1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Merge branch 'feature/hadrons-a2a' of https://github.com/paboyle/Grid into a2a_basics

This commit is contained in:
fionnoh 2018-08-03 15:12:24 +01:00
commit 8d1679c6b8
18 changed files with 2000 additions and 168 deletions

View File

@ -66,7 +66,11 @@ void sliceInnerProductMesonField(std::vector< std::vector<ComplexD> > &mat,
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd*Lblock*Rblock);
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd*Lblock*Rblock);
parallel_for (int r = 0; r < rd * Lblock * Rblock; r++){
lvSum[r] = zero;
}
std::vector<scalar_type > lsSum(ld*Lblock*Rblock,scalar_type(0.0));
int e1= grid->_slice_nblock[orthogdim];
@ -87,7 +91,6 @@ void sliceInnerProductMesonField(std::vector< std::vector<ComplexD> > &mat,
for(int j=0;j<Rblock;j++){
int idx = i+Lblock*j+Lblock*Rblock*r;
auto right = rhs[j]._odata[ss];
#if 1
vector_type vv = left()(0)(0) * right()(0)(0)
+ left()(0)(1) * right()(0)(1)
+ left()(0)(2) * right()(0)(2)
@ -100,9 +103,6 @@ void sliceInnerProductMesonField(std::vector< std::vector<ComplexD> > &mat,
+ left()(3)(0) * right()(3)(0)
+ left()(3)(1) * right()(3)(1)
+ left()(3)(2) * right()(3)(2);
#else
vector_type vv = TensorRemove(innerProduct(left,right));
#endif
lvSum[idx]=lvSum[idx]+vv;
}
}
@ -140,11 +140,19 @@ void sliceInnerProductMesonField(std::vector< std::vector<ComplexD> > &mat,
}
std::cout << GridLogMessage << " Entering non parallel loop "<<std::endl;
for(int t=0;t<ld;t++){
for(int t=0;t<fd;t++)
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
int ij_dx = i+Lblock*j+Lblock*Rblock*t;
mat[i+j*Lblock][t] = lsSum[ij_dx];
if (pt == grid->_processor_coor[orthogdim]){
int ij_dx = i + Lblock * j + Lblock * Rblock * lt;
mat[i+j*Lblock][t] = lsSum[ij_dx];
}
else{
mat[i+j*Lblock][t] = scalar_type(0.0);
}
}}
}
std::cout << GridLogMessage << " Done "<<std::endl;
@ -152,6 +160,447 @@ void sliceInnerProductMesonField(std::vector< std::vector<ComplexD> > &mat,
return;
}
template<class vobj>
void sliceInnerProductMesonFieldGamma(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<vobj> > &lhs,
const std::vector<Lattice<vobj> > &rhs,
int orthogdim,
std::vector<Gamma::Algebra> gammas)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
assert(mat.size()==Lblock*Rblock*Ngamma);
for(int t=0;t<mat.size();t++){
assert(mat[t].size()==Nt);
}
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock*Ngamma;
int MFlvol = ld*Lblock*Rblock*Ngamma;
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++){
lvSum[r] = zero;
}
std::vector<scalar_type > lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[r]=scalar_type(0.0);
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
std::cout << GridLogMessage << " Entering first parallel loop "<<std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
auto left = conjugate(lhs[i]._odata[ss]);
for(int j=0;j<Rblock;j++){
for(int mu=0;mu<Ngamma;mu++){
auto right = Gamma(gammas[mu])*rhs[j]._odata[ss];
vector_type vv = left()(0)(0) * right()(0)(0)
+ left()(0)(1) * right()(0)(1)
+ left()(0)(2) * right()(0)(2)
+ left()(1)(0) * right()(1)(0)
+ left()(1)(1) * right()(1)(1)
+ left()(1)(2) * right()(1)(2)
+ left()(2)(0) * right()(2)(0)
+ left()(2)(1) * right()(2)(1)
+ left()(2)(2) * right()(2)(2)
+ left()(3)(0) * right()(3)(0)
+ left()(3)(1) * right()(3)(1)
+ left()(3)(2) * right()(3)(2);
int idx = mu+i*Ngamma+Lblock*Ngamma*j+Ngamma*Lblock*Rblock*r;
lvSum[idx]=lvSum[idx]+vv;
}
}
}
}
}
}
std::cout << GridLogMessage << " Entering second parallel loop "<<std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
std::vector<int> icoor(Nd);
std::vector<iScalar<scalar_type> > extracted(Nsimd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int mu=0;mu<Ngamma;mu++){
int ij_rdx = mu+i*Ngamma+Ngamma*Lblock*j+Ngamma*Lblock*Rblock*rt;
temp._internal = lvSum[ij_rdx];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
int ij_ldx = mu+i*Ngamma+Ngamma*Lblock*j+Ngamma*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx]._internal;
}
}}}
}
std::cout << GridLogMessage << " Entering non parallel loop "<<std::endl;
for(int t=0;t<fd;t++)
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int mu=0;mu<Ngamma;mu++){
if (pt == grid->_processor_coor[orthogdim]){
int ij_dx = mu+i*Ngamma+Ngamma*Lblock*j+Ngamma*Lblock*Rblock* lt;
mat[mu+i*Ngamma+j*Lblock*Ngamma][t] = lsSum[ij_dx];
}
else{
mat[mu+i*Ngamma+j*Lblock*Ngamma][t] = scalar_type(0.0);
}
}}}
}
std::cout << GridLogMessage << " Done "<<std::endl;
// defer sum over nodes.
return;
}
template<class vobj>
void sliceInnerProductMesonFieldGamma1(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<vobj> > &lhs,
const std::vector<Lattice<vobj> > &rhs,
int orthogdim,
std::vector<Gamma::Algebra> gammas)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
assert(mat.size()==Lblock*Rblock*Ngamma);
for(int t=0;t<mat.size();t++){
assert(mat[t].size()==Nt);
}
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock;
int MFlvol = ld*Lblock*Rblock;
Vector<SpinMatrix_v > lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++){
lvSum[r] = zero;
}
Vector<SpinMatrix_s > lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[r]=scalar_type(0.0);
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
std::cout << GridLogMessage << " Entering first parallel loop "<<std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
auto left = conjugate(lhs[i]._odata[ss]);
for(int j=0;j<Rblock;j++){
SpinMatrix_v vv;
auto right = rhs[j]._odata[ss];
for(int s1=0;s1<Ns;s1++){
for(int s2=0;s2<Ns;s2++){
vv()(s2,s1)() = left()(s1)(0) * right()(s2)(0)
+ left()(s1)(1) * right()(s2)(1)
+ left()(s1)(2) * right()(s2)(2);
}}
int idx = i+Lblock*j+Lblock*Rblock*r;
lvSum[idx]=lvSum[idx]+vv;
}
}
}
}
}
std::cout << GridLogMessage << " Entering second parallel loop "<<std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt=0;rt<rd;rt++){
std::vector<int> icoor(Nd);
std::vector<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
int ij_rdx = i+Lblock*j+Lblock*Rblock*rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = i+Lblock*j+Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}}
}
std::cout << GridLogMessage << " Entering third parallel loop "<<std::endl;
parallel_for(int t=0;t<fd;t++)
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
if (pt == grid->_processor_coor[orthogdim]){
int ij_dx = i + Lblock * j + Lblock * Rblock * lt;
for(int mu=0;mu<Ngamma;mu++){
mat[mu+i*Ngamma+j*Lblock*Ngamma][t] = trace(lsSum[ij_dx]*Gamma(gammas[mu]));
}
}
else{
for(int mu=0;mu<Ngamma;mu++){
mat[mu+i*Ngamma+j*Lblock*Ngamma][t] = scalar_type(0.0);
}
}
}}
}
std::cout << GridLogMessage << " Done "<<std::endl;
// defer sum over nodes.
return;
}
template<class vobj>
void sliceInnerProductMesonFieldGammaMom(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<vobj> > &lhs,
const std::vector<Lattice<vobj> > &rhs,
int orthogdim,
std::vector<Gamma::Algebra> gammas,
const std::vector<LatticeComplex > &mom)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
int Nmom = mom.size();
assert(mat.size()==Lblock*Rblock*Ngamma*Nmom);
for(int t=0;t<mat.size();t++){
assert(mat[t].size()==Nt);
}
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock*Nmom;
int MFlvol = ld*Lblock*Rblock*Nmom;
Vector<SpinMatrix_v > lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++){
lvSum[r] = zero;
}
Vector<SpinMatrix_s > lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[r]=scalar_type(0.0);
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
std::cout << GridLogMessage << " Entering first parallel loop "<<std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
auto left = conjugate(lhs[i]._odata[ss]);
for(int j=0;j<Rblock;j++){
SpinMatrix_v vv;
auto right = rhs[j]._odata[ss];
for(int s1=0;s1<Ns;s1++){
for(int s2=0;s2<Ns;s2++){
vv()(s1,s2)() = left()(s1)(0) * right()(s2)(0)
+ left()(s1)(1) * right()(s2)(1)
+ left()(s1)(2) * right()(s2)(2);
}}
// After getting the sitewise product do the mom phase loop
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
// Trigger unroll
for ( int m=0;m<Nmom;m++){
int idx = m+base;
auto phase = mom[m]._odata[ss];
mac(&lvSum[idx],&vv,&phase);
}
}
}
}
}
}
std::cout << GridLogMessage << " Entering second parallel loop "<<std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt=0;rt<rd;rt++){
std::vector<int> icoor(Nd);
std::vector<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int m=0;m<Nmom;m++){
int ij_rdx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}}}
}
std::cout << GridLogMessage << " Entering third parallel loop "<<std::endl;
parallel_for(int t=0;t<fd;t++)
{
int pt = t / ld; // processor plane
int lt = t % ld;
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
if (pt == grid->_processor_coor[orthogdim]){
for(int m=0;m<Nmom;m++){
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
for(int mu=0;mu<Ngamma;mu++){
mat[ mu
+m*Ngamma
+i*Nmom*Ngamma
+j*Nmom*Ngamma*Lblock][t] = trace(lsSum[ij_dx]*Gamma(gammas[mu]));
}
}
}
else{
for(int mu=0;mu<Ngamma;mu++){
for(int m=0;m<Nmom;m++){
mat[mu+m*Ngamma+i*Nmom*Ngamma+j*Nmom*Lblock*Ngamma][t] = scalar_type(0.0);
}}
}
}}
}
std::cout << GridLogMessage << " Done "<<std::endl;
// defer sum over nodes.
return;
}
/*
template void sliceInnerProductMesonField<SpinColourVector>(std::vector< std::vector<ComplexD> > &mat,
const std::vector<Lattice<SpinColourVector> > &lhs,
@ -159,6 +608,31 @@ template void sliceInnerProductMesonField<SpinColourVector>(std::vector< std::ve
int orthogdim) ;
*/
std::vector<Gamma::Algebra> Gmu4 ( {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT });
std::vector<Gamma::Algebra> Gmu16 ( {
Gamma::Algebra::Gamma5,
Gamma::Algebra::GammaT,
Gamma::Algebra::GammaTGamma5,
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaXGamma5,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaYGamma5,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaZGamma5,
Gamma::Algebra::Identity,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaZT
});
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
@ -167,7 +641,8 @@ int main (int argc, char ** argv)
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
const int Nmom=7;
int nt = latt_size[Tp];
uint64_t vol = 1;
for(int d=0;d<Nd;d++){
@ -179,28 +654,40 @@ int main (int argc, char ** argv)
pRNG.SeedFixedIntegers(seeds);
const int Nm = 32; // number of all modes (high + low)
int Nm = atoi(argv[1]); // number of all modes (high + low)
std::vector<LatticeFermion> v(Nm,&Grid);
std::vector<LatticeFermion> w(Nm,&Grid);
std::vector<LatticeFermion> gammaV(Nm,&Grid);
std::vector<LatticeComplex> phases(Nmom,&Grid);
for(int i=0;i<Nm;i++) {
random(pRNG,v[i]);
random(pRNG,w[i]);
}
for(int i=0;i<Nmom;i++) {
phases[i] = Complex(1.0);
}
double flops = vol * (11.0 * 8.0 + 6.0) * Nm*Nm;
double byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm;
std::vector<ComplexD> ip(nt);
std::vector<std::vector<ComplexD> > MesonFields (Nm*Nm);
std::vector<std::vector<ComplexD> > MesonFields4 (Nm*Nm*4);
std::vector<std::vector<ComplexD> > MesonFields16 (Nm*Nm*16);
std::vector<std::vector<ComplexD> > MesonFields161(Nm*Nm*16);
std::vector<std::vector<ComplexD> > MesonFields16mom (Nm*Nm*16*Nmom);
std::vector<std::vector<ComplexD> > MesonFieldsRef(Nm*Nm);
for(int i=0;i<Nm;i++) {
for(int j=0;j<Nm;j++) {
MesonFields [i+j*Nm].resize(nt);
MesonFieldsRef[i+j*Nm].resize(nt);
}}
for(int i=0;i<MesonFields.size();i++ ) MesonFields [i].resize(nt);
for(int i=0;i<MesonFieldsRef.size();i++) MesonFieldsRef[i].resize(nt);
for(int i=0;i<MesonFields4.size();i++ ) MesonFields4 [i].resize(nt);
for(int i=0;i<MesonFields16.size();i++ ) MesonFields16 [i].resize(nt);
for(int i=0;i<MesonFields161.size();i++ ) MesonFields161[i].resize(nt);
for(int i=0;i<MesonFields16mom.size();i++ ) MesonFields16mom [i].resize(nt);
GridLogMessage.TimingMode(1);
@ -214,18 +701,70 @@ int main (int argc, char ** argv)
}
}}
double t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with new code for Nt="<<nt<<std::endl;
double t2 = usecond();
t0 = usecond();
sliceInnerProductMesonField(MesonFields,w,v,Tp);
double t3 = usecond();
std::cout<<GridLogMessage << "Done "<< flops/(t3-t2) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t3-t2) <<" MB/s " <<std::endl;
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with Four gammas code for Nt="<<nt<<std::endl;
flops = vol * (11.0 * 8.0 + 6.0) * Nm*Nm*4;
byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm
+ vol * ( 2.0 * sizeof(Complex) ) * Nm*Nm* 4;
t0 = usecond();
sliceInnerProductMesonFieldGamma(MesonFields4,w,v,Tp,Gmu4);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with Sixteen gammas code for Nt="<<nt<<std::endl;
flops = vol * (11.0 * 8.0 + 6.0) * Nm*Nm*16;
byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm
+ vol * ( 2.0 * sizeof(Complex) ) * Nm*Nm* 16;
t0 = usecond();
sliceInnerProductMesonFieldGamma(MesonFields16,w,v,Tp,Gmu16);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with Sixteen gammas code1 for Nt="<<nt<<std::endl;
flops = vol * ( 2 * 8.0 + 6.0) * Nm*Nm*16;
byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm
+ vol * ( 2.0 * sizeof(Complex) ) * Nm*Nm* 16;
t0 = usecond();
sliceInnerProductMesonFieldGamma1(MesonFields161, w, v, Tp, Gmu16);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
std::cout<<GridLogMessage << "Running loop with Sixteen gammas "<<Nmom<<" momenta "<<std::endl;
flops = vol * ( 2 * 8.0 + 6.0 + 8.0*Nmom) * Nm*Nm*16;
byte = vol * (12.0 * sizeof(Complex) ) * Nm*Nm
+ vol * ( 2.0 * sizeof(Complex) *Nmom ) * Nm*Nm* 16;
t0 = usecond();
sliceInnerProductMesonFieldGammaMom(MesonFields16mom,w,v,Tp,Gmu16,phases);
t1 = usecond();
std::cout<<GridLogMessage << "Done "<< (t1-t0) <<" usecond " <<std::endl;
std::cout<<GridLogMessage << "Done "<< flops/(t1-t0) <<" mflops " <<std::endl;
std::cout<<GridLogMessage << "Done "<< byte /(t1-t0) <<" MB/s " <<std::endl;
RealD err = 0;
RealD err2 = 0;
ComplexD diff;
ComplexD diff2;
for(int i=0;i<Nm;i++) {
for(int j=0;j<Nm;j++) {
@ -236,6 +775,29 @@ int main (int argc, char ** argv)
}}
std::cout<<GridLogMessage << "Norm error "<< err <<std::endl;
err = err*0.;
diff = diff*0.;
for (int mu = 0; mu < 16; mu++){
for (int k = 0; k < gammaV.size(); k++){
gammaV[k] = Gamma(Gmu16[mu]) * v[k];
}
for (int i = 0; i < Nm; i++){
for (int j = 0; j < Nm; j++){
sliceInnerProductVector(ip, w[i], gammaV[j], Tp);
for (int t = 0; t < nt; t++){
MesonFields[i + j * Nm][t] = ip[t];
diff = MesonFields16[mu+i*16+Nm*16*j][t] - MesonFields161[mu+i*16+Nm*16*j][t];
diff2 = MesonFields[i+j*Nm][t] - MesonFields161[mu+i*16+Nm*16*j][t];
err += real(diff*conj(diff));
err2 += real(diff2*conj(diff2));
}
}
}
}
std::cout << GridLogMessage << "Norm error 16 gamma1/16 gamma naive " << err << std::endl;
std::cout << GridLogMessage << "Norm error 16 gamma1/sliceInnerProduct " << err2 << std::endl;
Grid_finalize();
}

View File

@ -1,6 +1,6 @@
#!/usr/bin/env bash
EIGEN_URL='http://bitbucket.org/eigen/eigen/get/3.3.3.tar.bz2'
EIGEN_URL='http://bitbucket.org/eigen/eigen/get/3.3.5.tar.bz2'
echo "-- deploying Eigen source..."
wget ${EIGEN_URL} --no-check-certificate && ./scripts/update_eigen.sh `basename ${EIGEN_URL}` && rm `basename ${EIGEN_URL}`

View File

@ -480,8 +480,8 @@ GRID_LIBS=$LIBS
GRID_SHORT_SHA=`git rev-parse --short HEAD`
GRID_SHA=`git rev-parse HEAD`
GRID_BRANCH=`git rev-parse --abbrev-ref HEAD`
AM_CXXFLAGS="-I${abs_srcdir}/include $AM_CXXFLAGS"
AM_CFLAGS="-I${abs_srcdir}/include $AM_CFLAGS"
AM_CXXFLAGS="-I${abs_srcdir}/include -I${abs_srcdir}/Eigen/ -I${abs_srcdir}/Eigen/unsupported $AM_CXXFLAGS"
AM_CFLAGS="-I${abs_srcdir}/include -I${abs_srcdir}/Eigen/ -I${abs_srcdir}/Eigen/unsupported $AM_CFLAGS"
AM_LDFLAGS="-L${cwd}/lib $AM_LDFLAGS"
AC_SUBST([AM_CFLAGS])
AC_SUBST([AM_CXXFLAGS])

View File

@ -0,0 +1,146 @@
#ifndef A2A_Reduction_hpp_
#define A2A_Reduction_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Environment.hpp>
#include <Grid/Hadrons/Solver.hpp>
BEGIN_HADRONS_NAMESPACE
////////////////////////////////////////////
// A2A Meson Field Inner Product
////////////////////////////////////////////
template <class FermionField>
void sliceInnerProductMesonField(std::vector<std::vector<ComplexD>> &mat,
const std::vector<Lattice<FermionField>> &lhs,
const std::vector<Lattice<FermionField>> &rhs,
int orthogdim)
{
typedef typename FermionField::scalar_type scalar_type;
typedef typename FermionField::vector_type vector_type;
int Lblock = lhs.size();
int Rblock = rhs.size();
GridBase *grid = lhs[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
assert(mat.size() == Lblock * Rblock);
for (int t = 0; t < mat.size(); t++)
{
assert(mat[t].size() == Nt);
}
int fd = grid->_fdimensions[orthogdim];
int ld = grid->_ldimensions[orthogdim];
int rd = grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
std::vector<vector_type, alignedAllocator<vector_type>> lvSum(rd * Lblock * Rblock);
for(int r=0;r<rd * Lblock * Rblock;r++)
{
lvSum[r]=zero;
}
std::vector<scalar_type> lsSum(ld * Lblock * Rblock, scalar_type(0.0));
int e1 = grid->_slice_nblock[orthogdim];
int e2 = grid->_slice_block[orthogdim];
int stride = grid->_slice_stride[orthogdim];
// std::cout << GridLogMessage << " Entering first parallel loop " << std::endl;
// Parallelise over t-direction doesn't expose as much parallelism as needed for KNL
parallel_for(int r = 0; r < rd; r++)
{
int so = r * grid->_ostride[orthogdim]; // base offset for start of plane
for (int n = 0; n < e1; n++)
{
for (int b = 0; b < e2; b++)
{
int ss = so + n * stride + b;
for (int i = 0; i < Lblock; i++)
{
auto left = conjugate(lhs[i]._odata[ss]);
for (int j = 0; j < Rblock; j++)
{
int idx = i + Lblock * j + Lblock * Rblock * r;
auto right = rhs[j]._odata[ss];
vector_type vv = left()(0)(0) * right()(0)(0)
+ left()(0)(1) * right()(0)(1)
+ left()(0)(2) * right()(0)(2)
+ left()(1)(0) * right()(1)(0)
+ left()(1)(1) * right()(1)(1)
+ left()(1)(2) * right()(1)(2)
+ left()(2)(0) * right()(2)(0)
+ left()(2)(1) * right()(2)(1)
+ left()(2)(2) * right()(2)(2)
+ left()(3)(0) * right()(3)(0)
+ left()(3)(1) * right()(3)(1)
+ left()(3)(2) * right()(3)(2);
lvSum[idx] = lvSum[idx] + vv;
}
}
}
}
}
// std::cout << GridLogMessage << " Entering second parallel loop " << std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
parallel_for(int rt = 0; rt < rd; rt++)
{
std::vector<int> icoor(Nd);
for (int i = 0; i < Lblock; i++)
{
for (int j = 0; j < Rblock; j++)
{
iScalar<vector_type> temp;
std::vector<iScalar<scalar_type>> extracted(Nsimd);
temp._internal = lvSum[i + Lblock * j + Lblock * Rblock * rt];
extract(temp, extracted);
for (int idx = 0; idx < Nsimd; idx++)
{
grid->iCoorFromIindex(icoor, idx);
int ldx = rt + icoor[orthogdim] * rd;
int ij_dx = i + Lblock * j + Lblock * Rblock * ldx;
lsSum[ij_dx] = lsSum[ij_dx] + extracted[idx]._internal;
}
}
}
}
// std::cout << GridLogMessage << " Entering non parallel loop " << std::endl;
for (int t = 0; t < fd; t++)
{
int pt = t/ld; // processor plane
int lt = t%ld;
for (int i = 0; i < Lblock; i++)
{
for (int j = 0; j < Rblock; j++)
{
if (pt == grid->_processor_coor[orthogdim])
{
int ij_dx = i + Lblock * j + Lblock * Rblock * lt;
mat[i + j * Lblock][t] = lsSum[ij_dx];
}
else
{
mat[i + j * Lblock][t] = scalar_type(0.0);
}
}
}
}
// std::cout << GridLogMessage << " Done " << std::endl;
// defer sum over nodes.
return;
}
END_HADRONS_NAMESPACE
#endif // A2A_Reduction_hpp_

View File

@ -14,6 +14,8 @@ libHadrons_a_SOURCES = \
libHadrons_adir = $(pkgincludedir)/Hadrons
nobase_libHadrons_a_HEADERS = \
$(modules_hpp) \
AllToAllVectors.hpp \
AllToAllReduction.hpp \
Application.hpp \
EigenPack.hpp \
Environment.hpp \

View File

@ -1,58 +1,59 @@
#include <Grid/Hadrons/Modules/MSource/SeqConserved.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
#include <Grid/Hadrons/Modules/MSource/Z2.hpp>
#include <Grid/Hadrons/Modules/MSource/Point.hpp>
#include <Grid/Hadrons/Modules/MSource/Wall.hpp>
#include <Grid/Hadrons/Modules/MSink/Smear.hpp>
#include <Grid/Hadrons/Modules/MSink/Point.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadBinary.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadEigenPack.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadNersc.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Utils.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Grad.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrPhi.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TwoPointNPR.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TwoPoint.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TransProj.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrKinetic.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/StochFreeField.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/ShiftProbe.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TimeMomProbe.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/StochFreeField.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TwoPointNPR.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Grad.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TransProj.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Div.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrMag.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/ShiftProbe.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/Utils.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/EMT.hpp>
#include <Grid/Hadrons/Modules/MAction/ZMobiusDWF.hpp>
#include <Grid/Hadrons/Modules/MAction/ScaledDWF.hpp>
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
#include <Grid/Hadrons/Modules/MAction/WilsonClover.hpp>
#include <Grid/Hadrons/Modules/MAction/MobiusDWF.hpp>
#include <Grid/Hadrons/Modules/MAction/DWF.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
#include <Grid/Hadrons/Modules/MContraction/DiscLoop.hpp>
#include <Grid/Hadrons/Modules/MContraction/Meson.hpp>
#include <Grid/Hadrons/Modules/MContraction/WardIdentity.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp>
#include <Grid/Hadrons/Modules/MScalar/ScalarVP.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TwoPoint.hpp>
#include <Grid/Hadrons/Modules/MScalarSUN/TrPhi.hpp>
#include <Grid/Hadrons/Modules/MScalar/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
#include <Grid/Hadrons/Modules/MScalar/ScalarVP.hpp>
#include <Grid/Hadrons/Modules/MScalar/ChargedProp.hpp>
#include <Grid/Hadrons/Modules/MScalar/VPCounterTerms.hpp>
#include <Grid/Hadrons/Modules/MUtilities/TestSeqConserved.hpp>
#include <Grid/Hadrons/Modules/MUtilities/TestSeqGamma.hpp>
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadEigenPack.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadCoarseEigenPack.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadBinary.hpp>
#include <Grid/Hadrons/Modules/MIO/LoadNersc.hpp>
#include <Grid/Hadrons/Modules/MSink/Smear.hpp>
#include <Grid/Hadrons/Modules/MSink/Point.hpp>
#include <Grid/Hadrons/Modules/MFermion/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
#include <Grid/Hadrons/Modules/MSolver/A2AVectors.hpp>
#include <Grid/Hadrons/Modules/MGauge/FundtoHirep.hpp>
#include <Grid/Hadrons/Modules/MGauge/Random.hpp>
#include <Grid/Hadrons/Modules/MGauge/StoutSmearing.hpp>
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
#include <Grid/Hadrons/Modules/MGauge/UnitEm.hpp>
#include <Grid/Hadrons/Modules/MUtilities/TestSeqGamma.hpp>
#include <Grid/Hadrons/Modules/MUtilities/TestSeqConserved.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqConserved.hpp>
#include <Grid/Hadrons/Modules/MSource/Z2.hpp>
#include <Grid/Hadrons/Modules/MSource/Wall.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
#include <Grid/Hadrons/Modules/MSource/Point.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/Baryon.hpp>
#include <Grid/Hadrons/Modules/MContraction/Meson.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonian.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakNeutral4ptDisc.hpp>
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
#include <Grid/Hadrons/Modules/MContraction/DiscLoop.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianNonEye.hpp>
#include <Grid/Hadrons/Modules/MContraction/WardIdentity.hpp>
#include <Grid/Hadrons/Modules/MContraction/A2AMesonField.hpp>
#include <Grid/Hadrons/Modules/MAction/WilsonClover.hpp>
#include <Grid/Hadrons/Modules/MAction/ScaledDWF.hpp>
#include <Grid/Hadrons/Modules/MAction/MobiusDWF.hpp>
#include <Grid/Hadrons/Modules/MAction/Wilson.hpp>
#include <Grid/Hadrons/Modules/MAction/DWF.hpp>
#include <Grid/Hadrons/Modules/MAction/ZMobiusDWF.hpp>
#include <Grid/Hadrons/Modules/MSolver/RBPrecCG.hpp>
#include <Grid/Hadrons/Modules/MSolver/LocalCoherenceLanczos.hpp>
#include <Grid/Hadrons/Modules/MLoop/NoiseLoop.hpp>
#include <Grid/Hadrons/Modules/MGauge/StoutSmearing.hpp>
#include <Grid/Hadrons/Modules/MGauge/StochEm.hpp>
#include <Grid/Hadrons/Modules/MGauge/FundtoHirep.hpp>
#include <Grid/Hadrons/Modules/MGauge/Unit.hpp>
#include <Grid/Hadrons/Modules/MGauge/Random.hpp>
#include <Grid/Hadrons/Modules/MGauge/UnitEm.hpp>
#include <Grid/Hadrons/Modules/MSolver/A2AVectors.hpp>

View File

@ -0,0 +1,8 @@
#include <Grid/Hadrons/Modules/MContraction/A2AMeson.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TA2AMeson<FIMPL>;
template class Grid::Hadrons::MContraction::TA2AMeson<ZFIMPL>;

View File

@ -0,0 +1,207 @@
#ifndef Hadrons_MContraction_A2AMeson_hpp_
#define Hadrons_MContraction_A2AMeson_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/AllToAllVectors.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* A2AMeson *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<Gamma::Algebra, Gamma::Algebra> GammaPair;
class A2AMesonPar : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AMesonPar,
int, Nl,
int, N,
std::string, A2A1,
std::string, A2A2,
std::string, gammas,
std::string, output);
};
template <typename FImpl>
class TA2AMeson : public Module<A2AMesonPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
SOLVER_TYPE_ALIASES(FImpl, );
typedef A2AModesSchurDiagTwo<typename FImpl::FermionField, FMat, Solver> A2ABase;
class Result : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma_snk,
Gamma::Algebra, gamma_src,
std::vector<Complex>, corr);
};
public:
// constructor
TA2AMeson(const std::string name);
// destructor
virtual ~TA2AMeson(void){};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<GammaPair> &gammaList);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER(A2AMeson, ARG(TA2AMeson<FIMPL>), MContraction);
MODULE_REGISTER(ZA2AMeson, ARG(TA2AMeson<ZFIMPL>), MContraction);
/******************************************************************************
* TA2AMeson implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2AMeson<FImpl>::TA2AMeson(const std::string name)
: Module<A2AMesonPar>(name)
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2AMeson<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().A2A1 + "_class", par().A2A2 + "_class"};
in.push_back(par().A2A1 + "_w_high_4d");
in.push_back(par().A2A2 + "_v_high_4d");
return in;
}
template <typename FImpl>
std::vector<std::string> TA2AMeson<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
template <typename FImpl>
void TA2AMeson<FImpl>::parseGammaString(std::vector<GammaPair> &gammaList)
{
gammaList.clear();
// Parse individual contractions from input string.
gammaList = strToVec<GammaPair>(par().gammas);
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMeson<FImpl>::setup(void)
{
int nt = env().getDim(Tp);
int N = par().N;
int Ls_ = env().getObjectLs(par().A2A1 + "_class");
envTmp(std::vector<FermionField>, "w1", 1, N, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "v1", 1, N, FermionField(env().getGrid(1)));
envTmpLat(FermionField, "tmpv_5d", Ls_);
envTmpLat(FermionField, "tmpw_5d", Ls_);
envTmp(std::vector<ComplexD>, "MF_x", 1, nt);
envTmp(std::vector<ComplexD>, "MF_y", 1, nt);
envTmp(std::vector<ComplexD>, "tmp", 1, nt);
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMeson<FImpl>::execute(void)
{
LOG(Message) << "Computing A2A meson contractions" << std::endl;
Result result;
Gamma g5(Gamma::Algebra::Gamma5);
std::vector<GammaPair> gammaList;
int nt = env().getDim(Tp);
parseGammaString(gammaList);
result.gamma_snk = gammaList[0].first;
result.gamma_src = gammaList[0].second;
result.corr.resize(nt);
int Nl = par().Nl;
int N = par().N;
LOG(Message) << "N for A2A cont: " << N << std::endl;
envGetTmp(std::vector<ComplexD>, MF_x);
envGetTmp(std::vector<ComplexD>, MF_y);
envGetTmp(std::vector<ComplexD>, tmp);
for (unsigned int t = 0; t < nt; ++t)
{
tmp[t] = TensorRemove(MF_x[t] * MF_y[t] * 0.0);
}
Gamma gSnk(gammaList[0].first);
Gamma gSrc(gammaList[0].second);
auto &a2a1_fn = envGet(A2ABase, par().A2A1 + "_class");
envGetTmp(std::vector<FermionField>, w1);
envGetTmp(std::vector<FermionField>, v1);
envGetTmp(FermionField, tmpv_5d);
envGetTmp(FermionField, tmpw_5d);
LOG(Message) << "Finding v and w vectors for N = " << N << std::endl;
for (int i = 0; i < N; i++)
{
a2a1_fn.return_v(i, tmpv_5d, v1[i]);
a2a1_fn.return_w(i, tmpw_5d, w1[i]);
}
LOG(Message) << "Found v and w vectors for N = " << N << std::endl;
for (unsigned int i = 0; i < N; i++)
{
v1[i] = gSnk * v1[i];
}
int ty;
for (unsigned int i = 0; i < N; i++)
{
for (unsigned int j = 0; j < N; j++)
{
mySliceInnerProductVector(MF_x, w1[i], v1[j], Tp);
mySliceInnerProductVector(MF_y, w1[j], v1[i], Tp);
for (unsigned int t = 0; t < nt; ++t)
{
for (unsigned int tx = 0; tx < nt; tx++)
{
ty = (tx + t) % nt;
tmp[t] += TensorRemove((MF_x[tx]) * (MF_y[ty]));
}
}
}
if (i % 10 == 0)
{
LOG(Message) << "MF for i = " << i << " of " << N << std::endl;
}
}
double NTinv = 1.0 / static_cast<double>(nt);
for (unsigned int t = 0; t < nt; ++t)
{
result.corr[t] = NTinv * tmp[t];
}
saveResult(par().output, "meson", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2AMeson_hpp_

View File

@ -0,0 +1,8 @@
#include <Grid/Hadrons/Modules/MContraction/A2AMesonField.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TA2AMesonField<FIMPL>;
template class Grid::Hadrons::MContraction::TA2AMesonField<ZFIMPL>;

View File

@ -0,0 +1,480 @@
#ifndef Hadrons_MContraction_A2AMesonField_hpp_
#define Hadrons_MContraction_A2AMesonField_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/AllToAllVectors.hpp>
#include <unsupported/Eigen/CXX11/Tensor>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* A2AMesonField *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<Gamma::Algebra, Gamma::Algebra> GammaPair;
class A2AMesonFieldPar : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AMesonFieldPar,
int, cacheBlock,
int, schurBlock,
int, Nmom,
int, N,
int, Nl,
std::string, A2A,
std::string, output);
};
template <typename FImpl>
class TA2AMesonField : public Module<A2AMesonFieldPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
SOLVER_TYPE_ALIASES(FImpl, );
typedef A2AModesSchurDiagTwo<typename FImpl::FermionField, FMat, Solver> A2ABase;
public:
// constructor
TA2AMesonField(const std::string name);
// destructor
virtual ~TA2AMesonField(void){};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
// Arithmetic help. Move to Grid??
virtual void MesonField(Eigen::Tensor<ComplexD,5> &mat,
const LatticeFermion *lhs,
const LatticeFermion *rhs,
std::vector<Gamma::Algebra> gammas,
const std::vector<LatticeComplex > &mom,
int orthogdim,
double &t0,
double &t1,
double &t2,
double &t3);
};
MODULE_REGISTER(A2AMesonField, ARG(TA2AMesonField<FIMPL>), MContraction);
MODULE_REGISTER(ZA2AMesonField, ARG(TA2AMesonField<ZFIMPL>), MContraction);
/******************************************************************************
* TA2AMesonField implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2AMesonField<FImpl>::TA2AMesonField(const std::string name)
: Module<A2AMesonFieldPar>(name)
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2AMesonField<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().A2A + "_class"};
in.push_back(par().A2A + "_w_high_4d");
in.push_back(par().A2A + "_v_high_4d");
return in;
}
template <typename FImpl>
std::vector<std::string> TA2AMesonField<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::setup(void)
{
auto &a2a = envGet(A2ABase, par().A2A + "_class");
int nt = env().getDim(Tp);
int Nl = par().Nl;
int N = par().N;
int Ls_ = env().getObjectLs(par().A2A + "_class");
// Four D fields
envTmp(std::vector<FermionField>, "w", 1, par().schurBlock, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "v", 1, par().schurBlock, FermionField(env().getGrid(1)));
// 5D tmp
envTmpLat(FermionField, "tmp_5d", Ls_);
}
//////////////////////////////////////////////////////////////////////////////////
// Cache blocked arithmetic routine
// Could move to Grid ???
//////////////////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::MesonField(Eigen::Tensor<ComplexD,5> &mat,
const LatticeFermion *lhs_wi,
const LatticeFermion *rhs_vj,
std::vector<Gamma::Algebra> gammas,
const std::vector<LatticeComplex > &mom,
int orthogdim,
double &t0,
double &t1,
double &t2,
double &t3)
{
typedef typename FImpl::SiteSpinor vobj;
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
int Lblock = mat.dimension(3);
int Rblock = mat.dimension(4);
GridBase *grid = lhs_wi[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
int Nmom = mom.size();
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock*Nmom;
int MFlvol = ld*Lblock*Rblock*Nmom;
Vector<SpinMatrix_v > lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++){
lvSum[r] = zero;
}
Vector<SpinMatrix_s > lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[r]=scalar_type(0.0);
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
t0-=usecond();
// Nested parallelism would be ok
// Wasting cores here. Test case r
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++){
auto left = conjugate(lhs_wi[i]._odata[ss]);
for(int j=0;j<Rblock;j++){
SpinMatrix_v vv;
auto right = rhs_vj[j]._odata[ss];
for(int s1=0;s1<Ns;s1++){
for(int s2=0;s2<Ns;s2++){
vv()(s1,s2)() = left()(s2)(0) * right()(s1)(0)
+ left()(s2)(1) * right()(s1)(1)
+ left()(s2)(2) * right()(s1)(2);
}}
// After getting the sitewise product do the mom phase loop
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
for ( int m=0;m<Nmom;m++){
int idx = m+base;
auto phase = mom[m]._odata[ss];
mac(&lvSum[idx],&vv,&phase);
}
}
}
}
}
}
t0+=usecond();
// Sum across simd lanes in the plane, breaking out orthog dir.
t1-=usecond();
parallel_for(int rt=0;rt<rd;rt++){
std::vector<int> icoor(Nd);
std::vector<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int m=0;m<Nmom;m++){
int ij_rdx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}}}
}
t1+=usecond();
assert(mat.dimension(0) == Nmom);
assert(mat.dimension(1) == Ngamma);
assert(mat.dimension(2) == Nt);
t2-=usecond();
// ld loop and local only??
int pd = grid->_processors[orthogdim];
int pc = grid->_processor_coor[orthogdim];
parallel_for_nest2(int lt=0;lt<ld;lt++)
{
for(int pt=0;pt<pd;pt++){
int t = lt + pt*ld;
if (pt == pc){
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int m=0;m<Nmom;m++){
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
for(int mu=0;mu<Ngamma;mu++){
// this is a bit slow
mat(m,mu,t,i,j) = trace(lsSum[ij_dx]*Gamma(gammas[mu]));
}
}
}
}
} else {
const scalar_type zz(0.0);
for(int i=0;i<Lblock;i++){
for(int j=0;j<Rblock;j++){
for(int mu=0;mu<Ngamma;mu++){
for(int m=0;m<Nmom;m++){
mat(m,mu,t,i,j) =zz;
}
}
}
}
}
}
}
t2+=usecond();
////////////////////////////////////////////////////////////////////
// This global sum is taking as much as 50% of time on 16 nodes
// Vector size is 7 x 16 x 32 x 16 x 16 x sizeof(complex) = 2MB - 60MB depending on volume
// Healthy size that should suffice
////////////////////////////////////////////////////////////////////
t3-=usecond();
grid->GlobalSumVector(&mat(0,0,0,0,0),Nmom*Ngamma*Nt*Lblock*Rblock);
t3+=usecond();
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::execute(void)
{
LOG(Message) << "Computing A2A meson field" << std::endl;
auto &a2a = envGet(A2ABase, par().A2A + "_class");
// 2+6+4+4 = 16 gammas
// Ordering defined here
std::vector<Gamma::Algebra> gammas ( {
Gamma::Algebra::Gamma5,
Gamma::Algebra::Identity,
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
Gamma::Algebra::GammaXGamma5,
Gamma::Algebra::GammaYGamma5,
Gamma::Algebra::GammaZGamma5,
Gamma::Algebra::GammaTGamma5,
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::SigmaZT
});
///////////////////////////////////////////////
// Square assumption for now Nl = Nr = N
///////////////////////////////////////////////
int nt = env().getDim(Tp);
int nx = env().getDim(Xp);
int ny = env().getDim(Yp);
int nz = env().getDim(Zp);
int N = par().N;
int Nl = par().Nl;
int ngamma = gammas.size();
int schurBlock = par().schurBlock;
int cacheBlock = par().cacheBlock;
int nmom = par().Nmom;
///////////////////////////////////////////////
// Momentum setup
///////////////////////////////////////////////
GridBase *grid = env().getGrid(1);
std::vector<LatticeComplex> phases(nmom,grid);
for(int m=0;m<nmom;m++){
phases[m] = Complex(1.0); // All zero momentum for now
}
Eigen::Tensor<ComplexD,5> mesonField (nmom,ngamma,nt,N,N);
LOG(Message) << "N = Nh+Nl for A2A MesonField is " << N << std::endl;
envGetTmp(std::vector<FermionField>, w);
envGetTmp(std::vector<FermionField>, v);
envGetTmp(FermionField, tmp_5d);
LOG(Message) << "Finding v and w vectors for N = " << N << std::endl;
//////////////////////////////////////////////////////////////////////////
// i,j is first loop over SchurBlock factors reusing 5D matrices
// ii,jj is second loop over cacheBlock factors for high perf contractoin
// iii,jjj are loops within cacheBlock
// Total index is sum of these i+ii+iii etc...
//////////////////////////////////////////////////////////////////////////
double flops = 0.0;
double bytes = 0.0;
double vol = nx*ny*nz*nt;
double t_schur=0;
double t_contr=0;
double t_int_0=0;
double t_int_1=0;
double t_int_2=0;
double t_int_3=0;
double t0 = usecond();
int N_i = N;
int N_j = N;
for(int i=0;i<N_i;i+=schurBlock){ //loop over SchurBlocking to suppress 5D matrix overhead
for(int j=0;j<N_j;j+=schurBlock){
///////////////////////////////////////////////////////////////
// Get the W and V vectors for this schurBlock^2 set of terms
///////////////////////////////////////////////////////////////
int N_ii = MIN(N_i-i,schurBlock);
int N_jj = MIN(N_j-j,schurBlock);
t_schur-=usecond();
for(int ii =0;ii < N_ii;ii++) a2a.return_w(i+ii, tmp_5d, w[ii]);
for(int jj =0;jj < N_jj;jj++) a2a.return_v(j+jj, tmp_5d, v[jj]);
t_schur+=usecond();
LOG(Message) << "Found w vectors " << i <<" .. " << i+N_ii-1 << std::endl;
LOG(Message) << "Found v vectors " << j <<" .. " << j+N_jj-1 << std::endl;
///////////////////////////////////////////////////////////////
// Series of cache blocked chunks of the contractions within this SchurBlock
///////////////////////////////////////////////////////////////
for(int ii=0;ii<N_ii;ii+=cacheBlock){
for(int jj=0;jj<N_jj;jj+=cacheBlock){
int N_iii = MIN(N_ii-ii,cacheBlock);
int N_jjj = MIN(N_jj-jj,cacheBlock);
Eigen::Tensor<ComplexD,5> mesonFieldBlocked(nmom,ngamma,nt,N_iii,N_jjj);
t_contr-=usecond();
MesonField(mesonFieldBlocked, &w[ii], &v[jj], gammas, phases,Tp,
t_int_0,t_int_1,t_int_2,t_int_3);
t_contr+=usecond();
flops += vol * ( 2 * 8.0 + 6.0 + 8.0*nmom) * N_iii*N_jjj*ngamma;
bytes += vol * (12.0 * sizeof(Complex) ) * N_iii*N_jjj
+ vol * ( 2.0 * sizeof(Complex) *nmom ) * N_iii*N_jjj* ngamma;
///////////////////////////////////////////////////////////////
// Copy back to full meson field tensor
///////////////////////////////////////////////////////////////
parallel_for_nest2(int iii=0;iii< N_iii;iii++) {
for(int jjj=0;jjj< N_jjj;jjj++) {
for(int m =0;m< nmom;m++) {
for(int g =0;g< ngamma;g++) {
for(int t =0;t< nt;t++) {
mesonField(m,g,t,i+ii+iii,j+jj+jjj) = mesonFieldBlocked(m,g,t,iii,jjj);
}}}
}}
}}
}}
double nodes=grid->NodeCount();
double t1 = usecond();
LOG(Message) << " Contraction of MesonFields took "<<(t1-t0)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Schur "<<(t_schur)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Contr "<<(t_contr)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Intern0 "<<(t_int_0)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Intern1 "<<(t_int_1)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Intern2 "<<(t_int_2)/1.0e6<< " seconds " << std::endl;
LOG(Message) << " Intern3 "<<(t_int_3)/1.0e6<< " seconds " << std::endl;
double t_kernel = t_int_0 + t_int_1;
LOG(Message) << " Arith "<<flops/(t_kernel)/1.0e3/nodes<< " Gflop/s / node " << std::endl;
LOG(Message) << " Arith "<<bytes/(t_kernel)/1.0e3/nodes<< " GB/s /node " << std::endl;
/////////////////////////////////////////////////////////////////////////
// Test: Build the pion correlator (two end)
// < PI_ij(t0) PI_ji (t0+t) >
/////////////////////////////////////////////////////////////////////////
std::vector<ComplexD> corr(nt,ComplexD(0.0));
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
int m=0; // first momentum
int g=0; // first gamma in above ordering is gamma5 for pion
for(int t0=0;t0<nt;t0++){
for(int t=0;t<nt;t++){
int tt = (t0+t)%nt;
corr[t] += mesonField(m,g,t0,i,j)* mesonField(m,g,tt,j,i);
}}
}}
for(int t=0;t<nt;t++) corr[t] = corr[t]/ (double)nt;
for(int t=0;t<nt;t++) LOG(Message) << " " << t << " " << corr[t]<<std::endl;
// saveResult(par().output, "meson", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2AMesonField_hpp_

View File

@ -0,0 +1,8 @@
#include <Grid/Hadrons/Modules/MContraction/MesonFieldGamma.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
template class Grid::Hadrons::MContraction::TMesonFieldGamma<FIMPL>;
template class Grid::Hadrons::MContraction::TMesonFieldGamma<ZFIMPL>;

View File

@ -0,0 +1,269 @@
#ifndef Hadrons_MContraction_MesonFieldGamma_hpp_
#define Hadrons_MContraction_MesonFieldGamma_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/AllToAllVectors.hpp>
#include <Grid/Hadrons/AllToAllReduction.hpp>
#include <Grid/Grid_Eigen_Dense.h>
#include <fstream>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* MesonFieldGamma *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
class MesonFieldPar : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MesonFieldPar,
int, Nl,
int, N,
int, Nblock,
std::string, A2A1,
std::string, A2A2,
std::string, gammas,
std::string, output);
};
template <typename FImpl>
class TMesonFieldGamma : public Module<MesonFieldPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
SOLVER_TYPE_ALIASES(FImpl, );
typedef A2AModesSchurDiagTwo<typename FImpl::FermionField, FMat, Solver> A2ABase;
class Result : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(Result,
Gamma::Algebra, gamma,
std::vector<std::vector<std::vector<ComplexD>>>, MesonField);
};
public:
// constructor
TMesonFieldGamma(const std::string name);
// destructor
virtual ~TMesonFieldGamma(void){};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
virtual void parseGammaString(std::vector<Gamma::Algebra> &gammaList);
virtual void vectorOfWs(std::vector<FermionField> &w, int i, int Nblock, FermionField &tmpw_5d, std::vector<FermionField> &vec_w);
virtual void vectorOfVs(std::vector<FermionField> &v, int j, int Nblock, FermionField &tmpv_5d, std::vector<FermionField> &vec_v);
virtual void gammaMult(std::vector<FermionField> &v, Gamma gamma);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
};
MODULE_REGISTER(MesonFieldGamma, ARG(TMesonFieldGamma<FIMPL>), MContraction);
MODULE_REGISTER(ZMesonFieldGamma, ARG(TMesonFieldGamma<ZFIMPL>), MContraction);
/******************************************************************************
* TMesonFieldGamma implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TMesonFieldGamma<FImpl>::TMesonFieldGamma(const std::string name)
: Module<MesonFieldPar>(name)
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TMesonFieldGamma<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().A2A1 + "_class", par().A2A2 + "_class"};
in.push_back(par().A2A1 + "_w_high_4d");
in.push_back(par().A2A2 + "_v_high_4d");
return in;
}
template <typename FImpl>
std::vector<std::string> TMesonFieldGamma<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
template <typename FImpl>
void TMesonFieldGamma<FImpl>::parseGammaString(std::vector<Gamma::Algebra> &gammaList)
{
gammaList.clear();
// Determine gamma matrices to insert at source/sink.
if (par().gammas.compare("all") == 0)
{
// Do all contractions.
for (unsigned int i = 1; i < Gamma::nGamma; i += 2)
{
gammaList.push_back(((Gamma::Algebra)i));
}
}
else
{
// Parse individual contractions from input string.
gammaList = strToVec<Gamma::Algebra>(par().gammas);
}
}
template <typename FImpl>
void TMesonFieldGamma<FImpl>::vectorOfWs(std::vector<FermionField> &w, int i, int Nblock, FermionField &tmpw_5d, std::vector<FermionField> &vec_w)
{
for (unsigned int ni = 0; ni < Nblock; ni++)
{
vec_w[ni] = w[i + ni];
}
}
template <typename FImpl>
void TMesonFieldGamma<FImpl>::vectorOfVs(std::vector<FermionField> &v, int j, int Nblock, FermionField &tmpv_5d, std::vector<FermionField> &vec_v)
{
for (unsigned int nj = 0; nj < Nblock; nj++)
{
vec_v[nj] = v[j+nj];
}
}
template <typename FImpl>
void TMesonFieldGamma<FImpl>::gammaMult(std::vector<FermionField> &v, Gamma gamma)
{
int Nblock = v.size();
for (unsigned int nj = 0; nj < Nblock; nj++)
{
v[nj] = gamma * v[nj];
}
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TMesonFieldGamma<FImpl>::setup(void)
{
int nt = env().getDim(Tp);
int N = par().N;
int Nblock = par().Nblock;
int Ls_ = env().getObjectLs(par().A2A1 + "_class");
envTmpLat(FermionField, "tmpv_5d", Ls_);
envTmpLat(FermionField, "tmpw_5d", Ls_);
envTmp(std::vector<FermionField>, "w", 1, N, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "v", 1, N, FermionField(env().getGrid(1)));
envTmp(Eigen::MatrixXcd, "MF", 1, Eigen::MatrixXcd::Zero(nt, N * N));
envTmp(std::vector<FermionField>, "w_block", 1, Nblock, FermionField(env().getGrid(1)));
envTmp(std::vector<FermionField>, "v_block", 1, Nblock, FermionField(env().getGrid(1)));
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TMesonFieldGamma<FImpl>::execute(void)
{
LOG(Message) << "Computing A2A meson field for gamma = " << par().gammas << ", taking w from " << par().A2A1 << " and v from " << par().A2A2 << std::endl;
int N = par().N;
int nt = env().getDim(Tp);
int Nblock = par().Nblock;
std::vector<Result> result;
std::vector<Gamma::Algebra> gammaResultList;
std::vector<Gamma> gammaList;
parseGammaString(gammaResultList);
result.resize(gammaResultList.size());
Gamma g5(Gamma::Algebra::Gamma5);
gammaList.resize(gammaResultList.size(), g5);
for (unsigned int i = 0; i < result.size(); ++i)
{
result[i].gamma = gammaResultList[i];
result[i].MesonField.resize(N, std::vector<std::vector<ComplexD>>(N, std::vector<ComplexD>(nt)));
Gamma gamma(gammaResultList[i]);
gammaList[i] = gamma;
}
auto &a2a1 = envGet(A2ABase, par().A2A1 + "_class");
auto &a2a2 = envGet(A2ABase, par().A2A2 + "_class");
envGetTmp(FermionField, tmpv_5d);
envGetTmp(FermionField, tmpw_5d);
envGetTmp(std::vector<FermionField>, v);
envGetTmp(std::vector<FermionField>, w);
LOG(Message) << "Finding v and w vectors for N = " << N << std::endl;
for (int i = 0; i < N; i++)
{
a2a2.return_v(i, tmpv_5d, v[i]);
a2a1.return_w(i, tmpw_5d, w[i]);
}
LOG(Message) << "Found v and w vectors for N = " << N << std::endl;
std::vector<std::vector<ComplexD>> MesonField_ij;
LOG(Message) << "Before blocked MFs, Nblock = " << Nblock << std::endl;
envGetTmp(std::vector<FermionField>, v_block);
envGetTmp(std::vector<FermionField>, w_block);
MesonField_ij.resize(Nblock * Nblock, std::vector<ComplexD>(nt));
envGetTmp(Eigen::MatrixXcd, MF);
LOG(Message) << "Before blocked MFs, Nblock = " << Nblock << std::endl;
for (unsigned int i = 0; i < N; i += Nblock)
{
vectorOfWs(w, i, Nblock, tmpw_5d, w_block);
for (unsigned int j = 0; j < N; j += Nblock)
{
vectorOfVs(v, j, Nblock, tmpv_5d, v_block);
for (unsigned int k = 0; k < result.size(); k++)
{
gammaMult(v_block, gammaList[k]);
sliceInnerProductMesonField(MesonField_ij, w_block, v_block, Tp);
for (unsigned int nj = 0; nj < Nblock; nj++)
{
for (unsigned int ni = 0; ni < Nblock; ni++)
{
MF.col((i + ni) + (j + nj) * N) = Eigen::VectorXcd::Map(&MesonField_ij[nj * Nblock + ni][0], MesonField_ij[nj * Nblock + ni].size());
}
}
}
}
if (i % 10 == 0)
{
LOG(Message) << "MF for i = " << i << " of " << N << std::endl;
}
}
LOG(Message) << "Before Global sum, Nblock = " << Nblock << std::endl;
v_block[0]._grid->GlobalSumVector(MF.data(), MF.size());
LOG(Message) << "After Global sum, Nblock = " << Nblock << std::endl;
for (unsigned int i = 0; i < N; i++)
{
for (unsigned int j = 0; j < N; j++)
{
for (unsigned int k = 0; k < result.size(); k++)
{
for (unsigned int t = 0; t < nt; t++)
{
result[k].MesonField[i][j][t] = MF.col(i + N * j)[t];
}
}
}
}
saveResult(par().output, "meson", result);
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_MesonFieldGm_hpp_

View File

@ -1,117 +1,120 @@
modules_cc =\
Modules/MSource/SeqConserved.cc \
Modules/MSource/SeqGamma.cc \
Modules/MSource/Point.cc \
Modules/MSource/Z2.cc \
Modules/MSource/Wall.cc \
Modules/MSink/Point.cc \
Modules/MSink/Smear.cc \
Modules/MIO/LoadNersc.cc \
Modules/MIO/LoadEigenPack.cc \
Modules/MIO/LoadCoarseEigenPack.cc \
Modules/MIO/LoadBinary.cc \
Modules/MScalarSUN/TwoPointNPR.cc \
Modules/MScalarSUN/TrPhi.cc \
Modules/MScalarSUN/StochFreeField.cc \
Modules/MScalarSUN/TrMag.cc \
Modules/MScalarSUN/Div.cc \
Modules/MScalarSUN/ShiftProbe.cc \
Modules/MScalarSUN/Grad.cc \
Modules/MScalarSUN/TwoPoint.cc \
Modules/MScalarSUN/TimeMomProbe.cc \
Modules/MScalarSUN/EMT.cc \
Modules/MScalarSUN/TwoPointNPR.cc \
Modules/MScalarSUN/Div.cc \
Modules/MScalarSUN/TrMag.cc \
Modules/MScalarSUN/TransProj.cc \
Modules/MScalarSUN/TwoPoint.cc \
Modules/MScalarSUN/TrKinetic.cc \
Modules/MAction/DWF.cc \
Modules/MAction/MobiusDWF.cc \
Modules/MAction/ZMobiusDWF.cc \
Modules/MAction/Wilson.cc \
Modules/MAction/ScaledDWF.cc \
Modules/MAction/WilsonClover.cc \
Modules/MContraction/WeakHamiltonianNonEye.cc \
Modules/MContraction/WardIdentity.cc \
Modules/MContraction/WeakHamiltonianEye.cc \
Modules/MContraction/DiscLoop.cc \
Modules/MContraction/Baryon.cc \
Modules/MContraction/Gamma3pt.cc \
Modules/MContraction/WeakNeutral4ptDisc.cc \
Modules/MContraction/Meson.cc \
Modules/MScalarSUN/TrPhi.cc \
Modules/MScalarSUN/EMT.cc \
Modules/MScalarSUN/TimeMomProbe.cc \
Modules/MScalarSUN/StochFreeField.cc \
Modules/MScalar/FreeProp.cc \
Modules/MScalar/VPCounterTerms.cc \
Modules/MScalar/ChargedProp.cc \
Modules/MScalar/FreeProp.cc \
Modules/MScalar/ScalarVP.cc \
Modules/MUtilities/TestSeqGamma.cc \
Modules/MUtilities/TestSeqConserved.cc \
Modules/MLoop/NoiseLoop.cc \
Modules/MIO/LoadBinary.cc \
Modules/MIO/LoadCoarseEigenPack.cc \
Modules/MIO/LoadNersc.cc \
Modules/MIO/LoadEigenPack.cc \
Modules/MSink/Smear.cc \
Modules/MSink/Point.cc \
Modules/MFermion/FreeProp.cc \
Modules/MFermion/GaugeProp.cc \
Modules/MSolver/RBPrecCG.cc \
Modules/MSolver/LocalCoherenceLanczos.cc \
Modules/MSolver/A2AVectors.cc \
Modules/MLoop/NoiseLoop.cc \
Modules/MGauge/Random.cc \
Modules/MGauge/StochEm.cc \
Modules/MGauge/StoutSmearing.cc \
Modules/MGauge/Unit.cc \
Modules/MGauge/Random.cc \
Modules/MGauge/UnitEm.cc \
Modules/MGauge/StochEm.cc \
Modules/MGauge/FundtoHirep.cc \
Modules/MGauge/StoutSmearing.cc
Modules/MUtilities/TestSeqGamma.cc \
Modules/MUtilities/TestSeqConserved.cc \
Modules/MSource/Z2.cc \
Modules/MSource/Point.cc \
Modules/MSource/SeqGamma.cc \
Modules/MSource/Wall.cc \
Modules/MSource/SeqConserved.cc \
Modules/MContraction/Meson.cc \
Modules/MContraction/WardIdentity.cc \
Modules/MContraction/WeakHamiltonianNonEye.cc \
Modules/MContraction/Baryon.cc \
Modules/MContraction/DiscLoop.cc \
Modules/MContraction/WeakHamiltonianEye.cc \
Modules/MContraction/A2AMesonField.cc \
Modules/MContraction/WeakNeutral4ptDisc.cc \
Modules/MContraction/Gamma3pt.cc \
Modules/MAction/MobiusDWF.cc \
Modules/MAction/WilsonClover.cc \
Modules/MAction/Wilson.cc \
Modules/MAction/DWF.cc \
Modules/MAction/ScaledDWF.cc \
Modules/MAction/ZMobiusDWF.cc \
Modules/MSolver/A2AVectors.cc \
Modules/MSolver/RBPrecCG.cc \
Modules/MSolver/LocalCoherenceLanczos.cc
modules_hpp =\
Modules/MSource/SeqConserved.hpp \
Modules/MSource/SeqGamma.hpp \
Modules/MSource/Z2.hpp \
Modules/MSource/Point.hpp \
Modules/MSource/Wall.hpp \
Modules/MSink/Smear.hpp \
Modules/MSink/Point.hpp \
Modules/MIO/LoadBinary.hpp \
Modules/MIO/LoadEigenPack.hpp \
Modules/MIO/LoadCoarseEigenPack.hpp \
Modules/MIO/LoadNersc.hpp \
Modules/MScalarSUN/Utils.hpp \
Modules/MScalarSUN/Grad.hpp \
Modules/MScalarSUN/TrPhi.hpp \
Modules/MScalarSUN/TwoPointNPR.hpp \
Modules/MScalarSUN/TwoPoint.hpp \
Modules/MScalarSUN/TransProj.hpp \
Modules/MScalarSUN/TrKinetic.hpp \
Modules/MScalarSUN/StochFreeField.hpp \
Modules/MScalarSUN/ShiftProbe.hpp \
Modules/MScalarSUN/TimeMomProbe.hpp \
Modules/MScalarSUN/StochFreeField.hpp \
Modules/MScalarSUN/TwoPointNPR.hpp \
Modules/MScalarSUN/Grad.hpp \
Modules/MScalarSUN/TransProj.hpp \
Modules/MScalarSUN/Div.hpp \
Modules/MScalarSUN/TrMag.hpp \
Modules/MScalarSUN/ShiftProbe.hpp \
Modules/MScalarSUN/Utils.hpp \
Modules/MScalarSUN/EMT.hpp \
Modules/MAction/ZMobiusDWF.hpp \
Modules/MAction/ScaledDWF.hpp \
Modules/MAction/Wilson.hpp \
Modules/MAction/WilsonClover.hpp \
Modules/MAction/MobiusDWF.hpp \
Modules/MAction/DWF.hpp \
Modules/MContraction/WeakHamiltonian.hpp \
Modules/MContraction/DiscLoop.hpp \
Modules/MContraction/Meson.hpp \
Modules/MContraction/WardIdentity.hpp \
Modules/MContraction/WeakHamiltonianEye.hpp \
Modules/MContraction/Gamma3pt.hpp \
Modules/MContraction/WeakHamiltonianNonEye.hpp \
Modules/MContraction/Baryon.hpp \
Modules/MContraction/WeakNeutral4ptDisc.hpp \
Modules/MScalar/ScalarVP.hpp \
Modules/MScalar/Scalar.hpp \
Modules/MScalarSUN/TwoPoint.hpp \
Modules/MScalarSUN/TrPhi.hpp \
Modules/MScalar/FreeProp.hpp \
Modules/MScalar/Scalar.hpp \
Modules/MScalar/ScalarVP.hpp \
Modules/MScalar/ChargedProp.hpp \
Modules/MScalar/VPCounterTerms.hpp \
Modules/MUtilities/TestSeqConserved.hpp \
Modules/MUtilities/TestSeqGamma.hpp \
Modules/MLoop/NoiseLoop.hpp \
Modules/MIO/LoadEigenPack.hpp \
Modules/MIO/LoadCoarseEigenPack.hpp \
Modules/MIO/LoadBinary.hpp \
Modules/MIO/LoadNersc.hpp \
Modules/MSink/Smear.hpp \
Modules/MSink/Point.hpp \
Modules/MFermion/FreeProp.hpp \
Modules/MFermion/GaugeProp.hpp \
Modules/MSolver/A2AVectors.hpp \
Modules/MGauge/FundtoHirep.hpp \
Modules/MGauge/Random.hpp \
Modules/MGauge/StoutSmearing.hpp \
Modules/MGauge/Unit.hpp \
Modules/MGauge/StochEm.hpp \
Modules/MGauge/UnitEm.hpp \
Modules/MUtilities/TestSeqGamma.hpp \
Modules/MUtilities/TestSeqConserved.hpp \
Modules/MSource/SeqConserved.hpp \
Modules/MSource/Z2.hpp \
Modules/MSource/Wall.hpp \
Modules/MSource/SeqGamma.hpp \
Modules/MSource/Point.hpp \
Modules/MContraction/WeakHamiltonianEye.hpp \
Modules/MContraction/Baryon.hpp \
Modules/MContraction/Meson.hpp \
Modules/MContraction/WeakHamiltonian.hpp \
Modules/MContraction/WeakNeutral4ptDisc.hpp \
Modules/MContraction/Gamma3pt.hpp \
Modules/MContraction/DiscLoop.hpp \
Modules/MContraction/WeakHamiltonianNonEye.hpp \
Modules/MContraction/WardIdentity.hpp \
Modules/MContraction/A2AMesonField.hpp \
Modules/MAction/WilsonClover.hpp \
Modules/MAction/ScaledDWF.hpp \
Modules/MAction/MobiusDWF.hpp \
Modules/MAction/Wilson.hpp \
Modules/MAction/DWF.hpp \
Modules/MAction/ZMobiusDWF.hpp \
Modules/MSolver/RBPrecCG.hpp \
Modules/MSolver/LocalCoherenceLanczos.hpp \
Modules/MLoop/NoiseLoop.hpp \
Modules/MGauge/StoutSmearing.hpp \
Modules/MGauge/StochEm.hpp \
Modules/MGauge/FundtoHirep.hpp \
Modules/MGauge/Unit.hpp \
Modules/MGauge/Random.hpp \
Modules/MGauge/UnitEm.hpp
Modules/MSolver/A2AVectors.hpp

View File

@ -3,7 +3,7 @@
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
#include <Grid/Eigen/Dense>
#include <Eigen/Dense>
#if defined __GNUC__
#pragma GCC diagnostic pop
#endif

View File

@ -34,4 +34,4 @@ HFILES += $(extra_headers)
libGrid_a_SOURCES = $(CCFILES)
libGrid_adir = $(pkgincludedir)
nobase_dist_pkginclude_HEADERS = $(HFILES) $(eigen_files) Config.h
nobase_dist_pkginclude_HEADERS = $(HFILES) $(eigen_files) $(eigen_unsupp_files) Config.h

View File

@ -39,7 +39,7 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
// Double inner product
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
{
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
@ -274,6 +274,115 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
}
}
template<class vobj>
static void mySliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{
// std::cout << GridLogMessage << "Start mySliceInnerProductVector" << std::endl;
typedef typename vobj::scalar_type scalar_type;
std::vector<scalar_type> lsSum;
localSliceInnerProductVector(result, lhs, rhs, lsSum, orthogdim);
globalSliceInnerProductVector(result, lhs, lsSum, orthogdim);
// std::cout << GridLogMessage << "End mySliceInnerProductVector" << std::endl;
}
template <class vobj>
static void localSliceInnerProductVector(std::vector<ComplexD> &result, const Lattice<vobj> &lhs, const Lattice<vobj> &rhs, std::vector<typename vobj::scalar_type> &lsSum, int orthogdim)
{
// std::cout << GridLogMessage << "Start prep" << std::endl;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
assert(grid!=NULL);
conformable(grid,rhs._grid);
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// std::cout << GridLogMessage << "Start alloc" << std::endl;
std::vector<vector_type,alignedAllocator<vector_type> > lvSum(rd); // will locally sum vectors first
lsSum.resize(ld,scalar_type(0.0)); // sum across these down to scalars
std::vector<iScalar<scalar_type>> extracted(Nsimd); // splitting the SIMD
// std::cout << GridLogMessage << "End alloc" << std::endl;
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
// std::cout << GridLogMessage << "End prep" << std::endl;
// std::cout << GridLogMessage << "Start parallel inner product, _rd = " << rd << std::endl;
vector_type vv;
parallel_for(int r=0;r<rd;r++)
{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss = so + n * stride + b;
vv = TensorRemove(innerProduct(lhs._odata[ss], rhs._odata[ss]));
lvSum[r] = lvSum[r] + vv;
}
}
}
// std::cout << GridLogMessage << "End parallel inner product" << std::endl;
// Sum across simd lanes in the plane, breaking out orthog dir.
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp;
temp._internal = lvSum[rt];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
grid->iCoorFromIindex(icoor,idx);
int ldx =rt+icoor[orthogdim]*rd;
lsSum[ldx]=lsSum[ldx]+extracted[idx]._internal;
}
}
// std::cout << GridLogMessage << "End sum over simd lanes" << std::endl;
}
template <class vobj>
static void globalSliceInnerProductVector(std::vector<ComplexD> &result, const Lattice<vobj> &lhs, std::vector<typename vobj::scalar_type> &lsSum, int orthogdim)
{
typedef typename vobj::scalar_type scalar_type;
GridBase *grid = lhs._grid;
int fd = result.size();
int ld = lsSum.size();
// sum over nodes.
std::vector<scalar_type> gsum;
gsum.resize(fd, scalar_type(0.0));
// std::cout << GridLogMessage << "Start of gsum[t] creation:" << std::endl;
for(int t=0;t<fd;t++){
int pt = t/ld; // processor plane
int lt = t%ld;
if ( pt == grid->_processor_coor[orthogdim] ) {
gsum[t]=lsSum[lt];
}
}
// std::cout << GridLogMessage << "End of gsum[t] creation:" << std::endl;
// std::cout << GridLogMessage << "Start of GlobalSumVector:" << std::endl;
grid->GlobalSumVector(&gsum[0], fd);
// std::cout << GridLogMessage << "End of GlobalSumVector:" << std::endl;
result = gsum;
}
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{

View File

@ -27,7 +27,7 @@
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/Eigen/Dense>
//#include <Grid/Eigen/Dense>
#include <Grid/qcd/spin/Dirac.h>
namespace Grid

View File

@ -7,13 +7,42 @@ fi
ARC=$1
INITDIR=`pwd`
rm -rf lib/Eigen
ARCDIR=`tar -tf ${ARC} | head -n1 | sed -e 's@/.*@@'`
##################
#untar
##################
tar -xf ${ARC}
cd ${ARCDIR}
(tar -cf - Eigen --exclude='*.txt' 2>/dev/null) | tar -xf - -C ../lib/
cd ../lib
echo 'eigen_files =\' > Eigen.inc
find Eigen -type f -print | sed 's/^/ /;$q;s/$/ \\/' >> Eigen.inc
ARCDIR=`tar -tf ${ARC} | head -n1 | sed -e 's@/.*@@'`
rm -f ${ARC}
###############################
# Link to a deterministic name
###############################
mv ${ARCDIR} Eigen
# Eigen source headers
cd ${INITDIR}/Eigen
echo 'eigen_files =\' > ${INITDIR}/lib/Eigen.inc
find Eigen -name "*.h" -print | sed 's/^/ /;$q;s/$/ \\/' >> ${INITDIR}/lib/Eigen.inc
cd ${INITDIR}
rm -rf ${ARCDIR}
echo 'eigen_unsupp_files =\' >> ${INITDIR}/lib/Eigen.inc
find Eigen/unsupported/Eigen -name "*.h" -print | sed 's/^/ /;$q;s/$/ \\/' >> ${INITDIR}/lib/Eigen.inc
###################################
# back to home
###################################
cd ${INITDIR}
#########################################
# Make grid includes happy
#########################################
mkdir ${INITDIR}/lib/Eigen/
ln -s ${INITDIR}/Eigen/Eigen/* ${INITDIR}/lib/Eigen/
ln -s ${INITDIR}/Eigen/unsupported ${INITDIR}/lib/Eigen/