1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Merge branch 'feature/FFT' into develop

This commit is contained in:
paboyle 2016-08-22 16:25:04 +01:00
commit 8a02824e08
8 changed files with 812 additions and 10 deletions

View File

@ -43,6 +43,7 @@ AC_ARG_WITH([mpfr],
AC_ARG_ENABLE([lapack],
[AC_HELP_STRING([--enable-lapack=yes|no|prefix], [enable LAPACK])],
[ac_LAPACK=${enable_lapack}],[ac_LAPACK=no])
case ${ac_LAPACK} in
no)
;;
@ -54,6 +55,17 @@ case ${ac_LAPACK} in
AC_DEFINE([USE_LAPACK],[1],[use LAPACK])
esac
AC_CHECK_LIB([fftw3],[fft_init_threads],
[AC_DEFINE([HAVE_FFTW],[1],[Define to 1 if you have the `FFTW' library (-lfftw3).])] [ac_fftw=yes],
[ac_fftw=no])
case ${ac_fftw} in
no)
;;
yes)
AM_LDFLAGS="-lfftw3 $AM_LDFLAGS"
esac
################ Get compiler informations
AC_LANG([C++])
AX_CXX_COMPILE_STDCXX_11([noext],[mandatory])
@ -77,7 +89,7 @@ AC_CHECK_LIB([gmp],[__gmpf_init],
[have_mpfr=true]
[LIBS="$LIBS -lmpfr"],
[AC_MSG_ERROR([MPFR library not found])])]
[AC_DEFINE([HAVE_LIBGMP], [1], [Define to 1 if you have the `GMP' library (-lgmp).])]
[AC_DEFINE([HAVE_LIBGMP], [1], [Define to 1 if you have the `GMP' library (-lgmp).])]
[have_gmp=true]
[LIBS="$LIBS -lgmp"],
[AC_MSG_WARN([**** GMP library not found, Grid can still compile but RHMC will not work ****])])

193
lib/FFT.h Normal file
View File

@ -0,0 +1,193 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Cshift.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef _GRID_FFT_H_
#define _GRID_FFT_H_
#include <Grid/fftw/fftw3.h>
namespace Grid {
class FFT {
private:
GridCartesian *vgrid;
GridCartesian *sgrid;
int Nd;
std::vector<int> dimensions;
std::vector<int> processors;
std::vector<int> processor_coor;
public:
static const int forward=FFTW_FORWARD;
static const int backward=FFTW_BACKWARD;
FFT ( GridCartesian * grid ) :
vgrid(grid),
Nd(grid->_ndimension),
dimensions(grid->_fdimensions),
processors(grid->_processors),
processor_coor(grid->_processor_coor)
{
std::vector<int> layout(Nd,1);
sgrid = new GridCartesian(dimensions,layout,processors);
};
~FFT ( void) {
delete sgrid;
}
template<class vobj>
void FFT_dim(Lattice<vobj> &result,const Lattice<vobj> &source,int dim, int inverse){
conformable(result._grid,vgrid);
conformable(source._grid,vgrid);
int L = vgrid->_ldimensions[dim];
int G = vgrid->_fdimensions[dim];
std::vector<int> layout(Nd,1);
std::vector<int> pencil_gd(vgrid->_fdimensions);
std::vector<int> pencil_ld(processors);
pencil_gd[dim] = G*processors[dim];
pencil_ld[dim] = G*processors[dim];
// Pencil global vol LxLxGxLxL per node
GridCartesian pencil_g(pencil_gd,layout,processors);
GridCartesian pencil_l(pencil_ld,layout,processors);
// Construct pencils
typedef typename vobj::scalar_object sobj;
Lattice<vobj> ssource(vgrid); ssource =source;
Lattice<sobj> pgsource(&pencil_g);
Lattice<sobj> pgresult(&pencil_g);
Lattice<sobj> plsource(&pencil_l);
Lattice<sobj> plresult(&pencil_l);
{
assert(sizeof(typename sobj::scalar_type)==sizeof(ComplexD));
assert(sizeof(fftw_complex)==sizeof(ComplexD));
assert(sizeof(fftw_complex)==sizeof(ComplexD));
int Ncomp = sizeof(sobj)/sizeof(fftw_complex);
int rank = 1; /* not 2: we are computing 1d transforms */
int n[] = {G}; /* 1d transforms of length G */
int howmany = Ncomp;
int odist,idist,istride,ostride;
idist = odist = 1;
istride = ostride = Ncomp; /* distance between two elements in the same column */
int *inembed = n, *onembed = n;
fftw_complex *in = (fftw_complex *)&plsource._odata[0];
fftw_complex *out= (fftw_complex *)&plresult._odata[0];
int sign = FFTW_FORWARD;
if (inverse) sign = FFTW_BACKWARD;
#ifdef HAVE_FFTW
fftw_plan p = fftw_plan_many_dft(rank,n,howmany,
in,inembed,
istride,idist,
out,onembed,
ostride, odist,
sign,FFTW_ESTIMATE);
#else
fftw_plan p ;
assert(0);
#endif
// Barrel shift and collect global pencil
for(int p=0;p<processors[dim];p++) {
for(int idx=0;idx<sgrid->lSites();idx++) {
std::vector<int> lcoor(Nd);
sgrid->LocalIndexToLocalCoor(idx,lcoor);
sobj s;
peekLocalSite(s,ssource,lcoor);
lcoor[dim]+=p*L;
pokeLocalSite(s,pgsource,lcoor);
}
ssource = Cshift(ssource,dim,L);
}
// Loop over orthog coords
for(int idx=0;idx<sgrid->lSites();idx++) {
std::vector<int> pcoor(Nd,0);
std::vector<int> lcoor(Nd);
sgrid->LocalIndexToLocalCoor(idx,lcoor);
if ( lcoor[dim] == 0 ) { // restricts loop to plane at lcoor[dim]==0
// Project to local pencil array
for(int l=0;l<G;l++){
sobj s;
pcoor[dim]=l;
lcoor[dim]=l;
peekLocalSite(s,pgsource,lcoor);
pokeLocalSite(s,plsource,pcoor);
}
// FFT the pencil
#ifdef HAVE_FFTW
fftw_execute(p);
#endif
// Extract the result
for(int l=0;l<L;l++){
sobj s;
int p = processor_coor[dim];
lcoor[dim] = l;
pcoor[dim] = l+L*p;
peekLocalSite(s,plresult,pcoor);
pokeLocalSite(s,result,lcoor);
}
}
}
fftw_destroy_plan(p);
}
}
};
}
#endif

View File

@ -68,6 +68,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/Simd.h>
#include <Grid/Threads.h>
#include <Grid/Lexicographic.h>
#include <Grid/Init.h>
#include <Grid/Communicator.h>
#include <Grid/Cartesian.h>
#include <Grid/Tensors.h>
@ -78,7 +79,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid/parallelIO/BinaryIO.h>
#include <Grid/qcd/QCD.h>
#include <Grid/parallelIO/NerscIO.h>
#include <Grid/Init.h>
#include <Grid/FFT.h>
#include <Grid/qcd/hmc/NerscCheckpointer.h>
#include <Grid/qcd/hmc/HmcRunner.h>

412
lib/fftw/fftw3.h Normal file
View File

@ -0,0 +1,412 @@
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* The following statement of license applies *only* to this header file,
* and *not* to the other files distributed with FFTW or derived therefrom:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/***************************** NOTE TO USERS *********************************
*
* THIS IS A HEADER FILE, NOT A MANUAL
*
* If you want to know how to use FFTW, please read the manual,
* online at http://www.fftw.org/doc/ and also included with FFTW.
* For a quick start, see the manual's tutorial section.
*
* (Reading header files to learn how to use a library is a habit
* stemming from code lacking a proper manual. Arguably, it's a
* *bad* habit in most cases, because header files can contain
* interfaces that are not part of the public, stable API.)
*
****************************************************************************/
#ifndef FFTW3_H
#define FFTW3_H
#include <stdio.h>
#ifdef __cplusplus
extern "C"
{
#endif /* __cplusplus */
/* If <complex.h> is included, use the C99 complex type. Otherwise
define a type bit-compatible with C99 complex */
#if !defined(FFTW_NO_Complex) && defined(_Complex_I) && defined(complex) && defined(I)
# define FFTW_DEFINE_COMPLEX(R, C) typedef R _Complex C
#else
# define FFTW_DEFINE_COMPLEX(R, C) typedef R C[2]
#endif
#define FFTW_CONCAT(prefix, name) prefix ## name
#define FFTW_MANGLE_DOUBLE(name) FFTW_CONCAT(fftw_, name)
#define FFTW_MANGLE_FLOAT(name) FFTW_CONCAT(fftwf_, name)
#define FFTW_MANGLE_LONG_DOUBLE(name) FFTW_CONCAT(fftwl_, name)
#define FFTW_MANGLE_QUAD(name) FFTW_CONCAT(fftwq_, name)
/* IMPORTANT: for Windows compilers, you should add a line
#define FFTW_DLL
here and in kernel/ifftw.h if you are compiling/using FFTW as a
DLL, in order to do the proper importing/exporting, or
alternatively compile with -DFFTW_DLL or the equivalent
command-line flag. This is not necessary under MinGW/Cygwin, where
libtool does the imports/exports automatically. */
#if defined(FFTW_DLL) && (defined(_WIN32) || defined(__WIN32__))
/* annoying Windows syntax for shared-library declarations */
# if defined(COMPILING_FFTW) /* defined in api.h when compiling FFTW */
# define FFTW_EXTERN extern __declspec(dllexport)
# else /* user is calling FFTW; import symbol */
# define FFTW_EXTERN extern __declspec(dllimport)
# endif
#else
# define FFTW_EXTERN extern
#endif
enum fftw_r2r_kind_do_not_use_me {
FFTW_R2HC=0, FFTW_HC2R=1, FFTW_DHT=2,
FFTW_REDFT00=3, FFTW_REDFT01=4, FFTW_REDFT10=5, FFTW_REDFT11=6,
FFTW_RODFT00=7, FFTW_RODFT01=8, FFTW_RODFT10=9, FFTW_RODFT11=10
};
struct fftw_iodim_do_not_use_me {
int n; /* dimension size */
int is; /* input stride */
int os; /* output stride */
};
#include <stddef.h> /* for ptrdiff_t */
struct fftw_iodim64_do_not_use_me {
ptrdiff_t n; /* dimension size */
ptrdiff_t is; /* input stride */
ptrdiff_t os; /* output stride */
};
typedef void (*fftw_write_char_func_do_not_use_me)(char c, void *);
typedef int (*fftw_read_char_func_do_not_use_me)(void *);
/*
huge second-order macro that defines prototypes for all API
functions. We expand this macro for each supported precision
X: name-mangling macro
R: real data type
C: complex data type
*/
#define FFTW_DEFINE_API(X, R, C) \
\
FFTW_DEFINE_COMPLEX(R, C); \
\
typedef struct X(plan_s) *X(plan); \
\
typedef struct fftw_iodim_do_not_use_me X(iodim); \
typedef struct fftw_iodim64_do_not_use_me X(iodim64); \
\
typedef enum fftw_r2r_kind_do_not_use_me X(r2r_kind); \
\
typedef fftw_write_char_func_do_not_use_me X(write_char_func); \
typedef fftw_read_char_func_do_not_use_me X(read_char_func); \
\
FFTW_EXTERN void X(execute)(const X(plan) p); \
\
FFTW_EXTERN X(plan) X(plan_dft)(int rank, const int *n, \
C *in, C *out, int sign, unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_dft_1d)(int n, C *in, C *out, int sign, \
unsigned flags); \
FFTW_EXTERN X(plan) X(plan_dft_2d)(int n0, int n1, \
C *in, C *out, int sign, unsigned flags); \
FFTW_EXTERN X(plan) X(plan_dft_3d)(int n0, int n1, int n2, \
C *in, C *out, int sign, unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_many_dft)(int rank, const int *n, \
int howmany, \
C *in, const int *inembed, \
int istride, int idist, \
C *out, const int *onembed, \
int ostride, int odist, \
int sign, unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_guru_dft)(int rank, const X(iodim) *dims, \
int howmany_rank, \
const X(iodim) *howmany_dims, \
C *in, C *out, \
int sign, unsigned flags); \
FFTW_EXTERN X(plan) X(plan_guru_split_dft)(int rank, const X(iodim) *dims, \
int howmany_rank, \
const X(iodim) *howmany_dims, \
R *ri, R *ii, R *ro, R *io, \
unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_guru64_dft)(int rank, \
const X(iodim64) *dims, \
int howmany_rank, \
const X(iodim64) *howmany_dims, \
C *in, C *out, \
int sign, unsigned flags); \
FFTW_EXTERN X(plan) X(plan_guru64_split_dft)(int rank, \
const X(iodim64) *dims, \
int howmany_rank, \
const X(iodim64) *howmany_dims, \
R *ri, R *ii, R *ro, R *io, \
unsigned flags); \
\
FFTW_EXTERN void X(execute_dft)(const X(plan) p, C *in, C *out); \
FFTW_EXTERN void X(execute_split_dft)(const X(plan) p, R *ri, R *ii, \
R *ro, R *io); \
\
FFTW_EXTERN X(plan) X(plan_many_dft_r2c)(int rank, const int *n, \
int howmany, \
R *in, const int *inembed, \
int istride, int idist, \
C *out, const int *onembed, \
int ostride, int odist, \
unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_dft_r2c)(int rank, const int *n, \
R *in, C *out, unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_dft_r2c_1d)(int n,R *in,C *out,unsigned flags); \
FFTW_EXTERN X(plan) X(plan_dft_r2c_2d)(int n0, int n1, \
R *in, C *out, unsigned flags); \
FFTW_EXTERN X(plan) X(plan_dft_r2c_3d)(int n0, int n1, \
int n2, \
R *in, C *out, unsigned flags); \
\
\
FFTW_EXTERN X(plan) X(plan_many_dft_c2r)(int rank, const int *n, \
int howmany, \
C *in, const int *inembed, \
int istride, int idist, \
R *out, const int *onembed, \
int ostride, int odist, \
unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_dft_c2r)(int rank, const int *n, \
C *in, R *out, unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_dft_c2r_1d)(int n,C *in,R *out,unsigned flags); \
FFTW_EXTERN X(plan) X(plan_dft_c2r_2d)(int n0, int n1, \
C *in, R *out, unsigned flags); \
FFTW_EXTERN X(plan) X(plan_dft_c2r_3d)(int n0, int n1, \
int n2, \
C *in, R *out, unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_guru_dft_r2c)(int rank, const X(iodim) *dims, \
int howmany_rank, \
const X(iodim) *howmany_dims, \
R *in, C *out, \
unsigned flags); \
FFTW_EXTERN X(plan) X(plan_guru_dft_c2r)(int rank, const X(iodim) *dims, \
int howmany_rank, \
const X(iodim) *howmany_dims, \
C *in, R *out, \
unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_guru_split_dft_r2c)( \
int rank, const X(iodim) *dims, \
int howmany_rank, \
const X(iodim) *howmany_dims, \
R *in, R *ro, R *io, \
unsigned flags); \
FFTW_EXTERN X(plan) X(plan_guru_split_dft_c2r)( \
int rank, const X(iodim) *dims, \
int howmany_rank, \
const X(iodim) *howmany_dims, \
R *ri, R *ii, R *out, \
unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_guru64_dft_r2c)(int rank, \
const X(iodim64) *dims, \
int howmany_rank, \
const X(iodim64) *howmany_dims, \
R *in, C *out, \
unsigned flags); \
FFTW_EXTERN X(plan) X(plan_guru64_dft_c2r)(int rank, \
const X(iodim64) *dims, \
int howmany_rank, \
const X(iodim64) *howmany_dims, \
C *in, R *out, \
unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_guru64_split_dft_r2c)( \
int rank, const X(iodim64) *dims, \
int howmany_rank, \
const X(iodim64) *howmany_dims, \
R *in, R *ro, R *io, \
unsigned flags); \
FFTW_EXTERN X(plan) X(plan_guru64_split_dft_c2r)( \
int rank, const X(iodim64) *dims, \
int howmany_rank, \
const X(iodim64) *howmany_dims, \
R *ri, R *ii, R *out, \
unsigned flags); \
\
FFTW_EXTERN void X(execute_dft_r2c)(const X(plan) p, R *in, C *out); \
FFTW_EXTERN void X(execute_dft_c2r)(const X(plan) p, C *in, R *out); \
\
FFTW_EXTERN void X(execute_split_dft_r2c)(const X(plan) p, \
R *in, R *ro, R *io); \
FFTW_EXTERN void X(execute_split_dft_c2r)(const X(plan) p, \
R *ri, R *ii, R *out); \
\
FFTW_EXTERN X(plan) X(plan_many_r2r)(int rank, const int *n, \
int howmany, \
R *in, const int *inembed, \
int istride, int idist, \
R *out, const int *onembed, \
int ostride, int odist, \
const X(r2r_kind) *kind, unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_r2r)(int rank, const int *n, R *in, R *out, \
const X(r2r_kind) *kind, unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_r2r_1d)(int n, R *in, R *out, \
X(r2r_kind) kind, unsigned flags); \
FFTW_EXTERN X(plan) X(plan_r2r_2d)(int n0, int n1, R *in, R *out, \
X(r2r_kind) kind0, X(r2r_kind) kind1, \
unsigned flags); \
FFTW_EXTERN X(plan) X(plan_r2r_3d)(int n0, int n1, int n2, \
R *in, R *out, X(r2r_kind) kind0, \
X(r2r_kind) kind1, X(r2r_kind) kind2, \
unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_guru_r2r)(int rank, const X(iodim) *dims, \
int howmany_rank, \
const X(iodim) *howmany_dims, \
R *in, R *out, \
const X(r2r_kind) *kind, unsigned flags); \
\
FFTW_EXTERN X(plan) X(plan_guru64_r2r)(int rank, const X(iodim64) *dims, \
int howmany_rank, \
const X(iodim64) *howmany_dims, \
R *in, R *out, \
const X(r2r_kind) *kind, unsigned flags); \
\
FFTW_EXTERN void X(execute_r2r)(const X(plan) p, R *in, R *out); \
\
FFTW_EXTERN void X(destroy_plan)(X(plan) p); \
FFTW_EXTERN void X(forget_wisdom)(void); \
FFTW_EXTERN void X(cleanup)(void); \
\
FFTW_EXTERN void X(set_timelimit)(double t); \
\
FFTW_EXTERN void X(plan_with_nthreads)(int nthreads); \
FFTW_EXTERN int X(init_threads)(void); \
FFTW_EXTERN void X(cleanup_threads)(void); \
\
FFTW_EXTERN int X(export_wisdom_to_filename)(const char *filename); \
FFTW_EXTERN void X(export_wisdom_to_file)(FILE *output_file); \
FFTW_EXTERN char *X(export_wisdom_to_string)(void); \
FFTW_EXTERN void X(export_wisdom)(X(write_char_func) write_char, \
void *data); \
FFTW_EXTERN int X(import_system_wisdom)(void); \
FFTW_EXTERN int X(import_wisdom_from_filename)(const char *filename); \
FFTW_EXTERN int X(import_wisdom_from_file)(FILE *input_file); \
FFTW_EXTERN int X(import_wisdom_from_string)(const char *input_string); \
FFTW_EXTERN int X(import_wisdom)(X(read_char_func) read_char, void *data); \
\
FFTW_EXTERN void X(fprint_plan)(const X(plan) p, FILE *output_file); \
FFTW_EXTERN void X(print_plan)(const X(plan) p); \
FFTW_EXTERN char *X(sprint_plan)(const X(plan) p); \
\
FFTW_EXTERN void *X(malloc)(size_t n); \
FFTW_EXTERN R *X(alloc_real)(size_t n); \
FFTW_EXTERN C *X(alloc_complex)(size_t n); \
FFTW_EXTERN void X(free)(void *p); \
\
FFTW_EXTERN void X(flops)(const X(plan) p, \
double *add, double *mul, double *fmas); \
FFTW_EXTERN double X(estimate_cost)(const X(plan) p); \
FFTW_EXTERN double X(cost)(const X(plan) p); \
\
FFTW_EXTERN int X(alignment_of)(R *p); \
FFTW_EXTERN const char X(version)[]; \
FFTW_EXTERN const char X(cc)[]; \
FFTW_EXTERN const char X(codelet_optim)[];
/* end of FFTW_DEFINE_API macro */
FFTW_DEFINE_API(FFTW_MANGLE_DOUBLE, double, fftw_complex)
FFTW_DEFINE_API(FFTW_MANGLE_FLOAT, float, fftwf_complex)
FFTW_DEFINE_API(FFTW_MANGLE_LONG_DOUBLE, long double, fftwl_complex)
/* __float128 (quad precision) is a gcc extension on i386, x86_64, and ia64
for gcc >= 4.6 (compiled in FFTW with --enable-quad-precision) */
#if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) \
&& !(defined(__ICC) || defined(__INTEL_COMPILER)) \
&& (defined(__i386__) || defined(__x86_64__) || defined(__ia64__))
# if !defined(FFTW_NO_Complex) && defined(_Complex_I) && defined(complex) && defined(I)
/* note: __float128 is a typedef, which is not supported with the _Complex
keyword in gcc, so instead we use this ugly __attribute__ version.
However, we can't simply pass the __attribute__ version to
FFTW_DEFINE_API because the __attribute__ confuses gcc in pointer
types. Hence redefining FFTW_DEFINE_COMPLEX. Ugh. */
# undef FFTW_DEFINE_COMPLEX
# define FFTW_DEFINE_COMPLEX(R, C) typedef _Complex float __attribute__((mode(TC))) C
# endif
FFTW_DEFINE_API(FFTW_MANGLE_QUAD, __float128, fftwq_complex)
#endif
#define FFTW_FORWARD (-1)
#define FFTW_BACKWARD (+1)
#define FFTW_NO_TIMELIMIT (-1.0)
/* documented flags */
#define FFTW_MEASURE (0U)
#define FFTW_DESTROY_INPUT (1U << 0)
#define FFTW_UNALIGNED (1U << 1)
#define FFTW_CONSERVE_MEMORY (1U << 2)
#define FFTW_EXHAUSTIVE (1U << 3) /* NO_EXHAUSTIVE is default */
#define FFTW_PRESERVE_INPUT (1U << 4) /* cancels FFTW_DESTROY_INPUT */
#define FFTW_PATIENT (1U << 5) /* IMPATIENT is default */
#define FFTW_ESTIMATE (1U << 6)
#define FFTW_WISDOM_ONLY (1U << 21)
/* undocumented beyond-guru flags */
#define FFTW_ESTIMATE_PATIENT (1U << 7)
#define FFTW_BELIEVE_PCOST (1U << 8)
#define FFTW_NO_DFT_R2HC (1U << 9)
#define FFTW_NO_NONTHREADED (1U << 10)
#define FFTW_NO_BUFFERING (1U << 11)
#define FFTW_NO_INDIRECT_OP (1U << 12)
#define FFTW_ALLOW_LARGE_GENERIC (1U << 13) /* NO_LARGE_GENERIC is default */
#define FFTW_NO_RANK_SPLITS (1U << 14)
#define FFTW_NO_VRANK_SPLITS (1U << 15)
#define FFTW_NO_VRECURSE (1U << 16)
#define FFTW_NO_SIMD (1U << 17)
#define FFTW_NO_SLOW (1U << 18)
#define FFTW_NO_FIXED_RADIX_LARGE_N (1U << 19)
#define FFTW_ALLOW_PRUNING (1U << 20)
#ifdef __cplusplus
} /* extern "C" */
#endif /* __cplusplus */
#endif /* FFTW3_H */

View File

@ -349,7 +349,7 @@ void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
assert(ig->_ldimensions[d] == og->_ldimensions[d]);
}
PARALLEL_FOR_LOOP
//PARALLEL_FOR_LOOP
for(int idx=0;idx<ig->lSites();idx++){
std::vector<int> lcoor(ni);
ig->LocalIndexToLocalCoor(idx,lcoor);
@ -446,6 +446,79 @@ void ExtractSlice(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice, in
}
template<class vobj>
void InsertSliceLocal(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
typedef typename vobj::scalar_object sobj;
sobj s;
GridBase *lg = lowDim._grid;
GridBase *hg = higherDim._grid;
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl == nh);
assert(orthog<nh);
assert(orthog>=0);
for(int d=0;d<nh;d++){
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
// the above should guarantee that the operations are local
//PARALLEL_FOR_LOOP
for(int idx=0;idx<lg->lSites();idx++){
std::vector<int> lcoor(nl);
std::vector<int> hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,lowDim,lcoor);
pokeLocalSite(s,higherDim,hcoor);
}
}
}
template<class vobj>
void ExtractSliceLocal(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
typedef typename vobj::scalar_object sobj;
sobj s;
GridBase *lg = lowDim._grid;
GridBase *hg = higherDim._grid;
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl == nh);
assert(orthog<nh);
assert(orthog>=0);
for(int d=0;d<nh;d++){
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
// the above should guarantee that the operations are local
//PARALLEL_FOR_LOOP
for(int idx=0;idx<lg->lSites();idx++){
std::vector<int> lcoor(nl);
std::vector<int> hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,higherDim,hcoor);
pokeLocalSite(s,lowDim,lcoor);
}
}
}
template<class vobj>
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
{

View File

@ -388,6 +388,12 @@ class Grid_simd {
}; // end of Grid_simd class definition
inline void permute(ComplexD &y,ComplexD b, int perm) { y=b; }
inline void permute(ComplexF &y,ComplexF b, int perm) { y=b; }
inline void permute(RealD &y,RealD b, int perm) { y=b; }
inline void permute(RealF &y,RealF b, int perm) { y=b; }
////////////////////////////////////////////////////////////////////
// General rotate
////////////////////////////////////////////////////////////////////

View File

@ -67,15 +67,13 @@ template <class scalar>
struct AsinRealFunctor {
scalar operator()(const scalar &a) const { return asin(real(a)); }
};
template <class scalar>
struct LogRealFunctor {
scalar operator()(const scalar &a) const { return log(real(a)); }
};
template <class scalar>
struct ExpRealFunctor {
scalar operator()(const scalar &a) const { return exp(real(a)); }
struct ExpFunctor {
scalar operator()(const scalar &a) const { return exp(a); }
};
template <class scalar>
struct NotFunctor {
@ -85,7 +83,6 @@ template <class scalar>
struct AbsRealFunctor {
scalar operator()(const scalar &a) const { return std::abs(real(a)); }
};
template <class scalar>
struct PowRealFunctor {
double y;
@ -135,7 +132,6 @@ template <class Scalar>
inline Scalar rsqrt(const Scalar &r) {
return (RSqrtRealFunctor<Scalar>(), r);
}
template <class S, class V>
inline Grid_simd<S, V> cos(const Grid_simd<S, V> &r) {
return SimdApply(CosRealFunctor<S>(), r);
@ -162,7 +158,7 @@ inline Grid_simd<S, V> abs(const Grid_simd<S, V> &r) {
}
template <class S, class V>
inline Grid_simd<S, V> exp(const Grid_simd<S, V> &r) {
return SimdApply(ExpRealFunctor<S>(), r);
return SimdApply(ExpFunctor<S>(), r);
}
template <class S, class V>
inline Grid_simd<S, V> Not(const Grid_simd<S, V> &r) {

108
tests/core/Test_fft.cc Normal file
View File

@ -0,0 +1,108 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_cshift.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout( { vComplexD::Nsimd(),1,1,1});
std::vector<int> mpi_layout = GridDefaultMpi();
int vol = 1;
for(int d=0;d<latt_size.size();d++){
vol = vol * latt_size[d];
}
GridCartesian Fine(latt_size,simd_layout,mpi_layout);
LatticeComplexD one(&Fine);
LatticeComplexD zz(&Fine);
LatticeComplexD C(&Fine);
LatticeComplexD Ctilde(&Fine);
LatticeComplexD coor(&Fine);
LatticeSpinMatrixD S(&Fine);
LatticeSpinMatrixD Stilde(&Fine);
std::vector<int> p({1,2,3,2});
one = ComplexD(1.0,0.0);
zz = ComplexD(0.0,0.0);
ComplexD ci(0.0,1.0);
C=zero;
for(int mu=0;mu<4;mu++){
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
LatticeCoordinate(coor,mu);
C = C - (TwoPiL * p[mu]) * coor;
}
C = exp(C*ci);
S=zero;
S = S+C;
FFT theFFT(&Fine);
theFFT.FFT_dim(Ctilde,C,0,FFT::forward); C=Ctilde;
theFFT.FFT_dim(Ctilde,C,1,FFT::forward); C=Ctilde;
theFFT.FFT_dim(Ctilde,C,2,FFT::forward); C=Ctilde;
theFFT.FFT_dim(Ctilde,C,3,FFT::forward);
// C=zero;
// Ctilde = where(abs(Ctilde)<1.0e-10,C,Ctilde);
TComplexD cVol;
cVol()()() = vol;
C=zero;
pokeSite(cVol,C,p);
C=C-Ctilde;
std::cout << "diff scalar "<<norm2(C) << std::endl;
theFFT.FFT_dim(Stilde,S,0,FFT::forward); S=Stilde;
theFFT.FFT_dim(Stilde,S,1,FFT::forward); S=Stilde;
theFFT.FFT_dim(Stilde,S,2,FFT::forward); S=Stilde;
theFFT.FFT_dim(Stilde,S,3,FFT::forward);
SpinMatrixD Sp;
Sp = zero; Sp = Sp+cVol;
S=zero;
pokeSite(Sp,S,p);
S= S-Stilde;
std::cout << "diff FT[SpinMat] "<<norm2(S) << std::endl;
Grid_finalize();
}