1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-09 23:45:36 +00:00

Anisotropic Clover term written and tested

This commit is contained in:
Guido Cossu 2017-11-01 12:50:54 +00:00
parent fa5e4add47
commit 8e057721a9
9 changed files with 637 additions and 374 deletions

View File

@ -183,11 +183,13 @@ namespace Grid {
virtual RealD Mpc (const Field &in, Field &out) =0;
virtual RealD MpcDag (const Field &in, Field &out) =0;
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
Field tmp(in._grid);
Field tmp(in._grid);
tmp.checkerboard = in.checkerboard;
ni=Mpc(in,tmp);
no=MpcDag(tmp,out);
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
out.checkerboard = in.checkerboard;
MpcDagMpc(in,out,n1,n2);
}
virtual void HermOp(const Field &in, Field &out){
@ -215,13 +217,15 @@ namespace Grid {
public:
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
// std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << " _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl;
Field tmp(in._grid);
tmp.checkerboard = !in.checkerboard;
//std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << " _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl;
_Mat.Meooe(in,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
//std::cout << "cb in " << in.checkerboard << " cb out " << out.checkerboard << std::endl;
_Mat.Mooee(in,out);
return axpy_norm(out,-1.0,tmp,out);
}

View File

@ -84,14 +84,14 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
// Compute the Clover Operator acting on Colour and Spin
CloverTerm = fillCloverYZ(Bx);
CloverTerm += fillCloverXZ(By);
CloverTerm += fillCloverXY(Bz);
CloverTerm += fillCloverXT(Ex);
CloverTerm += fillCloverYT(Ey);
CloverTerm += fillCloverZT(Ez);
CloverTerm *= (0.5) * csw;
CloverTerm += (4.0 + this->mass);
// multiply here by the clover coefficients for the anisotropy
CloverTerm = fillCloverYZ(Bx) * csw_r;
CloverTerm += fillCloverXZ(By) * csw_r;
CloverTerm += fillCloverXY(Bz) * csw_r;
CloverTerm += fillCloverXT(Ex) * csw_t;
CloverTerm += fillCloverYT(Ey) * csw_t;
CloverTerm += fillCloverZT(Ez) * csw_t;
CloverTerm += diag_mass;
int lvol = _Umu._grid->lSites();
int DimRep = Impl::Dimension;
@ -145,7 +145,6 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
template <class Impl>
void WilsonCloverFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
{
conformable(in, out);
this->MooeeInternal(in, out, DaggerNo, InverseNo);
}
@ -158,14 +157,12 @@ void WilsonCloverFermion<Impl>::MooeeDag(const FermionField &in, FermionField &o
template <class Impl>
void WilsonCloverFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
{
conformable(in,out);
this->MooeeInternal(in, out, DaggerNo, InverseYes);
}
template <class Impl>
void WilsonCloverFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
{
conformable(in,out);
this->MooeeInternal(in, out, DaggerYes, InverseYes);
}
@ -228,88 +225,7 @@ void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionFie
template <class Impl>
void WilsonCloverFermion<Impl>::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag)
{
GridBase *grid = mat._grid;
//GaugeLinkField Lambdaodd(grid), Lambdaeven(grid), tmp(grid);
//Lambdaodd = zero; //Yodd*dag(Xodd)+Xodd*dag(Yodd); // I have to peek spin and decide the color structure
//Lambdaeven = zero; //Teven*dag(Xeven)+Xeven*dag(Yeven) + 2*(Dee^-1)
GaugeLinkField Lambda(grid), tmp(grid);
Lambda = zero;
conformable(mat._grid, X._grid);
conformable(Y._grid, X._grid);
std::vector<GaugeLinkField> C1p(Nd, grid), C2p(Nd, grid), C3p(Nd, grid), C4p(Nd, grid);
std::vector<GaugeLinkField> C1m(Nd, grid), C2m(Nd, grid), C3m(Nd, grid), C4m(Nd, grid);
std::vector<GaugeLinkField> U(Nd, mat._grid);
for (int mu = 0; mu < Nd; mu++)
{
U[mu] = PeekIndex<LorentzIndex>(mat, mu);
C1p[mu] = zero;
C2p[mu] = zero;
C3p[mu] = zero;
C4p[mu] = zero;
C1m[mu] = zero;
C2m[mu] = zero;
C3m[mu] = zero;
C4m[mu] = zero;
}
/*
PARALLEL_FOR_LOOP
for (int i = 0; i < CloverTerm._grid->oSites(); i++)
{
T._odata[i]()(0, 1) = timesMinusI(F._odata[i]()());
T._odata[i]()(1, 0) = timesMinusI(F._odata[i]()());
T._odata[i]()(2, 3) = timesMinusI(F._odata[i]()());
T._odata[i]()(3, 2) = timesMinusI(F._odata[i]()());
}
*/
for (int i = 0; i < 4; i++)
{ //spin
for (int j = 0; j < 4; j++)
{ //spin
for (int mu = 0; mu < 4; mu++)
{ //color
for (int nu = 0; nu < 4; nu++)
{ //color
// insertion in upper staple
tmp = Lambda * U[nu];
C1p[mu] += Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
tmp = Lambda * U[mu];
C2p[mu] += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
tmp = Impl::CovShiftIdentityForward(Lambda, nu) * U[nu];
C3p[mu] += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
tmp = Lambda;
C4p[mu] += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * tmp;
// insertion in lower staple
tmp = Lambda * U[nu];
C1m[mu] += Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
tmp = Lambda * U[mu];
C2m[mu] += Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, U[nu])), mu);
tmp = Lambda * U[nu];
C3m[mu] += Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
tmp = Lambda;
C4m[mu] += Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * tmp;
}
}
}
}
//Still implementing. Have to be tested, and understood how to project EO
assert(0);
}
// Derivative parts

View File

@ -6,8 +6,8 @@
Copyright (C) 2017
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: David Preti <>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -37,6 +37,22 @@ namespace Grid
namespace QCD
{
///////////////////////////////////////////////////////////////////
// Wilson Clover
//
// Operator ( with anisotropy coefficients):
//
// Q = 1 + (Nd-1)/xi_0 + m
// + W_t + (nu/xi_0) * W_s
// - 1/2*[ csw_t * sum_s (sigma_ts F_ts) + (csw_s/xi_0) * sum_ss (sigma_ss F_ss) ]
//
// s spatial, t temporal directions.
// where W_t and W_s are the temporal and spatial components of the
// Wilson Dirac operator
//
// csw_r = csw_t to recover the isotropic version
//////////////////////////////////////////////////////////////////
template <class Impl>
class WilsonCloverFermion : public WilsonFermion<Impl>
{
@ -55,28 +71,43 @@ public:
// Constructors
WilsonCloverFermion(GaugeField &_Umu, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid,
RealD _mass,
RealD _csw,
const ImplParams &p = ImplParams()) : WilsonFermion<Impl>(_Umu,
Fgrid,
Hgrid,
_mass, p),
CloverTerm(&Fgrid),
CloverTermInv(&Fgrid),
CloverTermEven(&Hgrid),
CloverTermOdd(&Hgrid),
CloverTermInvEven(&Hgrid),
CloverTermInvOdd(&Hgrid),
CloverTermDagEven(&Hgrid),
CloverTermDagOdd(&Hgrid),
CloverTermInvDagEven(&Hgrid),
CloverTermInvDagOdd(&Hgrid)
const RealD _mass,
const RealD _csw_r = 0.0,
const RealD _csw_t = 0.0,
const WilsonAnisotropyCoefficients &clover_anisotropy = WilsonAnisotropyCoefficients(),
const ImplParams &impl_p = ImplParams()) : WilsonFermion<Impl>(_Umu,
Fgrid,
Hgrid,
_mass, impl_p, clover_anisotropy),
CloverTerm(&Fgrid),
CloverTermInv(&Fgrid),
CloverTermEven(&Hgrid),
CloverTermOdd(&Hgrid),
CloverTermInvEven(&Hgrid),
CloverTermInvOdd(&Hgrid),
CloverTermDagEven(&Hgrid),
CloverTermDagOdd(&Hgrid),
CloverTermInvDagEven(&Hgrid),
CloverTermInvDagOdd(&Hgrid)
{
csw = _csw;
assert(Nd == 4); // require 4 dimensions
if (csw == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw = 0" << std::endl;
if (clover_anisotropy.isAnisotropic)
{
csw_r = _csw_r * 0.5 / clover_anisotropy.xi_0;
diag_mass = _mass + 1.0 + (Nd - 1) * (clover_anisotropy.nu / clover_anisotropy.xi_0);
}
else
{
csw_r = _csw_r * 0.5;
diag_mass = 4.0 + _mass;
}
csw_t = _csw_t * 0.5;
if (csw_r == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_r = 0" << std::endl;
if (csw_t == 0)
std::cout << GridLogWarning << "Initializing WilsonCloverFermion with csw_t = 0" << std::endl;
ImportGauge(_Umu);
}
@ -105,15 +136,15 @@ public:
GaugeField clover_force(force._grid);
PropagatorField Lambda(force._grid);
// Here we are hitting some performance issues:
// Guido: Here we are hitting some performance issues:
// need to extract the components of the DoubledGaugeField
// for each call
// Possible solution
// Create a vector object to store them? (cons: wasting space)
std::vector<GaugeLinkField> U(Nd, this->Umu._grid);
Impl::extractLinkField(U, this->Umu);
force = zero;
// Derivative of the Wilson hopping term
this->DhopDeriv(force, X, Y, dag);
@ -121,10 +152,9 @@ public:
///////////////////////////////////////////////////////////
// Clover term derivative
///////////////////////////////////////////////////////////
Impl::outerProductImpl(Lambda, X, Y);
Impl::outerProductImpl(Lambda, X, Y);
//std::cout << "Lambda:" << Lambda << std::endl;
Gamma::Algebra sigma[] = {
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
@ -148,25 +178,34 @@ public:
*/
int count = 0;
clover_force = zero;
clover_force = zero;
for (int mu = 0; mu < 4; mu++)
{
force_mu = zero;
for (int nu = 0; nu < 4; nu++)
{
if (mu == nu) continue;
if (mu == nu)
continue;
RealD factor;
if (nu == 4 || mu == 4)
{
factor = 2.0 * csw_t;
}
else
{
factor = 2.0 * csw_r;
}
PropagatorField Slambda = Gamma(sigma[count]) * Lambda; // sigma checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= Cmunu(U, lambda, mu, nu); // checked
Impl::TraceSpinImpl(lambda, Slambda); // traceSpin ok
force_mu -= factor*Cmunu(U, lambda, mu, nu); // checked
count++;
}
pokeLorentz(clover_force, U[mu] * force_mu, mu);
}
clover_force *= csw;
//clover_force *= csw;
force += clover_force;
}
// Computing C_{\mu \nu}(x) as in Eq.(B.39) in Zbigniew Sroczynski's PhD thesis
@ -176,15 +215,15 @@ public:
GaugeLinkField out(lambda._grid), tmp(lambda._grid);
// insertion in upper staple
// please check redundancy of shift operations
// C1+
tmp = lambda * U[nu];
out = Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C2+
tmp = U[mu] * Impl::ShiftStaple(adj(lambda), mu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
// C3+
tmp = U[nu] * Impl::ShiftStaple(adj(lambda), nu);
out += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
@ -213,16 +252,17 @@ public:
private:
// here fixing the 4 dimensions, make it more general?
RealD csw; // Clover coefficient
RealD csw_r; // Clover coefficient - spatial
RealD csw_t; // Clover coefficient - temporal
RealD diag_mass; // Mass term
CloverFieldType CloverTerm, CloverTermInv; // Clover term
CloverFieldType CloverTermEven, CloverTermOdd; // Clover term EO
CloverFieldType CloverTermInvEven, CloverTermInvOdd; // Clover term Inv EO
CloverFieldType CloverTermDagEven, CloverTermDagOdd; // Clover term Dag EO
CloverFieldType CloverTermInvDagEven, CloverTermInvDagOdd; // Clover term Inv Dag EO
// eventually these two can be compressed into 6x6 blocks instead of the 12x12
// eventually these can be compressed into 6x6 blocks instead of the 12x12
// using the DeGrand-Rossi basis for the gamma matrices
CloverFieldType fillCloverYZ(const GaugeLinkField &F)
{
CloverFieldType T(F._grid);

View File

@ -45,10 +45,11 @@ class WilsonFermionStatic {
};
struct WilsonAnisotropyCoefficients{
bool isAnisotropic;
int t_direction;
double xi_0;
double nu;
GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonAnisotropyCoefficients,
bool, isAnisotropic,
int, t_direction,
double, xi_0,
double, nu);
WilsonAnisotropyCoefficients():
isAnisotropic(false),

View File

@ -1,4 +1,4 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -24,302 +24,334 @@
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
int main(int argc, char **argv)
{
Grid_init(&argc,&argv);
Grid_init(&argc, &argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "Grid floating point word size is REALF"<< sizeof(RealF)<<std::endl;
std::cout<<GridLogMessage << "Grid floating point word size is REALD"<< sizeof(RealD)<<std::endl;
std::cout<<GridLogMessage << "Grid floating point word size is REAL"<< sizeof(Real)<<std::endl;
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
std::cout << GridLogMessage << "Grid floating point word size is REALF" << sizeof(RealF) << std::endl;
std::cout << GridLogMessage << "Grid floating point word size is REALD" << sizeof(RealD) << std::endl;
std::cout << GridLogMessage << "Grid floating point word size is REAL" << sizeof(Real) << std::endl;
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
std::vector<int> seeds({1, 2, 3, 4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
// pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9});
typedef typename WilsonCloverFermionR::FermionField FermionField;
typename WilsonCloverFermionR::ImplParams params;
typedef typename WilsonCloverFermionR::FermionField FermionField;
typename WilsonCloverFermionR::ImplParams params;
WilsonAnisotropyCoefficients anis;
FermionField src (&Grid); random(pRNG,src);
FermionField result(&Grid); result=zero;
FermionField result2(&Grid); result2=zero;
FermionField ref(&Grid); ref=zero;
FermionField tmp(&Grid); tmp=zero;
FermionField err(&Grid); err=zero;
FermionField err2(&Grid); err2=zero;
FermionField phi (&Grid); random(pRNG,phi);
FermionField chi (&Grid); random(pRNG,chi);
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
std::vector<LatticeColourMatrix> U(4,&Grid);
FermionField src(&Grid);
random(pRNG, src);
FermionField result(&Grid);
result = zero;
FermionField result2(&Grid);
result2 = zero;
FermionField ref(&Grid);
ref = zero;
FermionField tmp(&Grid);
tmp = zero;
FermionField err(&Grid);
err = zero;
FermionField err2(&Grid);
err2 = zero;
FermionField phi(&Grid);
random(pRNG, phi);
FermionField chi(&Grid);
random(pRNG, chi);
LatticeGaugeField Umu(&Grid);
SU3::HotConfiguration(pRNG, Umu);
std::vector<LatticeColourMatrix> U(4, &Grid);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass= 0.1;
RealD csw = 1.0;
WilsonCloverFermionR Dwc(Umu,Grid,RBGrid,mass,csw,params);
Dwc.ImportGauge(Umu);
std::cout<<GridLogMessage<<"=========================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Testing Dhop against cshift implementation "<<std::endl;
std::cout<<GridLogMessage<<"=========================================================="<<std::endl;
std::cout<<GridLogMessage << "Calling Dwc"<<std::endl;
int ncall=1000;
double t0=usecond();
for(int i=0;i<ncall;i++){
Dwc.Dhop(src,result,0);
double volume = 1;
for (int mu = 0; mu < Nd; mu++)
{
volume = volume * latt_size[mu];
}
double t1=usecond();
double t2;
double flops=(16*(3*(6+8+8)) + 15*3*2)*volume*ncall; // == 66*16 + == 1146
std::cout<<GridLogMessage << "Called Dwc"<<std::endl;
std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
RealD mass = 0.1;
RealD csw_r = 1.0;
RealD csw_t = 1.0;
std::cout<<GridLogMessage<<"=========================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Testing that Deo + Doe = Dunprec "<<std::endl;
std::cout<<GridLogMessage<<"=========================================================="<<std::endl;
WilsonCloverFermionR Dwc(Umu, Grid, RBGrid, mass, csw_r, csw_t, anis, params);
//Dwc.ImportGauge(Umu); // not necessary, included in the constructor
FermionField src_e (&RBGrid);
FermionField src_o (&RBGrid);
FermionField r_e (&RBGrid);
FermionField r_o (&RBGrid);
FermionField r_eo (&Grid);
pickCheckerboard(Even,src_e,src);
pickCheckerboard(Odd,src_o,src);
std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing that Deo + Doe = Dunprec " << std::endl;
std::cout << GridLogMessage << "==========================================================" << std::endl;
Dwc.Meooe(src_e,r_o); std::cout<<GridLogMessage<<"Applied Meo"<<std::endl;
Dwc.Meooe(src_o,r_e); std::cout<<GridLogMessage<<"Applied Moe"<<std::endl;
Dwc.Dhop (src,ref,DaggerNo);
FermionField src_e(&RBGrid);
FermionField src_o(&RBGrid);
FermionField r_e(&RBGrid);
FermionField r_o(&RBGrid);
FermionField r_eo(&Grid);
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd, src_o, src);
setCheckerboard(r_eo,r_o);
setCheckerboard(r_eo,r_e);
Dwc.Meooe(src_e, r_o);
std::cout << GridLogMessage << "Applied Meo" << std::endl;
Dwc.Meooe(src_o, r_e);
std::cout << GridLogMessage << "Applied Moe" << std::endl;
Dwc.Dhop(src, ref, DaggerNo);
err= ref - r_eo;
std::cout<<GridLogMessage << "EO norm diff "<< norm2(err)<< " "<<norm2(ref)<< " " << norm2(r_eo) <<std::endl;
setCheckerboard(r_eo, r_o);
setCheckerboard(r_eo, r_e);
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Test Ddagger is the dagger of D by requiring "<<std::endl;
std::cout<<GridLogMessage<<"= < phi | Deo | chi > * = < chi | Deo^dag| phi> "<<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
err = ref - r_eo;
std::cout << GridLogMessage << "EO norm diff " << norm2(err) << " " << norm2(ref) << " " << norm2(r_eo) << std::endl;
FermionField chi_e (&RBGrid);
FermionField chi_o (&RBGrid);
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test Ddagger is the dagger of D by requiring " << std::endl;
std::cout << GridLogMessage << "= < phi | Deo | chi > * = < chi | Deo^dag| phi> " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
FermionField dchi_e (&RBGrid);
FermionField dchi_o (&RBGrid);
FermionField chi_e(&RBGrid);
FermionField chi_o(&RBGrid);
FermionField phi_e (&RBGrid);
FermionField phi_o (&RBGrid);
FermionField dchi_e(&RBGrid);
FermionField dchi_o(&RBGrid);
FermionField dphi_e (&RBGrid);
FermionField dphi_o (&RBGrid);
FermionField phi_e(&RBGrid);
FermionField phi_o(&RBGrid);
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
FermionField dphi_e(&RBGrid);
FermionField dphi_o(&RBGrid);
Dwc.Meooe(chi_e,dchi_o);
Dwc.Meooe(chi_o,dchi_e);
Dwc.MeooeDag(phi_e,dphi_o);
Dwc.MeooeDag(phi_o,dphi_e);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
ComplexD pDce = innerProduct(phi_e,dchi_e);
ComplexD pDco = innerProduct(phi_o,dchi_o);
ComplexD cDpe = innerProduct(chi_e,dphi_e);
ComplexD cDpo = innerProduct(chi_o,dphi_o);
Dwc.Meooe(chi_e, dchi_o);
Dwc.Meooe(chi_o, dchi_e);
Dwc.MeooeDag(phi_e, dphi_o);
Dwc.MeooeDag(phi_o, dphi_e);
std::cout<<GridLogMessage <<"e "<<pDce<<" "<<cDpe <<std::endl;
std::cout<<GridLogMessage <<"o "<<pDco<<" "<<cDpo <<std::endl;
ComplexD pDce = innerProduct(phi_e, dchi_e);
ComplexD pDco = innerProduct(phi_o, dchi_o);
ComplexD cDpe = innerProduct(chi_e, dphi_e);
ComplexD cDpo = innerProduct(chi_o, dphi_o);
std::cout<<GridLogMessage <<"pDce - conj(cDpo) "<< pDce-conj(cDpo) <<std::endl;
std::cout<<GridLogMessage <<"pDco - conj(cDpe) "<< pDco-conj(cDpe) <<std::endl;
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Test MeeInv Mee = 1 (if csw!=0) "<<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDce - conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDco - conj(cDpe) << std::endl;
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInv Mee = 1 (if csw!=0) " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
Dwc.Mooee(chi_e,src_e);
Dwc.MooeeInv(src_e,phi_e);
Dwc.Mooee(chi_o,src_o);
Dwc.MooeeInv(src_o,phi_o);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
setCheckerboard(phi,phi_e);
setCheckerboard(phi,phi_o);
err = phi-chi;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<< std::endl;
Dwc.Mooee(chi_e, src_e);
Dwc.MooeeInv(src_e, phi_e);
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Test MeeDag MeeInvDag = 1 (if csw!=0) "<<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
Dwc.Mooee(chi_o, src_o);
Dwc.MooeeInv(src_o, phi_o);
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
Dwc.MooeeDag(chi_e,src_e);
Dwc.MooeeInvDag(src_e,phi_e);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
Dwc.MooeeDag(chi_o,src_o);
Dwc.MooeeInvDag(src_o,phi_o);
setCheckerboard(phi,phi_e);
setCheckerboard(phi,phi_o);
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeDag MeeInvDag = 1 (if csw!=0) " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
err = phi-chi;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<< std::endl;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Test MeeInv MeeDag = 1 (if csw!=0) "<<std::endl;
std::cout<<GridLogMessage<<"=============================================================="<<std::endl;
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
Dwc.MooeeDag(chi_e, src_e);
Dwc.MooeeInvDag(src_e, phi_e);
Dwc.MooeeDag(chi_e,src_e);
Dwc.MooeeInv(src_e,phi_e);
Dwc.MooeeDag(chi_o, src_o);
Dwc.MooeeInvDag(src_o, phi_o);
Dwc.MooeeDag(chi_o,src_o);
Dwc.MooeeInv(src_o,phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
setCheckerboard(phi,phi_e);
setCheckerboard(phi,phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
err = phi-chi;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<< std::endl;
std::cout<<GridLogMessage<<"================================================================"<<std::endl;
std::cout<<GridLogMessage<<"= Testing gauge covariance Clover term with EO preconditioning "<<std::endl;
std::cout<<GridLogMessage<<"================================================================"<<std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInv MeeDag = 1 (if csw!=0) " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
chi=zero; phi=zero; tmp=zero;
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
Dwc.Mooee(src_e,chi_e);
Dwc.Mooee(src_o,chi_o);
setCheckerboard(chi,chi_e);
setCheckerboard(chi,chi_o);
setCheckerboard(src,src_e);
setCheckerboard(src,src_o);
Dwc.MooeeDag(chi_e, src_e);
Dwc.MooeeInv(src_e, phi_e);
Dwc.MooeeDag(chi_o, src_o);
Dwc.MooeeInv(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
std::cout << GridLogMessage << "================================================================" << std::endl;
std::cout << GridLogMessage << "= Testing gauge covariance Clover term with EO preconditioning " << std::endl;
std::cout << GridLogMessage << "================================================================" << std::endl;
chi = zero;
phi = zero;
tmp = zero;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
Dwc.Mooee(src_e, chi_e);
Dwc.Mooee(src_o, chi_o);
setCheckerboard(chi, chi_e);
setCheckerboard(chi, chi_o);
setCheckerboard(src, src_e);
setCheckerboard(src, src_o);
////////////////////// Gauge Transformation
std::vector<int> seeds2({5,6,7,8});
GridParallelRNG pRNG2(&Grid); pRNG2.SeedFixedIntegers(seeds2);
std::vector<int> seeds2({5, 6, 7, 8});
GridParallelRNG pRNG2(&Grid);
pRNG2.SeedFixedIntegers(seeds2);
LatticeColourMatrix Omega(&Grid);
LatticeColourMatrix ShiftedOmega(&Grid);
LatticeGaugeField U_prime(&Grid); U_prime=zero;
LatticeColourMatrix U_prime_mu(&Grid); U_prime_mu=zero;
LatticeGaugeField U_prime(&Grid);
U_prime = zero;
LatticeColourMatrix U_prime_mu(&Grid);
U_prime_mu = zero;
SU<Nc>::LieRandomize(pRNG2, Omega, 1.0);
for (int mu=0;mu<Nd;mu++){
U[mu]=peekLorentz(Umu,mu);
ShiftedOmega=Cshift(Omega,mu,1);
U_prime_mu=Omega*U[mu]*adj(ShiftedOmega);
pokeLorentz(U_prime,U_prime_mu,mu);
for (int mu = 0; mu < Nd; mu++)
{
U[mu] = peekLorentz(Umu, mu);
ShiftedOmega = Cshift(Omega, mu, 1);
U_prime_mu = Omega * U[mu] * adj(ShiftedOmega);
pokeLorentz(U_prime, U_prime_mu, mu);
}
/////////////////
WilsonCloverFermionR Dwc_prime(U_prime,Grid,RBGrid,mass,csw,params);
Dwc_prime.ImportGauge(U_prime);
/////////////////
tmp=Omega*src;
pickCheckerboard(Even,src_e,tmp);
pickCheckerboard(Odd ,src_o,tmp);
WilsonCloverFermionR Dwc_prime(U_prime, Grid, RBGrid, mass, csw_r, csw_t, anis, params);
Dwc_prime.ImportGauge(U_prime);
Dwc_prime.Mooee(src_e,phi_e);
Dwc_prime.Mooee(src_o,phi_o);
tmp = Omega * src;
pickCheckerboard(Even, src_e, tmp);
pickCheckerboard(Odd, src_o, tmp);
setCheckerboard(phi,phi_e);
setCheckerboard(phi,phi_o);
Dwc_prime.Mooee(src_e, phi_e);
Dwc_prime.Mooee(src_o, phi_o);
err = chi - adj(Omega)*phi;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<< std::endl;
std::cout<<GridLogMessage<<"================================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Testing gauge covariance Clover term w/o EO preconditioning "<<std::endl;
std::cout<<GridLogMessage<<"================================================================"<<std::endl;
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
chi=zero; phi=zero;
err = chi - adj(Omega) * phi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
WilsonFermionR Dw(Umu,Grid,RBGrid,mass,params);
std::cout << GridLogMessage << "=================================================================" << std::endl;
std::cout << GridLogMessage << "= Testing gauge covariance Clover term w/o EO preconditioning " << std::endl;
std::cout << GridLogMessage << "================================================================" << std::endl;
chi = zero;
phi = zero;
WilsonFermionR Dw(Umu, Grid, RBGrid, mass, params);
Dw.ImportGauge(Umu);
Dw.M(src,result);
Dwc.M(src,chi);
Dwc_prime.M(Omega*src,phi);
WilsonFermionR Dw_prime(U_prime,Grid,RBGrid,mass,params);
Dw.M(src, result);
Dwc.M(src, chi);
Dwc_prime.M(Omega * src, phi);
WilsonFermionR Dw_prime(U_prime, Grid, RBGrid, mass, params);
Dw_prime.ImportGauge(U_prime);
Dw_prime.M(Omega*src,result2);
Dw_prime.M(Omega * src, result2);
err = chi-adj(Omega)*phi;
err2 = result-adj(Omega)*result2;
std::cout<<GridLogMessage << "norm diff Wilson "<< norm2(err)<< std::endl;
std::cout<<GridLogMessage << "norm diff WilsonClover "<< norm2(err2)<< std::endl;
err = chi - adj(Omega) * phi;
err2 = result - adj(Omega) * result2;
std::cout << GridLogMessage << "norm diff Wilson " << norm2(err) << std::endl;
std::cout << GridLogMessage << "norm diff WilsonClover " << norm2(err2) << std::endl;
std::cout<<GridLogMessage<<"=========================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Testing Mooee(csw=0) Clover to reproduce Mooee Wilson "<<std::endl;
std::cout<<GridLogMessage<<"=========================================================="<<std::endl;
std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing Mooee(csw=0) Clover to reproduce Mooee Wilson " << std::endl;
std::cout << GridLogMessage << "==========================================================" << std::endl;
chi=zero; phi=zero; err=zero;
WilsonCloverFermionR Dwc_csw0(Umu,Grid,RBGrid,mass,0.0,params); // <-- Notice: csw=0
Dwc_csw0.ImportGauge(Umu);
pickCheckerboard(Even,phi_e,phi);
pickCheckerboard(Odd ,phi_o,phi);
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
chi = zero;
phi = zero;
err = zero;
WilsonCloverFermionR Dwc_csw0(Umu, Grid, RBGrid, mass, 0.0, 0.0, anis, params); // <-- Notice: csw=0
Dwc_csw0.ImportGauge(Umu);
Dw.Mooee(src_e,chi_e);
Dw.Mooee(src_o,chi_o);
Dwc_csw0.Mooee(src_e,phi_e);
Dwc_csw0.Mooee(src_o,phi_o);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
setCheckerboard(chi,chi_e);
setCheckerboard(chi,chi_o);
setCheckerboard(phi,phi_e);
setCheckerboard(phi,phi_o);
setCheckerboard(src,src_e);
setCheckerboard(src,src_o);
err = chi - phi;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<< std::endl;
Grid_finalize();
Dw.Mooee(src_e, chi_e);
Dw.Mooee(src_o, chi_o);
Dwc_csw0.Mooee(src_e, phi_e);
Dwc_csw0.Mooee(src_o, phi_o);
setCheckerboard(chi, chi_e);
setCheckerboard(chi, chi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
setCheckerboard(src, src_e);
setCheckerboard(src, src_o);
err = chi - phi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing EO operator is equal to the unprec " << std::endl;
std::cout << GridLogMessage << "==========================================================" << std::endl;
chi = zero;
phi = zero;
err = zero;
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
// M phi = (Mooee src_e + Meooe src_o , Meooe src_e + Mooee src_o)
Dwc.M(src, ref); // Reference result from the unpreconditioned operator
// EO matrix
Dwc.Mooee(src_e, chi_e);
Dwc.Mooee(src_o, chi_o);
Dwc.Meooe(src_o, phi_e);
Dwc.Meooe(src_e, phi_o);
phi_o += chi_o;
phi_e += chi_e;
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = ref - phi;
std::cout << GridLogMessage << "ref (unpreconditioned operator) diff :" << norm2(ref) << std::endl;
std::cout << GridLogMessage << "phi (EO decomposition) diff :" << norm2(phi) << std::endl;
std::cout << GridLogMessage << "norm diff :" << norm2(err) << std::endl;
Grid_finalize();
}

View File

@ -72,7 +72,7 @@ int main(int argc, char **argv)
////////////////////////////////////
RealD mass = 0.1;
Real csw = 1.0;
WilsonCloverFermionR Dw(U, Grid, RBGrid, mass, csw);
WilsonCloverFermionR Dw(U, Grid, RBGrid, mass, csw, csw);
Dw.ImportGauge(U);
Dw.M(phi, Mphi);
ComplexD S = innerProduct(Mphi, Mphi); // Action : pdag MdagM p

View File

@ -0,0 +1,139 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_WilsonFermionGauge.cc
Copyright (C) 2016
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
int main(int argc, char **argv) {
using namespace Grid;
using namespace Grid::QCD;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper; // Uses the default minimum norm
typedef WilsonImplR FermionImplPolicy;
typedef WilsonCloverFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
HMCWrapper TheHMC;
// Grid from the command line
TheHMC.Resources.AddFourDimGrid("gauge");
// Possibile to create the module by hand
// hardcoding parameters or using a Reader
// Checkpointer definition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_lat";
CPparams.rng_prefix = "ckpoint_rng";
CPparams.saveInterval = 5;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
// here there is too much indirection
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
/////////////////////////////////////////////////////////////
// Collect actions, here use more encapsulation
// need wrappers of the fermionic classes
// that have a complex construction
// standard
RealD beta = 5.6 ;
WilsonGaugeActionR Waction(beta);
// temporarily need a gauge field
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
LatticeGaugeField U(GridPtr);
Real mass = 0.01;
Real csw = 1.0;
FermionAction FermOp(U, *GridPtr, *GridRBPtr, mass, csw);
ConjugateGradient<FermionField> CG(1.0e-8, 2000);
TwoFlavourEvenOddPseudoFermionAction<FermionImplPolicy> Nf2(FermOp, CG, CG);
// Set smearing (true/false), default: false
Nf2.is_smeared = false;
// Collect actions
ActionLevel<HMCWrapper::Field> Level1(1);
Level1.push_back(&Nf2);
ActionLevel<HMCWrapper::Field> Level2(4);
Level2.push_back(&Waction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
/////////////////////////////////////////////////////////////
/*
double rho = 0.1; // smearing parameter
int Nsmear = 2; // number of smearing levels
Smear_Stout<HMCWrapper::ImplPolicy> Stout(rho);
SmearedConfiguration<HMCWrapper::ImplPolicy> SmearingPolicy(
UGrid, Nsmear, Stout);
*/
// HMC parameters are serialisable
TheHMC.Parameters.MD.MDsteps = 20;
TheHMC.Parameters.MD.trajL = 1.0;
TheHMC.ReadCommandLine(argc, argv); // these can be parameters from file
TheHMC.Run(); // no smearing
// TheHMC.Run(SmearingPolicy); // for smearing
Grid_finalize();
} // main

View File

@ -0,0 +1,126 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_hmc_WilsonFermionGauge.cc
Copyright (C) 2017
Author: Guido Cossu <guido.cossu@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
int main(int argc, char **argv)
{
using namespace Grid;
using namespace Grid::QCD;
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
// here make a routine to print all the relevant information on the run
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
// Typedefs to simplify notation
typedef GenericHMCRunner<MinimumNorm2> HMCWrapper; // Uses the default minimum norm
typedef WilsonImplR FermionImplPolicy;
typedef WilsonCloverFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
//::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
HMCWrapper TheHMC;
// Grid from the command line
TheHMC.Resources.AddFourDimGrid("gauge");
// Checkpointer definition
CheckpointerParameters CPparams;
CPparams.config_prefix = "ckpoint_lat";
CPparams.rng_prefix = "ckpoint_rng";
CPparams.saveInterval = 5;
CPparams.format = "IEEE64BIG";
TheHMC.Resources.LoadNerscCheckpointer(CPparams);
RNGModuleParameters RNGpar;
RNGpar.serial_seeds = "1 2 3 4 5";
RNGpar.parallel_seeds = "6 7 8 9 10";
TheHMC.Resources.SetRNGSeeds(RNGpar);
// Construct observables
typedef PlaquetteMod<HMCWrapper::ImplPolicy> PlaqObs;
TheHMC.Resources.AddObservable<PlaqObs>();
//////////////////////////////////////////////
/////////////////////////////////////////////////////////////
// Collect actions, here use more encapsulation
// need wrappers of the fermionic classes
// that have a complex construction
// standard
RealD beta = 5.6;
WilsonGaugeActionR Waction(beta);
auto GridPtr = TheHMC.Resources.GetCartesian();
auto GridRBPtr = TheHMC.Resources.GetRBCartesian();
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
Real mass = 0.01;
Real csw = 1.0;
FermionAction FermOp(U, *GridPtr, *GridRBPtr, mass, csw);
ConjugateGradient<FermionField> CG(1.0e-8, 5000);
TwoFlavourPseudoFermionAction<FermionImplPolicy> Nf2(FermOp, CG, CG);
// Set smearing (true/false), default: false
Nf2.is_smeared = false;
// Collect actions
ActionLevel<HMCWrapper::Field> Level1(1);
Level1.push_back(&Nf2);
ActionLevel<HMCWrapper::Field> Level2(4);
Level2.push_back(&Waction);
TheHMC.TheAction.push_back(Level1);
TheHMC.TheAction.push_back(Level2);
/////////////////////////////////////////////////////////////
/*
double rho = 0.1; // smearing parameter
int Nsmear = 2; // number of smearing levels
Smear_Stout<HMCWrapper::ImplPolicy> Stout(rho);
SmearedConfiguration<HMCWrapper::ImplPolicy> SmearingPolicy(
UGrid, Nsmear, Stout);
*/
// HMC parameters are serialisable
TheHMC.Parameters.MD.MDsteps = 20;
TheHMC.Parameters.MD.trajL = 1.0;
TheHMC.ReadCommandLine(argc, argv); // these can be parameters from file
TheHMC.Run(); // no smearing
// TheHMC.Run(SmearingPolicy); // for smearing
Grid_finalize();
} // main

View File

@ -274,10 +274,10 @@ public:
Chroma::CloverFermActParams p;
p.Mass = _mq;
p.clovCoeffR = QDP::Real(1.0);
p.clovCoeffT = QDP::Real(1.0);
p.clovCoeffT = QDP::Real(2.0);
p.u0 = QDP::Real(1.0);
AnisoParam_t _apar;
_apar.anisoP = false;
_apar.anisoP = true;
_apar.t_dir = 3; // in 4d
_apar.xi_0 = 2.0;
_apar.nu = 1.0;
@ -422,10 +422,15 @@ void calc_grid(ChromaAction action, Grid::QCD::LatticeGaugeField &Umu, Grid::QCD
if (action == WilsonClover)
{
Grid::RealD _csw = 1.0;
Grid::RealD _csw_r = 1.0;
Grid::RealD _csw_t = 2.0;
WilsonAnisotropyCoefficients anis;
WilsonImplParams implParam;
Grid::QCD::WilsonCloverFermionR Wf(Umu, *UGrid, *UrbGrid, _mass, _csw);
anis.isAnisotropic = true;
anis.t_direction = 3;
anis.xi_0 = 2.0;
anis.nu = 1.0;
WilsonImplParams CloverImplParam;
Grid::QCD::WilsonCloverFermionR Wf(Umu, *UGrid, *UrbGrid, _mass, _csw_r, _csw_t, anis, CloverImplParam);
Wf.ImportGauge(Umu);
std::cout << Grid::GridLogMessage << " Calling Grid Wilson Clover Fermion multiply " << std::endl;