clatt;
for(int d=0;d<clatt.size();d++){
cclatt[d] = clatt[d]/blockc[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
GridCartesian *CoarseCoarse4d = SpaceTimeGrid::makeFourDimGrid(cclatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *CoarseCoarse5d = SpaceTimeGrid::makeFiveDimGrid(1,CoarseCoarse4d);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
@ -407,49 +233,20 @@ int main (int argc, char ** argv)
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
Gamma g5(Gamma::Algebra::Gamma5);
LatticeFermion src(FGrid); gaussian(RNG5,src);// src=src+g5*src;
LatticeFermion result(FGrid); result=Zero();
LatticeFermion ref(FGrid); ref=Zero();
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
LatticeFermion result(FGrid);
LatticeGaugeField Umu(UGrid);
LatticeGaugeField UmuDD(UGrid);
LatticeColourMatrix U(UGrid);
LatticeColourMatrix zz(UGrid);
FieldMetaData header;
std::string file("./ckpoint_lat.4000");
NerscIO::readConfiguration(Umu,header,file);
if ( params.domaindecompose ) {
Lattice<iScalar<vInteger> > coor(UGrid);
zz=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
U = PeekIndex<LorentzIndex>(Umu,mu);
U = where(mod(coor,params.domainsize)==(Integer)0,zz,U);
PokeIndex<LorentzIndex>(UmuDD,U,mu);
}
} else {
UmuDD = Umu;
}
// SU3::ColdConfiguration(RNG4,Umu);
// SU3::TepidConfiguration(RNG4,Umu);
// SU3::HotConfiguration(RNG4,Umu);
// Umu=Zero();
RealD mass=params.mq;
RealD M5=1.8;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building g5R5 hermitian DWF operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
RealD mass=0.001;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionR DdwfDD(UmuDD,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator;
@ -463,204 +260,140 @@ int main (int argc, char ** argv)
Subspace Aggregates(Coarse5d,FGrid,0);
assert ( (nbasis & 0x1)==0);
{
int nb=nbasis/2;
std::cout<<GridLogMessage << " nbasis/2 = "<<nb<<std::endl;
Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.02,500,110);
Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.02,500,100,100,0.0);
for(int n=0;n<nb;n++){
G5R5(Aggregates.subspace[n+nb],Aggregates.subspace[n]);
}
LatticeFermion A(FGrid);
LatticeFermion B(FGrid);
for(int n=0;n<nb;n++){
A = Aggregates.subspace[n];
B = Aggregates.subspace[n+nb];
Aggregates.subspace[n] = A+B; // 1+G5 // eigen value of G5R5 is +1
Aggregates.subspace[n+nb]= A-B; // 1-G5 // eigen value of G5R5 is -1
}
}
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building coarse representation of Indef operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf);
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOpDD(DdwfDD);
CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LDOp(*Coarse5d,1); // Hermitian matrix
LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
exit(0);
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> Level1Op;
typedef CoarsenedMatrix<siteVector,iScalar<vTComplex>,nbasisc> Level2Op;
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf);
Level1Op LDOp(*Coarse5d,1); LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
CoarseVector c_src (Coarse5d);
CoarseVector c_res (Coarse5d);
gaussian(CRNG,c_src);
result=Zero();
c_res=Zero();
//////////////////////////////////////////////////
// Deflate the course space. Recursive multigrid?
//////////////////////////////////////////////////
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> Level1Op;
typedef CoarsenedMatrix<siteVector,iScalar<vTComplex>,nbasis> Level2Op;
auto cclatt = clatt;
for(int d=0;d<clatt.size();d++){
cclatt[d] = clatt[d]/block[d];
}
GridCartesian *CoarseCoarse4d = SpaceTimeGrid::makeFourDimGrid(cclatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *CoarseCoarse5d = SpaceTimeGrid::makeFiveDimGrid(1,CoarseCoarse4d);
typedef Aggregation<siteVector,iScalar<vTComplex>,nbasis> CoarseSubspace;
typedef Aggregation<siteVector,iScalar<vTComplex>,nbasisc> CoarseSubspace;
CoarseSubspace CoarseAggregates(CoarseCoarse5d,Coarse5d,0);
double c_first = 0.2;
double c_div = 1.2;
std::vector<double> c_lo(nbasis/2);
c_lo[0] = c_first;
for(int b=1;b<nbasis/2;b++) {
c_lo[b] = c_lo[b-1]/c_div;
}
std::vector<int> c_ord(nbasis/2,200);
c_ord[0]=500;
#define RECURSIVE_MULTIGRID
#ifdef RECURSIVE_MULTIGRID
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Build deflation space in coarse operator "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<CoarseOperator,CoarseVector> PosdefLdop(LDOp);
// CoarseAggregates.CreateSubspaceChebyshev(CRNG,PosdefLdop,nbasis,14.0,c_lo,c_ord);
// CoarseAggregates.CreateSubspaceRandom(CRNG);
{
int nb=nbasisc/2;
CoarseAggregates.CreateSubspaceChebyshev(CRNG,PosdefLdop,nb,12.0,0.02,500,100,100,0.0);
for(int n=0;n<nb;n++){
auto subspace = CoarseAggregates.subspace[n].View();
auto subspace_g5 = CoarseAggregates.subspace[n+nb].View();
for(int nn=0;nn<nb;nn++){
for(int site=0;site<Coarse5d->oSites();site++){
subspace_g5[site](nn) = subspace[site](nn);
subspace_g5[site](nn+nb)=-subspace[site](nn+nb);
}
}
}
}
// Level2Op L2Op(*CoarseCoarse5d,1); // Hermitian matrix
// HermitianLinearOperator<Level1Op,CoarseVector> L1LinOp(LDOp);
// L2Op.CoarsenOperator(Coarse5d,L1LinOp,CoarseAggregates);
#endif
Level2Op L2Op(*CoarseCoarse5d,1); // Hermitian matrix
typedef Level2Op::CoarseVector CoarseCoarseVector;
HermitianLinearOperator<Level1Op,CoarseVector> L1LinOp(LDOp);
L2Op.CoarsenOperator(Coarse5d,L1LinOp,CoarseAggregates);
// std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// std::cout<<GridLogMessage << "Unprec CG "<< std::endl;
// std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Running CoarseCoarse grid Lanczos "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// TrivialPrecon<LatticeFermion> simple;
// ConjugateGradient<LatticeFermion> fCG(1.0e-8,100000);
// fCG(HermDefOp,src,result);
MdagMLinearOperator<Level2Op,CoarseCoarseVector> IRLHermOpL2(L2Op);
Chebyshev<CoarseCoarseVector> IRLChebyL2(0.001,4.2,71);
FunctionHermOp<CoarseCoarseVector> IRLOpChebyL2(IRLChebyL2,IRLHermOpL2);
PlainHermOp<CoarseCoarseVector> IRLOpL2 (IRLHermOpL2);
int cNk=24;
int cNm=36;
int cNstop=24;
ImplicitlyRestartedLanczos<CoarseCoarseVector> IRLL2(IRLOpChebyL2,IRLOpL2,cNstop,cNk,cNm,1.0e-3,20);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Red Black Prec CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
LatticeFermion src_o(FrbGrid);
LatticeFermion result_o(FrbGrid);
pickCheckerboard(Odd,src_o,src);
result_o=Zero();
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
ConjugateGradient<LatticeFermion> pCG(1.0e-8,10000);
// pCG(HermOpEO,src_o,result_o);
int cNconv;
std::vector<RealD> eval2(cNm);
std::vector<CoarseCoarseVector> evec2(cNm,CoarseCoarse5d);
CoarseCoarseVector cc_src(CoarseCoarse5d); cc_src=1.0;
IRLL2.calc(eval2,evec2,cc_src,cNconv);
ConjugateGradient<CoarseCoarseVector> CoarseCoarseCG(0.1,1000);
DeflatedGuesser<CoarseCoarseVector> DeflCoarseCoarseGuesser(evec2,eval2);
NormalEquations<CoarseCoarseVector> DeflCoarseCoarseCGNE(L2Op,CoarseCoarseCG,DeflCoarseCoarseGuesser);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building 3 level Multigrid "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
typedef MultiGridPreconditioner<vSpinColourVector, vTComplex,nbasis, DomainWallFermionR,DeflatedGuesser<CoarseVector> , NormalEquations<CoarseVector> > TwoLevelMG;
typedef MultiGridPreconditioner<siteVector,iScalar<vTComplex>,nbasisc,Level1Op, DeflatedGuesser<CoarseCoarseVector>, NormalEquations<CoarseCoarseVector> > CoarseMG;
typedef MultiGridPreconditioner<vSpinColourVector, vTComplex,nbasis, DomainWallFermionR,ZeroGuesser<CoarseVector>, LinearFunction<CoarseVector> > ThreeLevelMG;
// MultiGrid preconditioner acting on the coarse space <-> coarsecoarse space
ChebyshevSmoother<CoarseVector, Level1Op > CoarseSmoother(0.1,12.0,3,L1LinOp,LDOp);
ChebyshevSmoother<LatticeFermion,DomainWallFermionR> FineSmoother(0.5,60.0,10,HermIndefOp,Ddwf);
// MirsSmoother<CoarseVector, Level1Op > CoarseCGSmoother(0.1,0.1,4,L1LinOp,LDOp);
// MirsSmoother<LatticeFermion,DomainWallFermionR> FineCGSmoother(0.0,0.01,8,HermIndefOp,Ddwf);
CoarseMG Level2Precon (CoarseAggregates, L2Op,
L1LinOp,LDOp,
CoarseSmoother,
DeflCoarseCoarseGuesser,
DeflCoarseCoarseCGNE);
Level2Precon.Level(2);
// PGCR Applying this solver to solve the coarse space problem
PrecGeneralisedConjugateResidual<CoarseVector> l2PGCR(0.1, 100, L1LinOp,Level2Precon,16,16);
l2PGCR.Level(2);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Running coarse grid Lanczos "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<Level1Op,CoarseVector> IRLHermOp(LDOp);
Chebyshev<CoarseVector> IRLCheby(0.005,16.0,51);
// IRLCheby.InitLowPass(0.01,18.0,51);
FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,IRLHermOp);
PlainHermOp<CoarseVector> IRLOp (IRLHermOp);
int Nstop=24;
int Nk=24;
int Nm=48;
ImplicitlyRestartedLanczos<CoarseVector> IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1.0e-3,20);
int Nconv;
std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d);
IRL.calc(eval,evec,c_src,Nconv);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "coarse grid CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// ConjugateGradient<CoarseVector> CG(3.0e-3,100000);
// CG(PosdefLdop,c_src,c_res);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "coarse grid Deflated CG with "<< eval.size() << " evecs" << std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
c_res=Zero();
DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
DeflCoarseGuesser(c_src,c_res);
// CG(PosdefLdop,c_src,c_res);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage <<" Applying Fine power method to find spectral range "<<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// Wrap the 2nd level solver in a MultiGrid preconditioner acting on the fine space
ZeroGuesser<CoarseVector> CoarseZeroGuesser;
ThreeLevelMG ThreeLevelPrecon(Aggregates, LDOp,
HermIndefOp,Ddwf,
FineSmoother,
CoarseZeroGuesser,
l2PGCR);
ThreeLevelPrecon.Level(1);
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,DomainWallFermionR,
ZeroGuesser<CoarseVector> >
Precon (Aggregates, LDOp,
HermIndefOp,Ddwf,
HermIndefOp,Ddwf,
CoarseZeroGuesser,
params);
// Apply the fine-coarse-coarsecoarse 2 deep MG preconditioner in an outer PGCR on the fine fgrid
PrecGeneralisedConjugateResidual<LatticeFermion> l1PGCR(1.0e-8,1000,HermIndefOp,ThreeLevelPrecon,16,16);
l1PGCR.Level(1);
// Precon.PowerMethod(src);
/*
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage <<" Applying Coarse power method to find spectral range "<<std::endl;
std::cout<<GridLogMessage << "Calling 3 level Multigrid "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
cparams = params;
cparams.hi = 20.0;
cparams.lo = 0.2;
cparams.order= 20;
MultiGridPreconditioner <siteVector,iScalar<vTComplex>,nbasis,Level1Op,ZeroGuesser<CoarseVector> >
CoarsePrecon (CoarseAggregates,
L2Op,
L1LinOp,LDOp,
L1LinOp,LDOp,
CoarseZeroGuesser,
cparams);
CoarsePrecon.PowerMethod(c_src);
*/
/*
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building a two level PGCR "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
PrecGeneralisedConjugateResidual<LatticeFermion> PGCR(1.0e-8,100000,Precon,8,8);
std::cout<<GridLogMessage<<"checking norm src "<<norm2(src)<<std::endl;
result=Zero();
PGCR(HermIndefOp,src,result);
*/
l1PGCR(src,result);
CoarseVector c_src(Coarse5d); c_src=1.0;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building a two level deflated PGCR "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,DomainWallFermionR, DeflatedGuesser<CoarseVector> >
DeflatedPrecon (Aggregates, LDOp,
HermIndefOp,Ddwf,
HermIndefOp,Ddwf,
DeflCoarseGuesser,
params);
PrecGeneralisedConjugateResidual<LatticeFermion> deflPGCR(1.0e-8,100000,DeflatedPrecon,16,16);
std::cout<<GridLogMessage<<"checking norm src "<<norm2(src)<<std::endl;
result=Zero();
deflPGCR(HermIndefOp,src,result);
/*
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building deflation preconditioner "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
PrecGeneralisedConjugateResidual<CoarseVector> CPGCR(1.0e-3,10000,CoarsePrecon,8,8);
std::cout<<GridLogMessage<<"checking norm src "<<norm2(c_src)<<std::endl;
c_res=Zero();
CPGCR(L1LinOp,c_src,c_res);
*/
std::cout<<GridLogMessage << " Fine PowerMethod "<< std::endl;
PowerMethod<LatticeFermion> PM; PM(HermDefOp,src);
std::cout<<GridLogMessage << " Coarse PowerMethod "<< std::endl;
PowerMethod<CoarseVector> cPM; cPM(PosdefLdop,c_src);
std::cout<<GridLogMessage << " CoarseCoarse PowerMethod "<< std::endl;
PowerMethod<CoarseCoarseVector> ccPM; ccPM(IRLHermOpL2,cc_src);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Done "<< std::endl;