1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-10 03:17:07 +01:00

MultiRHS solver improvements with slice operations moved into lattice and sped up.

Block solver requires a lot of performance work.
This commit is contained in:
paboyle
2017-04-18 10:51:55 +01:00
parent 3141ebac10
commit 8e161152e4
9 changed files with 366 additions and 285 deletions

View File

@ -60,8 +60,8 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = 0; // First dimension is block dim
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<std::endl;
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Nblock "<<Nblock<<std::endl;
std::cout<<GridLogMessage<<" Block Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.checkerboard = Src.checkerboard;
conformable(Psi, Src);
@ -70,10 +70,6 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
Field AP(Src);
Field R(Src);
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
Eigen::MatrixXcd m_pAp = Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_pAp_inv= Eigen::MatrixXcd::Identity(Nblock,Nblock);
Eigen::MatrixXcd m_rr = Eigen::MatrixXcd::Zero(Nblock,Nblock);
@ -116,33 +112,49 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
P = R;
sliceInnerProductMatrix(m_rr,R,R,Orthog);
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
RealD rrsum=0;
for(int b=0;b<Nblock;b++) rrsum+=real(m_rr(b,b));
std::cout << GridLogIterative << " iteration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
MatrixTimer.Start();
Linop.HermOp(P, AP);
MatrixTimer.Stop();
// Alpha
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
m_pAp_inv = m_pAp.inverse();
m_alpha = m_pAp_inv * m_rr ;
// Psi, R update
sliceMaddTimer.Start();
sliceMaddMatrix(Psi,m_alpha, P,Psi,Orthog); // add alpha * P to psi
sliceMaddMatrix(R ,m_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
sliceMaddTimer.Stop();
// Beta
m_rr_inv = m_rr.inverse();
sliceInnerTimer.Start();
sliceInnerProductMatrix(m_rr,R,R,Orthog);
sliceInnerTimer.Stop();
m_beta = m_rr_inv *m_rr;
// Search update
sliceMaddTimer.Start();
sliceMaddMatrix(AP,m_beta,P,R,Orthog);
sliceMaddTimer.Stop();
P= AP;
/*********************
@ -157,16 +169,24 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
if ( max_resid < Tolerance*Tolerance ) {
std::cout << GridLogMessage<<" Block solver has converged in "
<<k<<" iterations; max residual is "<<std::sqrt(max_resid)<<std::endl;
SolverTimer.Stop();
std::cout << GridLogMessage<<"BlockCG converged in "<<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< " block "<<b<<" resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
std::cout << GridLogMessage<< "\t\tblock "<<b<<" resid "<< std::sqrt(real(m_rr(b,b))/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout << " Block solver true residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage <<"\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
@ -207,8 +227,8 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
{
int Orthog = 0; // First dimension is block dim
Nblock = Src._grid->_fdimensions[Orthog];
std::cout<<GridLogMessage<<" MultiRHS Conjugate Gradient : Orthog "<<Orthog<<std::endl;
std::cout<<GridLogMessage<<" MultiRHS Conjugate Gradient : Nblock "<<Nblock<<std::endl;
std::cout<<GridLogMessage<<"MultiRHS Conjugate Gradient : Orthog "<<Orthog<<" Nblock "<<Nblock<<std::endl;
Psi.checkerboard = Src.checkerboard;
conformable(Psi, Src);
@ -244,40 +264,57 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
P = R;
sliceNorm(v_rr,R,Orthog);
GridStopWatch sliceInnerTimer;
GridStopWatch sliceMaddTimer;
GridStopWatch sliceNormTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
RealD rrsum=0;
for(int b=0;b<Nblock;b++) rrsum+=real(v_rr[b]);
std::cout << GridLogIterative << " iteration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
std::cout << GridLogIterative << "\titeration "<<k<<" rr_sum "<<rrsum<<" ssq_sum "<< sssum
<<" / "<<std::sqrt(rrsum/sssum) <<std::endl;
MatrixTimer.Start();
Linop.HermOp(P, AP);
MatrixTimer.Stop();
// Alpha
// sliceInnerProductVectorTest(v_pAp_test,P,AP,Orthog);
sliceInnerTimer.Start();
sliceInnerProductVector(v_pAp,P,AP,Orthog);
sliceInnerTimer.Stop();
for(int b=0;b<Nblock;b++){
// std::cout << " "<< v_pAp[b]<<" "<< v_pAp_test[b]<<std::endl;
v_alpha[b] = v_rr[b]/real(v_pAp[b]);
}
// Psi, R update
sliceMaddTimer.Start();
sliceMaddVector(Psi,v_alpha, P,Psi,Orthog); // add alpha * P to psi
sliceMaddVector(R ,v_alpha,AP, R,Orthog,-1.0);// sub alpha * AP to resid
sliceMaddTimer.Stop();
// Beta
for(int b=0;b<Nblock;b++){
v_rr_inv[b] = 1.0/v_rr[b];
}
sliceNormTimer.Start();
sliceNorm(v_rr,R,Orthog);
sliceNormTimer.Stop();
for(int b=0;b<Nblock;b++){
v_beta[b] = v_rr_inv[b] *v_rr[b];
}
// Search update
sliceMaddTimer.Start();
sliceMaddVector(P,v_beta,P,R,Orthog);
sliceMaddTimer.Stop();
/*********************
* convergence monitor
@ -290,15 +327,27 @@ void operator()(LinearOperatorBase<Field> &Linop, const Field &Src, Field &Psi)
}
if ( max_resid < Tolerance*Tolerance ) {
std::cout << GridLogMessage<<" MultiRHS solver has converged in "
<<k<<" iterations; max residual is "<<std::sqrt(max_resid)<<std::endl;
SolverTimer.Stop();
std::cout << GridLogMessage<<"MultiRHS solver converged in " <<k<<" iterations"<<std::endl;
for(int b=0;b<Nblock;b++){
std::cout << GridLogMessage<< " block "<<b<<" resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
std::cout << GridLogMessage<< "\t\tBlock "<<b<<" resid "<< std::sqrt(v_rr[b]/ssq[b])<<std::endl;
}
std::cout << GridLogMessage<<"\tMax residual is "<<std::sqrt(max_resid)<<std::endl;
Linop.HermOp(Psi, AP);
AP = AP-Src;
std::cout << " MultiRHS solver true residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout <<GridLogMessage << "\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInnerProd " << sliceInnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tNorm " << sliceNormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMaddMatrix " << sliceMaddTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}

View File

@ -78,18 +78,12 @@ class ConjugateGradient : public OperatorFunction<Field> {
cp = a;
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: p " << a << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradient: p " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
@ -144,19 +138,20 @@ class ConjugateGradient : public OperatorFunction<Field> {
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage
<< "ConjugateGradient: Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "Computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual << " target "
<< Tolerance << std::endl;
std::cout << GridLogMessage << "Time elapsed: Iterations "
<< SolverTimer.Elapsed() << " Matrix "
<< MatrixTimer.Elapsed() << " Linalg "
<< LinalgTimer.Elapsed();
std::cout << std::endl;
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
IterationsToComplete = k;
return;
}
}