1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-03 18:55:56 +01:00

MultiRHS solver improvements with slice operations moved into lattice and sped up.

Block solver requires a lot of performance work.
This commit is contained in:
paboyle 2017-04-18 10:51:55 +01:00
parent 3141ebac10
commit 8e161152e4
9 changed files with 366 additions and 285 deletions

View File

@ -60,8 +60,8 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = 0; // First dimension is block dim
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<std::endl;
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Nblock "<<Nblock<<std::endl;
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.checkerboard = Src.checkerboard;
conformable(Psi, Src);
@ -70,10 +70,6 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
Field AP(Src);
Field R(Src);
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
Eigen::MatrixXcd m_pAp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_pAp_inv= Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
@ -116,33 +112,49 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
P = R;
sliceInnerProductMatrix(m_rr,R,R,Orthog);
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
RealD rrsum=0;
for(int b=0;b<Nblock;b++) rrsum+=real(m_rr(b,b));
std::cout << GridLogIterative << " iteration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
MatrixTimer.Start();
Linop.HermOp(P, AP);
MatrixTimer.Stop();
// Alpha
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
m_pAp_inv = m_pAp.inverse();
m_alpha = m_pAp_inv * m_rr ;
// Psi, R update
sliceMaddTimer.Start();
sliceMaddMatrix(Psi,m_alpha, P,Psi,Orthog); // add alpha * P to psi
sliceMaddMatrix(R ,m_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
sliceMaddTimer.Stop();
// Beta
m_rr_inv = m_rr.inverse();
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_rr,R,R,Orthog);
sliceInnerTimer.Stop();
m_beta = m_rr_inv *m_rr;
// Search update
sliceMaddTimer.Start();
sliceMaddMatrix(AP,m_beta,P,R,Orthog);
sliceMaddTimer.Stop();
P= AP;
/*********************
@ -157,16 +169,24 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
if ( max_resid < Tolerance*Tolerance ) {
std::cout << GridLogMessage<<" Block solver has converged in "
<<k<<" iterations; max residual is "<<std::sqrt(max_resid)<<std::endl;
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCG converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< " block "<<b<<" resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
std::cout << GridLogMessage<< "\t\tblock "<<b<<" resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout << " Block solver true residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage <<"\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
@ -207,8 +227,8 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = 0; // First dimension is block dim
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<" MultiRHS Conjugate Gradient : Orthog "<<Orthog<<std::endl;
std::cout<<GridLogMessage<<" MultiRHS Conjugate Gradient : Nblock "<<Nblock<<std::endl;
std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.checkerboard = Src.checkerboard;
conformable(Psi, Src);
@ -244,40 +264,57 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
P = R;
sliceNorm(v_rr,R,Orthog);
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch sliceNormTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
RealD rrsum=0;
for(int b=0;b<Nblock;b++) rrsum+=real(v_rr[b]);
std::cout << GridLogIterative << " iteration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
MatrixTimer.Start();
Linop.HermOp(P, AP);
MatrixTimer.Stop();
// Alpha
// sliceInnerProductVectorTest(v_pAp_test,P,AP,Orthog);
sliceInnerTimer.Start();
sliceInnerProductVector(v_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
for(int b=0;b<Nblock;b++){
// std::cout << " "<< v_pAp[b]<<" "<< v_pAp_test[b]<<std::endl;
v_alpha[b] = v_rr[b]/real(v_pAp[b]);
}
// Psi, R update
sliceMaddTimer.Start();
sliceMaddVector(Psi,v_alpha, P,Psi,Orthog); // add alpha * P to psi
sliceMaddVector(R ,v_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
sliceMaddTimer.Stop();
// Beta
for(int b=0;b<Nblock;b++){
v_rr_inv[b] = 1.0/v_rr[b];
}
sliceNormTimer.Start();
sliceNorm(v_rr,R,Orthog);
sliceNormTimer.Stop();
for(int b=0;b<Nblock;b++){
v_beta[b] = v_rr_inv[b] *v_rr[b];
}
// Search update
sliceMaddTimer.Start();
sliceMaddVector(P,v_beta,P,R,Orthog);
sliceMaddTimer.Stop();
/*********************
* convergence monitor
@ -290,15 +327,27 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
}
if ( max_resid < Tolerance*Tolerance ) {
std::cout << GridLogMessage<<" MultiRHS solver has converged in "
<<k<<" iterations; max residual is "<<std::sqrt(max_resid)<<std::endl;
SolverTimer.Stop();
std::cout << GridLogMessage<<"MultiRHS solver converged in " <<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< " block "<<b<<" resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
std::cout << GridLogMessage<< "\t\tBlock "<<b<<" resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout << " MultiRHS solver true residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout <<GridLogMessage << "\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tNorm " << sliceNormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}

View File

@ -78,18 +78,12 @@ class ConjugateGradient : public OperatorFunction<Field> {
cp = a;
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: p " << a << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: p " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
@ -144,19 +138,20 @@ class ConjugateGradient : public OperatorFunction<Field> {
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage
<< "ConjugateGradient: Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "Computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual << " target "
<< Tolerance << std::endl;
std::cout << GridLogMessage << "Time elapsed: Iterations "
<< SolverTimer.Elapsed() << " Matrix "
<< MatrixTimer.Elapsed() << " Linalg "
<< LinalgTimer.Elapsed();
std::cout << std::endl;
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
return;
}
}

View File

@ -44,6 +44,7 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
ComplexD nrm = innerProduct(arg,arg);
return std::real(nrm);
}
// Double inner product
template<class vobj>
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
@ -101,7 +102,6 @@ inline auto sum(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr)
return sum(closure(expr));
}
// FIXME precision promoted summation
template<class vobj>
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
{
@ -141,14 +141,22 @@ inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
return ssum;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
// sliceSum, sliceInnerProduct, sliceAxpy, sliceNorm etc...
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
{
///////////////////////////////////////////////////////
// FIXME precision promoted summation
// may be important for correlation functions
// But easily avoided by using double precision fields
///////////////////////////////////////////////////////
typedef typename vobj::scalar_object sobj;
GridBase *grid = Data._grid;
assert(grid!=NULL);
// FIXME
// std::cout<<GridLogMessage<<"WARNING ! SliceSum is unthreaded "<<grid->SumArraySize()<<" threads "<<std::endl;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
@ -163,18 +171,27 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
std::vector<sobj> lsSum(ld,zero); // sum across these down to scalars
std::vector<sobj> extracted(Nsimd); // splitting the SIMD
result.resize(fd); // And then global sum to return the same vector to every node for IO to file
result.resize(fd); // And then global sum to return the same vector to every node
for(int r=0;r<rd;r++){
lvSum[r]=zero;
}
std::vector<int> coor(Nd);
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
// sum over reduced dimension planes, breaking out orthog dir
for(int ss=0;ss<grid->oSites();ss++){
Lexicographic::CoorFromIndex(coor,ss,grid->_rdimensions);
int r = coor[orthogdim];
lvSum[r]=lvSum[r]+Data._odata[ss];
// Parallel over orthog direction
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
lvSum[r]=lvSum[r]+Data._odata[ss];
}
}
}
// Sum across simd lanes in the plane, breaking out orthog dir.
@ -212,32 +229,6 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
}
}
template<class vobj>
static void sliceInnerProductVectorSlow( std::vector<ComplexD> & vec, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
// FIXME: Implementation is slow
// Look at localInnerProduct implementation,
// and do inside a site loop with block strided iterators
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::tensor_reduced scalar;
typedef typename scalar::scalar_object scomplex;
int Nblock = lhs._grid->GlobalDimensions()[Orthog];
vec.resize(Nblock);
std::vector<scomplex> sip(Nblock);
Lattice<scalar> IP(lhs._grid);
IP=localInnerProduct(lhs,rhs);
sliceSum(IP,sip,Orthog);
for(int ss=0;ss<Nblock;ss++){
vec[ss] = TensorRemove(sip[ss]);
}
}
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
{
@ -247,8 +238,6 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
assert(grid!=NULL);
conformable(grid,rhs._grid);
// FIXME
// std::cout<<GridLogMessage<<"WARNING ! SliceSum is unthreaded "<<grid->SumArraySize()<<" threads "<<std::endl;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
@ -268,16 +257,18 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
lvSum[r]=zero;
}
// sum over reduced dimension planes, breaking out orthog dir
PARALLEL_REGION {
std::vector<int> coor(Nd);
vector_type vv;
PARALLEL_FOR_LOOP_INTERN
for(int ss=0;ss<grid->oSites();ss++){
Lexicographic::CoorFromIndex(coor,ss,grid->_rdimensions);
int r = coor[orthogdim];
vv = TensorRemove(innerProduct(lhs._odata[ss],rhs._odata[ss]));
PARALLEL_CRITICAL { // ouch slow rfo thrashing atomic fp add
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
parallel_for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
vector_type vv = TensorRemove(innerProduct(lhs._odata[ss],rhs._odata[ss]));
lvSum[r]=lvSum[r]+vv;
}
}
@ -287,7 +278,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
std::vector<int> icoor(Nd);
for(int rt=0;rt<rd;rt++){
iScalar<vector_type> temp; temp._internal = lvSum[rt];
iScalar<vector_type> temp;
temp._internal = lvSum[rt];
extract(temp,extracted);
for(int idx=0;idx<Nsimd;idx++){
@ -317,176 +309,9 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
result[t]=gsum;
}
}
#if 0
template<class vobj>
static void sliceInnerProductVector( std::vector<ComplexD> & vec, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Orthog)
{
// FIXME: Implementation is slow
// Look at sliceSum implementation,
// and do inside a site loop with block strided iterators
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::tensor_reduced scalar;
typedef typename scalar::scalar_object scomplex;
GridBase * grid = lhs._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
assert(orthogdim >= 0);
assert(orthogdim < Nd);
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
int Nblock = grid->GlobalDimensions()[Orthog];
int Nrblock = grid->_rdimensions[Orthog];
int Nthr = grid->SumArraySize();
std::vector<vector_type,alignedAllocator<vector_type> > sumarray(Nrblock*Nthr);
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
for(int rb=0;rb<Nrblock;rb++){
GridThread::GetWork((left._grid->oSites()/Nrblock),thr,mywork,myoff);
int off = rb * grid->_slice_
vector_type vnrm=zero; // private to thread; sub summation
for(int ss=myoff;ss<mywork+myoff; ss++){
vnrm = vnrm + TensorRemove(innerProductD(left._odata[ss],right._odata[ss]));
}
}
sumarray[thr+Nthr*rb]=vnrm ;
}
vec.resize(Nblock);
std::vector<scomplex> sip(Nblock);
Lattice<scalar> IP(lhs._grid);
IP=localInnerProduct(lhs,rhs);
sliceSum(IP,sip,Orthog);
for(int ss=0;ss<Nblock;ss++){
vec[ss] = TensorRemove(sip[ss]);
}
}
#endif
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
{
int NN = BlockSolverGrid->_ndimension;
int nsimd = BlockSolverGrid->Nsimd();
std::vector<int> latt_phys(0);
std::vector<int> simd_phys(0);
std::vector<int> mpi_phys(0);
for(int d=0;d<NN;d++){
if( d!=Orthog ) {
latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
mpi_phys.push_back(BlockSolverGrid->_processors[d]);
}
}
return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Need to move sliceInnerProduct, sliceAxpy, sliceNorm etc... into lattice sector along with sliceSum
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
// FIXME: Implementation is slow
// If we based this on Cshift it would work for spread out
// but it would be even slower
//
// Repeated extract slice is inefficient
//
// Best base the linear combination by constructing a
// set of vectors of size grid->_rdimensions[Orthog].
for(int i=0;i<Nblock;i++){
ExtractSlice(Rslice,Y,i,Orthog);
for(int j=0;j<Nblock;j++){
ExtractSlice(Xslice,X,j,Orthog);
Rslice = Rslice + Xslice*(scale*aa(j,i));
}
InsertSlice(Rslice,R,i,Orthog);
}
};
template<class vobj>
static void sliceMaddVector (Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
int Orthog,RealD scale=1.0)
{
// FIXME: Implementation is slow
// Best base the linear combination by constructing a
// set of vectors of size grid->_rdimensions[Orthog].
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
// If we based this on Cshift it would work for spread out
// but it would be even slower
for(int i=0;i<Nblock;i++){
ExtractSlice(Rslice,Y,i,Orthog);
ExtractSlice(Xslice,X,i,Orthog);
Rslice = Rslice + Xslice*(scale*a[i]);
InsertSlice(Rslice,R,i,Orthog);
}
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
// FIXME: Implementation is slow
// Not sure of best solution.. think about it
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
Lattice<vobj> Lslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
for(int i=0;i<Nblock;i++){
ExtractSlice(Lslice,lhs,i,Orthog);
for(int j=0;j<Nblock;j++){
ExtractSlice(Rslice,rhs,j,Orthog);
mat(i,j) = innerProduct(Lslice,Rslice);
}
}
return;
}
template<class vobj>
static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Orthog) {
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
@ -499,9 +324,207 @@ template<class vobj>
for(int ss=0;ss<Nblock;ss++){
sn[ss] = real(ip[ss]);
}
};
};
template<class vobj>
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
int orthogdim,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::tensor_reduced tensor_reduced;
GridBase *grid = X._grid;
int Nsimd =grid->Nsimd();
int Nblock =grid->GlobalDimensions()[orthogdim];
int fd =grid->_fdimensions[orthogdim];
int ld =grid->_ldimensions[orthogdim];
int rd =grid->_rdimensions[orthogdim];
int e1 =grid->_slice_nblock[orthogdim];
int e2 =grid->_slice_block [orthogdim];
int stride =grid->_slice_stride[orthogdim];
std::vector<int> icoor;
for(int r=0;r<rd;r++){
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
vector_type av;
for(int l=0;l<Nsimd;l++){
grid->iCoorFromIindex(icoor,l);
int ldx =r+icoor[orthogdim]*rd;
scalar_type *as =(scalar_type *)&av;
as[l] = scalar_type(a[ldx])*scale;
}
tensor_reduced at; at=av;
parallel_for_nest2(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int ss= so+n*stride+b;
R._odata[ss] = at*X._odata[ss]+Y._odata[ss];
}
}
}
};
/*
template<class vobj>
static void sliceMaddVectorSlow (Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
int Orthog,RealD scale=1.0)
{
// FIXME: Implementation is slow
// Best base the linear combination by constructing a
// set of vectors of size grid->_rdimensions[Orthog].
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
// If we based this on Cshift it would work for spread out
// but it would be even slower
for(int i=0;i<Nblock;i++){
ExtractSlice(Rslice,Y,i,Orthog);
ExtractSlice(Xslice,X,i,Orthog);
Rslice = Rslice + Xslice*(scale*a[i]);
InsertSlice(Rslice,R,i,Orthog);
}
};
template<class vobj>
static void sliceInnerProductVectorSlow( std::vector<ComplexD> & vec, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
// FIXME: Implementation is slow
// Look at localInnerProduct implementation,
// and do inside a site loop with block strided iterators
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef typename vobj::tensor_reduced scalar;
typedef typename scalar::scalar_object scomplex;
int Nblock = lhs._grid->GlobalDimensions()[Orthog];
vec.resize(Nblock);
std::vector<scomplex> sip(Nblock);
Lattice<scalar> IP(lhs._grid);
IP=localInnerProduct(lhs,rhs);
sliceSum(IP,sip,Orthog);
for(int ss=0;ss<Nblock;ss++){
vec[ss] = TensorRemove(sip[ss]);
}
}
*/
//////////////////////////////////////////////////////////////////////////////////////////
// FIXME: Implementation is slow
// If we based this on Cshift it would work for spread out
// but it would be even slower
//
// Repeated extract slice is inefficient
//
// Best base the linear combination by constructing a
// set of vectors of size grid->_rdimensions[Orthog].
//////////////////////////////////////////////////////////////////////////////////////////
inline GridBase *makeSubSliceGrid(const GridBase *BlockSolverGrid,int Orthog)
{
int NN = BlockSolverGrid->_ndimension;
int nsimd = BlockSolverGrid->Nsimd();
std::vector<int> latt_phys(0);
std::vector<int> simd_phys(0);
std::vector<int> mpi_phys(0);
for(int d=0;d<NN;d++){
if( d!=Orthog ) {
latt_phys.push_back(BlockSolverGrid->_fdimensions[d]);
simd_phys.push_back(BlockSolverGrid->_simd_layout[d]);
mpi_phys.push_back(BlockSolverGrid->_processors[d]);
}
}
return (GridBase *)new GridCartesian(latt_phys,simd_phys,mpi_phys);
}
template<class vobj>
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
{
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
int Nblock = X._grid->GlobalDimensions()[Orthog];
GridBase *FullGrid = X._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
Lattice<vobj> Xslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
for(int i=0;i<Nblock;i++){
ExtractSlice(Rslice,Y,i,Orthog);
for(int j=0;j<Nblock;j++){
ExtractSlice(Xslice,X,j,Orthog);
Rslice = Rslice + Xslice*(scale*aa(j,i));
}
InsertSlice(Rslice,R,i,Orthog);
}
};
template<class vobj>
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
{
// FIXME: Implementation is slow
// Not sure of best solution.. think about it
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
GridBase *FullGrid = lhs._grid;
GridBase *SliceGrid = makeSubSliceGrid(FullGrid,Orthog);
int Nblock = FullGrid->GlobalDimensions()[Orthog];
Lattice<vobj> Lslice(SliceGrid);
Lattice<vobj> Rslice(SliceGrid);
mat = Eigen::MatrixXcd::Zero(Nblock,Nblock);
for(int i=0;i<Nblock;i++){
ExtractSlice(Lslice,lhs,i,Orthog);
for(int j=0;j<Nblock;j++){
ExtractSlice(Rslice,rhs,j,Orthog);
mat(i,j) = innerProduct(Lslice,Rslice);
}
}
#undef FORCE_DIAG
#ifdef FORCE_DIAG
for(int i=0;i<Nblock;i++){
for(int j=0;j<Nblock;j++){
if ( i != j ) mat(i,j)=0.0;
}
}
#endif
return;
}
} /*END NAMESPACE GRID*/
#endif

View File

@ -110,8 +110,8 @@ public:
friend std::ostream& operator<< (std::ostream& stream, Logger& log){
if ( log.active ) {
stream << log.background()<< std::setw(10) << std::left << log.topName << log.background()<< " : ";
stream << log.colour() << std::setw(14) << std::left << log.name << log.background() << " : ";
stream << log.background()<< std::setw(8) << std::left << log.topName << log.background()<< " : ";
stream << log.colour() << std::setw(10) << std::left << log.name << log.background() << " : ";
if ( log.timestamp ) {
StopWatch.Stop();
GridTime now = StopWatch.Elapsed();

View File

@ -411,7 +411,6 @@ template <class S, class V, IfNotComplex<S> = 0>
inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
nrot = nrot % Grid_simd<S, V>::Nsimd();
Grid_simd<S, V> ret;
// std::cout << "Rotate Real by "<<nrot<<std::endl;
ret.v = Optimization::Rotate::rotate(b.v, nrot);
return ret;
}
@ -419,7 +418,6 @@ template <class S, class V, IfComplex<S> = 0>
inline Grid_simd<S, V> rotate(Grid_simd<S, V> b, int nrot) {
nrot = nrot % Grid_simd<S, V>::Nsimd();
Grid_simd<S, V> ret;
// std::cout << "Rotate Complex by "<<nrot<<std::endl;
ret.v = Optimization::Rotate::rotate(b.v, 2 * nrot);
return ret;
}
@ -427,14 +425,12 @@ template <class S, class V, IfNotComplex<S> =0>
inline void rotate( Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
{
nrot = nrot % Grid_simd<S,V>::Nsimd();
// std::cout << "Rotate Real by "<<nrot<<std::endl;
ret.v = Optimization::Rotate::rotate(b.v,nrot);
}
template <class S, class V, IfComplex<S> =0>
inline void rotate(Grid_simd<S,V> &ret,Grid_simd<S,V> b,int nrot)
{
nrot = nrot % Grid_simd<S,V>::Nsimd();
// std::cout << "Rotate Complex by "<<nrot<<std::endl;
ret.v = Optimization::Rotate::rotate(b.v,2*nrot);
}

View File

@ -58,10 +58,9 @@ class iScalar {
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iScalar<recurse_scalar_object> scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iScalar<typename GridTypeMapper<vtype>::Complexified> Complexified;
typedef iScalar<typename GridTypeMapper<vtype>::Realified> Realified;
@ -78,8 +77,12 @@ class iScalar {
iScalar<vtype> & operator= (const iScalar<vtype> &copyme) = default;
iScalar<vtype> & operator= (iScalar<vtype> &&copyme) = default;
*/
iScalar(scalar_type s)
: _internal(s){}; // recurse down and hit the constructor for vector_type
// template<int N=0>
// iScalar(EnableIf<isSIMDvectorized<vector_type>, vector_type> s) : _internal(s){}; // recurse down and hit the constructor for vector_type
iScalar(scalar_type s) : _internal(s){}; // recurse down and hit the constructor for vector_type
iScalar(const Zero &z) { *this = zero; };
iScalar<vtype> &operator=(const Zero &hero) {
@ -135,33 +138,28 @@ class iScalar {
strong_inline const vtype &operator()(void) const { return _internal; }
// Type casts meta programmed, must be pure scalar to match TensorRemove
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0,
IfNotSimd<U> = 0>
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0, IfNotSimd<U> = 0>
operator ComplexF() const {
return (TensorRemove(_internal));
};
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0,
IfNotSimd<U> = 0>
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0, IfNotSimd<U> = 0>
operator ComplexD() const {
return (TensorRemove(_internal));
};
// template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> =
// 0> operator RealD () const { return(real(TensorRemove(_internal))); }
template <class U = vtype, class V = scalar_type, IfReal<V> = 0,
IfNotSimd<U> = 0>
template <class U = vtype, class V = scalar_type, IfReal<V> = 0,IfNotSimd<U> = 0>
operator RealD() const {
return TensorRemove(_internal);
}
template <class U = vtype, class V = scalar_type, IfInteger<V> = 0,
IfNotSimd<U> = 0>
template <class U = vtype, class V = scalar_type, IfInteger<V> = 0, IfNotSimd<U> = 0>
operator Integer() const {
return Integer(TensorRemove(_internal));
}
// convert from a something to a scalar via constructor of something arg
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
* = nullptr>
strong_inline iScalar<vtype> operator=(T arg) {
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type * = nullptr>
strong_inline iScalar<vtype> operator=(T arg) {
_internal = arg;
return *this;
}

View File

@ -252,7 +252,8 @@ namespace Grid {
template<typename T>
class isSIMDvectorized{
template<typename U>
static typename std::enable_if< !std::is_same< typename GridTypeMapper<typename getVectorType<U>::type>::scalar_type, typename GridTypeMapper<typename getVectorType<U>::type>::vector_type>::value, char>::type test(void *);
static typename std::enable_if< !std::is_same< typename GridTypeMapper<typename getVectorType<U>::type>::scalar_type,
typename GridTypeMapper<typename getVectorType<U>::type>::vector_type>::value, char>::type test(void *);
template<typename U>
static double test(...);

View File

@ -51,7 +51,7 @@ int main (int argc, char ** argv)
typedef typename ImprovedStaggeredFermion5DR::ComplexField ComplexField;
typename ImprovedStaggeredFermion5DR::ImplParams params;
const int Ls=8;
const int Ls=4;
Grid_init(&argc,&argv);
@ -76,24 +76,44 @@ int main (int argc, char ** argv)
RealD mass=0.01;
ImprovedStaggeredFermion5DR Ds(Umu,Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass);
MdagMLinearOperator<ImprovedStaggeredFermion5DR,FermionField> HermOp(Ds);
ConjugateGradient<FermionField> CG(1.0e-8,10000);
BlockConjugateGradient<FermionField> BCG(1.0e-8,10000);
MultiRHSConjugateGradient<FermionField> mCG(1.0e-8,10000);
std::cout << GridLogMessage << " Calling CG "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling 4d CG "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
ImprovedStaggeredFermionR Ds4d(Umu,Umu,*UGrid,*UrbGrid,mass);
MdagMLinearOperator<ImprovedStaggeredFermionR,FermionField> HermOp4d(Ds4d);
FermionField src4d(UGrid); random(pRNG,src4d);
FermionField result4d(UGrid); result4d=zero;
CG(HermOp4d,src4d,result4d);
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling 5d CG for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
result=zero;
CG(HermOp,src,result);
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling multiRHS CG "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling multiRHS CG for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
result=zero;
mCG(HermOp,src,result);
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling Block CG "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << " Calling Block CG for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
result=zero;
BCG(HermOp,src,result);
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
Grid_finalize();
}

View File

@ -76,7 +76,6 @@ int main (int argc, char ** argv)
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass);
MdagMLinearOperator<ImprovedStaggeredFermionR,FermionField> HermOp(Ds);
ConjugateGradient<FermionField> CG(1.0e-8,10000);
CG(HermOp,src,result);
Grid_finalize();