1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00

Merge branch 'develop' into feature/qed-fvol

This commit is contained in:
Antonin Portelli 2017-09-28 16:25:20 +01:00
commit 937c77ead2
59 changed files with 18076 additions and 7271 deletions

View File

@ -232,9 +232,13 @@ public:
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking a*x + y bandwidth"<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s"<<"\t\t"<<"Gflop/s"<<"\t\t seconds"<< "\t\tGB/s / node"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
uint64_t NP;
uint64_t NN;
uint64_t lmax=48;
#define NLOOP (100*lmax*lmax*lmax*lmax/lat/lat/lat/lat)
@ -245,6 +249,9 @@ public:
int64_t vol= latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
NP= Grid.RankCount();
NN =Grid.NodeCount();
Vec rn ; random(sRNG,rn);
LatticeVec z(&Grid); z=rn;
@ -266,7 +273,8 @@ public:
double flops=vol*Nvec*2;// mul,add
double bytes=3.0*vol*Nvec*sizeof(Real);
std::cout<<GridLogMessage<<std::setprecision(3)
<< lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.<<std::endl;
<< lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t"<<flops/time<<"\t\t"<<(stop-start)/1000./1000.
<< "\t\t"<< bytes/time/NN <<std::endl;
}
};
@ -387,6 +395,8 @@ public:
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int nwarm = 100;
uint64_t ncall = 1000;
double t0=usecond();
sFGrid->Barrier();
for(int i=0;i<nwarm;i++){
@ -394,15 +404,8 @@ public:
}
sFGrid->Barrier();
double t1=usecond();
// uint64_t ncall = (uint64_t) 2.5*1000.0*1000.0*nwarm/(t1-t0);
// if (ncall < 500) ncall = 500;
uint64_t ncall = 500;
sFGrid->Broadcast(0,&ncall,sizeof(ncall));
// std::cout << GridLogMessage << " Estimate " << ncall << " calls per second"<<std::endl;
sDw.ZeroCounters();
time_statistics timestat;
std::vector<double> t_time(ncall);
for(uint64_t i=0;i<ncall;i++){
@ -436,12 +439,14 @@ public:
sDw.Report();
}
double robust = mflops_worst/mflops_best;;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " sDeo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " sDeo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Performance Robustness = "<< mflops_worst/mflops_best <<std::endl;
std::cout<<GridLogMessage <<std::setprecision(3)<< L<<"^4 x "<<Ls<< " Performance Robustness = "<< robust <<std::endl;
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage ;
std::cout<<GridLogMessage;
for(int i=0;i<mflops_all.size();i++){
std::cout<<mflops_all[i]/NN<<" ; " ;
@ -453,7 +458,7 @@ public:
return mflops_best;
}
static double DWF(int Ls,int L)
static double DWF(int Ls,int L, double & robust)
{
RealD mass=0.1;
RealD M5 =1.8;
@ -655,10 +660,11 @@ public:
assert((norm2(err)<1.0e-4));
}
robust = mflops_worst/mflops_best;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Best mflop/s = "<< mflops_best << " ; " << mflops_best/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Deo Worst mflop/s = "<< mflops_worst<< " ; " << mflops_worst/NN<<" per node " <<std::endl;
std::cout<<GridLogMessage << L<<"^4 x "<<Ls<< " Performance Robustness = "<< mflops_worst/mflops_best <<std::endl;
std::cout<<GridLogMessage << std::fixed<<std::setprecision(3)<< L<<"^4 x "<<Ls<< " Performance Robustness = "<< robust <<std::endl;
std::cout<<GridLogMessage <<fmt << std::endl;
std::cout<<GridLogMessage ;
@ -692,26 +698,19 @@ int main (int argc, char ** argv)
int do_wilson=1;
int do_dwf =1;
if ( do_memory ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Memory benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::Memory();
}
if ( do_comms ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Communications benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::Comms();
}
if ( do_su3 ) {
// empty for now
}
#if 1
int sel=2;
std::vector<int> L_list({8,12,16,24});
#else
int sel=1;
std::vector<int> L_list({8,12});
#endif
int selm1=sel-1;
std::vector<double> robust_list;
std::vector<double> wilson;
std::vector<double> dwf4;
std::vector<double> dwf5;
@ -722,7 +721,8 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << " Wilson dslash 4D vectorised" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
wilson.push_back(Benchmark::DWF(1,L_list[l]));
double robust;
wilson.push_back(Benchmark::DWF(1,L_list[l],robust));
}
}
@ -732,7 +732,10 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << " Domain wall dslash 4D vectorised" <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
for(int l=0;l<L_list.size();l++){
dwf4.push_back(Benchmark::DWF(Ls,L_list[l]));
double robust;
double result = Benchmark::DWF(Ls,L_list[l],robust) ;
dwf4.push_back(result);
robust_list.push_back(robust);
}
}
@ -744,6 +747,10 @@ int main (int argc, char ** argv)
dwf5.push_back(Benchmark::DWF5(Ls,L_list[l]));
}
}
if ( do_dwf ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
@ -752,11 +759,27 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]<<" \t "<<dwf4[l]<<" \t "<<dwf5[l] <<std::endl;
}
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}
int NN=NN_global;
if ( do_memory ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Memory benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::Memory();
}
if ( do_comms && (NN>1) ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Communications benchmark " <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
Benchmark::Comms();
}
if ( do_dwf ) {
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Per Node Summary table Ls="<<Ls <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
int NN=NN_global;
std::cout<<GridLogMessage << " L \t\t Wilson\t\t DWF4 \t\t DWF5 " <<std::endl;
for(int l=0;l<L_list.size();l++){
std::cout<<GridLogMessage << L_list[l] <<" \t\t "<< wilson[l]/NN<<" \t "<<dwf4[l]/NN<<" \t "<<dwf5[l] /NN<<std::endl;
@ -764,10 +787,12 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
std::cout<<GridLogMessage << " Comparison point result: " << dwf4[sel]/NN <<std::endl;
std::cout<<GridLogMessage << " Comparison point result: " << 0.5*(dwf4[sel]+dwf4[selm1])/NN << " Mflop/s per node"<<std::endl;
std::cout<<GridLogMessage << " Comparison point is 0.5*("<<dwf4[sel]/NN<<"+"<<dwf4[selm1]/NN << ") "<<std::endl;
std::cout<<std::setprecision(3);
std::cout<<GridLogMessage << " Comparison point robustness: " << robust_list[sel] <<std::endl;
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
}

View File

@ -51,7 +51,13 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::vector<int> latt4 = GridDefaultLatt();
const int Ls=16;
int Ls=16;
for(int i=0;i<argc;i++)
if(std::string(argv[i]) == "-Ls"){
std::stringstream ss(argv[i+1]); ss >> Ls;
}
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);

View File

@ -0,0 +1,190 @@
#include <Grid/Grid.h>
#include <sstream>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
typedef typename GparityDomainWallFermionF::FermionField GparityLatticeFermionF;
typedef typename GparityDomainWallFermionD::FermionField GparityLatticeFermionD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int Ls=16;
for(int i=0;i<argc;i++)
if(std::string(argv[i]) == "-Ls"){
std::stringstream ss(argv[i+1]); ss >> Ls;
}
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "Ls = " << Ls << std::endl;
std::vector<int> latt4 = GridDefaultLatt();
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::cout << GridLogMessage << "Initialising 4d RNG" << std::endl;
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
std::cout << GridLogMessage << "Initialising 5d RNG" << std::endl;
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
GparityLatticeFermionF src (FGrid); random(RNG5,src);
RealD N2 = 1.0/::sqrt(norm2(src));
src = src*N2;
GparityLatticeFermionF result(FGrid); result=zero;
GparityLatticeFermionF ref(FGrid); ref=zero;
GparityLatticeFermionF tmp(FGrid);
GparityLatticeFermionF err(FGrid);
std::cout << GridLogMessage << "Drawing gauge field" << std::endl;
LatticeGaugeFieldF Umu(UGrid);
SU3::HotConfiguration(RNG4,Umu);
std::cout << GridLogMessage << "Random gauge initialised " << std::endl;
RealD mass=0.1;
RealD M5 =1.8;
RealD NP = UGrid->_Nprocessors;
RealD NN = UGrid->NodeCount();
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Benchmarking DomainWallFermion::Dhop "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplexF::Nsimd()<<std::endl;
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
#endif
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* SINGLE/SINGLE"<<std::endl;
GparityDomainWallFermionF Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
int ncall =1000;
if (1) {
FGrid->Barrier();
Dw.ZeroCounters();
Dw.Dhop(src,result,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
Dw.Dhop(src,result,0);
__SSC_STOP;
}
double t1=usecond();
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=2*1344*volume*ncall;
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
Dw.Report();
}
std::cout << GridLogMessage<< "* SINGLE/HALF"<<std::endl;
GparityDomainWallFermionFH DwH(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
if (1) {
FGrid->Barrier();
DwH.ZeroCounters();
DwH.Dhop(src,result,0);
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
DwH.Dhop(src,result,0);
__SSC_STOP;
}
double t1=usecond();
FGrid->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=2*1344*volume*ncall;
std::cout<<GridLogMessage << "Called half prec comms Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
DwH.Report();
}
GridCartesian * UGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexD::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid_d);
GridCartesian * FGrid_d = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid_d);
GridRedBlackCartesian * FrbGrid_d = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid_d);
std::cout << GridLogMessage<< "* DOUBLE/DOUBLE"<<std::endl;
GparityLatticeFermionD src_d(FGrid_d);
precisionChange(src_d,src);
LatticeGaugeFieldD Umu_d(UGrid_d);
precisionChange(Umu_d,Umu);
GparityLatticeFermionD result_d(FGrid_d);
GparityDomainWallFermionD DwD(Umu_d,*FGrid_d,*FrbGrid_d,*UGrid_d,*UrbGrid_d,mass,M5);
if (1) {
FGrid_d->Barrier();
DwD.ZeroCounters();
DwD.Dhop(src_d,result_d,0);
std::cout<<GridLogMessage<<"Called warmup"<<std::endl;
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
DwD.Dhop(src_d,result_d,0);
__SSC_STOP;
}
double t1=usecond();
FGrid_d->Barrier();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=2*1344*volume*ncall;
std::cout<<GridLogMessage << "Called Dw "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
// std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
// std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per rank = "<< flops/(t1-t0)/NP<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
DwD.Report();
}
Grid_finalize();
}

View File

@ -331,8 +331,41 @@ case ${ac_PRECISION} in
double)
AC_DEFINE([GRID_DEFAULT_PRECISION_DOUBLE],[1],[GRID_DEFAULT_PRECISION is DOUBLE] )
;;
*)
AC_MSG_ERROR([${ac_PRECISION} unsupported --enable-precision option]);
;;
esac
###################### Shared memory allocation technique under MPI3
AC_ARG_ENABLE([shm],[AC_HELP_STRING([--enable-shm=shmget|shmopen|hugetlbfs],
[Select SHM allocation technique])],[ac_SHM=${enable_shm}],[ac_SHM=shmopen])
case ${ac_SHM} in
shmget)
AC_DEFINE([GRID_MPI3_SHMGET],[1],[GRID_MPI3_SHMGET] )
;;
shmopen)
AC_DEFINE([GRID_MPI3_SHMOPEN],[1],[GRID_MPI3_SHMOPEN] )
;;
hugetlbfs)
AC_DEFINE([GRID_MPI3_SHMMMAP],[1],[GRID_MPI3_SHMMMAP] )
;;
*)
AC_MSG_ERROR([${ac_SHM} unsupported --enable-shm option]);
;;
esac
###################### Shared base path for SHMMMAP
AC_ARG_ENABLE([shmpath],[AC_HELP_STRING([--enable-shmpath=path],
[Select SHM mmap base path for hugetlbfs])],
[ac_SHMPATH=${enable_shmpath}],
[ac_SHMPATH=/var/lib/hugetlbfs/pagesize-2MB/])
AC_DEFINE_UNQUOTED([GRID_SHM_PATH],["$ac_SHMPATH"],[Path to a hugetlbfs filesystem for MMAPing])
############### communication type selection
AC_ARG_ENABLE([comms],[AC_HELP_STRING([--enable-comms=none|mpi|mpi-auto|mpi3|mpi3-auto|shmem],
[Select communications])],[ac_COMMS=${enable_comms}],[ac_COMMS=none])
@ -482,6 +515,8 @@ compiler version : ${ax_cv_gxx_version}
SIMD : ${ac_SIMD}${SIMD_GEN_WIDTH_MSG}
Threading : ${ac_openmp}
Communications type : ${comms_type}
Shared memory allocator : ${ac_SHM}
Shared memory mmap path : ${ac_SHMPATH}
Default precision : ${ac_PRECISION}
Software FP16 conversion : ${ac_SFW_FP16}
RNG choice : ${ac_RNG}

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Algorithms.h
@ -37,6 +37,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/approx/Chebyshev.h>
#include <Grid/algorithms/approx/Remez.h>
#include <Grid/algorithms/approx/MultiShiftFunction.h>
#include <Grid/algorithms/approx/Forecast.h>
#include <Grid/algorithms/iterative/ConjugateGradient.h>
#include <Grid/algorithms/iterative/ConjugateResidual.h>
@ -44,6 +45,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/algorithms/iterative/SchurRedBlack.h>
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
// Lanczos support
//#include <Grid/algorithms/iterative/MatrixUtils.h>

View File

@ -230,6 +230,7 @@ namespace Grid {
// Barrel shift and collect global pencil
std::vector<int> lcoor(Nd), gcoor(Nd);
result = source;
int pc = processor_coor[dim];
for(int p=0;p<processors[dim];p++) {
PARALLEL_REGION
{
@ -240,7 +241,8 @@ namespace Grid {
for(int idx=0;idx<sgrid->lSites();idx++) {
sgrid->LocalIndexToLocalCoor(idx,cbuf);
peekLocalSite(s,result,cbuf);
cbuf[dim]+=p*L;
cbuf[dim]+=((pc+p) % processors[dim])*L;
// cbuf[dim]+=p*L;
pokeLocalSite(s,pgbuf,cbuf);
}
}
@ -278,7 +280,6 @@ namespace Grid {
flops+= flops_call*NN;
// writing out result
int pc = processor_coor[dim];
PARALLEL_REGION
{
std::vector<int> clbuf(Nd), cgbuf(Nd);

View File

@ -0,0 +1,152 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/approx/Forecast.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef INCLUDED_FORECAST_H
#define INCLUDED_FORECAST_H
namespace Grid {
// Abstract base class.
// Takes a matrix (Mat), a source (phi), and a vector of Fields (chi)
// and returns a forecasted solution to the system D*psi = phi (psi).
template<class Matrix, class Field>
class Forecast
{
public:
virtual Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& chi) = 0;
};
// Implementation of Brower et al.'s chronological inverter (arXiv:hep-lat/9509012),
// used to forecast solutions across poles of the EOFA heatbath.
//
// Modified from CPS (cps_pp/src/util/dirac_op/d_op_base/comsrc/minresext.C)
template<class Matrix, class Field>
class ChronoForecast : public Forecast<Matrix,Field>
{
public:
Field operator()(Matrix &Mat, const Field& phi, const std::vector<Field>& prev_solns)
{
int degree = prev_solns.size();
Field chi(phi); // forecasted solution
// Trivial cases
if(degree == 0){ chi = zero; return chi; }
else if(degree == 1){ return prev_solns[0]; }
RealD dot;
ComplexD xp;
Field r(phi); // residual
Field Mv(phi);
std::vector<Field> v(prev_solns); // orthonormalized previous solutions
std::vector<Field> MdagMv(degree,phi);
// Array to hold the matrix elements
std::vector<std::vector<ComplexD>> G(degree, std::vector<ComplexD>(degree));
// Solution and source vectors
std::vector<ComplexD> a(degree);
std::vector<ComplexD> b(degree);
// Orthonormalize the vector basis
for(int i=0; i<degree; i++){
v[i] *= 1.0/std::sqrt(norm2(v[i]));
for(int j=i+1; j<degree; j++){ v[j] -= innerProduct(v[i],v[j]) * v[i]; }
}
// Perform sparse matrix multiplication and construct rhs
for(int i=0; i<degree; i++){
b[i] = innerProduct(v[i],phi);
Mat.M(v[i],Mv);
Mat.Mdag(Mv,MdagMv[i]);
G[i][i] = innerProduct(v[i],MdagMv[i]);
}
// Construct the matrix
for(int j=0; j<degree; j++){
for(int k=j+1; k<degree; k++){
G[j][k] = innerProduct(v[j],MdagMv[k]);
G[k][j] = std::conj(G[j][k]);
}}
// Gauss-Jordan elimination with partial pivoting
for(int i=0; i<degree; i++){
// Perform partial pivoting
int k = i;
for(int j=i+1; j<degree; j++){ if(std::abs(G[j][j]) > std::abs(G[k][k])){ k = j; } }
if(k != i){
xp = b[k];
b[k] = b[i];
b[i] = xp;
for(int j=0; j<degree; j++){
xp = G[k][j];
G[k][j] = G[i][j];
G[i][j] = xp;
}
}
// Convert matrix to upper triangular form
for(int j=i+1; j<degree; j++){
xp = G[j][i]/G[i][i];
b[j] -= xp * b[i];
for(int k=0; k<degree; k++){ G[j][k] -= xp*G[i][k]; }
}
}
// Use Gaussian elimination to solve equations and calculate initial guess
chi = zero;
r = phi;
for(int i=degree-1; i>=0; i--){
a[i] = 0.0;
for(int j=i+1; j<degree; j++){ a[i] += G[i][j] * a[j]; }
a[i] = (b[i]-a[i])/G[i][i];
chi += a[i]*v[i];
r -= a[i]*MdagMv[i];
}
RealD true_r(0.0);
ComplexD tmp;
for(int i=0; i<degree; i++){
tmp = -b[i];
for(int j=0; j<degree; j++){ tmp += G[i][j]*a[j]; }
tmp = std::conj(tmp)*tmp;
true_r += std::sqrt(tmp.real());
}
RealD error = std::sqrt(norm2(r)/norm2(phi));
std::cout << GridLogMessage << "ChronoForecast: |res|/|src| = " << error << std::endl;
return chi;
};
};
}
#endif

View File

@ -87,15 +87,22 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
////////////////////////////////////////////////////////////////////////////////////////////////////
sliceInnerProductMatrix(m_rr,R,R,Orthog);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Cholesky from Eigen
// There exists a ldlt that is documented as more stable
////////////////////////////////////////////////////////////////////////////////////////////////////
Eigen::MatrixXcd L = m_rr.llt().matrixL();
// Force manifest hermitian to avoid rounding related
m_rr = 0.5*(m_rr+m_rr.adjoint());
#if 0
std::cout << " Calling Cholesky ldlt on m_rr " << m_rr <<std::endl;
Eigen::MatrixXcd L_ldlt = m_rr.ldlt().matrixL();
std::cout << " Called Cholesky ldlt on m_rr " << L_ldlt <<std::endl;
auto D_ldlt = m_rr.ldlt().vectorD();
std::cout << " Called Cholesky ldlt on m_rr " << D_ldlt <<std::endl;
#endif
// std::cout << " Calling Cholesky llt on m_rr " <<std::endl;
Eigen::MatrixXcd L = m_rr.llt().matrixL();
// std::cout << " Called Cholesky llt on m_rr " << L <<std::endl;
C = L.adjoint();
Cinv = C.inverse();
////////////////////////////////////////////////////////////////////////////////////////////////////
// Q = R C^{-1}
//
@ -103,7 +110,6 @@ void ThinQRfact (Eigen::MatrixXcd &m_rr,
//
// NB maddMatrix conventions are Right multiplication X[j] a[j,i] already
////////////////////////////////////////////////////////////////////////////////////////////////////
// FIXME:: make a sliceMulMatrix to avoid zero vector
sliceMulMatrix(Q,Cinv,R,Orthog);
}
////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,256 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradientReliableUpdate.h
Copyright (C) 2015
Author: Christopher Kelly <ckelly@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
#define GRID_CONJUGATE_GRADIENT_RELIABLE_UPDATE_H
namespace Grid {
template<class FieldD,class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
class ConjugateGradientReliableUpdate : public LinearFunction<FieldD> {
public:
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
Integer ReliableUpdatesPerformed;
bool DoFinalCleanup; //Final DP cleanup, defaults to true
Integer IterationsToCleanup; //Final DP cleanup step iterations
LinearOperatorBase<FieldF> &Linop_f;
LinearOperatorBase<FieldD> &Linop_d;
GridBase* SinglePrecGrid;
RealD Delta; //reliable update parameter
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
LinearOperatorBase<FieldF> *Linop_fallback;
RealD fallback_transition_tol;
ConjugateGradientReliableUpdate(RealD tol, Integer maxit, RealD _delta, GridBase* _sp_grid, LinearOperatorBase<FieldF> &_Linop_f, LinearOperatorBase<FieldD> &_Linop_d, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
Delta(_delta),
Linop_f(_Linop_f),
Linop_d(_Linop_d),
SinglePrecGrid(_sp_grid),
ErrorOnNoConverge(err_on_no_conv),
DoFinalCleanup(true),
Linop_fallback(NULL)
{};
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
Linop_fallback = &_Linop_fallback;
fallback_transition_tol = _fallback_transition_tol;
}
void operator()(const FieldD &src, FieldD &psi) {
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
bool using_fallback = false;
psi.checkerboard = src.checkerboard;
conformable(psi, src);
RealD cp, c, a, d, b, ssq, qq, b_pred;
FieldD p(src);
FieldD mmp(src);
FieldD r(src);
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop_d.HermOpAndNorm(psi, mmp, d, b);
r = src - mmp;
p = r;
a = norm2(p);
cp = a;
ssq = norm2(src);
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4) << "ConjugateGradientReliableUpdate: p " << a << std::endl;
RealD rsq = Tolerance * Tolerance * ssq;
// Check if guess is really REALLY good :)
if (cp <= rsq) {
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate guess was REALLY good\n";
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
return;
}
//Single prec initialization
FieldF r_f(SinglePrecGrid);
r_f.checkerboard = r.checkerboard;
precisionChange(r_f, r);
FieldF psi_f(r_f);
psi_f = zero;
FieldF p_f(r_f);
FieldF mmp_f(r_f);
RealD MaxResidSinceLastRelUp = cp; //initial residual
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k = 0;
int l = 0;
for (k = 1; k <= MaxIterations; k++) {
c = cp;
MatrixTimer.Start();
Linop_f_use->HermOpAndNorm(p_f, mmp_f, d, qq);
MatrixTimer.Stop();
LinalgTimer.Start();
a = c / d;
b_pred = a * (a * qq - d) / c;
cp = axpy_norm(r_f, -a, mmp_f, r_f);
b = cp / c;
// Fuse these loops ; should be really easy
psi_f = a * p_f + psi_f;
//p_f = p_f * b + r_f;
LinalgTimer.Stop();
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << " b = "<< b << std::endl;
std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << " c = "<< c << std::endl;
if(cp > MaxResidSinceLastRelUp){
std::cout << GridLogIterative << "ConjugateGradientReliableUpdate: updating MaxResidSinceLastRelUp : " << MaxResidSinceLastRelUp << " -> " << cp << std::endl;
MaxResidSinceLastRelUp = cp;
}
// Stopping condition
if (cp <= rsq) {
//Although not written in the paper, I assume that I have to add on the final solution
precisionChange(mmp, psi_f);
psi = psi + mmp;
SolverTimer.Stop();
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate Converged on iteration " << k << " after " << l << " reliable updates" << std::endl;
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp / ssq)<<std::endl;
std::cout << GridLogMessage << "\tTrue residual " << true_residual<<std::endl;
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
if(DoFinalCleanup){
//Do a final CG to cleanup
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate performing final cleanup.\n";
ConjugateGradient<FieldD> CG(Tolerance,MaxIterations);
CG.ErrorOnNoConverge = ErrorOnNoConverge;
CG(Linop_d,src,psi);
IterationsToCleanup = CG.IterationsToComplete;
}
else if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate complete.\n";
return;
}
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
precisionChange(mmp, psi_f);
psi = psi + mmp;
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
r = src - mmp;
psi_f = zero;
precisionChange(r_f, r);
cp = norm2(r);
MaxResidSinceLastRelUp = cp;
b = cp/c;
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate new residual " << cp << std::endl;
l = l+1;
}
p_f = p_f * b + r_f; //update search vector after reliable update appears to help convergence
if(!using_fallback && Linop_fallback != NULL && cp < fallback_transition_tol){
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate switching to fallback linear operator on iteration " << k << " at residual " << cp << std::endl;
Linop_f_use = Linop_fallback;
using_fallback = true;
}
}
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate did NOT converge"
<< std::endl;
if (ErrorOnNoConverge) assert(0);
IterationsToComplete = k;
ReliableUpdatesPerformed = l;
}
};
};
#endif

View File

@ -206,10 +206,12 @@ public:
#endif
size_type bytes = __n*sizeof(_Tp);
uint8_t *cp = (uint8_t *)ptr;
if ( ptr ) {
// One touch per 4k page, static OMP loop to catch same loop order
#pragma omp parallel for schedule(static)
for(size_type n=0;n<bytes;n+=4096){
cp[n]=0;
for(size_type n=0;n<bytes;n+=4096){
cp[n]=0;
}
}
return ptr;
}

View File

@ -37,7 +37,7 @@ namespace Grid {
// Info that is setup once and indept of cartesian layout
///////////////////////////////////////////////////////////////
void * CartesianCommunicator::ShmCommBuf;
uint64_t CartesianCommunicator::MAX_MPI_SHM_BYTES = 128*1024*1024;
uint64_t CartesianCommunicator::MAX_MPI_SHM_BYTES = 1024LL*1024LL*1024LL;
CartesianCommunicator::CommunicatorPolicy_t
CartesianCommunicator::CommunicatorPolicy= CartesianCommunicator::CommunicatorPolicyConcurrent;
int CartesianCommunicator::nCommThreads = -1;
@ -162,6 +162,9 @@ void CartesianCommunicator::ShmInitGeneric(void){
perror("mmap failed ");
exit(EXIT_FAILURE);
}
#ifdef MADV_HUGEPAGE
if (!Hugepages ) madvise(ShmCommBuf,MAX_MPI_SHM_BYTES,MADV_HUGEPAGE);
#endif
#else
ShmBufStorageVector.resize(MAX_MPI_SHM_BYTES);
ShmCommBuf=(void *)&ShmBufStorageVector[0];

View File

@ -198,7 +198,46 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
ShmCommBuf = 0;
ShmCommBufs.resize(ShmSize);
#if 1
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbf and others map filesystems as mappable huge pages
////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GRID_MPI3_SHMMMAP
char shm_name [NAME_MAX];
for(int r=0;r<ShmSize;r++){
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES;
sprintf(shm_name,GRID_SHM_PATH "/Grid_mpi3_shm_%d_%d",GroupRank,r);
//sprintf(shm_name,"/var/lib/hugetlbfs/group/wheel/pagesize-2MB/" "Grid_mpi3_shm_%d_%d",GroupRank,r);
// printf("Opening file %s \n",shm_name);
int fd=open(shm_name,O_RDWR|O_CREAT,0666);
if ( fd == -1) {
printf("open %s failed\n",shm_name);
perror("open hugetlbfs");
exit(0);
}
int mmap_flag = MAP_SHARED ;
#ifdef MAP_POPULATE
mmap_flag|=MAP_POPULATE;
#endif
#ifdef MAP_HUGETLB
if ( Hugepages ) mmap_flag |= MAP_HUGETLB;
#endif
void *ptr = (void *) mmap(NULL, MAX_MPI_SHM_BYTES, PROT_READ | PROT_WRITE, mmap_flag,fd, 0);
if ( ptr == (void *)MAP_FAILED ) {
printf("mmap %s failed\n",shm_name);
perror("failed mmap"); assert(0);
}
assert(((uint64_t)ptr&0x3F)==0);
ShmCommBufs[r] =ptr;
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////
// POSIX SHMOPEN ; as far as I know Linux does not allow EXPLICIT HugePages with this case
// tmpfs (Larry Meadows says) does not support explicit huge page, and this is used for
// the posix shm virtual file system
////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GRID_MPI3_SHMOPEN
char shm_name [NAME_MAX];
if ( ShmRank == 0 ) {
for(int r=0;r<ShmSize;r++){
@ -213,12 +252,15 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
ftruncate(fd, size);
int mmap_flag = MAP_SHARED;
#ifdef MAP_POPULATE
mmap_flag |= MAP_POPULATE;
#endif
#ifdef MAP_HUGETLB
if (Hugepages) mmap_flag |= MAP_HUGETLB;
#endif
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
if ( ptr == MAP_FAILED ) { perror("failed mmap"); assert(0); }
if ( ptr == (void * )MAP_FAILED ) { perror("failed mmap"); assert(0); }
assert(((uint64_t)ptr&0x3F)==0);
// Experiments; Experiments; Try to force numa domain on the shm segment if we have numaif.h
@ -240,7 +282,7 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
if (ierr && (page==0)) perror("numa relocate command failed");
}
#endif
ShmCommBufs[r] =ptr;
ShmCommBufs[r] =ptr;
}
}
@ -262,25 +304,32 @@ void CartesianCommunicator::Init(int *argc, char ***argv) {
ShmCommBufs[r] =ptr;
}
}
#else
#endif
////////////////////////////////////////////////////////////////////////////////////////////
// SHMGET SHMAT and SHM_HUGETLB flag
////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GRID_MPI3_SHMGET
std::vector<int> shmids(ShmSize);
if ( ShmRank == 0 ) {
for(int r=0;r<ShmSize;r++){
size_t size = CartesianCommunicator::MAX_MPI_SHM_BYTES;
key_t key = 0x4545 + r;
key_t key = IPC_PRIVATE;
int flags = IPC_CREAT | SHM_R | SHM_W;
#ifdef SHM_HUGETLB
flags|=SHM_HUGETLB;
if (Hugepages) flags|=SHM_HUGETLB;
#endif
if ((shmids[r]= shmget(key,size, flags)) < 0) {
if ((shmids[r]= shmget(key,size, flags)) ==-1) {
int errsv = errno;
printf("Errno %d\n",errsv);
printf("key %d\n",key);
printf("size %lld\n",size);
printf("flags %d\n",flags);
perror("shmget");
exit(1);
} else {
printf("shmid: 0x%x\n", shmids[r]);
}
printf("shmid: 0x%x\n", shmids[r]);
}
}
MPI_Barrier(ShmComm);

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,100 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/AbstractEOFAFermion.h
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_ABSTRACT_EOFA_FERMION_H
#define GRID_QCD_ABSTRACT_EOFA_FERMION_H
#include <Grid/qcd/action/fermion/CayleyFermion5D.h>
namespace Grid {
namespace QCD {
// DJM: Abstract base class for EOFA fermion types.
// Defines layout of additional EOFA-specific parameters and operators.
// Use to construct EOFA pseudofermion actions that are agnostic to
// Shamir / Mobius / etc., and ensure that no one can construct EOFA
// pseudofermion action with non-EOFA fermion type.
template<class Impl>
class AbstractEOFAFermion : public CayleyFermion5D<Impl> {
public:
INHERIT_IMPL_TYPES(Impl);
public:
// Fermion operator: D(mq1) + shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm}
RealD mq1;
RealD mq2;
RealD mq3;
RealD shift;
int pm;
RealD alpha; // Mobius scale
RealD k; // EOFA normalization constant
virtual void Instantiatable(void) = 0;
// EOFA-specific operations
// Force user to implement in derived classes
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag) = 0;
virtual void Dtilde (const FermionField& in, FermionField& out) = 0;
virtual void DtildeInv(const FermionField& in, FermionField& out) = 0;
// Implement derivatives in base class:
// for EOFA both DWF and Mobius just need d(Dw)/dU
virtual void MDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
this->DhopDeriv(mat, U, V, dag);
};
virtual void MoeDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
this->DhopDerivOE(mat, U, V, dag);
};
virtual void MeoDeriv(GaugeField& mat, const FermionField& U, const FermionField& V, int dag){
this->DhopDerivEO(mat, U, V, dag);
};
// Recompute 5D coefficients for different value of shift constant
// (needed for heatbath loop over poles)
virtual void RefreshShiftCoefficients(RealD new_shift) = 0;
// Constructors
AbstractEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int _pm,
RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams())
: CayleyFermion5D<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid, FourDimGrid, FourDimRedBlackGrid,
_mq1, _M5, p), mq1(_mq1), mq2(_mq2), mq3(_mq3), shift(_shift), pm(_pm)
{
int Ls = this->Ls;
this->alpha = _b + _c;
this->k = this->alpha * (_mq3-_mq2) * std::pow(this->alpha+1.0,2*Ls) /
( std::pow(this->alpha+1.0,Ls) + _mq2*std::pow(this->alpha-1.0,Ls) ) /
( std::pow(this->alpha+1.0,Ls) + _mq3*std::pow(this->alpha-1.0,Ls) );
};
};
}}
#endif

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/CayleyFermion5D.h
@ -35,24 +35,24 @@ namespace Grid {
namespace QCD {
template<typename T> struct switcheroo {
static inline int iscomplex() { return 0; }
template<typename T> struct switcheroo {
static inline int iscomplex() { return 0; }
template<class vec>
static inline vec mult(vec a, vec b) {
return real_mult(a,b);
}
};
template<> struct switcheroo<ComplexD> {
static inline int iscomplex() { return 1; }
template<> struct switcheroo<ComplexD> {
static inline int iscomplex() { return 1; }
template<class vec>
static inline vec mult(vec a, vec b) {
return a*b;
}
};
template<> struct switcheroo<ComplexF> {
static inline int iscomplex() { return 1; }
template<> struct switcheroo<ComplexF> {
static inline int iscomplex() { return 1; }
template<class vec>
static inline vec mult(vec a, vec b) {
return a*b;
@ -90,14 +90,14 @@ namespace Grid {
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField &psi,
const FermionField &phi,
const FermionField &phi,
FermionField &chi,
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
std::vector<Coeff_t> &upper);
void M5Ddag(const FermionField &psi,
const FermionField &phi,
const FermionField &phi,
FermionField &chi,
std::vector<Coeff_t> &lower,
std::vector<Coeff_t> &diag,
@ -125,7 +125,7 @@ namespace Grid {
// Efficient support for multigrid coarsening
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp);
void Meooe5D (const FermionField &in, FermionField &out);
void MeooeDag5D (const FermionField &in, FermionField &out);
@ -133,23 +133,23 @@ namespace Grid {
RealD mass;
// Cayley form Moebius (tanh and zolotarev)
std::vector<Coeff_t> omega;
std::vector<Coeff_t> omega;
std::vector<Coeff_t> bs; // S dependent coeffs
std::vector<Coeff_t> cs;
std::vector<Coeff_t> as;
std::vector<Coeff_t> cs;
std::vector<Coeff_t> as;
// For preconditioning Cayley form
std::vector<Coeff_t> bee;
std::vector<Coeff_t> cee;
std::vector<Coeff_t> aee;
std::vector<Coeff_t> beo;
std::vector<Coeff_t> ceo;
std::vector<Coeff_t> aeo;
std::vector<Coeff_t> bee;
std::vector<Coeff_t> cee;
std::vector<Coeff_t> aee;
std::vector<Coeff_t> beo;
std::vector<Coeff_t> ceo;
std::vector<Coeff_t> aeo;
// LDU factorisation of the eeoo matrix
std::vector<Coeff_t> lee;
std::vector<Coeff_t> leem;
std::vector<Coeff_t> uee;
std::vector<Coeff_t> ueem;
std::vector<Coeff_t> dee;
std::vector<Coeff_t> lee;
std::vector<Coeff_t> leem;
std::vector<Coeff_t> uee;
std::vector<Coeff_t> ueem;
std::vector<Coeff_t> dee;
// Matrices of 5d ee inverse params
Vector<iSinglet<Simd> > MatpInv;
@ -165,7 +165,7 @@ namespace Grid {
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
void CayleyReport(void);
void CayleyZeroCounters(void);
@ -179,9 +179,9 @@ namespace Grid {
double MooeeInvTime;
protected:
void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c);
virtual void SetCoefficientsInternal(RealD zolo_hi,std::vector<Coeff_t> & gamma,RealD b,RealD c);
};
}

View File

@ -0,0 +1,438 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermion.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid_Eigen_Dense.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
namespace Grid {
namespace QCD {
template<class Impl>
DomainWallEOFAFermion<Impl>::DomainWallEOFAFermion(
GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3,
RealD _shift, int _pm, RealD _M5, const ImplParams &p) :
AbstractEOFAFermion<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid,
FourDimGrid, FourDimRedBlackGrid, _mq1, _mq2, _mq3,
_shift, _pm, _M5, 1.0, 0.0, p)
{
RealD eps = 1.0;
Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);
assert(zdata->n == this->Ls);
std::cout << GridLogMessage << "DomainWallEOFAFermion with Ls=" << this->Ls << std::endl;
this->SetCoefficientsTanh(zdata, 1.0, 0.0);
Approx::zolotarev_free(zdata);
}
/***************************************************************
/* Additional EOFA operators only called outside the inverter.
/* Since speed is not essential, simple axpby-style
/* implementations should be fine.
/***************************************************************/
template<class Impl>
void DomainWallEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
{
int Ls = this->Ls;
Din = zero;
if((sign == 1) && (dag == 0)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, Ls-1, 0); }
else if((sign == -1) && (dag == 0)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, 0); }
else if((sign == 1 ) && (dag == 1)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, Ls-1); }
else if((sign == -1) && (dag == 1)){ axpby_ssp(Din, 0.0, psi, 1.0, psi, 0, 0); }
}
// This is just the identity for DWF
template<class Impl>
void DomainWallEOFAFermion<Impl>::Dtilde(const FermionField& psi, FermionField& chi){ chi = psi; }
// This is just the identity for DWF
template<class Impl>
void DomainWallEOFAFermion<Impl>::DtildeInv(const FermionField& psi, FermionField& chi){ chi = psi; }
/*****************************************************************************************************/
template<class Impl>
RealD DomainWallEOFAFermion<Impl>::M(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
FermionField Din(psi._grid);
this->Meooe5D(psi, Din);
this->DW(Din, chi, DaggerNo);
axpby(chi, 1.0, 1.0, chi, psi);
this->M5D(psi, chi);
return(norm2(chi));
}
template<class Impl>
RealD DomainWallEOFAFermion<Impl>::Mdag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
FermionField Din(psi._grid);
this->DW(psi, Din, DaggerYes);
this->MeooeDag5D(Din, chi);
this->M5Ddag(psi, chi);
axpby(chi, 1.0, 1.0, chi, psi);
return(norm2(chi));
}
/********************************************************************
/* Performance critical fermion operators called inside the inverter
/********************************************************************/
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
int pm = this->pm;
RealD shift = this->shift;
RealD mq1 = this->mq1;
RealD mq2 = this->mq2;
RealD mq3 = this->mq3;
// coefficients for shift operator ( = shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm} )
Coeff_t shiftp(0.0), shiftm(0.0);
if(shift != 0.0){
if(pm == 1){ shiftp = shift*(mq3-mq2); }
else{ shiftm = -shift*(mq3-mq2); }
}
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftm;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftp;
#if(0)
std::cout << GridLogMessage << "DomainWallEOFAFermion::M5D(FF&,FF&):" << std::endl;
for(int i=0; i<diag.size(); ++i){
std::cout << GridLogMessage << "diag[" << i << "] =" << diag[i] << std::endl;
}
for(int i=0; i<upper.size(); ++i){
std::cout << GridLogMessage << "upper[" << i << "] =" << upper[i] << std::endl;
}
for(int i=0; i<lower.size(); ++i){
std::cout << GridLogMessage << "lower[" << i << "] =" << lower[i] << std::endl;
}
#endif
this->M5D(psi, chi, chi, lower, diag, upper);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
int pm = this->pm;
RealD shift = this->shift;
RealD mq1 = this->mq1;
RealD mq2 = this->mq2;
RealD mq3 = this->mq3;
// coefficients for shift operator ( = shift*\gamma_{5}*R_{5}*\Delta_{\pm}(mq2,mq3)*P_{\pm} )
Coeff_t shiftp(0.0), shiftm(0.0);
if(shift != 0.0){
if(pm == 1){ shiftp = shift*(mq3-mq2); }
else{ shiftm = -shift*(mq3-mq2); }
}
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = mq1 + shiftp;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = mq1 + shiftm;
#if(0)
std::cout << GridLogMessage << "DomainWallEOFAFermion::M5Ddag(FF&,FF&):" << std::endl;
for(int i=0; i<diag.size(); ++i){
std::cout << GridLogMessage << "diag[" << i << "] =" << diag[i] << std::endl;
}
for(int i=0; i<upper.size(); ++i){
std::cout << GridLogMessage << "upper[" << i << "] =" << upper[i] << std::endl;
}
for(int i=0; i<lower.size(); ++i){
std::cout << GridLogMessage << "lower[" << i << "] =" << lower[i] << std::endl;
}
#endif
this->M5Ddag(psi, chi, chi, lower, diag, upper);
}
// half checkerboard operations
template<class Impl>
void DomainWallEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
std::vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s];
lower[s] = -this->cee[s];
}
upper[Ls-1] = this->dm;
lower[0] = this->dp;
this->M5D(psi, psi, chi, lower, diag, upper);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
std::vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s];
lower[s] = -this->cee[s];
}
upper[Ls-1] = this->dp;
lower[0] = this->dm;
this->M5Ddag(psi, psi, chi, lower, diag, upper);
}
/****************************************************************************************/
//Zolo
template<class Impl>
void DomainWallEOFAFermion<Impl>::SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c)
{
int Ls = this->Ls;
int pm = this->pm;
RealD mq1 = this->mq1;
RealD mq2 = this->mq2;
RealD mq3 = this->mq3;
RealD shift = this->shift;
////////////////////////////////////////////////////////
// Constants for the preconditioned matrix Cayley form
////////////////////////////////////////////////////////
this->bs.resize(Ls);
this->cs.resize(Ls);
this->aee.resize(Ls);
this->aeo.resize(Ls);
this->bee.resize(Ls);
this->beo.resize(Ls);
this->cee.resize(Ls);
this->ceo.resize(Ls);
for(int i=0; i<Ls; ++i){
this->bee[i] = 4.0 - this->M5 + 1.0;
this->cee[i] = 1.0;
}
for(int i=0; i<Ls; ++i){
this->aee[i] = this->cee[i];
this->bs[i] = this->beo[i] = 1.0;
this->cs[i] = this->ceo[i] = 0.0;
}
//////////////////////////////////////////
// EOFA shift terms
//////////////////////////////////////////
if(pm == 1){
this->dp = mq1*this->cee[0] + shift*(mq3-mq2);
this->dm = mq1*this->cee[Ls-1];
} else if(this->pm == -1) {
this->dp = mq1*this->cee[0];
this->dm = mq1*this->cee[Ls-1] - shift*(mq3-mq2);
} else {
this->dp = mq1*this->cee[0];
this->dm = mq1*this->cee[Ls-1];
}
//////////////////////////////////////////
// LDU decomposition of eeoo
//////////////////////////////////////////
this->dee.resize(Ls+1);
this->lee.resize(Ls);
this->leem.resize(Ls);
this->uee.resize(Ls);
this->ueem.resize(Ls);
for(int i=0; i<Ls; ++i){
if(i < Ls-1){
this->lee[i] = -this->cee[i+1]/this->bee[i]; // sub-diag entry on the ith column
this->leem[i] = this->dm/this->bee[i];
for(int j=0; j<i; j++){ this->leem[i] *= this->aee[j]/this->bee[j]; }
this->dee[i] = this->bee[i];
this->uee[i] = -this->aee[i]/this->bee[i]; // up-diag entry on the ith row
this->ueem[i] = this->dp / this->bee[0];
for(int j=1; j<=i; j++){ this->ueem[i] *= this->cee[j]/this->bee[j]; }
} else {
this->lee[i] = 0.0;
this->leem[i] = 0.0;
this->uee[i] = 0.0;
this->ueem[i] = 0.0;
}
}
{
Coeff_t delta_d = 1.0 / this->bee[0];
for(int j=1; j<Ls-1; j++){ delta_d *= this->cee[j] / this->bee[j]; }
this->dee[Ls-1] = this->bee[Ls-1] + this->cee[0] * this->dm * delta_d;
this->dee[Ls] = this->bee[Ls-1] + this->cee[Ls-1] * this->dp * delta_d;
}
int inv = 1;
this->MooeeInternalCompute(0, inv, this->MatpInv, this->MatmInv);
this->MooeeInternalCompute(1, inv, this->MatpInvDag, this->MatmInvDag);
}
// Recompute Cayley-form coefficients for different shift
template<class Impl>
void DomainWallEOFAFermion<Impl>::RefreshShiftCoefficients(RealD new_shift)
{
this->shift = new_shift;
Approx::zolotarev_data *zdata = Approx::higham(1.0, this->Ls);
this->SetCoefficientsTanh(zdata, 1.0, 0.0);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInternalCompute(int dag, int inv,
Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
int Ls = this->Ls;
GridBase* grid = this->FermionRedBlackGrid();
int LLs = grid->_rdimensions[0];
if(LLs == Ls){ return; } // Not vectorised in 5th direction
Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls);
Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
for(int s=0; s<Ls; s++){
Pplus(s,s) = this->bee[s];
Pminus(s,s) = this->bee[s];
}
for(int s=0; s<Ls-1; s++){
Pminus(s,s+1) = -this->cee[s];
}
for(int s=0; s<Ls-1; s++){
Pplus(s+1,s) = -this->cee[s+1];
}
Pplus (0,Ls-1) = this->dp;
Pminus(Ls-1,0) = this->dm;
Eigen::MatrixXcd PplusMat ;
Eigen::MatrixXcd PminusMat;
#if(0)
std::cout << GridLogMessage << "Pplus:" << std::endl;
for(int s=0; s<Ls; ++s){
for(int ss=0; ss<Ls; ++ss){
std::cout << Pplus(s,ss) << "\t";
}
std::cout << std::endl;
}
std::cout << GridLogMessage << "Pminus:" << std::endl;
for(int s=0; s<Ls; ++s){
for(int ss=0; ss<Ls; ++ss){
std::cout << Pminus(s,ss) << "\t";
}
std::cout << std::endl;
}
#endif
if(inv) {
PplusMat = Pplus.inverse();
PminusMat = Pminus.inverse();
} else {
PplusMat = Pplus;
PminusMat = Pminus;
}
if(dag){
PplusMat.adjointInPlace();
PminusMat.adjointInPlace();
}
typedef typename SiteHalfSpinor::scalar_type scalar_type;
const int Nsimd = Simd::Nsimd();
Matp.resize(Ls*LLs);
Matm.resize(Ls*LLs);
for(int s2=0; s2<Ls; s2++){
for(int s1=0; s1<LLs; s1++){
int istride = LLs;
int ostride = 1;
Simd Vp;
Simd Vm;
scalar_type *sp = (scalar_type*) &Vp;
scalar_type *sm = (scalar_type*) &Vm;
for(int l=0; l<Nsimd; l++){
if(switcheroo<Coeff_t>::iscomplex()) {
sp[l] = PplusMat (l*istride+s1*ostride,s2);
sm[l] = PminusMat(l*istride+s1*ostride,s2);
} else {
// if real
scalar_type tmp;
tmp = PplusMat (l*istride+s1*ostride,s2);
sp[l] = scalar_type(tmp.real(),tmp.real());
tmp = PminusMat(l*istride+s1*ostride,s2);
sm[l] = scalar_type(tmp.real(),tmp.real());
}
}
Matp[LLs*s2+s1] = Vp;
Matm[LLs*s2+s1] = Vm;
}}
}
FermOpTemplateInstantiate(DomainWallEOFAFermion);
GparityFermOpTemplateInstantiate(DomainWallEOFAFermion);
}}

View File

@ -0,0 +1,115 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermion.h
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_DOMAIN_WALL_EOFA_FERMION_H
#define GRID_QCD_DOMAIN_WALL_EOFA_FERMION_H
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
namespace Grid {
namespace QCD {
template<class Impl>
class DomainWallEOFAFermion : public AbstractEOFAFermion<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
// Modified (0,Ls-1) and (Ls-1,0) elements of Mooee
// for red-black preconditioned Shamir EOFA
Coeff_t dm;
Coeff_t dp;
virtual void Instantiatable(void) {};
// EOFA-specific operations
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag);
virtual void Dtilde (const FermionField& in, FermionField& out);
virtual void DtildeInv (const FermionField& in, FermionField& out);
// override multiply
virtual RealD M (const FermionField& in, FermionField& out);
virtual RealD Mdag (const FermionField& in, FermionField& out);
// half checkerboard operations
virtual void Mooee (const FermionField& in, FermionField& out);
virtual void MooeeDag (const FermionField& in, FermionField& out);
virtual void MooeeInv (const FermionField& in, FermionField& out);
virtual void MooeeInvDag(const FermionField& in, FermionField& out);
virtual void M5D (const FermionField& psi, FermionField& chi);
virtual void M5Ddag (const FermionField& psi, FermionField& chi);
/////////////////////////////////////////////////////
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void MooeeInternal(const FermionField& in, FermionField& out, int dag, int inv);
void MooeeInternalCompute(int dag, int inv, Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
void MooeeInternalAsm(const FermionField& in, FermionField& out, int LLs, int site,
Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
void MooeeInternalZAsm(const FermionField& in, FermionField& out, int LLs, int site,
Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
virtual void RefreshShiftCoefficients(RealD new_shift);
// Constructors
DomainWallEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
RealD _M5, const ImplParams& p=ImplParams());
protected:
void SetCoefficientsInternal(RealD zolo_hi, std::vector<Coeff_t>& gamma, RealD b, RealD c);
};
}}
#define INSTANTIATE_DPERP_DWF_EOFA(A)\
template void DomainWallEOFAFermion<A>::M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, \
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
template void DomainWallEOFAFermion<A>::M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, \
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
template void DomainWallEOFAFermion<A>::MooeeInv(const FermionField& psi, FermionField& chi); \
template void DomainWallEOFAFermion<A>::MooeeInvDag(const FermionField& psi, FermionField& chi);
#undef DOMAIN_WALL_EOFA_DPERP_DENSE
#define DOMAIN_WALL_EOFA_DPERP_CACHE
#undef DOMAIN_WALL_EOFA_DPERP_LINALG
#define DOMAIN_WALL_EOFA_DPERP_VEC
#endif

View File

@ -0,0 +1,248 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermioncache.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
namespace Grid {
namespace QCD {
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
// Pminus fowards
// Pplus backwards..
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
int Ls = this->Ls;
GridBase* grid = psi._grid;
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
for(int s=0; s<Ls; s++){
auto tmp = psi._odata[0];
if(s==0) {
spProj5m(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+Ls-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else if(s==(Ls-1)) {
spProj5m(tmp, psi._odata[ss+0]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else {
spProj5m(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
}
}
}
this->M5Dtime += usecond();
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
int Ls = this->Ls;
GridBase* grid = psi._grid;
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard=psi.checkerboard;
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
auto tmp = psi._odata[0];
for(int s=0; s<Ls; s++){
if(s==0) {
spProj5p(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+Ls-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else if(s==(Ls-1)) {
spProj5p(tmp, psi._odata[ss+0]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else {
spProj5p(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
}
}
}
this->M5Dtime += usecond();
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
chi.checkerboard = psi.checkerboard;
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
auto tmp1 = psi._odata[0];
auto tmp2 = psi._odata[0];
// flops = 12*2*Ls + 12*2*Ls + 3*12*Ls + 12*2*Ls = 12*Ls * (9) = 108*Ls flops
// Apply (L^{\prime})^{-1}
chi[ss] = psi[ss]; // chi[0]=psi[0]
for(int s=1; s<Ls; s++){
spProj5p(tmp1, chi[ss+s-1]);
chi[ss+s] = psi[ss+s] - this->lee[s-1]*tmp1;
}
// L_m^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
spProj5m(tmp1, chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - this->leem[s]*tmp1;
}
// U_m^{-1} D^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[s] + 1/d chi[s]
spProj5p(tmp1, chi[ss+Ls-1]);
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->ueem[s]/this->dee[Ls])*tmp1;
}
spProj5m(tmp2, chi[ss+Ls-1]);
chi[ss+Ls-1] = (1.0/this->dee[Ls])*tmp1 + (1.0/this->dee[Ls-1])*tmp2;
// Apply U^{-1}
for(int s=Ls-2; s>=0; s--){
spProj5m(tmp1, chi[ss+s+1]);
chi[ss+s] = chi[ss+s] - this->uee[s]*tmp1;
}
}
this->MooeeInvTime += usecond();
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
assert(psi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
std::vector<Coeff_t> ueec(Ls);
std::vector<Coeff_t> deec(Ls+1);
std::vector<Coeff_t> leec(Ls);
std::vector<Coeff_t> ueemc(Ls);
std::vector<Coeff_t> leemc(Ls);
for(int s=0; s<ueec.size(); s++){
ueec[s] = conjugate(this->uee[s]);
deec[s] = conjugate(this->dee[s]);
leec[s] = conjugate(this->lee[s]);
ueemc[s] = conjugate(this->ueem[s]);
leemc[s] = conjugate(this->leem[s]);
}
deec[Ls] = conjugate(this->dee[Ls]);
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){ // adds Ls
auto tmp1 = psi._odata[0];
auto tmp2 = psi._odata[0];
// Apply (U^{\prime})^{-dagger}
chi[ss] = psi[ss];
for(int s=1; s<Ls; s++){
spProj5m(tmp1, chi[ss+s-1]);
chi[ss+s] = psi[ss+s] - ueec[s-1]*tmp1;
}
// U_m^{-\dagger}
for(int s=0; s<Ls-1; s++){
spProj5p(tmp1, chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - ueemc[s]*tmp1;
}
// L_m^{-\dagger} D^{-dagger}
for(int s=0; s<Ls-1; s++){
spProj5m(tmp1, chi[ss+Ls-1]);
chi[ss+s] = (1.0/deec[s])*chi[ss+s] - (leemc[s]/deec[Ls-1])*tmp1;
}
spProj5p(tmp2, chi[ss+Ls-1]);
chi[ss+Ls-1] = (1.0/deec[Ls-1])*tmp1 + (1.0/deec[Ls])*tmp2;
// Apply L^{-dagger}
for(int s=Ls-2; s>=0; s--){
spProj5p(tmp1, chi[ss+s+1]);
chi[ss+s] = chi[ss+s] - leec[s]*tmp1;
}
}
this->MooeeInvTime += usecond();
}
#ifdef DOMAIN_WALL_EOFA_DPERP_CACHE
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
#endif
}}

View File

@ -0,0 +1,159 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermiondense.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid_Eigen_Dense.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
namespace Grid {
namespace QCD {
/*
* Dense matrix versions of routines
*/
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
{
int Ls = this->Ls;
int LLs = psi._grid->_rdimensions[0];
int vol = psi._grid->oSites()/LLs;
chi.checkerboard = psi.checkerboard;
assert(Ls==LLs);
Eigen::MatrixXd Pplus = Eigen::MatrixXd::Zero(Ls,Ls);
Eigen::MatrixXd Pminus = Eigen::MatrixXd::Zero(Ls,Ls);
for(int s=0;s<Ls;s++){
Pplus(s,s) = this->bee[s];
Pminus(s,s) = this->bee[s];
}
for(int s=0; s<Ls-1; s++){
Pminus(s,s+1) = -this->cee[s];
}
for(int s=0; s<Ls-1; s++){
Pplus(s+1,s) = -this->cee[s+1];
}
Pplus (0,Ls-1) = this->dp;
Pminus(Ls-1,0) = this->dm;
Eigen::MatrixXd PplusMat ;
Eigen::MatrixXd PminusMat;
if(inv) {
PplusMat = Pplus.inverse();
PminusMat = Pminus.inverse();
} else {
PplusMat = Pplus;
PminusMat = Pminus;
}
if(dag){
PplusMat.adjointInPlace();
PminusMat.adjointInPlace();
}
// For the non-vectorised s-direction this is simple
for(auto site=0; site<vol; site++){
SiteSpinor SiteChi;
SiteHalfSpinor SitePplus;
SiteHalfSpinor SitePminus;
for(int s1=0; s1<Ls; s1++){
SiteChi = zero;
for(int s2=0; s2<Ls; s2++){
int lex2 = s2 + Ls*site;
if(PplusMat(s1,s2) != 0.0){
spProj5p(SitePplus,psi[lex2]);
accumRecon5p(SiteChi, PplusMat(s1,s2)*SitePplus);
}
if(PminusMat(s1,s2) != 0.0){
spProj5m(SitePminus, psi[lex2]);
accumRecon5m(SiteChi, PminusMat(s1,s2)*SitePminus);
}
}
chi[s1+Ls*site] = SiteChi*0.5;
}
}
}
#ifdef DOMAIN_WALL_EOFA_DPERP_DENSE
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
template void DomainWallEOFAFermion<GparityWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<GparityWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<WilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<WilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
template void DomainWallEOFAFermion<GparityWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<GparityWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<WilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<WilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
#endif
}}

View File

@ -0,0 +1,168 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermionssp.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
namespace Grid {
namespace QCD {
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
// Pminus fowards
// Pplus backwards
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(s==0) {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
} else if (s==(Ls-1)) {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
} else {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
}
}
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(s==0) {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
} else if (s==(Ls-1)) {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
} else {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
}
}
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard = psi.checkerboard;
int Ls = this->Ls;
FermionField tmp(psi._grid);
// Apply (L^{\prime})^{-1}
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
for(int s=1; s<Ls; s++){
axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
}
// L_m^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
}
// U_m^{-1} D^{-1}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls], chi, s, Ls-1);
}
axpby_ssp_pminus(tmp, czero, chi, one/this->dee[Ls-1], chi, Ls-1, Ls-1);
axpby_ssp_pplus(chi, one, tmp, one/this->dee[Ls], chi, Ls-1, Ls-1);
// Apply U^{-1}
for(int s=Ls-2; s>=0; s--){
axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1); // chi[Ls]
}
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard = psi.checkerboard;
int Ls = this->Ls;
FermionField tmp(psi._grid);
// Apply (U^{\prime})^{-dagger}
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
for(int s=1; s<Ls; s++){
axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
}
// U_m^{-\dagger}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
}
// L_m^{-\dagger} D^{-dagger}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
}
axpby_ssp_pminus(tmp, czero, chi, one/conjugate(this->dee[Ls-1]), chi, Ls-1, Ls-1);
axpby_ssp_pplus(chi, one, tmp, one/conjugate(this->dee[Ls]), chi, Ls-1, Ls-1);
// Apply L^{-dagger}
for(int s=Ls-2; s>=0; s--){
axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1); // chi[Ls]
}
}
#ifdef DOMAIN_WALL_EOFA_DPERP_LINALG
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplF);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplD);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(WilsonImplDF);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(GparityWilsonImplDF);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplFH);
INSTANTIATE_DPERP_DWF_EOFA(ZWilsonImplDF);
#endif
}}

View File

@ -0,0 +1,605 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/DomainWallEOFAFermionvec.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
namespace Grid {
namespace QCD {
/*
* Dense matrix versions of routines
*/
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
const int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd> > u(LLs);
Vector<iSinglet<Simd> > l(LLs);
Vector<iSinglet<Simd> > d(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
for(int o=0;o<LLs;o++){ // outer
for(int i=0;i<nsimd;i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
assert(Nc == 3);
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
alignas(64) SiteSpinor fm;
for(int v=0; v<LLs; v++){
int vp = (v+1)%LLs;
int vm = (v+LLs-1)%LLs;
spProj5m(hp, psi[ss+vp]);
spProj5p(hm, psi[ss+vm]);
if (vp <= v){ rotate(hp, hp, 1); }
if (vm >= v){ rotate(hm, hm, nsimd-1); }
hp = 0.5*hp;
hm = 0.5*hm;
spRecon5m(fp, hp);
spRecon5p(fm, hm);
chi[ss+v] = d[v]*phi[ss+v];
chi[ss+v] = chi[ss+v] + u[v]*fp;
chi[ss+v] = chi[ss+v] + l[v]*fm;
}
#else
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v==LLs-1) ? 0 : v+1;
int vm = (v==0) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(2)(0);
Simd hp_01 = psi[ss+vp]()(2)(1);
Simd hp_02 = psi[ss+vp]()(2)(2);
Simd hp_10 = psi[ss+vp]()(3)(0);
Simd hp_11 = psi[ss+vp]()(3)(1);
Simd hp_12 = psi[ss+vp]()(3)(2);
Simd hm_00 = psi[ss+vm]()(0)(0);
Simd hm_01 = psi[ss+vm]()(0)(1);
Simd hm_02 = psi[ss+vm]()(0)(2);
Simd hm_10 = psi[ss+vm]()(1)(0);
Simd hm_11 = psi[ss+vm]()(1)(1);
Simd hm_12 = psi[ss+vm]()(1)(2);
if(vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
// Can force these to real arithmetic and save 2x.
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
#endif
}
this->M5Dtime += usecond();
}
template<class Impl>
void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd> > u(LLs);
Vector<iSinglet<Simd> > l(LLs);
Vector<iSinglet<Simd> > d(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
alignas(64) SiteSpinor fm;
for(int v=0; v<LLs; v++){
int vp = (v+1)%LLs;
int vm = (v+LLs-1)%LLs;
spProj5p(hp, psi[ss+vp]);
spProj5m(hm, psi[ss+vm]);
if(vp <= v){ rotate(hp, hp, 1); }
if(vm >= v){ rotate(hm, hm, nsimd-1); }
hp = hp*0.5;
hm = hm*0.5;
spRecon5p(fp, hp);
spRecon5m(fm, hm);
chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
chi[ss+v] = chi[ss+v] +l[v]*fm;
}
#else
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0 ) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(0)(0);
Simd hp_01 = psi[ss+vp]()(0)(1);
Simd hp_02 = psi[ss+vp]()(0)(2);
Simd hp_10 = psi[ss+vp]()(1)(0);
Simd hp_11 = psi[ss+vp]()(1)(1);
Simd hp_12 = psi[ss+vp]()(1)(2);
Simd hm_00 = psi[ss+vm]()(2)(0);
Simd hm_01 = psi[ss+vm]()(2)(1);
Simd hm_02 = psi[ss+vm]()(2)(2);
Simd hm_10 = psi[ss+vm]()(3)(0);
Simd hm_11 = psi[ss+vm]()(3)(1);
Simd hm_12 = psi[ss+vm]()(3)(2);
if (vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
#endif
}
this->M5Dtime += usecond();
}
#ifdef AVX512
#include<simd/Intel512common.h>
#include<simd/Intel512avx.h>
#include<simd/Intel512single.h>
#endif
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInternalAsm(const FermionField& psi, FermionField& chi,
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
#ifndef AVX512
{
SiteHalfSpinor BcastP;
SiteHalfSpinor BcastM;
SiteHalfSpinor SiteChiP;
SiteHalfSpinor SiteChiM;
// Ls*Ls * 2 * 12 * vol flops
for(int s1=0; s1<LLs; s1++){
for(int s2=0; s2<LLs; s2++){
for(int l=0; l < Simd::Nsimd(); l++){ // simd lane
int s = s2 + l*LLs;
int lex = s2 + LLs*site;
if( s2==0 && l==0 ){
SiteChiP=zero;
SiteChiM=zero;
}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vbroadcast(BcastP()(sp)(co), psi[lex]()(sp)(co), l);
}}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vbroadcast(BcastM()(sp)(co), psi[lex]()(sp+2)(co), l);
}}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
SiteChiP()(sp)(co) = real_madd(Matp[LLs*s+s1]()()(), BcastP()(sp)(co), SiteChiP()(sp)(co)); // 1100 us.
SiteChiM()(sp)(co) = real_madd(Matm[LLs*s+s1]()()(), BcastM()(sp)(co), SiteChiM()(sp)(co)); // each found by commenting out
}}
}}
{
int lex = s1 + LLs*site;
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vstream(chi[lex]()(sp)(co), SiteChiP()(sp)(co));
vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
}}
}
}
}
#else
{
// pointers
// MASK_REGS;
#define Chi_00 %%zmm1
#define Chi_01 %%zmm2
#define Chi_02 %%zmm3
#define Chi_10 %%zmm4
#define Chi_11 %%zmm5
#define Chi_12 %%zmm6
#define Chi_20 %%zmm7
#define Chi_21 %%zmm8
#define Chi_22 %%zmm9
#define Chi_30 %%zmm10
#define Chi_31 %%zmm11
#define Chi_32 %%zmm12
#define BCAST0 %%zmm13
#define BCAST1 %%zmm14
#define BCAST2 %%zmm15
#define BCAST3 %%zmm16
#define BCAST4 %%zmm17
#define BCAST5 %%zmm18
#define BCAST6 %%zmm19
#define BCAST7 %%zmm20
#define BCAST8 %%zmm21
#define BCAST9 %%zmm22
#define BCAST10 %%zmm23
#define BCAST11 %%zmm24
int incr = LLs*LLs*sizeof(iSinglet<Simd>);
for(int s1=0; s1<LLs; s1++){
for(int s2=0; s2<LLs; s2++){
int lex = s2 + LLs*site;
uint64_t a0 = (uint64_t) &Matp[LLs*s2+s1]; // should be cacheable
uint64_t a1 = (uint64_t) &Matm[LLs*s2+s1];
uint64_t a2 = (uint64_t) &psi[lex];
for(int l=0; l<Simd::Nsimd(); l++){ // simd lane
if((s2+l)==0) {
asm(
VPREFETCH1(0,%2) VPREFETCH1(0,%1)
VPREFETCH1(12,%2) VPREFETCH1(13,%2)
VPREFETCH1(14,%2) VPREFETCH1(15,%2)
VBCASTCDUP(0,%2,BCAST0)
VBCASTCDUP(1,%2,BCAST1)
VBCASTCDUP(2,%2,BCAST2)
VBCASTCDUP(3,%2,BCAST3)
VBCASTCDUP(4,%2,BCAST4) VMULMEM(0,%0,BCAST0,Chi_00)
VBCASTCDUP(5,%2,BCAST5) VMULMEM(0,%0,BCAST1,Chi_01)
VBCASTCDUP(6,%2,BCAST6) VMULMEM(0,%0,BCAST2,Chi_02)
VBCASTCDUP(7,%2,BCAST7) VMULMEM(0,%0,BCAST3,Chi_10)
VBCASTCDUP(8,%2,BCAST8) VMULMEM(0,%0,BCAST4,Chi_11)
VBCASTCDUP(9,%2,BCAST9) VMULMEM(0,%0,BCAST5,Chi_12)
VBCASTCDUP(10,%2,BCAST10) VMULMEM(0,%1,BCAST6,Chi_20)
VBCASTCDUP(11,%2,BCAST11) VMULMEM(0,%1,BCAST7,Chi_21)
VMULMEM(0,%1,BCAST8,Chi_22)
VMULMEM(0,%1,BCAST9,Chi_30)
VMULMEM(0,%1,BCAST10,Chi_31)
VMULMEM(0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
} else {
asm(
VBCASTCDUP(0,%2,BCAST0) VMADDMEM(0,%0,BCAST0,Chi_00)
VBCASTCDUP(1,%2,BCAST1) VMADDMEM(0,%0,BCAST1,Chi_01)
VBCASTCDUP(2,%2,BCAST2) VMADDMEM(0,%0,BCAST2,Chi_02)
VBCASTCDUP(3,%2,BCAST3) VMADDMEM(0,%0,BCAST3,Chi_10)
VBCASTCDUP(4,%2,BCAST4) VMADDMEM(0,%0,BCAST4,Chi_11)
VBCASTCDUP(5,%2,BCAST5) VMADDMEM(0,%0,BCAST5,Chi_12)
VBCASTCDUP(6,%2,BCAST6) VMADDMEM(0,%1,BCAST6,Chi_20)
VBCASTCDUP(7,%2,BCAST7) VMADDMEM(0,%1,BCAST7,Chi_21)
VBCASTCDUP(8,%2,BCAST8) VMADDMEM(0,%1,BCAST8,Chi_22)
VBCASTCDUP(9,%2,BCAST9) VMADDMEM(0,%1,BCAST9,Chi_30)
VBCASTCDUP(10,%2,BCAST10) VMADDMEM(0,%1,BCAST10,Chi_31)
VBCASTCDUP(11,%2,BCAST11) VMADDMEM(0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
}
a0 = a0 + incr;
a1 = a1 + incr;
a2 = a2 + sizeof(Simd::scalar_type);
}
}
{
int lexa = s1+LLs*site;
asm (
VSTORE(0,%0,Chi_00) VSTORE(1 ,%0,Chi_01) VSTORE(2 ,%0,Chi_02)
VSTORE(3,%0,Chi_10) VSTORE(4 ,%0,Chi_11) VSTORE(5 ,%0,Chi_12)
VSTORE(6,%0,Chi_20) VSTORE(7 ,%0,Chi_21) VSTORE(8 ,%0,Chi_22)
VSTORE(9,%0,Chi_30) VSTORE(10,%0,Chi_31) VSTORE(11,%0,Chi_32)
: : "r" ((uint64_t)&chi[lexa]) : "memory" );
}
}
}
#undef Chi_00
#undef Chi_01
#undef Chi_02
#undef Chi_10
#undef Chi_11
#undef Chi_12
#undef Chi_20
#undef Chi_21
#undef Chi_22
#undef Chi_30
#undef Chi_31
#undef Chi_32
#undef BCAST0
#undef BCAST1
#undef BCAST2
#undef BCAST3
#undef BCAST4
#undef BCAST5
#undef BCAST6
#undef BCAST7
#undef BCAST8
#undef BCAST9
#undef BCAST10
#undef BCAST11
#endif
};
// Z-mobius version
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInternalZAsm(const FermionField& psi, FermionField& chi,
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
std::cout << "Error: zMobius not implemented for EOFA" << std::endl;
exit(-1);
};
template<class Impl>
void DomainWallEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
{
int Ls = this->Ls;
int LLs = psi._grid->_rdimensions[0];
int vol = psi._grid->oSites()/LLs;
chi.checkerboard = psi.checkerboard;
Vector<iSinglet<Simd> > Matp;
Vector<iSinglet<Simd> > Matm;
Vector<iSinglet<Simd> > *_Matp;
Vector<iSinglet<Simd> > *_Matm;
// MooeeInternalCompute(dag,inv,Matp,Matm);
if(inv && dag){
_Matp = &this->MatpInvDag;
_Matm = &this->MatmInvDag;
}
if(inv && (!dag)){
_Matp = &this->MatpInv;
_Matm = &this->MatmInv;
}
if(!inv){
MooeeInternalCompute(dag, inv, Matp, Matm);
_Matp = &Matp;
_Matm = &Matm;
}
assert(_Matp->size() == Ls*LLs);
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
if(switcheroo<Coeff_t>::iscomplex()){
parallel_for(auto site=0; site<vol; site++){
MooeeInternalZAsm(psi, chi, LLs, site, *_Matp, *_Matm);
}
} else {
parallel_for(auto site=0; site<vol; site++){
MooeeInternalAsm(psi, chi, LLs, site, *_Matp, *_Matm);
}
}
this->MooeeInvTime += usecond();
}
#ifdef DOMAIN_WALL_EOFA_DPERP_VEC
INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplD);
INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplF);
INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplD);
INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplF);
INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplDF);
INSTANTIATE_DPERP_DWF_EOFA(DomainWallVec5dImplFH);
INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplDF);
INSTANTIATE_DPERP_DWF_EOFA(ZDomainWallVec5dImplFH);
template void DomainWallEOFAFermion<DomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<DomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<DomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<DomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZDomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void DomainWallEOFAFermion<ZDomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
#endif
}}

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/Fermion_base_aggregate.h
@ -38,6 +38,8 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
// - ContinuedFractionFermion5D.cc
// - WilsonFermion.cc
// - WilsonKernels.cc
// - DomainWallEOFAFermion.cc
// - MobiusEOFAFermion.cc
//
// The explicit instantiation is only avoidable if we move this source to headers and end up with include/parse/recompile
// for EVERY .cc file. This define centralises the list and restores global push of impl cases
@ -55,8 +57,9 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
#include <Grid/qcd/action/fermion/ImprovedStaggeredFermion5D.h>
#include <Grid/qcd/action/fermion/CayleyFermion5D.h> // Cayley types
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
#include <Grid/qcd/action/fermion/DomainWallFermion.h>
#include <Grid/qcd/action/fermion/DomainWallEOFAFermion.h>
#include <Grid/qcd/action/fermion/MobiusFermion.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
#include <Grid/qcd/action/fermion/ZMobiusFermion.h>
#include <Grid/qcd/action/fermion/SchurDiagTwoKappa.h>
#include <Grid/qcd/action/fermion/ScaledShamirFermion.h>
@ -113,6 +116,14 @@ typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL;
typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
typedef DomainWallEOFAFermion<WilsonImplR> DomainWallEOFAFermionR;
typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF;
typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD;
typedef DomainWallEOFAFermion<WilsonImplRL> DomainWallEOFAFermionRL;
typedef DomainWallEOFAFermion<WilsonImplFH> DomainWallEOFAFermionFH;
typedef DomainWallEOFAFermion<WilsonImplDF> DomainWallEOFAFermionDF;
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
typedef MobiusFermion<WilsonImplF> MobiusFermionF;
typedef MobiusFermion<WilsonImplD> MobiusFermionD;
@ -121,6 +132,14 @@ typedef MobiusFermion<WilsonImplRL> MobiusFermionRL;
typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
typedef MobiusEOFAFermion<WilsonImplR> MobiusEOFAFermionR;
typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF;
typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD;
typedef MobiusEOFAFermion<WilsonImplRL> MobiusEOFAFermionRL;
typedef MobiusEOFAFermion<WilsonImplFH> MobiusEOFAFermionFH;
typedef MobiusEOFAFermion<WilsonImplDF> MobiusEOFAFermionDF;
typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
@ -129,7 +148,7 @@ typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL;
typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
// Ls vectorised
// Ls vectorised
typedef DomainWallFermion<DomainWallVec5dImplR> DomainWallFermionVec5dR;
typedef DomainWallFermion<DomainWallVec5dImplF> DomainWallFermionVec5dF;
typedef DomainWallFermion<DomainWallVec5dImplD> DomainWallFermionVec5dD;
@ -138,6 +157,14 @@ typedef DomainWallFermion<DomainWallVec5dImplRL> DomainWallFermionVec5dRL;
typedef DomainWallFermion<DomainWallVec5dImplFH> DomainWallFermionVec5dFH;
typedef DomainWallFermion<DomainWallVec5dImplDF> DomainWallFermionVec5dDF;
typedef DomainWallEOFAFermion<DomainWallVec5dImplR> DomainWallEOFAFermionVec5dR;
typedef DomainWallEOFAFermion<DomainWallVec5dImplF> DomainWallEOFAFermionVec5dF;
typedef DomainWallEOFAFermion<DomainWallVec5dImplD> DomainWallEOFAFermionVec5dD;
typedef DomainWallEOFAFermion<DomainWallVec5dImplRL> DomainWallEOFAFermionVec5dRL;
typedef DomainWallEOFAFermion<DomainWallVec5dImplFH> DomainWallEOFAFermionVec5dFH;
typedef DomainWallEOFAFermion<DomainWallVec5dImplDF> DomainWallEOFAFermionVec5dDF;
typedef MobiusFermion<DomainWallVec5dImplR> MobiusFermionVec5dR;
typedef MobiusFermion<DomainWallVec5dImplF> MobiusFermionVec5dF;
typedef MobiusFermion<DomainWallVec5dImplD> MobiusFermionVec5dD;
@ -146,6 +173,14 @@ typedef MobiusFermion<DomainWallVec5dImplRL> MobiusFermionVec5dRL;
typedef MobiusFermion<DomainWallVec5dImplFH> MobiusFermionVec5dFH;
typedef MobiusFermion<DomainWallVec5dImplDF> MobiusFermionVec5dDF;
typedef MobiusEOFAFermion<DomainWallVec5dImplR> MobiusEOFAFermionVec5dR;
typedef MobiusEOFAFermion<DomainWallVec5dImplF> MobiusEOFAFermionVec5dF;
typedef MobiusEOFAFermion<DomainWallVec5dImplD> MobiusEOFAFermionVec5dD;
typedef MobiusEOFAFermion<DomainWallVec5dImplRL> MobiusEOFAFermionVec5dRL;
typedef MobiusEOFAFermion<DomainWallVec5dImplFH> MobiusEOFAFermionVec5dFH;
typedef MobiusEOFAFermion<DomainWallVec5dImplDF> MobiusEOFAFermionVec5dDF;
typedef ZMobiusFermion<ZDomainWallVec5dImplR> ZMobiusFermionVec5dR;
typedef ZMobiusFermion<ZDomainWallVec5dImplF> ZMobiusFermionVec5dF;
typedef ZMobiusFermion<ZDomainWallVec5dImplD> ZMobiusFermionVec5dD;
@ -206,6 +241,14 @@ typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL;
typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionR;
typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF;
typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD;
typedef DomainWallEOFAFermion<GparityWilsonImplRL> GparityDomainWallEOFAFermionRL;
typedef DomainWallEOFAFermion<GparityWilsonImplFH> GparityDomainWallEOFAFermionFH;
typedef DomainWallEOFAFermion<GparityWilsonImplDF> GparityDomainWallEOFAFermionDF;
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR;
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
@ -222,6 +265,14 @@ typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL;
typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionR;
typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF;
typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD;
typedef MobiusEOFAFermion<GparityWilsonImplRL> GparityMobiusEOFAFermionRL;
typedef MobiusEOFAFermion<GparityWilsonImplFH> GparityMobiusEOFAFermionFH;
typedef MobiusEOFAFermion<GparityWilsonImplDF> GparityMobiusEOFAFermionDF;
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;

View File

@ -538,6 +538,12 @@ class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Nrepresent
}
template <class ref>
inline void loadLinkElement(Simd &reg, ref &memory) {
reg = memory;
}
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
{
conformable(Uds._grid,GaugeGrid);

View File

@ -0,0 +1,502 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermion.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid_Eigen_Dense.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
namespace Grid {
namespace QCD {
template<class Impl>
MobiusEOFAFermion<Impl>::MobiusEOFAFermion(
GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3,
RealD _shift, int _pm, RealD _M5,
RealD _b, RealD _c, const ImplParams &p) :
AbstractEOFAFermion<Impl>(_Umu, FiveDimGrid, FiveDimRedBlackGrid,
FourDimGrid, FourDimRedBlackGrid, _mq1, _mq2, _mq3,
_shift, _pm, _M5, _b, _c, p)
{
int Ls = this->Ls;
RealD eps = 1.0;
Approx::zolotarev_data *zdata = Approx::higham(eps, this->Ls);
assert(zdata->n == this->Ls);
std::cout << GridLogMessage << "MobiusEOFAFermion (b=" << _b <<
",c=" << _c << ") with Ls=" << Ls << std::endl;
this->SetCoefficientsTanh(zdata, _b, _c);
std::cout << GridLogMessage << "EOFA parameters: (mq1=" << _mq1 <<
",mq2=" << _mq2 << ",mq3=" << _mq3 << ",shift=" << _shift <<
",pm=" << _pm << ")" << std::endl;
Approx::zolotarev_free(zdata);
if(_shift != 0.0){
SetCoefficientsPrecondShiftOps();
} else {
Mooee_shift.resize(Ls, 0.0);
MooeeInv_shift_lc.resize(Ls, 0.0);
MooeeInv_shift_norm.resize(Ls, 0.0);
MooeeInvDag_shift_lc.resize(Ls, 0.0);
MooeeInvDag_shift_norm.resize(Ls, 0.0);
}
}
/***************************************************************
/* Additional EOFA operators only called outside the inverter.
/* Since speed is not essential, simple axpby-style
/* implementations should be fine.
/***************************************************************/
template<class Impl>
void MobiusEOFAFermion<Impl>::Omega(const FermionField& psi, FermionField& Din, int sign, int dag)
{
int Ls = this->Ls;
RealD alpha = this->alpha;
Din = zero;
if((sign == 1) && (dag == 0)) { // \Omega_{+}
for(int s=0; s<Ls; ++s){
axpby_ssp(Din, 0.0, psi, 2.0*std::pow(1.0-alpha,Ls-s-1)/std::pow(1.0+alpha,Ls-s), psi, s, 0);
}
} else if((sign == -1) && (dag == 0)) { // \Omega_{-}
for(int s=0; s<Ls; ++s){
axpby_ssp(Din, 0.0, psi, 2.0*std::pow(1.0-alpha,s)/std::pow(1.0+alpha,s+1), psi, s, 0);
}
} else if((sign == 1 ) && (dag == 1)) { // \Omega_{+}^{\dagger}
for(int sp=0; sp<Ls; ++sp){
axpby_ssp(Din, 1.0, Din, 2.0*std::pow(1.0-alpha,Ls-sp-1)/std::pow(1.0+alpha,Ls-sp), psi, 0, sp);
}
} else if((sign == -1) && (dag == 1)) { // \Omega_{-}^{\dagger}
for(int sp=0; sp<Ls; ++sp){
axpby_ssp(Din, 1.0, Din, 2.0*std::pow(1.0-alpha,sp)/std::pow(1.0+alpha,sp+1), psi, 0, sp);
}
}
}
// This is the operator relating the usual Ddwf to TWQCD's EOFA Dirac operator (arXiv:1706.05843, Eqn. 6).
// It also relates the preconditioned and unpreconditioned systems described in Appendix B.2.
template<class Impl>
void MobiusEOFAFermion<Impl>::Dtilde(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
RealD b = 0.5 * ( 1.0 + this->alpha );
RealD c = 0.5 * ( 1.0 - this->alpha );
RealD mq1 = this->mq1;
for(int s=0; s<Ls; ++s){
if(s == 0) {
axpby_ssp_pminus(chi, b, psi, -c, psi, s, s+1);
axpby_ssp_pplus (chi, 1.0, chi, mq1*c, psi, s, Ls-1);
} else if(s == (Ls-1)) {
axpby_ssp_pminus(chi, b, psi, mq1*c, psi, s, 0);
axpby_ssp_pplus (chi, 1.0, chi, -c, psi, s, s-1);
} else {
axpby_ssp_pminus(chi, b, psi, -c, psi, s, s+1);
axpby_ssp_pplus (chi, 1.0, chi, -c, psi, s, s-1);
}
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::DtildeInv(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
RealD m = this->mq1;
RealD c = 0.5 * this->alpha;
RealD d = 0.5;
RealD DtInv_p(0.0), DtInv_m(0.0);
RealD N = std::pow(c+d,Ls) + m*std::pow(c-d,Ls);
FermionField tmp(this->FermionGrid());
for(int s=0; s<Ls; ++s){
for(int sp=0; sp<Ls; ++sp){
DtInv_p = m * std::pow(-1.0,s-sp+1) * std::pow(c-d,Ls+s-sp) / std::pow(c+d,s-sp+1) / N;
DtInv_p += (s < sp) ? 0.0 : std::pow(-1.0,s-sp) * std::pow(c-d,s-sp) / std::pow(c+d,s-sp+1);
DtInv_m = m * std::pow(-1.0,sp-s+1) * std::pow(c-d,Ls+sp-s) / std::pow(c+d,sp-s+1) / N;
DtInv_m += (s > sp) ? 0.0 : std::pow(-1.0,sp-s) * std::pow(c-d,sp-s) / std::pow(c+d,sp-s+1);
if(sp == 0){
axpby_ssp_pplus (tmp, 0.0, tmp, DtInv_p, psi, s, sp);
axpby_ssp_pminus(tmp, 0.0, tmp, DtInv_m, psi, s, sp);
} else {
axpby_ssp_pplus (tmp, 1.0, tmp, DtInv_p, psi, s, sp);
axpby_ssp_pminus(tmp, 1.0, tmp, DtInv_m, psi, s, sp);
}
}}
}
/*****************************************************************************************************/
template<class Impl>
RealD MobiusEOFAFermion<Impl>::M(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
FermionField Din(psi._grid);
this->Meooe5D(psi, Din);
this->DW(Din, chi, DaggerNo);
axpby(chi, 1.0, 1.0, chi, psi);
this->M5D(psi, chi);
return(norm2(chi));
}
template<class Impl>
RealD MobiusEOFAFermion<Impl>::Mdag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
FermionField Din(psi._grid);
this->DW(psi, Din, DaggerYes);
this->MeooeDag5D(Din, chi);
this->M5Ddag(psi, chi);
axpby(chi, 1.0, 1.0, chi, psi);
return(norm2(chi));
}
/********************************************************************
/* Performance critical fermion operators called inside the inverter
/********************************************************************/
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
// no shift term
if(this->shift == 0.0){ this->M5D(psi, chi, chi, lower, diag, upper); }
// fused M + shift operation
else{ this->M5D_shift(psi, chi, chi, lower, diag, upper, Mooee_shift); }
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
std::vector<Coeff_t> diag(Ls,1.0);
std::vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1] = this->mq1;
std::vector<Coeff_t> lower(Ls,-1.0); lower[0] = this->mq1;
// no shift term
if(this->shift == 0.0){ this->M5Ddag(psi, chi, chi, lower, diag, upper); }
// fused M + shift operation
else{ this->M5Ddag_shift(psi, chi, chi, lower, diag, upper, Mooee_shift); }
}
// half checkerboard operations
template<class Impl>
void MobiusEOFAFermion<Impl>::Mooee(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
// coefficients of Mooee
std::vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){
upper[s] = -this->cee[s];
lower[s] = -this->cee[s];
}
upper[Ls-1] *= -this->mq1;
lower[0] *= -this->mq1;
// no shift term
if(this->shift == 0.0){ this->M5D(psi, psi, chi, lower, diag, upper); }
// fused M + shift operation
else { this->M5D_shift(psi, psi, chi, lower, diag, upper, Mooee_shift); }
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeDag(const FermionField& psi, FermionField& chi)
{
int Ls = this->Ls;
// coefficients of MooeeDag
std::vector<Coeff_t> diag = this->bee;
std::vector<Coeff_t> upper(Ls);
std::vector<Coeff_t> lower(Ls);
for(int s=0; s<Ls; s++){
if(s==0) {
upper[s] = -this->cee[s+1];
lower[s] = this->mq1*this->cee[Ls-1];
} else if(s==(Ls-1)) {
upper[s] = this->mq1*this->cee[0];
lower[s] = -this->cee[s-1];
} else {
upper[s] = -this->cee[s+1];
lower[s] = -this->cee[s-1];
}
}
// no shift term
if(this->shift == 0.0){ this->M5Ddag(psi, psi, chi, lower, diag, upper); }
// fused M + shift operation
else{ this->M5Ddag_shift(psi, psi, chi, lower, diag, upper, Mooee_shift); }
}
/****************************************************************************************/
// Computes coefficients for applying Cayley preconditioned shift operators
// (Mooee + \Delta) --> Mooee_shift
// (Mooee + \Delta)^{-1} --> MooeeInv_shift_lc, MooeeInv_shift_norm
// (Mooee + \Delta)^{-dag} --> MooeeInvDag_shift_lc, MooeeInvDag_shift_norm
// For the latter two cases, the operation takes the form
// [ (Mooee + \Delta)^{-1} \psi ]_{i} = Mooee_{ij} \psi_{j} +
// ( MooeeInv_shift_norm )_{i} ( \sum_{j} [ MooeeInv_shift_lc ]_{j} P_{pm} \psi_{j} )
template<class Impl>
void MobiusEOFAFermion<Impl>::SetCoefficientsPrecondShiftOps()
{
int Ls = this->Ls;
int pm = this->pm;
RealD alpha = this->alpha;
RealD k = this->k;
RealD mq1 = this->mq1;
RealD shift = this->shift;
// Initialize
Mooee_shift.resize(Ls);
MooeeInv_shift_lc.resize(Ls);
MooeeInv_shift_norm.resize(Ls);
MooeeInvDag_shift_lc.resize(Ls);
MooeeInvDag_shift_norm.resize(Ls);
// Construct Mooee_shift
int idx(0);
Coeff_t N = ( (pm == 1) ? 1.0 : -1.0 ) * (2.0*shift*k) *
( std::pow(alpha+1.0,Ls) + mq1*std::pow(alpha-1.0,Ls) );
for(int s=0; s<Ls; ++s){
idx = (pm == 1) ? (s) : (Ls-1-s);
Mooee_shift[idx] = N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1);
}
// Tridiagonal solve for MooeeInvDag_shift_lc
{
Coeff_t m(0.0);
std::vector<Coeff_t> d = Mooee_shift;
std::vector<Coeff_t> u(Ls,0.0);
std::vector<Coeff_t> y(Ls,0.0);
std::vector<Coeff_t> q(Ls,0.0);
if(pm == 1){ u[0] = 1.0; }
else{ u[Ls-1] = 1.0; }
// Tridiagonal matrix algorithm + Sherman-Morrison formula
//
// We solve
// ( Mooee' + u \otimes v ) MooeeInvDag_shift_lc = Mooee_shift
// where Mooee' is the tridiagonal part of Mooee_{+}, and
// u = (1,0,...,0) and v = (0,...,0,mq1*cee[0]) are chosen
// so that the outer-product u \otimes v gives the (0,Ls-1)
// entry of Mooee_{+}.
//
// We do this as two solves: Mooee'*y = d and Mooee'*q = u,
// and then construct the solution to the original system
// MooeeInvDag_shift_lc = y - <v,y> / ( 1 + <v,q> ) q
if(pm == 1){
for(int s=1; s<Ls; ++s){
m = -this->cee[s] / this->bee[s-1];
d[s] -= m*d[s-1];
u[s] -= m*u[s-1];
}
}
y[Ls-1] = d[Ls-1] / this->bee[Ls-1];
q[Ls-1] = u[Ls-1] / this->bee[Ls-1];
for(int s=Ls-2; s>=0; --s){
if(pm == 1){
y[s] = d[s] / this->bee[s];
q[s] = u[s] / this->bee[s];
} else {
y[s] = ( d[s] + this->cee[s]*y[s+1] ) / this->bee[s];
q[s] = ( u[s] + this->cee[s]*q[s+1] ) / this->bee[s];
}
}
// Construct MooeeInvDag_shift_lc
for(int s=0; s<Ls; ++s){
if(pm == 1){
MooeeInvDag_shift_lc[s] = y[s] - mq1*this->cee[0]*y[Ls-1] /
(1.0+mq1*this->cee[0]*q[Ls-1]) * q[s];
} else {
MooeeInvDag_shift_lc[s] = y[s] - mq1*this->cee[Ls-1]*y[0] /
(1.0+mq1*this->cee[Ls-1]*q[0]) * q[s];
}
}
// Compute remaining coefficients
N = (pm == 1) ? (1.0 + MooeeInvDag_shift_lc[Ls-1]) : (1.0 + MooeeInvDag_shift_lc[0]);
for(int s=0; s<Ls; ++s){
// MooeeInv_shift_lc
if(pm == 1){ MooeeInv_shift_lc[s] = std::pow(this->bee[s],s) * std::pow(this->cee[s],Ls-1-s); }
else{ MooeeInv_shift_lc[s] = std::pow(this->bee[s],Ls-1-s) * std::pow(this->cee[s],s); }
// MooeeInv_shift_norm
MooeeInv_shift_norm[s] = -MooeeInvDag_shift_lc[s] /
( std::pow(this->bee[s],Ls) + mq1*std::pow(this->cee[s],Ls) ) / N;
// MooeeInvDag_shift_norm
if(pm == 1){ MooeeInvDag_shift_norm[s] = -std::pow(this->bee[s],s) * std::pow(this->cee[s],Ls-1-s) /
( std::pow(this->bee[s],Ls) + mq1*std::pow(this->cee[s],Ls) ) / N; }
else{ MooeeInvDag_shift_norm[s] = -std::pow(this->bee[s],Ls-1-s) * std::pow(this->cee[s],s) /
( std::pow(this->bee[s],Ls) + mq1*std::pow(this->cee[s],Ls) ) / N; }
}
}
}
// Recompute coefficients for a different value of shift constant
template<class Impl>
void MobiusEOFAFermion<Impl>::RefreshShiftCoefficients(RealD new_shift)
{
this->shift = new_shift;
if(new_shift != 0.0){
SetCoefficientsPrecondShiftOps();
} else {
int Ls = this->Ls;
Mooee_shift.resize(Ls,0.0);
MooeeInv_shift_lc.resize(Ls,0.0);
MooeeInv_shift_norm.resize(Ls,0.0);
MooeeInvDag_shift_lc.resize(Ls,0.0);
MooeeInvDag_shift_norm.resize(Ls,0.0);
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternalCompute(int dag, int inv,
Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
int Ls = this->Ls;
GridBase* grid = this->FermionRedBlackGrid();
int LLs = grid->_rdimensions[0];
if(LLs == Ls){ return; } // Not vectorised in 5th direction
Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls);
Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
for(int s=0; s<Ls; s++){
Pplus(s,s) = this->bee[s];
Pminus(s,s) = this->bee[s];
}
for(int s=0; s<Ls-1; s++){
Pminus(s,s+1) = -this->cee[s];
Pplus(s+1,s) = -this->cee[s+1];
}
Pplus (0,Ls-1) = this->mq1*this->cee[0];
Pminus(Ls-1,0) = this->mq1*this->cee[Ls-1];
if(this->shift != 0.0){
RealD c = 0.5 * this->alpha;
RealD d = 0.5;
RealD N = this->shift * this->k * ( std::pow(c+d,Ls) + this->mq1*std::pow(c-d,Ls) );
if(this->pm == 1) {
for(int s=0; s<Ls; ++s){
Pplus(s,Ls-1) += N * std::pow(-1.0,s) * std::pow(c-d,s) / std::pow(c+d,Ls+s+1);
}
} else {
for(int s=0; s<Ls; ++s){
Pminus(s,0) += N * std::pow(-1.0,s+1) * std::pow(c-d,Ls-1-s) / std::pow(c+d,2*Ls-s);
}
}
}
Eigen::MatrixXcd PplusMat ;
Eigen::MatrixXcd PminusMat;
if(inv) {
PplusMat = Pplus.inverse();
PminusMat = Pminus.inverse();
} else {
PplusMat = Pplus;
PminusMat = Pminus;
}
if(dag){
PplusMat.adjointInPlace();
PminusMat.adjointInPlace();
}
typedef typename SiteHalfSpinor::scalar_type scalar_type;
const int Nsimd = Simd::Nsimd();
Matp.resize(Ls*LLs);
Matm.resize(Ls*LLs);
for(int s2=0; s2<Ls; s2++){
for(int s1=0; s1<LLs; s1++){
int istride = LLs;
int ostride = 1;
Simd Vp;
Simd Vm;
scalar_type *sp = (scalar_type*) &Vp;
scalar_type *sm = (scalar_type*) &Vm;
for(int l=0; l<Nsimd; l++){
if(switcheroo<Coeff_t>::iscomplex()) {
sp[l] = PplusMat (l*istride+s1*ostride,s2);
sm[l] = PminusMat(l*istride+s1*ostride,s2);
} else {
// if real
scalar_type tmp;
tmp = PplusMat (l*istride+s1*ostride,s2);
sp[l] = scalar_type(tmp.real(),tmp.real());
tmp = PminusMat(l*istride+s1*ostride,s2);
sm[l] = scalar_type(tmp.real(),tmp.real());
}
}
Matp[LLs*s2+s1] = Vp;
Matm[LLs*s2+s1] = Vm;
}}
}
FermOpTemplateInstantiate(MobiusEOFAFermion);
GparityFermOpTemplateInstantiate(MobiusEOFAFermion);
}}

View File

@ -0,0 +1,133 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermion.h
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_MOBIUS_EOFA_FERMION_H
#define GRID_QCD_MOBIUS_EOFA_FERMION_H
#include <Grid/qcd/action/fermion/AbstractEOFAFermion.h>
namespace Grid {
namespace QCD {
template<class Impl>
class MobiusEOFAFermion : public AbstractEOFAFermion<Impl>
{
public:
INHERIT_IMPL_TYPES(Impl);
public:
// Shift operator coefficients for red-black preconditioned Mobius EOFA
std::vector<Coeff_t> Mooee_shift;
std::vector<Coeff_t> MooeeInv_shift_lc;
std::vector<Coeff_t> MooeeInv_shift_norm;
std::vector<Coeff_t> MooeeInvDag_shift_lc;
std::vector<Coeff_t> MooeeInvDag_shift_norm;
virtual void Instantiatable(void) {};
// EOFA-specific operations
virtual void Omega (const FermionField& in, FermionField& out, int sign, int dag);
virtual void Dtilde (const FermionField& in, FermionField& out);
virtual void DtildeInv (const FermionField& in, FermionField& out);
// override multiply
virtual RealD M (const FermionField& in, FermionField& out);
virtual RealD Mdag (const FermionField& in, FermionField& out);
// half checkerboard operations
virtual void Mooee (const FermionField& in, FermionField& out);
virtual void MooeeDag (const FermionField& in, FermionField& out);
virtual void MooeeInv (const FermionField& in, FermionField& out);
virtual void MooeeInv_shift (const FermionField& in, FermionField& out);
virtual void MooeeInvDag (const FermionField& in, FermionField& out);
virtual void MooeeInvDag_shift(const FermionField& in, FermionField& out);
virtual void M5D (const FermionField& psi, FermionField& chi);
virtual void M5Ddag (const FermionField& psi, FermionField& chi);
/////////////////////////////////////////////////////
// Instantiate different versions depending on Impl
/////////////////////////////////////////////////////
void M5D(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs);
void M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper);
void M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi,
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs);
void MooeeInternal(const FermionField& in, FermionField& out, int dag, int inv);
void MooeeInternalCompute(int dag, int inv, Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
void MooeeInternalAsm(const FermionField& in, FermionField& out, int LLs, int site,
Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
void MooeeInternalZAsm(const FermionField& in, FermionField& out, int LLs, int site,
Vector<iSinglet<Simd>>& Matp, Vector<iSinglet<Simd>>& Matm);
virtual void RefreshShiftCoefficients(RealD new_shift);
// Constructors
MobiusEOFAFermion(GaugeField& _Umu, GridCartesian& FiveDimGrid, GridRedBlackCartesian& FiveDimRedBlackGrid,
GridCartesian& FourDimGrid, GridRedBlackCartesian& FourDimRedBlackGrid,
RealD _mq1, RealD _mq2, RealD _mq3, RealD _shift, int pm,
RealD _M5, RealD _b, RealD _c, const ImplParams& p=ImplParams());
protected:
void SetCoefficientsPrecondShiftOps(void);
};
}}
#define INSTANTIATE_DPERP_MOBIUS_EOFA(A)\
template void MobiusEOFAFermion<A>::M5D(const FermionField& psi, const FermionField& phi, FermionField& chi, \
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
template void MobiusEOFAFermion<A>::M5D_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, \
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper, std::vector<Coeff_t>& shift_coeffs); \
template void MobiusEOFAFermion<A>::M5Ddag(const FermionField& psi, const FermionField& phi, FermionField& chi, \
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper); \
template void MobiusEOFAFermion<A>::M5Ddag_shift(const FermionField& psi, const FermionField& phi, FermionField& chi, \
std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper, std::vector<Coeff_t>& shift_coeffs); \
template void MobiusEOFAFermion<A>::MooeeInv(const FermionField& psi, FermionField& chi); \
template void MobiusEOFAFermion<A>::MooeeInv_shift(const FermionField& psi, FermionField& chi); \
template void MobiusEOFAFermion<A>::MooeeInvDag(const FermionField& psi, FermionField& chi); \
template void MobiusEOFAFermion<A>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi);
#undef MOBIUS_EOFA_DPERP_DENSE
#define MOBIUS_EOFA_DPERP_CACHE
#undef MOBIUS_EOFA_DPERP_LINALG
#define MOBIUS_EOFA_DPERP_VEC
#endif

View File

@ -0,0 +1,429 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermioncache.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
namespace Grid {
namespace QCD {
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi, const FermionField &phi, FermionField &chi,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper)
{
int Ls = this->Ls;
GridBase *grid = psi._grid;
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
for(int s=0; s<Ls; s++){
auto tmp = psi._odata[0];
if(s==0){
spProj5m(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+Ls-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else if(s==(Ls-1)) {
spProj5m(tmp, psi._odata[ss+0]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else {
spProj5m(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
}
}
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi, const FermionField &phi, FermionField &chi,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper,
std::vector<Coeff_t> &shift_coeffs)
{
int Ls = this->Ls;
int shift_s = (this->pm == 1) ? (Ls-1) : 0; // s-component modified by shift operator
GridBase *grid = psi._grid;
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
for(int s=0; s<Ls; s++){
auto tmp = psi._odata[0];
if(s==0){
spProj5m(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+Ls-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else if(s==(Ls-1)) {
spProj5m(tmp, psi._odata[ss+0]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else {
spProj5m(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5p(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
}
if(this->pm == 1){ spProj5p(tmp, psi._odata[ss+shift_s]); }
else{ spProj5m(tmp, psi._odata[ss+shift_s]); }
chi[ss+s] = chi[ss+s] + shift_coeffs[s]*tmp;
}
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi, const FermionField &phi, FermionField &chi,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper)
{
int Ls = this->Ls;
GridBase *grid = psi._grid;
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
auto tmp = psi._odata[0];
for(int s=0; s<Ls; s++){
if(s==0) {
spProj5p(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+Ls-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else if(s==(Ls-1)) {
spProj5p(tmp, psi._odata[ss+0]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else {
spProj5p(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
}
}
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi, const FermionField &phi, FermionField &chi,
std::vector<Coeff_t> &lower, std::vector<Coeff_t> &diag, std::vector<Coeff_t> &upper,
std::vector<Coeff_t> &shift_coeffs)
{
int Ls = this->Ls;
int shift_s = (this->pm == 1) ? (Ls-1) : 0; // s-component modified by shift operator
GridBase *grid = psi._grid;
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// Flops = 6.0*(Nc*Ns) *Ls*vol
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
chi[ss+Ls-1] = zero;
auto tmp = psi._odata[0];
for(int s=0; s<Ls; s++){
if(s==0) {
spProj5p(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+Ls-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else if(s==(Ls-1)) {
spProj5p(tmp, psi._odata[ss+0]);
chi[ss+s] = chi[ss+s] + diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
} else {
spProj5p(tmp, psi._odata[ss+s+1]);
chi[ss+s] = diag[s]*phi[ss+s] + upper[s]*tmp;
spProj5m(tmp, psi._odata[ss+s-1]);
chi[ss+s] = chi[ss+s] + lower[s]*tmp;
}
if(this->pm == 1){ spProj5p(tmp, psi._odata[ss+s]); }
else{ spProj5m(tmp, psi._odata[ss+s]); }
chi[ss+shift_s] = chi[ss+shift_s] + shift_coeffs[s]*tmp;
}
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi, FermionField &chi)
{
if(this->shift != 0.0){ MooeeInv_shift(psi,chi); return; }
GridBase *grid = psi._grid;
int Ls = this->Ls;
chi.checkerboard = psi.checkerboard;
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
auto tmp = psi._odata[0];
// Apply (L^{\prime})^{-1}
chi[ss] = psi[ss]; // chi[0]=psi[0]
for(int s=1; s<Ls; s++){
spProj5p(tmp, chi[ss+s-1]);
chi[ss+s] = psi[ss+s] - this->lee[s-1]*tmp;
}
// L_m^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
spProj5m(tmp, chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - this->leem[s]*tmp;
}
// U_m^{-1} D^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[s] + 1/d chi[s]
spProj5p(tmp, chi[ss+Ls-1]);
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->ueem[s]/this->dee[Ls-1])*tmp;
}
chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
// Apply U^{-1}
for(int s=Ls-2; s>=0; s--){
spProj5m(tmp, chi[ss+s+1]);
chi[ss+s] = chi[ss+s] - this->uee[s]*tmp;
}
}
this->MooeeInvTime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi, FermionField &chi)
{
GridBase *grid = psi._grid;
int Ls = this->Ls;
chi.checkerboard = psi.checkerboard;
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
auto tmp1 = psi._odata[0];
auto tmp2 = psi._odata[0];
auto tmp2_spProj = psi._odata[0];
// Apply (L^{\prime})^{-1} and accumulate MooeeInv_shift_lc[j]*psi[j] in tmp2
chi[ss] = psi[ss]; // chi[0]=psi[0]
tmp2 = MooeeInv_shift_lc[0]*psi[ss];
for(int s=1; s<Ls; s++){
spProj5p(tmp1, chi[ss+s-1]);
chi[ss+s] = psi[ss+s] - this->lee[s-1]*tmp1;
tmp2 = tmp2 + MooeeInv_shift_lc[s]*psi[ss+s];
}
if(this->pm == 1){ spProj5p(tmp2_spProj, tmp2);}
else{ spProj5m(tmp2_spProj, tmp2); }
// L_m^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
spProj5m(tmp1, chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - this->leem[s]*tmp1;
}
// U_m^{-1} D^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[s] + 1/d chi[s]
spProj5p(tmp1, chi[ss+Ls-1]);
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->ueem[s]/this->dee[Ls-1])*tmp1;
}
// chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1] + MooeeInv_shift_norm[Ls-1]*tmp2_spProj;
chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
spProj5m(tmp1, chi[ss+Ls-1]);
chi[ss+Ls-1] = chi[ss+Ls-1] + MooeeInv_shift_norm[Ls-1]*tmp2_spProj;
// Apply U^{-1} and add shift term
for(int s=Ls-2; s>=0; s--){
chi[ss+s] = chi[ss+s] - this->uee[s]*tmp1;
spProj5m(tmp1, chi[ss+s]);
chi[ss+s] = chi[ss+s] + MooeeInv_shift_norm[s]*tmp2_spProj;
}
}
this->MooeeInvTime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi, FermionField &chi)
{
if(this->shift != 0.0){ MooeeInvDag_shift(psi,chi); return; }
GridBase *grid = psi._grid;
int Ls = this->Ls;
chi.checkerboard = psi.checkerboard;
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
auto tmp = psi._odata[0];
// Apply (U^{\prime})^{-dag}
chi[ss] = psi[ss];
for(int s=1; s<Ls; s++){
spProj5m(tmp, chi[ss+s-1]);
chi[ss+s] = psi[ss+s] - this->uee[s-1]*tmp;
}
// U_m^{-\dag}
for(int s=0; s<Ls-1; s++){
spProj5p(tmp, chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - this->ueem[s]*tmp;
}
// L_m^{-\dag} D^{-dag}
for(int s=0; s<Ls-1; s++){
spProj5m(tmp, chi[ss+Ls-1]);
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->leem[s]/this->dee[Ls-1])*tmp;
}
chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
// Apply L^{-dag}
for(int s=Ls-2; s>=0; s--){
spProj5p(tmp, chi[ss+s+1]);
chi[ss+s] = chi[ss+s] - this->lee[s]*tmp;
}
}
this->MooeeInvTime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi, FermionField &chi)
{
GridBase *grid = psi._grid;
int Ls = this->Ls;
chi.checkerboard = psi.checkerboard;
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=Ls){
auto tmp1 = psi._odata[0];
auto tmp2 = psi._odata[0];
auto tmp2_spProj = psi._odata[0];
// Apply (U^{\prime})^{-dag} and accumulate MooeeInvDag_shift_lc[j]*psi[j] in tmp2
chi[ss] = psi[ss];
tmp2 = MooeeInvDag_shift_lc[0]*psi[ss];
for(int s=1; s<Ls; s++){
spProj5m(tmp1, chi[ss+s-1]);
chi[ss+s] = psi[ss+s] - this->uee[s-1]*tmp1;
tmp2 = tmp2 + MooeeInvDag_shift_lc[s]*psi[ss+s];
}
if(this->pm == 1){ spProj5p(tmp2_spProj, tmp2);}
else{ spProj5m(tmp2_spProj, tmp2); }
// U_m^{-\dag}
for(int s=0; s<Ls-1; s++){
spProj5p(tmp1, chi[ss+s]);
chi[ss+Ls-1] = chi[ss+Ls-1] - this->ueem[s]*tmp1;
}
// L_m^{-\dag} D^{-dag}
for(int s=0; s<Ls-1; s++){
spProj5m(tmp1, chi[ss+Ls-1]);
chi[ss+s] = (1.0/this->dee[s])*chi[ss+s] - (this->leem[s]/this->dee[Ls-1])*tmp1;
}
chi[ss+Ls-1] = (1.0/this->dee[Ls-1])*chi[ss+Ls-1];
spProj5p(tmp1, chi[ss+Ls-1]);
chi[ss+Ls-1] = chi[ss+Ls-1] + MooeeInvDag_shift_norm[Ls-1]*tmp2_spProj;
// Apply L^{-dag}
for(int s=Ls-2; s>=0; s--){
chi[ss+s] = chi[ss+s] - this->lee[s]*tmp1;
spProj5p(tmp1, chi[ss+s]);
chi[ss+s] = chi[ss+s] + MooeeInvDag_shift_norm[s]*tmp2_spProj;
}
}
this->MooeeInvTime += usecond();
}
#ifdef MOBIUS_EOFA_DPERP_CACHE
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
#endif
}}

View File

@ -0,0 +1,184 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermiondense.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid_Eigen_Dense.h>
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
namespace Grid {
namespace QCD {
/*
* Dense matrix versions of routines
*/
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
{
int Ls = this->Ls;
int LLs = psi._grid->_rdimensions[0];
int vol = psi._grid->oSites()/LLs;
int pm = this->pm;
RealD shift = this->shift;
RealD alpha = this->alpha;
RealD k = this->k;
RealD mq1 = this->mq1;
chi.checkerboard = psi.checkerboard;
assert(Ls==LLs);
Eigen::MatrixXd Pplus = Eigen::MatrixXd::Zero(Ls,Ls);
Eigen::MatrixXd Pminus = Eigen::MatrixXd::Zero(Ls,Ls);
for(int s=0;s<Ls;s++){
Pplus(s,s) = this->bee[s];
Pminus(s,s) = this->bee[s];
}
for(int s=0; s<Ls-1; s++){
Pminus(s,s+1) = -this->cee[s];
}
for(int s=0; s<Ls-1; s++){
Pplus(s+1,s) = -this->cee[s+1];
}
Pplus (0,Ls-1) = mq1*this->cee[0];
Pminus(Ls-1,0) = mq1*this->cee[Ls-1];
if(shift != 0.0){
Coeff_t N = 2.0 * ( std::pow(alpha+1.0,Ls) + mq1*std::pow(alpha-1.0,Ls) );
for(int s=0; s<Ls; ++s){
if(pm == 1){ Pplus(s,Ls-1) += shift * k * N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1); }
else{ Pminus(Ls-1-s,Ls-1) -= shift * k * N * std::pow(-1.0,s) * std::pow(alpha-1.0,s) / std::pow(alpha+1.0,Ls+s+1); }
}
}
Eigen::MatrixXd PplusMat ;
Eigen::MatrixXd PminusMat;
if(inv){
PplusMat = Pplus.inverse();
PminusMat = Pminus.inverse();
} else {
PplusMat = Pplus;
PminusMat = Pminus;
}
if(dag){
PplusMat.adjointInPlace();
PminusMat.adjointInPlace();
}
// For the non-vectorised s-direction this is simple
for(auto site=0; site<vol; site++){
SiteSpinor SiteChi;
SiteHalfSpinor SitePplus;
SiteHalfSpinor SitePminus;
for(int s1=0; s1<Ls; s1++){
SiteChi = zero;
for(int s2=0; s2<Ls; s2++){
int lex2 = s2 + Ls*site;
if(PplusMat(s1,s2) != 0.0){
spProj5p(SitePplus,psi[lex2]);
accumRecon5p(SiteChi, PplusMat(s1,s2)*SitePplus);
}
if(PminusMat(s1,s2) != 0.0){
spProj5m(SitePminus, psi[lex2]);
accumRecon5m(SiteChi, PminusMat(s1,s2)*SitePminus);
}
}
chi[s1+Ls*site] = SiteChi*0.5;
}
}
}
#ifdef MOBIUS_EOFA_DPERP_DENSE
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
template void MobiusEOFAFermion<GparityWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<GparityWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<WilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<WilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZWilsonImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZWilsonImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
template void MobiusEOFAFermion<GparityWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<GparityWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<WilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<WilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZWilsonImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZWilsonImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
#endif
}}

View File

@ -0,0 +1,290 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermionssp.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
namespace Grid {
namespace QCD {
// FIXME -- make a version of these routines with site loop outermost for cache reuse.
// Pminus fowards
// Pplus backwards
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(s==0) {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
} else if (s==(Ls-1)) {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
} else {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
}
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs)
{
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(s==0) {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, Ls-1);
} else if (s==(Ls-1)) {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, 0);
axpby_ssp_pplus (chi, one, chi, lower[s], psi, s, s-1);
} else {
axpby_ssp_pminus(chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pplus(chi, one, chi, lower[s], psi, s, s-1);
}
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, s, Ls-1); }
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, s, 0); }
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(s==0) {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
} else if (s==(Ls-1)) {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
} else {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
}
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs)
{
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(s==0) {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, Ls-1);
} else if (s==(Ls-1)) {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, 0);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
} else {
axpby_ssp_pplus (chi, diag[s], phi, upper[s], psi, s, s+1);
axpby_ssp_pminus(chi, one, chi, lower[s], psi, s, s-1);
}
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, Ls-1, s); }
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, 0, s); }
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
if(this->shift != 0.0){ MooeeInv_shift(psi,chi); return; }
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard = psi.checkerboard;
int Ls = this->Ls;
// Apply (L^{\prime})^{-1}
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
for(int s=1; s<Ls; s++){
axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
}
// L_m^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
}
// U_m^{-1} D^{-1}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls-1], chi, s, Ls-1);
}
axpby_ssp(chi, one/this->dee[Ls-1], chi, czero, chi, Ls-1, Ls-1);
// Apply U^{-1}
for(int s=Ls-2; s>=0; s--){
axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1); // chi[Ls]
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
{
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard = psi.checkerboard;
int Ls = this->Ls;
FermionField tmp(psi._grid);
// Apply (L^{\prime})^{-1}
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
axpby_ssp(tmp, czero, tmp, this->MooeeInv_shift_lc[0], psi, 0, 0);
for(int s=1; s<Ls; s++){
axpby_ssp_pplus(chi, one, psi, -this->lee[s-1], chi, s, s-1);// recursion Psi[s] -lee P_+ chi[s-1]
axpby_ssp(tmp, one, tmp, this->MooeeInv_shift_lc[s], psi, 0, s);
}
// L_m^{-1}
for(int s=0; s<Ls-1; s++){ // Chi[ee] = 1 - sum[s<Ls-1] -leem[s]P_- chi
axpby_ssp_pminus(chi, one, chi, -this->leem[s], chi, Ls-1, s);
}
// U_m^{-1} D^{-1}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pplus(chi, one/this->dee[s], chi, -this->ueem[s]/this->dee[Ls-1], chi, s, Ls-1);
}
axpby_ssp(chi, one/this->dee[Ls-1], chi, czero, chi, Ls-1, Ls-1);
// Apply U^{-1} and add shift term
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInv_shift_norm[Ls-1], tmp, Ls-1, 0); }
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInv_shift_norm[Ls-1], tmp, Ls-1, 0); }
for(int s=Ls-2; s>=0; s--){
axpby_ssp_pminus(chi, one, chi, -this->uee[s], chi, s, s+1); // chi[Ls]
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInv_shift_norm[s], tmp, s, 0); }
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInv_shift_norm[s], tmp, s, 0); }
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
if(this->shift != 0.0){ MooeeInvDag_shift(psi,chi); return; }
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard = psi.checkerboard;
int Ls = this->Ls;
// Apply (U^{\prime})^{-dagger}
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
for(int s=1; s<Ls; s++){
axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
}
// U_m^{-\dagger}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
}
// L_m^{-\dagger} D^{-dagger}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
}
axpby_ssp(chi, one/conjugate(this->dee[Ls-1]), chi, czero, chi, Ls-1, Ls-1);
// Apply L^{-dagger}
for(int s=Ls-2; s>=0; s--){
axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1); // chi[Ls]
}
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
{
Coeff_t one(1.0);
Coeff_t czero(0.0);
chi.checkerboard = psi.checkerboard;
int Ls = this->Ls;
FermionField tmp(psi._grid);
// Apply (U^{\prime})^{-dagger} and accumulate (MooeeInvDag_shift_lc)_{j} \psi_{j} in tmp[0]
axpby_ssp(chi, one, psi, czero, psi, 0, 0); // chi[0]=psi[0]
axpby_ssp(tmp, czero, tmp, this->MooeeInvDag_shift_lc[0], psi, 0, 0);
for(int s=1; s<Ls; s++){
axpby_ssp_pminus(chi, one, psi, -conjugate(this->uee[s-1]), chi, s, s-1);
axpby_ssp(tmp, one, tmp, this->MooeeInvDag_shift_lc[s], psi, 0, s);
}
// U_m^{-\dagger}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pplus(chi, one, chi, -conjugate(this->ueem[s]), chi, Ls-1, s);
}
// L_m^{-\dagger} D^{-dagger}
for(int s=0; s<Ls-1; s++){
axpby_ssp_pminus(chi, one/conjugate(this->dee[s]), chi, -conjugate(this->leem[s]/this->dee[Ls-1]), chi, s, Ls-1);
}
axpby_ssp(chi, one/conjugate(this->dee[Ls-1]), chi, czero, chi, Ls-1, Ls-1);
// Apply L^{-dagger} and add shift
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInvDag_shift_norm[Ls-1], tmp, Ls-1, 0); }
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInvDag_shift_norm[Ls-1], tmp, Ls-1, 0); }
for(int s=Ls-2; s>=0; s--){
axpby_ssp_pplus(chi, one, chi, -conjugate(this->lee[s]), chi, s, s+1); // chi[Ls]
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, this->MooeeInvDag_shift_norm[s], tmp, s, 0); }
else{ axpby_ssp_pminus(chi, one, chi, this->MooeeInvDag_shift_norm[s], tmp, s, 0); }
}
}
#ifdef MOBIUS_EOFA_DPERP_LINALG
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(WilsonImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(GparityWilsonImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZWilsonImplDF);
#endif
}}

View File

@ -0,0 +1,983 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermionvec.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
namespace Grid {
namespace QCD {
/*
* Dense matrix versions of routines
*/
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
const int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd>> u(LLs);
Vector<iSinglet<Simd>> l(LLs);
Vector<iSinglet<Simd>> d(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
assert(Nc == 3);
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
alignas(64) SiteSpinor fm;
for(int v=0; v<LLs; v++){
int vp = (v+1)%LLs;
int vm = (v+LLs-1)%LLs;
spProj5m(hp, psi[ss+vp]);
spProj5p(hm, psi[ss+vm]);
if (vp <= v){ rotate(hp, hp, 1); }
if (vm >= v){ rotate(hm, hm, nsimd-1); }
hp = 0.5*hp;
hm = 0.5*hm;
spRecon5m(fp, hp);
spRecon5p(fm, hm);
chi[ss+v] = d[v]*phi[ss+v];
chi[ss+v] = chi[ss+v] + u[v]*fp;
chi[ss+v] = chi[ss+v] + l[v]*fm;
}
#else
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(2)(0);
Simd hp_01 = psi[ss+vp]()(2)(1);
Simd hp_02 = psi[ss+vp]()(2)(2);
Simd hp_10 = psi[ss+vp]()(3)(0);
Simd hp_11 = psi[ss+vp]()(3)(1);
Simd hp_12 = psi[ss+vp]()(3)(2);
Simd hm_00 = psi[ss+vm]()(0)(0);
Simd hm_01 = psi[ss+vm]()(0)(1);
Simd hm_02 = psi[ss+vm]()(0)(2);
Simd hm_10 = psi[ss+vm]()(1)(0);
Simd hm_11 = psi[ss+vm]()(1)(1);
Simd hm_12 = psi[ss+vm]()(1)(2);
if(vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
// Can force these to real arithmetic and save 2x.
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
#endif
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs)
{
#if 0
this->M5D(psi, phi, chi, lower, diag, upper);
// FIXME: possible gain from vectorizing shift operation as well?
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, s, Ls-1); }
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, s, 0); }
}
#else
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
const int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd>> u(LLs);
Vector<iSinglet<Simd>> l(LLs);
Vector<iSinglet<Simd>> d(LLs);
Vector<iSinglet<Simd>> s(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
scalar_type* s_p = (scalar_type*) &s[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
s_p[ss] = shift_coeffs[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
assert(Nc == 3);
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
int vs = (this->pm == 1) ? LLs-1 : 0;
Simd hs_00 = (this->pm == 1) ? psi[ss+vs]()(2)(0) : psi[ss+vs]()(0)(0);
Simd hs_01 = (this->pm == 1) ? psi[ss+vs]()(2)(1) : psi[ss+vs]()(0)(1);
Simd hs_02 = (this->pm == 1) ? psi[ss+vs]()(2)(2) : psi[ss+vs]()(0)(2);
Simd hs_10 = (this->pm == 1) ? psi[ss+vs]()(3)(0) : psi[ss+vs]()(1)(0);
Simd hs_11 = (this->pm == 1) ? psi[ss+vs]()(3)(1) : psi[ss+vs]()(1)(1);
Simd hs_12 = (this->pm == 1) ? psi[ss+vs]()(3)(2) : psi[ss+vs]()(1)(2);
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(2)(0);
Simd hp_01 = psi[ss+vp]()(2)(1);
Simd hp_02 = psi[ss+vp]()(2)(2);
Simd hp_10 = psi[ss+vp]()(3)(0);
Simd hp_11 = psi[ss+vp]()(3)(1);
Simd hp_12 = psi[ss+vp]()(3)(2);
Simd hm_00 = psi[ss+vm]()(0)(0);
Simd hm_01 = psi[ss+vm]()(0)(1);
Simd hm_02 = psi[ss+vm]()(0)(2);
Simd hm_10 = psi[ss+vm]()(1)(0);
Simd hm_11 = psi[ss+vm]()(1)(1);
Simd hm_12 = psi[ss+vm]()(1)(2);
if(vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(this->pm == 1 && vs <= v){
hs_00.v = Optimization::Rotate::tRotate<2>(hs_00.v);
hs_01.v = Optimization::Rotate::tRotate<2>(hs_01.v);
hs_02.v = Optimization::Rotate::tRotate<2>(hs_02.v);
hs_10.v = Optimization::Rotate::tRotate<2>(hs_10.v);
hs_11.v = Optimization::Rotate::tRotate<2>(hs_11.v);
hs_12.v = Optimization::Rotate::tRotate<2>(hs_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
if(this->pm == -1 && vs >= v){
hs_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_00.v);
hs_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_01.v);
hs_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_02.v);
hs_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_10.v);
hs_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_11.v);
hs_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_12.v);
}
// Can force these to real arithmetic and save 2x.
Simd p_00 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00);
Simd p_01 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01);
Simd p_02 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02);
Simd p_10 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10);
Simd p_11 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11);
Simd p_12 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12);
Simd p_20 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_21 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_22 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_30 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_31 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_32 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
}
this->M5Dtime += usecond();
#endif
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd>> u(LLs);
Vector<iSinglet<Simd>> l(LLs);
Vector<iSinglet<Simd>> d(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
alignas(64) SiteSpinor fm;
for(int v=0; v<LLs; v++){
int vp = (v+1)%LLs;
int vm = (v+LLs-1)%LLs;
spProj5p(hp, psi[ss+vp]);
spProj5m(hm, psi[ss+vm]);
if(vp <= v){ rotate(hp, hp, 1); }
if(vm >= v){ rotate(hm, hm, nsimd-1); }
hp = hp*0.5;
hm = hm*0.5;
spRecon5p(fp, hp);
spRecon5m(fm, hm);
chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
chi[ss+v] = chi[ss+v] +l[v]*fm;
}
#else
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0 ) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(0)(0);
Simd hp_01 = psi[ss+vp]()(0)(1);
Simd hp_02 = psi[ss+vp]()(0)(2);
Simd hp_10 = psi[ss+vp]()(1)(0);
Simd hp_11 = psi[ss+vp]()(1)(1);
Simd hp_12 = psi[ss+vp]()(1)(2);
Simd hm_00 = psi[ss+vm]()(2)(0);
Simd hm_01 = psi[ss+vm]()(2)(1);
Simd hm_02 = psi[ss+vm]()(2)(2);
Simd hm_10 = psi[ss+vm]()(3)(0);
Simd hm_11 = psi[ss+vm]()(3)(1);
Simd hm_12 = psi[ss+vm]()(3)(2);
if (vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
#endif
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs)
{
#if 0
this->M5Ddag(psi, phi, chi, lower, diag, upper);
// FIXME: possible gain from vectorizing shift operation as well?
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, Ls-1, s); }
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, 0, s); }
}
#else
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd>> u(LLs);
Vector<iSinglet<Simd>> l(LLs);
Vector<iSinglet<Simd>> d(LLs);
Vector<iSinglet<Simd>> s(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
scalar_type* s_p = (scalar_type*) &s[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
s_p[ss] = shift_coeffs[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
int vs = (this->pm == 1) ? LLs-1 : 0;
Simd hs_00 = (this->pm == 1) ? psi[ss+vs]()(0)(0) : psi[ss+vs]()(2)(0);
Simd hs_01 = (this->pm == 1) ? psi[ss+vs]()(0)(1) : psi[ss+vs]()(2)(1);
Simd hs_02 = (this->pm == 1) ? psi[ss+vs]()(0)(2) : psi[ss+vs]()(2)(2);
Simd hs_10 = (this->pm == 1) ? psi[ss+vs]()(1)(0) : psi[ss+vs]()(3)(0);
Simd hs_11 = (this->pm == 1) ? psi[ss+vs]()(1)(1) : psi[ss+vs]()(3)(1);
Simd hs_12 = (this->pm == 1) ? psi[ss+vs]()(1)(2) : psi[ss+vs]()(3)(2);
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0 ) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(0)(0);
Simd hp_01 = psi[ss+vp]()(0)(1);
Simd hp_02 = psi[ss+vp]()(0)(2);
Simd hp_10 = psi[ss+vp]()(1)(0);
Simd hp_11 = psi[ss+vp]()(1)(1);
Simd hp_12 = psi[ss+vp]()(1)(2);
Simd hm_00 = psi[ss+vm]()(2)(0);
Simd hm_01 = psi[ss+vm]()(2)(1);
Simd hm_02 = psi[ss+vm]()(2)(2);
Simd hm_10 = psi[ss+vm]()(3)(0);
Simd hm_11 = psi[ss+vm]()(3)(1);
Simd hm_12 = psi[ss+vm]()(3)(2);
if (vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(this->pm == 1 && vs <= v){
hs_00.v = Optimization::Rotate::tRotate<2>(hs_00.v);
hs_01.v = Optimization::Rotate::tRotate<2>(hs_01.v);
hs_02.v = Optimization::Rotate::tRotate<2>(hs_02.v);
hs_10.v = Optimization::Rotate::tRotate<2>(hs_10.v);
hs_11.v = Optimization::Rotate::tRotate<2>(hs_11.v);
hs_12.v = Optimization::Rotate::tRotate<2>(hs_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
if(this->pm == -1 && vs >= v){
hs_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_00.v);
hs_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_01.v);
hs_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_02.v);
hs_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_10.v);
hs_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_11.v);
hs_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_12.v);
}
Simd p_00 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_01 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_02 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_10 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_11 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_12 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
Simd p_20 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00);
Simd p_21 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01);
Simd p_22 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02);
Simd p_30 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10);
Simd p_31 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11);
Simd p_32 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
}
this->M5Dtime += usecond();
#endif
}
#ifdef AVX512
#include<simd/Intel512common.h>
#include<simd/Intel512avx.h>
#include<simd/Intel512single.h>
#endif
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternalAsm(const FermionField& psi, FermionField& chi,
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
#ifndef AVX512
{
SiteHalfSpinor BcastP;
SiteHalfSpinor BcastM;
SiteHalfSpinor SiteChiP;
SiteHalfSpinor SiteChiM;
// Ls*Ls * 2 * 12 * vol flops
for(int s1=0; s1<LLs; s1++){
for(int s2=0; s2<LLs; s2++){
for(int l=0; l < Simd::Nsimd(); l++){ // simd lane
int s = s2 + l*LLs;
int lex = s2 + LLs*site;
if( s2==0 && l==0 ){
SiteChiP=zero;
SiteChiM=zero;
}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vbroadcast(BcastP()(sp)(co), psi[lex]()(sp)(co), l);
}}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vbroadcast(BcastM()(sp)(co), psi[lex]()(sp+2)(co), l);
}}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
SiteChiP()(sp)(co) = real_madd(Matp[LLs*s+s1]()()(), BcastP()(sp)(co), SiteChiP()(sp)(co)); // 1100 us.
SiteChiM()(sp)(co) = real_madd(Matm[LLs*s+s1]()()(), BcastM()(sp)(co), SiteChiM()(sp)(co)); // each found by commenting out
}}
}}
{
int lex = s1 + LLs*site;
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vstream(chi[lex]()(sp)(co), SiteChiP()(sp)(co));
vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
}}
}
}
}
#else
{
// pointers
// MASK_REGS;
#define Chi_00 %%zmm1
#define Chi_01 %%zmm2
#define Chi_02 %%zmm3
#define Chi_10 %%zmm4
#define Chi_11 %%zmm5
#define Chi_12 %%zmm6
#define Chi_20 %%zmm7
#define Chi_21 %%zmm8
#define Chi_22 %%zmm9
#define Chi_30 %%zmm10
#define Chi_31 %%zmm11
#define Chi_32 %%zmm12
#define BCAST0 %%zmm13
#define BCAST1 %%zmm14
#define BCAST2 %%zmm15
#define BCAST3 %%zmm16
#define BCAST4 %%zmm17
#define BCAST5 %%zmm18
#define BCAST6 %%zmm19
#define BCAST7 %%zmm20
#define BCAST8 %%zmm21
#define BCAST9 %%zmm22
#define BCAST10 %%zmm23
#define BCAST11 %%zmm24
int incr = LLs*LLs*sizeof(iSinglet<Simd>);
for(int s1=0; s1<LLs; s1++){
for(int s2=0; s2<LLs; s2++){
int lex = s2 + LLs*site;
uint64_t a0 = (uint64_t) &Matp[LLs*s2+s1]; // should be cacheable
uint64_t a1 = (uint64_t) &Matm[LLs*s2+s1];
uint64_t a2 = (uint64_t) &psi[lex];
for(int l=0; l<Simd::Nsimd(); l++){ // simd lane
if((s2+l)==0) {
asm(
VPREFETCH1(0,%2) VPREFETCH1(0,%1)
VPREFETCH1(12,%2) VPREFETCH1(13,%2)
VPREFETCH1(14,%2) VPREFETCH1(15,%2)
VBCASTCDUP(0,%2,BCAST0)
VBCASTCDUP(1,%2,BCAST1)
VBCASTCDUP(2,%2,BCAST2)
VBCASTCDUP(3,%2,BCAST3)
VBCASTCDUP(4,%2,BCAST4) VMULMEM(0,%0,BCAST0,Chi_00)
VBCASTCDUP(5,%2,BCAST5) VMULMEM(0,%0,BCAST1,Chi_01)
VBCASTCDUP(6,%2,BCAST6) VMULMEM(0,%0,BCAST2,Chi_02)
VBCASTCDUP(7,%2,BCAST7) VMULMEM(0,%0,BCAST3,Chi_10)
VBCASTCDUP(8,%2,BCAST8) VMULMEM(0,%0,BCAST4,Chi_11)
VBCASTCDUP(9,%2,BCAST9) VMULMEM(0,%0,BCAST5,Chi_12)
VBCASTCDUP(10,%2,BCAST10) VMULMEM(0,%1,BCAST6,Chi_20)
VBCASTCDUP(11,%2,BCAST11) VMULMEM(0,%1,BCAST7,Chi_21)
VMULMEM(0,%1,BCAST8,Chi_22)
VMULMEM(0,%1,BCAST9,Chi_30)
VMULMEM(0,%1,BCAST10,Chi_31)
VMULMEM(0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
} else {
asm(
VBCASTCDUP(0,%2,BCAST0) VMADDMEM(0,%0,BCAST0,Chi_00)
VBCASTCDUP(1,%2,BCAST1) VMADDMEM(0,%0,BCAST1,Chi_01)
VBCASTCDUP(2,%2,BCAST2) VMADDMEM(0,%0,BCAST2,Chi_02)
VBCASTCDUP(3,%2,BCAST3) VMADDMEM(0,%0,BCAST3,Chi_10)
VBCASTCDUP(4,%2,BCAST4) VMADDMEM(0,%0,BCAST4,Chi_11)
VBCASTCDUP(5,%2,BCAST5) VMADDMEM(0,%0,BCAST5,Chi_12)
VBCASTCDUP(6,%2,BCAST6) VMADDMEM(0,%1,BCAST6,Chi_20)
VBCASTCDUP(7,%2,BCAST7) VMADDMEM(0,%1,BCAST7,Chi_21)
VBCASTCDUP(8,%2,BCAST8) VMADDMEM(0,%1,BCAST8,Chi_22)
VBCASTCDUP(9,%2,BCAST9) VMADDMEM(0,%1,BCAST9,Chi_30)
VBCASTCDUP(10,%2,BCAST10) VMADDMEM(0,%1,BCAST10,Chi_31)
VBCASTCDUP(11,%2,BCAST11) VMADDMEM(0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
}
a0 = a0 + incr;
a1 = a1 + incr;
a2 = a2 + sizeof(Simd::scalar_type);
}
}
{
int lexa = s1+LLs*site;
asm (
VSTORE(0,%0,Chi_00) VSTORE(1 ,%0,Chi_01) VSTORE(2 ,%0,Chi_02)
VSTORE(3,%0,Chi_10) VSTORE(4 ,%0,Chi_11) VSTORE(5 ,%0,Chi_12)
VSTORE(6,%0,Chi_20) VSTORE(7 ,%0,Chi_21) VSTORE(8 ,%0,Chi_22)
VSTORE(9,%0,Chi_30) VSTORE(10,%0,Chi_31) VSTORE(11,%0,Chi_32)
: : "r" ((uint64_t)&chi[lexa]) : "memory" );
}
}
}
#undef Chi_00
#undef Chi_01
#undef Chi_02
#undef Chi_10
#undef Chi_11
#undef Chi_12
#undef Chi_20
#undef Chi_21
#undef Chi_22
#undef Chi_30
#undef Chi_31
#undef Chi_32
#undef BCAST0
#undef BCAST1
#undef BCAST2
#undef BCAST3
#undef BCAST4
#undef BCAST5
#undef BCAST6
#undef BCAST7
#undef BCAST8
#undef BCAST9
#undef BCAST10
#undef BCAST11
#endif
};
// Z-mobius version
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternalZAsm(const FermionField& psi, FermionField& chi,
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
std::cout << "Error: zMobius not implemented for EOFA" << std::endl;
exit(-1);
};
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
{
int Ls = this->Ls;
int LLs = psi._grid->_rdimensions[0];
int vol = psi._grid->oSites()/LLs;
chi.checkerboard = psi.checkerboard;
Vector<iSinglet<Simd>> Matp;
Vector<iSinglet<Simd>> Matm;
Vector<iSinglet<Simd>>* _Matp;
Vector<iSinglet<Simd>>* _Matm;
// MooeeInternalCompute(dag,inv,Matp,Matm);
if(inv && dag){
_Matp = &this->MatpInvDag;
_Matm = &this->MatmInvDag;
}
if(inv && (!dag)){
_Matp = &this->MatpInv;
_Matm = &this->MatmInv;
}
if(!inv){
MooeeInternalCompute(dag, inv, Matp, Matm);
_Matp = &Matp;
_Matm = &Matm;
}
assert(_Matp->size() == Ls*LLs);
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
if(switcheroo<Coeff_t>::iscomplex()){
parallel_for(auto site=0; site<vol; site++){
MooeeInternalZAsm(psi, chi, LLs, site, *_Matp, *_Matm);
}
} else {
parallel_for(auto site=0; site<vol; site++){
MooeeInternalAsm(psi, chi, LLs, site, *_Matp, *_Matm);
}
}
this->MooeeInvTime += usecond();
}
#ifdef MOBIUS_EOFA_DPERP_VEC
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplFH);
template void MobiusEOFAFermion<DomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<DomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<DomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<DomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZDomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZDomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
#endif
}}

View File

@ -30,60 +30,181 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define REGISTER
#define LOAD_CHIMU \
{const SiteSpinor & ref (in._odata[offset]); \
Chimu_00=ref()(0)(0);\
Chimu_01=ref()(0)(1);\
Chimu_02=ref()(0)(2);\
Chimu_10=ref()(1)(0);\
Chimu_11=ref()(1)(1);\
Chimu_12=ref()(1)(2);\
Chimu_20=ref()(2)(0);\
Chimu_21=ref()(2)(1);\
Chimu_22=ref()(2)(2);\
Chimu_30=ref()(3)(0);\
Chimu_31=ref()(3)(1);\
Chimu_32=ref()(3)(2);}
#define LOAD_CHIMU_BODY(F) \
Chimu_00=ref(F)(0)(0); \
Chimu_01=ref(F)(0)(1); \
Chimu_02=ref(F)(0)(2); \
Chimu_10=ref(F)(1)(0); \
Chimu_11=ref(F)(1)(1); \
Chimu_12=ref(F)(1)(2); \
Chimu_20=ref(F)(2)(0); \
Chimu_21=ref(F)(2)(1); \
Chimu_22=ref(F)(2)(2); \
Chimu_30=ref(F)(3)(0); \
Chimu_31=ref(F)(3)(1); \
Chimu_32=ref(F)(3)(2)
#define LOAD_CHI\
{const SiteHalfSpinor &ref(buf[offset]); \
Chi_00 = ref()(0)(0);\
Chi_01 = ref()(0)(1);\
Chi_02 = ref()(0)(2);\
Chi_10 = ref()(1)(0);\
Chi_11 = ref()(1)(1);\
Chi_12 = ref()(1)(2);}
#define LOAD_CHIMU(DIR,F,PERM) \
{ const SiteSpinor & ref (in._odata[offset]); LOAD_CHIMU_BODY(F); }
#define LOAD_CHI_BODY(F) \
Chi_00 = ref(F)(0)(0);\
Chi_01 = ref(F)(0)(1);\
Chi_02 = ref(F)(0)(2);\
Chi_10 = ref(F)(1)(0);\
Chi_11 = ref(F)(1)(1);\
Chi_12 = ref(F)(1)(2)
#define LOAD_CHI(DIR,F,PERM) \
{const SiteHalfSpinor &ref(buf[offset]); LOAD_CHI_BODY(F); }
//G-parity implementations using in-place intrinsic ops
//1l 1h -> 1h 1l
//0l 0h , 1h 1l -> 0l 1h 0h,1l
//0h,1l -> 1l,0h
//if( (distance == 1 && !perm_will_occur) || (distance == -1 && perm_will_occur) )
//Pulled fermion through forwards face, GPBC on upper component
//Need 0= 0l 1h 1= 1l 0h
//else if( (distance == -1 && !perm) || (distance == 1 && perm) )
//Pulled fermion through backwards face, GPBC on lower component
//Need 0= 1l 0h 1= 0l 1h
//1l 1h -> 1h 1l
//0l 0h , 1h 1l -> 0l 1h 0h,1l
#define DO_TWIST_0L_1H(INTO,S,C,F, PERM, tmp1, tmp2, tmp3) \
permute##PERM(tmp1, ref(1)(S)(C)); \
exchange##PERM(tmp2,tmp3, ref(0)(S)(C), tmp1); \
INTO = tmp2;
//0l 0h -> 0h 0l
//1l 1h, 0h 0l -> 1l 0h, 1h 0l
#define DO_TWIST_1L_0H(INTO,S,C,F, PERM, tmp1, tmp2, tmp3) \
permute##PERM(tmp1, ref(0)(S)(C)); \
exchange##PERM(tmp2,tmp3, ref(1)(S)(C), tmp1); \
INTO = tmp2;
#define LOAD_CHI_SETUP(DIR,F) \
g = F; \
direction = st._directions[DIR]; \
distance = st._distances[DIR]; \
sl = st._grid->_simd_layout[direction]; \
inplace_twist = 0; \
if(SE->_around_the_world && this->Params.twists[DIR % 4]){ \
if(sl == 1){ \
g = (F+1) % 2; \
}else{ \
inplace_twist = 1; \
} \
}
#define LOAD_CHIMU_GPARITY_INPLACE_TWIST(DIR,F,PERM) \
{ const SiteSpinor &ref(in._odata[offset]); \
LOAD_CHI_SETUP(DIR,F); \
if(!inplace_twist){ \
LOAD_CHIMU_BODY(g); \
}else{ \
if( ( F==0 && ((distance == 1 && !perm) || (distance == -1 && perm)) ) || \
( F==1 && ((distance == -1 && !perm) || (distance == 1 && perm)) ) ){ \
DO_TWIST_0L_1H(Chimu_00,0,0,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chimu_01,0,1,F,PERM, U_11,U_20,U_21); \
DO_TWIST_0L_1H(Chimu_02,0,2,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chimu_10,1,0,F,PERM, U_11,U_20,U_21); \
DO_TWIST_0L_1H(Chimu_11,1,1,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chimu_12,1,2,F,PERM, U_11,U_20,U_21); \
DO_TWIST_0L_1H(Chimu_20,2,0,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chimu_21,2,1,F,PERM, U_11,U_20,U_21); \
DO_TWIST_0L_1H(Chimu_22,2,2,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chimu_30,3,0,F,PERM, U_11,U_20,U_21); \
DO_TWIST_0L_1H(Chimu_31,3,1,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chimu_32,3,2,F,PERM, U_11,U_20,U_21); \
}else{ \
DO_TWIST_1L_0H(Chimu_00,0,0,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chimu_01,0,1,F,PERM, U_11,U_20,U_21); \
DO_TWIST_1L_0H(Chimu_02,0,2,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chimu_10,1,0,F,PERM, U_11,U_20,U_21); \
DO_TWIST_1L_0H(Chimu_11,1,1,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chimu_12,1,2,F,PERM, U_11,U_20,U_21); \
DO_TWIST_1L_0H(Chimu_20,2,0,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chimu_21,2,1,F,PERM, U_11,U_20,U_21); \
DO_TWIST_1L_0H(Chimu_22,2,2,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chimu_30,3,0,F,PERM, U_11,U_20,U_21); \
DO_TWIST_1L_0H(Chimu_31,3,1,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chimu_32,3,2,F,PERM, U_11,U_20,U_21); \
} \
} \
}
#define LOAD_CHI_GPARITY_INPLACE_TWIST(DIR,F,PERM) \
{ const SiteHalfSpinor &ref(buf[offset]); \
LOAD_CHI_SETUP(DIR,F); \
if(!inplace_twist){ \
LOAD_CHI_BODY(g); \
}else{ \
if( ( F==0 && ((distance == 1 && !perm) || (distance == -1 && perm)) ) || \
( F==1 && ((distance == -1 && !perm) || (distance == 1 && perm)) ) ){ \
DO_TWIST_0L_1H(Chi_00,0,0,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chi_01,0,1,F,PERM, U_11,U_20,U_21); \
DO_TWIST_0L_1H(Chi_02,0,2,F,PERM, UChi_00,UChi_01,UChi_02); \
DO_TWIST_0L_1H(Chi_10,1,0,F,PERM, UChi_10,UChi_11,UChi_12); \
DO_TWIST_0L_1H(Chi_11,1,1,F,PERM, U_00,U_01,U_10); \
DO_TWIST_0L_1H(Chi_12,1,2,F,PERM, U_11,U_20,U_21); \
}else{ \
DO_TWIST_1L_0H(Chi_00,0,0,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chi_01,0,1,F,PERM, U_11,U_20,U_21); \
DO_TWIST_1L_0H(Chi_02,0,2,F,PERM, UChi_00,UChi_01,UChi_02); \
DO_TWIST_1L_0H(Chi_10,1,0,F,PERM, UChi_10,UChi_11,UChi_12); \
DO_TWIST_1L_0H(Chi_11,1,1,F,PERM, U_00,U_01,U_10); \
DO_TWIST_1L_0H(Chi_12,1,2,F,PERM, U_11,U_20,U_21); \
} \
} \
}
#define LOAD_CHI_GPARITY(DIR,F,PERM) LOAD_CHI_GPARITY_INPLACE_TWIST(DIR,F,PERM)
#define LOAD_CHIMU_GPARITY(DIR,F,PERM) LOAD_CHIMU_GPARITY_INPLACE_TWIST(DIR,F,PERM)
// To splat or not to splat depends on the implementation
#define MULT_2SPIN(A)\
{auto & ref(U._odata[sU](A)); \
Impl::loadLinkElement(U_00,ref()(0,0)); \
Impl::loadLinkElement(U_10,ref()(1,0)); \
Impl::loadLinkElement(U_20,ref()(2,0)); \
Impl::loadLinkElement(U_01,ref()(0,1)); \
Impl::loadLinkElement(U_11,ref()(1,1)); \
Impl::loadLinkElement(U_21,ref()(2,1)); \
UChi_00 = U_00*Chi_00;\
UChi_10 = U_00*Chi_10;\
UChi_01 = U_10*Chi_00;\
UChi_11 = U_10*Chi_10;\
UChi_02 = U_20*Chi_00;\
UChi_12 = U_20*Chi_10;\
UChi_00+= U_01*Chi_01;\
UChi_10+= U_01*Chi_11;\
UChi_01+= U_11*Chi_01;\
UChi_11+= U_11*Chi_11;\
UChi_02+= U_21*Chi_01;\
UChi_12+= U_21*Chi_11;\
Impl::loadLinkElement(U_00,ref()(0,2)); \
Impl::loadLinkElement(U_10,ref()(1,2)); \
Impl::loadLinkElement(U_20,ref()(2,2)); \
UChi_00+= U_00*Chi_02;\
UChi_10+= U_00*Chi_12;\
UChi_01+= U_10*Chi_02;\
UChi_11+= U_10*Chi_12;\
UChi_02+= U_20*Chi_02;\
UChi_12+= U_20*Chi_12;}
#define MULT_2SPIN_BODY \
Impl::loadLinkElement(U_00,ref()(0,0)); \
Impl::loadLinkElement(U_10,ref()(1,0)); \
Impl::loadLinkElement(U_20,ref()(2,0)); \
Impl::loadLinkElement(U_01,ref()(0,1)); \
Impl::loadLinkElement(U_11,ref()(1,1)); \
Impl::loadLinkElement(U_21,ref()(2,1)); \
UChi_00 = U_00*Chi_00; \
UChi_10 = U_00*Chi_10; \
UChi_01 = U_10*Chi_00; \
UChi_11 = U_10*Chi_10; \
UChi_02 = U_20*Chi_00; \
UChi_12 = U_20*Chi_10; \
UChi_00+= U_01*Chi_01; \
UChi_10+= U_01*Chi_11; \
UChi_01+= U_11*Chi_01; \
UChi_11+= U_11*Chi_11; \
UChi_02+= U_21*Chi_01; \
UChi_12+= U_21*Chi_11; \
Impl::loadLinkElement(U_00,ref()(0,2)); \
Impl::loadLinkElement(U_10,ref()(1,2)); \
Impl::loadLinkElement(U_20,ref()(2,2)); \
UChi_00+= U_00*Chi_02; \
UChi_10+= U_00*Chi_12; \
UChi_01+= U_10*Chi_02; \
UChi_11+= U_10*Chi_12; \
UChi_02+= U_20*Chi_02; \
UChi_12+= U_20*Chi_12
#define MULT_2SPIN(A,F) \
{auto & ref(U._odata[sU](A)); MULT_2SPIN_BODY; }
#define MULT_2SPIN_GPARITY(A,F) \
{auto & ref(U._odata[sU](F)(A)); MULT_2SPIN_BODY; }
#define PERMUTE_DIR(dir) \
@ -307,84 +428,87 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
result_31-= UChi_11; \
result_32-= UChi_12;
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON) \
#define HAND_STENCIL_LEG(PROJ,PERM,DIR,RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
LOAD_CHIMU_IMPL(DIR,F,PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else { \
LOAD_CHI; \
LOAD_CHI_IMPL(DIR,F,PERM); \
} \
MULT_2SPIN(DIR); \
MULT_2SPIN_IMPL(DIR,F); \
RECON;
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON) \
#define HAND_STENCIL_LEG_INT(PROJ,PERM,DIR,RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHIMU; \
LOAD_CHIMU_IMPL(DIR,F,PERM); \
PROJ; \
if ( perm) { \
PERMUTE_DIR(PERM); \
} \
} else if ( st.same_node[DIR] ) { \
LOAD_CHI; \
LOAD_CHI_IMPL(DIR,F,PERM); \
} \
if (local || st.same_node[DIR] ) { \
MULT_2SPIN(DIR); \
MULT_2SPIN_IMPL(DIR,F); \
RECON; \
}
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON) \
#define HAND_STENCIL_LEG_EXT(PROJ,PERM,DIR,RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
SE=st.GetEntry(ptype,DIR,ss); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if((!SE->_is_local)&&(!st.same_node[DIR]) ) { \
LOAD_CHI; \
MULT_2SPIN(DIR); \
LOAD_CHI_IMPL(DIR,F,PERM); \
MULT_2SPIN_IMPL(DIR,F); \
RECON; \
nmu++; \
}
#define HAND_RESULT(ss) \
#define HAND_RESULT(ss,F) \
{ \
SiteSpinor & ref (out._odata[ss]); \
vstream(ref()(0)(0),result_00); \
vstream(ref()(0)(1),result_01); \
vstream(ref()(0)(2),result_02); \
vstream(ref()(1)(0),result_10); \
vstream(ref()(1)(1),result_11); \
vstream(ref()(1)(2),result_12); \
vstream(ref()(2)(0),result_20); \
vstream(ref()(2)(1),result_21); \
vstream(ref()(2)(2),result_22); \
vstream(ref()(3)(0),result_30); \
vstream(ref()(3)(1),result_31); \
vstream(ref()(3)(2),result_32); \
vstream(ref(F)(0)(0),result_00); \
vstream(ref(F)(0)(1),result_01); \
vstream(ref(F)(0)(2),result_02); \
vstream(ref(F)(1)(0),result_10); \
vstream(ref(F)(1)(1),result_11); \
vstream(ref(F)(1)(2),result_12); \
vstream(ref(F)(2)(0),result_20); \
vstream(ref(F)(2)(1),result_21); \
vstream(ref(F)(2)(2),result_22); \
vstream(ref(F)(3)(0),result_30); \
vstream(ref(F)(3)(1),result_31); \
vstream(ref(F)(3)(2),result_32); \
}
#define HAND_RESULT_EXT(ss) \
#define HAND_RESULT_EXT(ss,F) \
if (nmu){ \
SiteSpinor & ref (out._odata[ss]); \
ref()(0)(0)+=result_00; \
ref()(0)(1)+=result_01; \
ref()(0)(2)+=result_02; \
ref()(1)(0)+=result_10; \
ref()(1)(1)+=result_11; \
ref()(1)(2)+=result_12; \
ref()(2)(0)+=result_20; \
ref()(2)(1)+=result_21; \
ref()(2)(2)+=result_22; \
ref()(3)(0)+=result_30; \
ref()(3)(1)+=result_31; \
ref()(3)(2)+=result_32; \
ref(F)(0)(0)+=result_00; \
ref(F)(0)(1)+=result_01; \
ref(F)(0)(2)+=result_02; \
ref(F)(1)(0)+=result_10; \
ref(F)(1)(1)+=result_11; \
ref(F)(1)(2)+=result_12; \
ref(F)(2)(0)+=result_20; \
ref(F)(2)(1)+=result_21; \
ref(F)(2)(2)+=result_22; \
ref(F)(3)(0)+=result_30; \
ref(F)(3)(1)+=result_31; \
ref(F)(3)(2)+=result_32; \
}
@ -463,15 +587,18 @@ WilsonKernels<Impl>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGauge
int offset,local,perm, ptype;
StencilEntry *SE;
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON);
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT(ss);
#define HAND_DOP_SITE(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
HAND_STENCIL_LEG(XM_PROJ,3,Xp,XM_RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(YM_PROJ,2,Yp,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(ZM_PROJ,1,Zp,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(TM_PROJ,0,Tp,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(XP_PROJ,3,Xm,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(YP_PROJ,2,Ym,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(ZP_PROJ,1,Zm,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(TP_PROJ,0,Tm,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_RESULT(ss,F)
HAND_DOP_SITE(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
}
template<class Impl>
@ -485,16 +612,19 @@ void WilsonKernels<Impl>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,Doub
StencilEntry *SE;
int offset,local,perm, ptype;
HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON);
HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT(ss);
#define HAND_DOP_SITE_DAG(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
HAND_STENCIL_LEG(XP_PROJ,3,Xp,XP_RECON,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(YP_PROJ,2,Yp,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(ZP_PROJ,1,Zp,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(TP_PROJ,0,Tp,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(XM_PROJ,3,Xm,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(YM_PROJ,2,Ym,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(ZM_PROJ,1,Zm,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG(TM_PROJ,0,Tm,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_RESULT(ss,F)
HAND_DOP_SITE_DAG(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
}
template<class Impl> void
@ -509,16 +639,20 @@ WilsonKernels<Impl>::HandDhopSiteInt(StencilImpl &st,LebesgueOrder &lo,DoubledGa
int offset,local,perm, ptype;
StencilEntry *SE;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT(ss);
#define HAND_DOP_SITE_INT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
ZERO_RESULT; \
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xp,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(YM_PROJ,2,Yp,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tp,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xm,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(YP_PROJ,2,Ym,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tm,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_RESULT(ss,F)
HAND_DOP_SITE_INT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
}
template<class Impl>
@ -532,16 +666,20 @@ void WilsonKernels<Impl>::HandDhopSiteDagInt(StencilImpl &st,LebesgueOrder &lo,D
StencilEntry *SE;
int offset,local,perm, ptype;
ZERO_RESULT;
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT(ss);
#define HAND_DOP_SITE_DAG_INT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
ZERO_RESULT; \
HAND_STENCIL_LEG_INT(XP_PROJ,3,Xp,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(YP_PROJ,2,Yp,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(TP_PROJ,0,Tp,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(XM_PROJ,3,Xm,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(YM_PROJ,2,Ym,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_INT(TM_PROJ,0,Tm,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_RESULT(ss,F)
HAND_DOP_SITE_DAG_INT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
}
template<class Impl> void
@ -557,16 +695,20 @@ WilsonKernels<Impl>::HandDhopSiteExt(StencilImpl &st,LebesgueOrder &lo,DoubledGa
int offset,local,perm, ptype;
StencilEntry *SE;
int nmu=0;
ZERO_RESULT;
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xp,XM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Yp,YM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tp,TM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xm,XP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Ym,YP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tm,TP_RECON_ACCUM);
HAND_RESULT_EXT(ss);
#define HAND_DOP_SITE_EXT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
ZERO_RESULT; \
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xp,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Yp,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zp,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tp,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xm,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Ym,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zm,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tm,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_RESULT_EXT(ss,F)
HAND_DOP_SITE_EXT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
}
template<class Impl>
@ -581,16 +723,20 @@ void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,D
StencilEntry *SE;
int offset,local,perm, ptype;
int nmu=0;
ZERO_RESULT;
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Yp,YP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tp,TP_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xm,XM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Ym,YM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM);
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tm,TM_RECON_ACCUM);
HAND_RESULT_EXT(ss);
#define HAND_DOP_SITE_DAG_EXT(F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL) \
ZERO_RESULT; \
HAND_STENCIL_LEG_EXT(XP_PROJ,3,Xp,XP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(YP_PROJ,2,Yp,YP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(ZP_PROJ,1,Zp,ZP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(TP_PROJ,0,Tp,TP_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(XM_PROJ,3,Xm,XM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(YM_PROJ,2,Ym,YM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(ZM_PROJ,1,Zm,ZM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_STENCIL_LEG_EXT(TM_PROJ,0,Tm,TM_RECON_ACCUM,F,LOAD_CHI_IMPL,LOAD_CHIMU_IMPL,MULT_2SPIN_IMPL); \
HAND_RESULT_EXT(ss,F)
HAND_DOP_SITE_DAG_EXT(, LOAD_CHI,LOAD_CHIMU,MULT_2SPIN);
}
////////////////////////////////////////////////
@ -646,11 +792,124 @@ void WilsonKernels<Impl>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,D
const FermionField &in, \
FermionField &out){ assert(0); } \
HAND_SPECIALISE_EMPTY(GparityWilsonImplF);
HAND_SPECIALISE_EMPTY(GparityWilsonImplD);
HAND_SPECIALISE_EMPTY(GparityWilsonImplFH);
HAND_SPECIALISE_EMPTY(GparityWilsonImplDF);
#define HAND_SPECIALISE_GPARITY(IMPL) \
template<> void \
WilsonKernels<IMPL>::HandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
typedef typename Simd::vector_type V; \
\
HAND_DECLARATIONS(ignore); \
\
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
StencilEntry *SE; \
HAND_DOP_SITE(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
HAND_DOP_SITE(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> \
void WilsonKernels<IMPL>::HandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
typedef typename Simd::vector_type V; \
\
HAND_DECLARATIONS(ignore); \
\
StencilEntry *SE; \
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
HAND_DOP_SITE_DAG(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
HAND_DOP_SITE_DAG(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> void \
WilsonKernels<IMPL>::HandDhopSiteInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
typedef typename Simd::vector_type V; \
\
HAND_DECLARATIONS(ignore); \
\
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
StencilEntry *SE; \
HAND_DOP_SITE_INT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
HAND_DOP_SITE_INT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> \
void WilsonKernels<IMPL>::HandDhopSiteDagInt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
typedef typename Simd::vector_type V; \
\
HAND_DECLARATIONS(ignore); \
\
StencilEntry *SE; \
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
HAND_DOP_SITE_DAG_INT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
HAND_DOP_SITE_DAG_INT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
\
template<> void \
WilsonKernels<IMPL>::HandDhopSiteExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
typedef typename Simd::vector_type V; \
\
HAND_DECLARATIONS(ignore); \
\
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
StencilEntry *SE; \
int nmu=0; \
HAND_DOP_SITE_EXT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
nmu = 0; \
HAND_DOP_SITE_EXT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
} \
template<> \
void WilsonKernels<IMPL>::HandDhopSiteDagExt(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,SiteHalfSpinor *buf, \
int ss,int sU,const FermionField &in, FermionField &out) \
{ \
typedef IMPL Impl; \
typedef typename Simd::scalar_type S; \
typedef typename Simd::vector_type V; \
\
HAND_DECLARATIONS(ignore); \
\
StencilEntry *SE; \
int offset,local,perm, ptype, g, direction, distance, sl, inplace_twist; \
int nmu=0; \
HAND_DOP_SITE_DAG_EXT(0, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
nmu = 0; \
HAND_DOP_SITE_DAG_EXT(1, LOAD_CHI_GPARITY,LOAD_CHIMU_GPARITY,MULT_2SPIN_GPARITY); \
}
HAND_SPECIALISE_GPARITY(GparityWilsonImplF);
HAND_SPECIALISE_GPARITY(GparityWilsonImplD);
HAND_SPECIALISE_GPARITY(GparityWilsonImplFH);
HAND_SPECIALISE_GPARITY(GparityWilsonImplDF);
////////////// Wilson ; uses this implementation /////////////////////
#define INSTANTIATE_THEM(A) \

View File

@ -0,0 +1,264 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/ExactOneFlavourRatio.h
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/////////////////////////////////////////////////////////////////
// Implementation of exact one flavour algorithm (EOFA) //
// using fermion classes defined in: //
// Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
// Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius) //
// arXiv: 1403.1683, 1706.05843 //
/////////////////////////////////////////////////////////////////
#ifndef QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
#define QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
namespace Grid{
namespace QCD{
///////////////////////////////////////////////////////////////
// Exact one flavour implementation of DWF determinant ratio //
///////////////////////////////////////////////////////////////
template<class Impl>
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerNegHalf;
private:
bool use_heatbath_forecasting;
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
SchurRedBlackDiagMooeeSolve<FermionField> Solver;
FermionField Phi; // the pseudofermion field for this trajectory
public:
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop, AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& S, Params& p, bool use_fc=false) : Lop(_Lop), Rop(_Rop), Solver(S),
Phi(_Lop.FermionGrid()), param(p), use_heatbath_forecasting(use_fc)
{
AlgRemez remez(param.lo, param.hi, param.precision);
// MdagM^(+- 1/2)
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
remez.generateApprox(param.degree, 1, 2);
PowerNegHalf.Init(remez, param.tolerance, true);
};
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
virtual std::string LogParameters() {
std::stringstream sstream;
sstream << GridLogMessage << "[" << action_name() << "] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] High :" << param.hi << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Precision :" << param.precision << std::endl;
return sstream.str();
}
// Spin projection
void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
{
if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
}
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
// We generate a Gaussian noise vector \eta, and then compute
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
// using a rational approximation to the inverse square root
virtual void refresh(const GaugeField& U, GridParallelRNG& pRNG)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField eta (Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
FermionField Forecast_src(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// Use chronological inverter to forecast solutions across poles
std::vector<FermionField> prev_solns;
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
// Seed with Gaussian noise vector (var = 0.5)
RealD scale = std::sqrt(0.5);
gaussian(pRNG,eta);
eta = eta * scale;
printf("Heatbath source vector: <\\eta|\\eta> = %1.15e\n", norm2(eta));
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
Phi = eta * N;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
RealD gamma_l(0.0);
spProj(eta, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = zero;
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Lop.RefreshShiftCoefficients(-gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
Solver(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = zero; // Just use zero as the initial guess
Solver(Lop, CG_src, CG_soln);
}
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
Phi = Phi + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(eta, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = zero;
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
Solver(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = zero;
Solver(Rop, CG_src, CG_soln);
}
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
Phi = Phi + tmp[1];
// Reset shift coefficients for energy and force evals
Lop.RefreshShiftCoefficients(0.0);
Rop.RefreshShiftCoefficients(-1.0);
};
// EOFA action: see Eqn. (10) of arXiv:1706.05843
virtual RealD S(const GaugeField& U)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// S = <\Phi|\Phi>
RealD action(norm2(Phi));
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
Solver(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
Solver(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
return action;
};
// EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
virtual void deriv(const GaugeField& U, GaugeField& dSdU)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi (Lop.FermionGrid());
FermionField Omega_spProj_Phi(Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField Chi (Lop.FermionGrid());
FermionField g5_R5_Chi (Lop.FermionGrid());
GaugeField force(Lop.GaugeGrid());
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = zero;
Solver(Lop, CG_src, spProj_Phi);
Lop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = Lop.k * force;
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = zero;
Solver(Rop, CG_src, spProj_Phi);
Rop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = dSdU - Rop.k * force;
};
};
}}
#endif

View File

@ -38,5 +38,6 @@ directory
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
#endif

View File

@ -72,7 +72,7 @@ protected:
}
virtual unsigned int Ls(){
return 0;
return 0;
}
virtual void print_parameters(){
@ -97,7 +97,7 @@ class HMC_FermionOperatorModuleFactory
: public Factory < FermionOperatorModuleBase<QCD::FermionOperator<FermionImpl> > , Reader<ReaderClass> > {
public:
// use SINGLETON FUNCTOR MACRO HERE
typedef Reader<ReaderClass> TheReader;
typedef Reader<ReaderClass> TheReader;
HMC_FermionOperatorModuleFactory(const HMC_FermionOperatorModuleFactory& e) = delete;
void operator=(const HMC_FermionOperatorModuleFactory& e) = delete;
@ -122,7 +122,7 @@ namespace QCD{
// Modules
class WilsonFermionParameters : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonFermionParameters,
GRID_SERIALIZABLE_CLASS_MEMBERS(WilsonFermionParameters,
RealD, mass);
};
@ -144,7 +144,7 @@ class WilsonFermionModule: public FermionOperatorModule<WilsonFermion, FermionIm
class MobiusFermionParameters : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(MobiusFermionParameters,
GRID_SERIALIZABLE_CLASS_MEMBERS(MobiusFermionParameters,
RealD, mass,
RealD, M5,
RealD, b,
@ -166,7 +166,7 @@ class MobiusFermionModule: public FermionOperatorModule<MobiusFermion, FermionIm
auto GridMod = this->GridRefs[0];
auto GridMod5d = this->GridRefs[1];
typename FermionImpl::GaugeField U(GridMod->get_full());
this->FOPtr.reset(new MobiusFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
this->FOPtr.reset(new MobiusFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
*(GridMod5d->get_full()), *(GridMod5d->get_rb()),
this->Par_.mass, this->Par_.M5, this->Par_.b, this->Par_.c));
}
@ -175,7 +175,7 @@ class MobiusFermionModule: public FermionOperatorModule<MobiusFermion, FermionIm
class DomainWallFermionParameters : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(DomainWallFermionParameters,
GRID_SERIALIZABLE_CLASS_MEMBERS(DomainWallFermionParameters,
RealD, mass,
RealD, M5,
unsigned int, Ls);
@ -195,16 +195,49 @@ class DomainWallFermionModule: public FermionOperatorModule<DomainWallFermion, F
auto GridMod = this->GridRefs[0];
auto GridMod5d = this->GridRefs[1];
typename FermionImpl::GaugeField U(GridMod->get_full());
this->FOPtr.reset(new DomainWallFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
this->FOPtr.reset(new DomainWallFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
*(GridMod5d->get_full()), *(GridMod5d->get_rb()),
this->Par_.mass, this->Par_.M5));
}
};
class DomainWallEOFAFermionParameters : Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(DomainWallEOFAFermionParameters,
RealD, mq1,
RealD, mq2,
RealD, mq3,
RealD, shift,
int, pm,
RealD, M5,
unsigned int, Ls);
};
template <class FermionImpl >
class DomainWallEOFAFermionModule: public FermionOperatorModule<DomainWallEOFAFermion, FermionImpl, DomainWallEOFAFermionParameters> {
typedef FermionOperatorModule<DomainWallEOFAFermion, FermionImpl, DomainWallEOFAFermionParameters> FermBase;
using FermBase::FermBase; // for constructors
virtual unsigned int Ls(){
return this->Par_.Ls;
}
// acquire resource
virtual void initialize(){
auto GridMod = this->GridRefs[0];
auto GridMod5d = this->GridRefs[1];
typename FermionImpl::GaugeField U(GridMod->get_full());
this->FOPtr.reset(new DomainWallEOFAFermion<FermionImpl>( U, *(GridMod->get_full()), *(GridMod->get_rb()),
*(GridMod5d->get_full()), *(GridMod5d->get_rb()),
this->Par_.mq1, this->Par_.mq2, this->Par_.mq3,
this->Par_.shift, this->Par_.pm, this->Par_.M5));
}
};
} // QCD
} // Grid
#endif //FERMIONOPERATOR_MODULES_H
#endif //FERMIONOPERATOR_MODULES_H

View File

@ -86,7 +86,7 @@ namespace Grid {
or element<T>::is_number;
};
// Vector flatening utility class ////////////////////////////////////////////
// Vector flattening utility class ////////////////////////////////////////////
// Class to flatten a multidimensional std::vector
template <typename V>
class Flatten

View File

@ -42,6 +42,7 @@ JSONWriter::~JSONWriter(void)
// write prettified JSON to file
std::ofstream os(fileName_);
//std::cout << "JSONWriter::~JSONWriter" << std::endl;
os << std::setw(2) << json::parse(ss_.str()) << std::endl;
}
@ -56,6 +57,7 @@ void JSONWriter::push(const string &s)
void JSONWriter::pop(void)
{
//std::cout << "JSONWriter::pop" << std::endl;
delete_comma();
ss_ << "},";
}
@ -67,20 +69,22 @@ void JSONWriter::delete_comma()
ss_.str(dlast);
}
// here we are hitting a g++ bug (Bug 56480)
// compiles fine with clang
// have to wrap in the Grid namespace
// annoying, but necessary for TravisCI
namespace Grid
{
template<>
void JSONWriter::writeDefault(const std::string &s,
const std::string &x)
void JSONWriter::writeDefault(const std::string &s, const std::string &x)
{
//std::cout << "JSONWriter::writeDefault(string) : " << s << std::endl;
std::ostringstream os;
os << std::boolalpha << x;
if (s.size())
ss_ << "\""<< s << "\" : \"" << x << "\" ," ;
ss_ << "\""<< s << "\" : \"" << os.str() << "\" ," ;
else
ss_ << "\"" << x << "\" ," ;
ss_ << os.str() << " ," ;
}
}// namespace Grid
@ -138,6 +142,7 @@ void JSONReader::pop(void)
bool JSONReader::nextElement(const std::string &s)
{
// Work in progress
// JSON dictionaries do not support multiple names
// Same name objects must be packed in vectors
++it_;

View File

@ -58,10 +58,15 @@ namespace Grid
void writeDefault(const std::string &s, const std::complex<U> &x);
template <typename U>
void writeDefault(const std::string &s, const std::vector<U> &x);
template <typename U, typename P>
void writeDefault(const std::string &s, const std::pair<U,P> &x);
template<std::size_t N>
void writeDefault(const std::string &s, const char(&x)[N]);
void writeDefault(const std::string &s, const std::string &x);
private:
void delete_comma();
std::string fileName_;
@ -82,6 +87,8 @@ namespace Grid
void readDefault(const std::string &s, std::complex<U> &output);
template <typename U>
void readDefault(const std::string &s, std::vector<U> &output);
template <typename U, typename P>
void readDefault(const std::string &s, std::pair<U,P> &output);
private:
json jobject_; // main object
json jcur_; // current json object
@ -106,7 +113,7 @@ namespace Grid
template <typename U>
void JSONWriter::writeDefault(const std::string &s, const U &x)
{
//std::cout << "JSONReader::writeDefault(U) : " << s << std::endl;
//std::cout << "JSONWriter::writeDefault(U) : " << s << " " << x <<std::endl;
std::ostringstream os;
os << std::boolalpha << x;
if (s.size())
@ -118,7 +125,7 @@ namespace Grid
template <typename U>
void JSONWriter::writeDefault(const std::string &s, const std::complex<U> &x)
{
//std::cout << "JSONReader::writeDefault(complex) : " << s << std::endl;
//std::cout << "JSONWriter::writeDefault(complex) : " << s << " " << x << std::endl;
std::ostringstream os;
os << "["<< std::boolalpha << x.real() << ", " << x.imag() << "]";
if (s.size())
@ -127,10 +134,22 @@ namespace Grid
ss_ << os.str() << " ," ;
}
template <typename U, typename P>
void JSONWriter::writeDefault(const std::string &s, const std::pair<U,P> &x)
{
//std::cout << "JSONWriter::writeDefault(pair) : " << s << " " << x << std::endl;
std::ostringstream os;
os << "["<< std::boolalpha << "\""<< x.first << "\" , \"" << x.second << "\" ]";
if (s.size())
ss_ << "\""<< s << "\" : " << os.str() << " ," ;
else
ss_ << os.str() << " ," ;
}
template <typename U>
void JSONWriter::writeDefault(const std::string &s, const std::vector<U> &x)
{
//std::cout << "JSONReader::writeDefault(vec U) : " << s << std::endl;
//std::cout << "JSONWriter::writeDefault(vec U) : " << s << std::endl;
if (s.size())
ss_ << " \""<<s<<"\" : [";
@ -146,12 +165,12 @@ namespace Grid
template<std::size_t N>
void JSONWriter::writeDefault(const std::string &s, const char(&x)[N]){
//std::cout << "JSONReader::writeDefault(char U) : " << s << std::endl;
//std::cout << "JSONWriter::writeDefault(char U) : " << s << " " << x << std::endl;
if (s.size())
ss_ << "\""<< s << "\" : \"" << x << "\" ," ;
ss_ << "\""<< s << "\" : \"" << x << "\" ," ;
else
ss_ << "\"" << x << "\" ," ;
ss_ << "\"" << x << "\" ," ;
}
// Reader template implementation ////////////////////////////////////////////
@ -173,11 +192,35 @@ namespace Grid
}
// Reader template implementation ////////////////////////////////////////////
template <typename U, typename P>
void JSONReader::readDefault(const std::string &s, std::pair<U,P> &output)
{
U first;
P second;
json j;
if (s.size()){
//std::cout << "JSONReader::readDefault(pair) : " << s << " | "<< jcur_[s] << std::endl;
j = jcur_[s];
} else {
j = jcur_;
}
json::iterator it = j.begin();
jcur_ = *it;
read("", first);
it++;
jcur_ = *it;
read("", second);
output = std::pair<U,P>(first,second);
}
template <typename U>
void JSONReader::readDefault(const std::string &s, std::complex<U> &output)
{
U tmp1, tmp2;
//std::cout << "JSONReader::readDefault( complex U) : " << s << " : "<< jcur_ << std::endl;
//std::cout << "JSONReader::readDefault(complex U) : " << s << " : "<< jcur_ << std::endl;
json j = jcur_;
json::iterator it = j.begin();
jcur_ = *it;

View File

@ -82,11 +82,11 @@ namespace Optimization {
double tmp[2]={a,b};
return vld1q_f64(tmp);
}
//Real double // N:tbc
//Real double
inline float64x2_t operator()(double a){
return vdupq_n_f64(a);
}
//Integer // N:tbc
//Integer
inline uint32x4_t operator()(Integer a){
return vdupq_n_u32(a);
}
@ -124,33 +124,32 @@ namespace Optimization {
// Nils: Vset untested; not used currently in Grid at all;
// git commit 4a8c4ccfba1d05159348d21a9698028ea847e77b
struct Vset{
// Complex float // N:ok
// Complex float
inline float32x4_t operator()(Grid::ComplexF *a){
float tmp[4]={a[1].imag(),a[1].real(),a[0].imag(),a[0].real()};
return vld1q_f32(tmp);
}
// Complex double // N:ok
// Complex double
inline float64x2_t operator()(Grid::ComplexD *a){
double tmp[2]={a[0].imag(),a[0].real()};
return vld1q_f64(tmp);
}
// Real float // N:ok
// Real float
inline float32x4_t operator()(float *a){
float tmp[4]={a[3],a[2],a[1],a[0]};
return vld1q_f32(tmp);
}
// Real double // N:ok
// Real double
inline float64x2_t operator()(double *a){
double tmp[2]={a[1],a[0]};
return vld1q_f64(tmp);
}
// Integer // N:ok
// Integer
inline uint32x4_t operator()(Integer *a){
return vld1q_dup_u32(a);
}
};
// N:leaving as is
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
@ -249,9 +248,9 @@ namespace Optimization {
return vfmaq_f32(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi ...
// no fma, use mul and add
//float32x4_t r5;
//r5 = vmulq_f32(r0, a);
//return vaddq_f32(r4, r5);
// float32x4_t r5;
// r5 = vmulq_f32(r0, a);
// return vaddq_f32(r4, r5);
}
// Complex double
inline float64x2_t operator()(float64x2_t a, float64x2_t b){
@ -272,9 +271,9 @@ namespace Optimization {
return vfmaq_f64(r4, r0, a); // ar*br-ai*bi ai*br+ar*bi
// no fma, use mul and add
//float64x2_t r5;
//r5 = vmulq_f64(r0, a);
//return vaddq_f64(r4, r5);
// float64x2_t r5;
// r5 = vmulq_f64(r0, a);
// return vaddq_f64(r4, r5);
}
};
@ -421,11 +420,6 @@ namespace Optimization {
}
}
// working, but no restriction on n
// template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n); };
// template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n); };
// restriction on n
template<int n> static inline float32x4_t tRotate(float32x4_t in){ return vextq_f32(in,in,n%4); };
template<int n> static inline float64x2_t tRotate(float64x2_t in){ return vextq_f64(in,in,n%2); };
@ -441,7 +435,7 @@ namespace Optimization {
sb = vcvt_high_f32_f16(h);
// there is no direct conversion from lower float32x4_t to float64x2_t
// vextq_f16 not supported by clang 3.8 / 4.0 / arm clang
//float16x8_t h1 = vextq_f16(h, h, 4); // correct, but not supported by clang
// float16x8_t h1 = vextq_f16(h, h, 4); // correct, but not supported by clang
// workaround for clang
uint32x4_t h1u = reinterpret_cast<uint32x4_t>(h);
float16x8_t h1 = reinterpret_cast<float16x8_t>(vextq_u32(h1u, h1u, 2));
@ -547,7 +541,7 @@ namespace Optimization {
//Complex double Reduce
template<> // N:by Boyle
template<>
inline Grid::ComplexD Reduce<Grid::ComplexD, float64x2_t>::operator()(float64x2_t in){
u128d conv; conv.v = in;
return Grid::ComplexD(conv.f[0],conv.f[1]);
@ -562,9 +556,7 @@ namespace Optimization {
//Integer Reduce
template<>
inline Integer Reduce<Integer, uint32x4_t>::operator()(uint32x4_t in){
// FIXME unimplemented
printf("Reduce : Missing integer implementation -> FIX\n");
assert(0);
return vaddvq_u32(in);
}
}
@ -603,4 +595,5 @@ namespace Optimization {
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
}
}

View File

@ -376,7 +376,18 @@ class Grid_simd {
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
}
}
friend inline void exchange0(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange0(out1.v,out2.v,in1.v,in2.v);
}
friend inline void exchange1(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange1(out1.v,out2.v,in1.v,in2.v);
}
friend inline void exchange2(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange2(out1.v,out2.v,in1.v,in2.v);
}
friend inline void exchange3(Grid_simd &out1,Grid_simd &out2,Grid_simd in1,Grid_simd in2){
Optimization::Exchange::Exchange3(out1.v,out2.v,in1.v,in2.v);
}
////////////////////////////////////////////////////////////////////
// General permute; assumes vector length is same across
// all subtypes; may not be a good assumption, but could

View File

@ -400,11 +400,13 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
if ( sshift[0] == sshift[1] ) {
if (splice_dim) {
splicetime-=usecond();
same_node = same_node && GatherSimd(source,dimension,shift,0x3,compress,face_idx);
auto tmp = GatherSimd(source,dimension,shift,0x3,compress,face_idx);
same_node = same_node && tmp;
splicetime+=usecond();
} else {
nosplicetime-=usecond();
same_node = same_node && Gather(source,dimension,shift,0x3,compress,face_idx);
auto tmp = Gather(source,dimension,shift,0x3,compress,face_idx);
same_node = same_node && tmp;
nosplicetime+=usecond();
}
} else {
@ -412,13 +414,15 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
splicetime-=usecond();
// if checkerboard is unfavourable take two passes
// both with block stride loop iteration
same_node = same_node && GatherSimd(source,dimension,shift,0x1,compress,face_idx);
same_node = same_node && GatherSimd(source,dimension,shift,0x2,compress,face_idx);
auto tmp1 = GatherSimd(source,dimension,shift,0x1,compress,face_idx);
auto tmp2 = GatherSimd(source,dimension,shift,0x2,compress,face_idx);
same_node = same_node && tmp1 && tmp2;
splicetime+=usecond();
} else {
nosplicetime-=usecond();
same_node = same_node && Gather(source,dimension,shift,0x1,compress,face_idx);
same_node = same_node && Gather(source,dimension,shift,0x2,compress,face_idx);
auto tmp1 = Gather(source,dimension,shift,0x1,compress,face_idx);
auto tmp2 = Gather(source,dimension,shift,0x2,compress,face_idx);
same_node = same_node && tmp1 && tmp2;
nosplicetime+=usecond();
}
}

View File

@ -175,7 +175,7 @@ class TensorIndexRecursion {
}
}
template<class vtype,int N> inline static
void pokeIndex(iVector<vtype,N> &ret, const iVector<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0],0)),N> &arg, int i,int j)
void pokeIndex(iVector<vtype,N> &ret, const iVector<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0],0,0)),N> &arg, int i,int j)
{
for(int ii=0;ii<N;ii++){
TensorIndexRecursion<Level-1>::pokeIndex(ret._internal[ii],arg._internal[ii],i,j);
@ -191,7 +191,7 @@ class TensorIndexRecursion {
}}
}
template<class vtype,int N> inline static
void pokeIndex(iMatrix<vtype,N> &ret, const iMatrix<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0][0],0)),N> &arg, int i,int j)
void pokeIndex(iMatrix<vtype,N> &ret, const iMatrix<decltype(TensorIndexRecursion<Level-1>::peekIndex(ret._internal[0][0],0,0)),N> &arg, int i,int j)
{
for(int ii=0;ii<N;ii++){
for(int jj=0;jj<N;jj++){

View File

@ -219,7 +219,8 @@ void Grid_init(int *argc,char ***argv)
int MB;
arg= GridCmdOptionPayload(*argv,*argv+*argc,"--shm");
GridCmdOptionInt(arg,MB);
CartesianCommunicator::MAX_MPI_SHM_BYTES = MB*1024*1024;
uint64_t MB64 = MB;
CartesianCommunicator::MAX_MPI_SHM_BYTES = MB64*1024LL*1024LL;
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--shm-hugepages") ){

View File

@ -1,6 +1,6 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_serialisation.cc
@ -29,12 +29,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
using namespace Grid::QCD;
GRID_SERIALIZABLE_ENUM(myenum, undef, red, 1, blue, 2, green, 3);
class myclass: Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(myclass,
@ -79,14 +78,14 @@ void ioTest(const std::string &filename, const O &object, const std::string &nam
// writer needs to be destroyed so that writing physically happens
{
W writer(filename);
write(writer, "testobject", object);
}
R reader(filename);
O buf;
bool good;
read(reader, "testobject", buf);
good = (object == buf);
std::cout << name << " IO test: " << (good ? "success" : "failure");
@ -98,7 +97,7 @@ int main(int argc,char **argv)
{
std::cout << "==== basic IO" << std::endl;
XmlWriter WR("bother.xml");
// test basic type writing
std::cout << "-- basic writing to 'bother.xml'..." << std::endl;
push(WR,"BasicTypes");
@ -112,12 +111,12 @@ int main(int argc,char **argv)
write(WR,"d",d);
write(WR,"b",b);
pop(WR);
// test serializable class writing
myclass obj(1234); // non-trivial constructor
std::vector<myclass> vec;
std::pair<myenum, myenum> pair;
std::cout << "-- serialisable class writing to 'bother.xml'..." << std::endl;
write(WR,"obj",obj);
WR.write("obj2", obj);
@ -132,11 +131,11 @@ int main(int argc,char **argv)
std::cout << "-- serialisable class comparison:" << std::endl;
std::cout << "vec[0] == obj: " << ((vec[0] == obj) ? "true" : "false") << std::endl;
std::cout << "vec[1] == obj: " << ((vec[1] == obj) ? "true" : "false") << std::endl;
write(WR, "objpair", pair);
std::cout << "-- pair writing to std::cout:" << std::endl;
std::cout << pair << std::endl;
// read tests
std::cout << "\n==== IO self-consistency tests" << std::endl;
//// XML
@ -151,6 +150,11 @@ int main(int argc,char **argv)
ioTest<TextWriter, TextReader>("iotest.dat", obj, "text (object) ");
ioTest<TextWriter, TextReader>("iotest.dat", vec, "text (vector of objects)");
ioTest<TextWriter, TextReader>("iotest.dat", pair, "text (pair of objects)");
//// text
ioTest<JSONWriter, JSONReader>("iotest.json", obj, "JSON (object) ");
ioTest<JSONWriter, JSONReader>("iotest.json", vec, "JSON (vector of objects)");
ioTest<JSONWriter, JSONReader>("iotest.json", pair, "JSON (pair of objects)");
//// HDF5
#undef HAVE_HDF5
#ifdef HAVE_HDF5
@ -158,13 +162,13 @@ int main(int argc,char **argv)
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", vec, "HDF5 (vector of objects)");
ioTest<Hdf5Writer, Hdf5Reader>("iotest.h5", pair, "HDF5 (pair of objects)");
#endif
std::cout << "\n==== vector flattening/reconstruction" << std::endl;
typedef std::vector<std::vector<std::vector<double>>> vec3d;
vec3d dv, buf;
double d = 0.;
dv.resize(4);
for (auto &v1: dv)
{
@ -180,14 +184,14 @@ int main(int argc,char **argv)
}
std::cout << "original 3D vector:" << std::endl;
std::cout << dv << std::endl;
Flatten<vec3d> flatdv(dv);
std::cout << "\ndimensions:" << std::endl;
std::cout << flatdv.getDim() << std::endl;
std::cout << "\nflattened vector:" << std::endl;
std::cout << flatdv.getFlatVector() << std::endl;
Reconstruct<vec3d> rec(flatdv.getFlatVector(), flatdv.getDim());
std::cout << "\nreconstructed vector:" << std::endl;
std::cout << flatdv.getVector() << std::endl;
@ -199,10 +203,12 @@ int main(int argc,char **argv)
{
JSONWriter JW("bother.json");
// test basic type writing
myenum a = myenum::red;
push(JW,"BasicTypes");
write(JW,std::string("i16"),i16);
write(JW,"myenum",a);
write(JW,"u16",u16);
write(JW,"i32",i32);
write(JW,"u32",u32);
@ -212,23 +218,25 @@ int main(int argc,char **argv)
write(JW,"d",d);
write(JW,"b",b);
pop(JW);
// test serializable class writing
myclass obj(1234); // non-trivial constructor
std::cout << obj << std::endl;
std::cout << "-- serialisable class writing to 'bother.json'..." << std::endl;
write(JW,"obj",obj);
JW.write("obj2", obj);
std::cout << obj << std::endl;
std::vector<myclass> vec;
vec.push_back(myclass(1234));
vec.push_back(myclass(5678));
vec.push_back(myclass(3838));
write(JW, "objvec", vec);
}
{
JSONReader RD("bother.json");
myclass jcopy1;
@ -238,8 +246,9 @@ int main(int argc,char **argv)
std::cout << "Loaded (JSON) -----------------" << std::endl;
std::cout << jcopy1 << std::endl << jveccopy1 << std::endl;
}
/*
/*
// This is still work in progress
{
// Testing the next element function

View File

@ -80,31 +80,47 @@ int main (int argc, char ** argv)
LatticeFermionD src_o(FrbGrid);
LatticeFermionD result_o(FrbGrid);
LatticeFermionD result_o_2(FrbGrid);
LatticeFermionD result_cg(FrbGrid);
pickCheckerboard(Odd,src_o,src);
result_o.checkerboard = Odd;
result_o = zero;
result_o_2.checkerboard = Odd;
result_o_2 = zero;
result_cg.checkerboard = Odd;
result_cg = zero;
LatticeFermionD result_mcg(result_cg);
LatticeFermionD result_rlcg(result_cg);
SchurDiagMooeeOperator<DomainWallFermionD,LatticeFermionD> HermOpEO(Ddwf);
SchurDiagMooeeOperator<DomainWallFermionFH,LatticeFermionF> HermOpEO_f(Ddwf_f);
//#define DO_MIXED_CG
#define DO_RLUP_CG
#ifdef DO_MIXED_CG
std::cout << "Starting mixed CG" << std::endl;
MixedPrecisionConjugateGradient<LatticeFermionD,LatticeFermionF> mCG(1.0e-8, 10000, 50, FrbGrid_f, HermOpEO_f, HermOpEO);
mCG.InnerTolerance = 3.0e-5;
mCG(src_o,result_o);
mCG(src_o,result_mcg);
#endif
#ifdef DO_RLUP_CG
std::cout << "Starting reliable update CG" << std::endl;
ConjugateGradientReliableUpdate<LatticeFermionD,LatticeFermionF> rlCG(1.e-8, 10000, 0.1, FrbGrid_f, HermOpEO_f, HermOpEO);
rlCG(src_o,result_rlcg);
#endif
std::cout << "Starting regular CG" << std::endl;
ConjugateGradient<LatticeFermionD> CG(1.0e-8,10000);
CG(HermOpEO,src_o,result_o_2);
CG(HermOpEO,src_o,result_cg);
LatticeFermionD diff_o(FrbGrid);
RealD diff = axpy_norm(diff_o, -1.0, result_o, result_o_2);
std::cout << "Diff between mixed and regular CG: " << diff << std::endl;
#ifdef DO_MIXED_CG
LatticeFermionD diff_mcg(FrbGrid);
RealD vdiff_mcg = axpy_norm(diff_mcg, -1.0, result_cg, result_mcg);
std::cout << "Diff between mixed and regular CG: " << vdiff_mcg << std::endl;
#endif
#ifdef DO_RLUP_CG
LatticeFermionD diff_rlcg(FrbGrid);
RealD vdiff_rlcg = axpy_norm(diff_rlcg, -1.0, result_cg, result_rlcg);
std::cout << "Diff between reliable update and regular CG: " << vdiff_rlcg << std::endl;
#endif
Grid_finalize();
}

View File

@ -0,0 +1,239 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/core/Test_dwf_eofa_even_odd.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
const int Ls = 8;
// GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
LatticeFermion src (FGrid); random(RNG5, src);
LatticeFermion phi (FGrid); random(RNG5, phi);
LatticeFermion chi (FGrid); random(RNG5, chi);
LatticeFermion result(FGrid); result = zero;
LatticeFermion ref (FGrid); ref = zero;
LatticeFermion tmp (FGrid); tmp = zero;
LatticeFermion err (FGrid); err = zero;
LatticeGaugeField Umu (UGrid); SU3::HotConfiguration(RNG4, Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
// Only one non-zero (y)
Umu = zero;
for(int nn=0; nn<Nd; nn++){
random(RNG4, U[nn]);
if(nn>0){ U[nn] = zero; }
PokeIndex<LorentzIndex>(Umu, U[nn], nn);
}
RealD mq1 = 0.1;
RealD mq2 = 0.5;
RealD mq3 = 1.0;
RealD shift = 0.1234;
RealD M5 = 1.8;
int pm = 1;
DomainWallEOFAFermionR Ddwf(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mq1, mq2, mq3, shift, pm, M5);
LatticeFermion src_e (FrbGrid);
LatticeFermion src_o (FrbGrid);
LatticeFermion r_e (FrbGrid);
LatticeFermion r_o (FrbGrid);
LatticeFermion r_eo (FGrid);
LatticeFermion r_eeoo(FGrid);
std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing that Meo + Moe + Moo + Mee = Munprec " << std::endl;
std::cout << GridLogMessage << "==========================================================" << std::endl;
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd, src_o, src);
Ddwf.Meooe(src_e, r_o); std::cout << GridLogMessage << "Applied Meo" << std::endl;
Ddwf.Meooe(src_o, r_e); std::cout << GridLogMessage << "Applied Moe" << std::endl;
setCheckerboard(r_eo, r_o);
setCheckerboard(r_eo, r_e);
Ddwf.Mooee(src_e, r_e); std::cout << GridLogMessage << "Applied Mee" << std::endl;
Ddwf.Mooee(src_o, r_o); std::cout << GridLogMessage << "Applied Moo" << std::endl;
setCheckerboard(r_eeoo, r_e);
setCheckerboard(r_eeoo, r_o);
r_eo = r_eo + r_eeoo;
Ddwf.M(src, ref);
// std::cout << GridLogMessage << r_eo << std::endl;
// std::cout << GridLogMessage << ref << std::endl;
err = ref - r_eo;
std::cout << GridLogMessage << "EO norm diff " << norm2(err) << " " << norm2(ref) << " " << norm2(r_eo) << std::endl;
LatticeComplex cerr(FGrid);
cerr = localInnerProduct(err,err);
// std::cout << GridLogMessage << cerr << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test Ddagger is the dagger of D by requiring " << std::endl;
std::cout << GridLogMessage << "= < phi | Deo | chi > * = < chi | Deo^dag| phi> " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
LatticeFermion chi_e (FrbGrid);
LatticeFermion chi_o (FrbGrid);
LatticeFermion dchi_e(FrbGrid);
LatticeFermion dchi_o(FrbGrid);
LatticeFermion phi_e (FrbGrid);
LatticeFermion phi_o (FrbGrid);
LatticeFermion dphi_e(FrbGrid);
LatticeFermion dphi_o(FrbGrid);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd , phi_o, phi);
Ddwf.Meooe (chi_e, dchi_o);
Ddwf.Meooe (chi_o, dchi_e);
Ddwf.MeooeDag(phi_e, dphi_o);
Ddwf.MeooeDag(phi_o, dphi_e);
ComplexD pDce = innerProduct(phi_e, dchi_e);
ComplexD pDco = innerProduct(phi_o, dchi_o);
ComplexD cDpe = innerProduct(chi_e, dphi_e);
ComplexD cDpo = innerProduct(chi_o, dphi_o);
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDce-conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDco-conj(cDpe) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInv Mee = 1 " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
Ddwf.Mooee (chi_e, src_e);
Ddwf.MooeeInv(src_e, phi_e);
Ddwf.Mooee (chi_o, src_o);
Ddwf.MooeeInv(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInvDag MeeDag = 1 " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
Ddwf.MooeeDag (chi_e, src_e);
Ddwf.MooeeInvDag(src_e, phi_e);
Ddwf.MooeeDag (chi_o, src_o);
Ddwf.MooeeInvDag(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MpcDagMpc is Hermitian " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
random(RNG5, phi);
random(RNG5, chi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd , phi_o, phi);
RealD t1,t2;
SchurDiagMooeeOperator<DomainWallEOFAFermionR,LatticeFermion> HermOpEO(Ddwf);
HermOpEO.MpcDagMpc(chi_e, dchi_e, t1, t2);
HermOpEO.MpcDagMpc(chi_o, dchi_o, t1, t2);
HermOpEO.MpcDagMpc(phi_e, dphi_e, t1, t2);
HermOpEO.MpcDagMpc(phi_o, dphi_o, t1, t2);
pDce = innerProduct(phi_e, dchi_e);
pDco = innerProduct(phi_o, dchi_o);
cDpe = innerProduct(chi_e, dphi_e);
cDpo = innerProduct(chi_o, dphi_o);
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDco-conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDce-conj(cDpe) << std::endl;
Grid_finalize();
}

View File

@ -33,22 +33,68 @@ using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef typename GparityDomainWallFermionR::FermionField FermionField;
//typedef GparityDomainWallFermionD GparityDiracOp;
//typedef DomainWallFermionD StandardDiracOp;
//#define DOP_PARAMS
typedef GparityMobiusFermionD GparityDiracOp;
typedef MobiusFermionD StandardDiracOp;
#define DOP_PARAMS ,1.5, 0.5
typedef typename GparityDiracOp::FermionField GparityFermionField;
typedef typename GparityDiracOp::GaugeField GparityGaugeField;
typedef typename GparityFermionField::vector_type vComplexType;
typedef typename StandardDiracOp::FermionField StandardFermionField;
typedef typename StandardDiracOp::GaugeField StandardGaugeField;
enum{ same_vComplex = std::is_same<vComplexType, typename StandardFermionField::vector_type>::value };
static_assert(same_vComplex == 1, "Dirac Operators must have same underlying SIMD complex type");
int main (int argc, char ** argv)
{
const int nu = 3;
int nu = 0;
Grid_init(&argc,&argv);
for(int i=1;i<argc;i++){
if(std::string(argv[i]) == "--Gparity-dir"){
std::stringstream ss; ss << argv[i+1]; ss >> nu;
std::cout << GridLogMessage << "Set Gparity direction to " << nu << std::endl;
}
}
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Kernel options --dslash-generic, --dslash-unroll, --dslash-asm" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
std::cout << GridLogMessage<< "* Testing Gparity Dirac operator "<<std::endl;
std::cout << GridLogMessage<< "* Vectorising space-time by "<<vComplexType::Nsimd()<<std::endl;
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute ) std::cout << GridLogMessage<< "* Using Overlapped Comms/Compute" <<std::endl;
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage<< "* Using sequential comms compute" <<std::endl;
#endif
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric ) std::cout << GridLogMessage<< "* Using GENERIC Nc WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptHandUnroll) std::cout << GridLogMessage<< "* Using UNROLLED Nc=3 WilsonKernels" <<std::endl;
if ( WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptInlineAsm ) std::cout << GridLogMessage<< "* Using Asm Nc=3 WilsonKernels" <<std::endl;
std::cout << GridLogMessage<< "*****************************************************************" <<std::endl;
const int Ls=4;
const int L =4;
std::vector<int> latt_2f(Nd,L);
std::vector<int> latt_1f(Nd,L); latt_1f[nu] = 2*L;
//const int L =4;
//std::vector<int> latt_2f(Nd,L);
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> latt_2f = GridDefaultLatt();
std::vector<int> latt_1f(latt_2f); latt_1f[nu] = 2*latt_2f[nu];
int L = latt_2f[nu];
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplexType::Nsimd());
std::cout << GridLogMessage << "SIMD layout: ";
for(int i=0;i<simd_layout.size();i++) std::cout << simd_layout[i] << " ";
std::cout << std::endl;
std::vector<int> mpi_layout = GridDefaultMpi(); //node layout
GridCartesian * UGrid_1f = SpaceTimeGrid::makeFourDimGrid(latt_1f, simd_layout, mpi_layout);
@ -67,13 +113,13 @@ int main (int argc, char ** argv)
GridParallelRNG RNG5_2f(FGrid_2f); RNG5_2f.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4_2f(UGrid_2f); RNG4_2f.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu_2f(UGrid_2f);
GparityGaugeField Umu_2f(UGrid_2f);
SU3::HotConfiguration(RNG4_2f,Umu_2f);
LatticeFermion src (FGrid_2f);
LatticeFermion tmpsrc(FGrid_2f);
FermionField src_2f(FGrid_2f);
LatticeFermion src_1f(FGrid_1f);
StandardFermionField src (FGrid_2f);
StandardFermionField tmpsrc(FGrid_2f);
GparityFermionField src_2f(FGrid_2f);
StandardFermionField src_1f(FGrid_1f);
// Replicate fermion source
random(RNG5_2f,src);
@ -81,8 +127,8 @@ int main (int argc, char ** argv)
tmpsrc=src*2.0;
PokeIndex<0>(src_2f,tmpsrc,1);
LatticeFermion result_1f(FGrid_1f); result_1f=zero;
LatticeGaugeField Umu_1f(UGrid_1f);
StandardFermionField result_1f(FGrid_1f); result_1f=zero;
StandardGaugeField Umu_1f(UGrid_1f);
Replicate(Umu_2f,Umu_1f);
//Coordinate grid for reference
@ -92,7 +138,7 @@ int main (int argc, char ** argv)
//Copy-conjugate the gauge field
//First C-shift the lattice by Lx/2
{
LatticeGaugeField Umu_shift = conjugate( Cshift(Umu_1f,nu,L) );
StandardGaugeField Umu_shift = conjugate( Cshift(Umu_1f,nu,L) );
Umu_1f = where( xcoor_1f >= Integer(L), Umu_shift, Umu_1f );
// hack test to check the same
@ -101,7 +147,7 @@ int main (int argc, char ** argv)
cout << GridLogMessage << "Umu diff " << norm2(Umu_shift)<<std::endl;
//Make the gauge field antiperiodic in nu-direction
LatticeColourMatrix Unu(UGrid_1f);
decltype(PeekIndex<LorentzIndex>(Umu_1f,nu)) Unu(UGrid_1f);
Unu = PeekIndex<LorentzIndex>(Umu_1f,nu);
Unu = where(xcoor_1f == Integer(2*L-1), -Unu, Unu);
PokeIndex<LorentzIndex>(Umu_1f,Unu,nu);
@ -115,33 +161,33 @@ int main (int argc, char ** argv)
RealD mass=0.0;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5);
StandardDiracOp Ddwf(Umu_1f,*FGrid_1f,*FrbGrid_1f,*UGrid_1f,*UrbGrid_1f,mass,M5 DOP_PARAMS);
LatticeFermion src_o_1f(FrbGrid_1f);
LatticeFermion result_o_1f(FrbGrid_1f);
StandardFermionField src_o_1f(FrbGrid_1f);
StandardFermionField result_o_1f(FrbGrid_1f);
pickCheckerboard(Odd,src_o_1f,src_1f);
result_o_1f=zero;
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
SchurDiagMooeeOperator<StandardDiracOp,StandardFermionField> HermOpEO(Ddwf);
ConjugateGradient<StandardFermionField> CG(1.0e-8,10000);
CG(HermOpEO,src_o_1f,result_o_1f);
// const int nu = 3;
std::vector<int> twists(Nd,0);
twists[nu] = 1;
GparityDomainWallFermionR::ImplParams params;
GparityDiracOp::ImplParams params;
params.twists = twists;
GparityDomainWallFermionR GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5,params);
GparityDiracOp GPDdwf(Umu_2f,*FGrid_2f,*FrbGrid_2f,*UGrid_2f,*UrbGrid_2f,mass,M5 DOP_PARAMS,params);
for(int disp=-1;disp<=1;disp+=2)
for(int mu=0;mu<5;mu++)
{
FermionField Dsrc_2f(FGrid_2f);
GparityFermionField Dsrc_2f(FGrid_2f);
LatticeFermion Dsrc_1f(FGrid_1f);
LatticeFermion Dsrc_2freplica(FGrid_1f);
LatticeFermion Dsrc_2freplica0(FGrid_1f);
LatticeFermion Dsrc_2freplica1(FGrid_1f);
StandardFermionField Dsrc_1f(FGrid_1f);
StandardFermionField Dsrc_2freplica(FGrid_1f);
StandardFermionField Dsrc_2freplica0(FGrid_1f);
StandardFermionField Dsrc_2freplica1(FGrid_1f);
if ( mu ==0 ) {
std::cout << GridLogMessage<< " Cross checking entire hopping term"<<std::endl;
@ -156,8 +202,8 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "S norms "<< norm2(src_2f) << " " << norm2(src_1f) <<std::endl;
std::cout << GridLogMessage << "D norms "<< norm2(Dsrc_2f)<< " " << norm2(Dsrc_1f) <<std::endl;
LatticeFermion Dsrc_2f0(FGrid_2f); Dsrc_2f0 = PeekIndex<0>(Dsrc_2f,0);
LatticeFermion Dsrc_2f1(FGrid_2f); Dsrc_2f1 = PeekIndex<0>(Dsrc_2f,1);
StandardFermionField Dsrc_2f0(FGrid_2f); Dsrc_2f0 = PeekIndex<0>(Dsrc_2f,0);
StandardFermionField Dsrc_2f1(FGrid_2f); Dsrc_2f1 = PeekIndex<0>(Dsrc_2f,1);
// Dsrc_2f1 = Dsrc_2f1 - Dsrc_2f0;
// std::cout << GridLogMessage << " Cross check two halves " <<norm2(Dsrc_2f1)<<std::endl;
@ -174,20 +220,20 @@ int main (int argc, char ** argv)
}
{
FermionField chi (FGrid_2f); gaussian(RNG5_2f,chi);
FermionField phi (FGrid_2f); gaussian(RNG5_2f,phi);
GparityFermionField chi (FGrid_2f); gaussian(RNG5_2f,chi);
GparityFermionField phi (FGrid_2f); gaussian(RNG5_2f,phi);
FermionField chi_e (FrbGrid_2f);
FermionField chi_o (FrbGrid_2f);
GparityFermionField chi_e (FrbGrid_2f);
GparityFermionField chi_o (FrbGrid_2f);
FermionField dchi_e (FrbGrid_2f);
FermionField dchi_o (FrbGrid_2f);
GparityFermionField dchi_e (FrbGrid_2f);
GparityFermionField dchi_o (FrbGrid_2f);
FermionField phi_e (FrbGrid_2f);
FermionField phi_o (FrbGrid_2f);
GparityFermionField phi_e (FrbGrid_2f);
GparityFermionField phi_o (FrbGrid_2f);
FermionField dphi_e (FrbGrid_2f);
FermionField dphi_o (FrbGrid_2f);
GparityFermionField dphi_e (FrbGrid_2f);
GparityFermionField dphi_o (FrbGrid_2f);
pickCheckerboard(Even,chi_e,chi);
pickCheckerboard(Odd ,chi_o,chi);
@ -212,14 +258,14 @@ int main (int argc, char ** argv)
}
FermionField result_2f(FGrid_2f); result_2f=zero;
FermionField src_o_2f(FrbGrid_2f);
FermionField result_o_2f(FrbGrid_2f);
GparityFermionField result_2f(FGrid_2f); result_2f=zero;
GparityFermionField src_o_2f(FrbGrid_2f);
GparityFermionField result_o_2f(FrbGrid_2f);
pickCheckerboard(Odd,src_o_2f,src_2f);
result_o_2f=zero;
ConjugateGradient<FermionField> CG2f(1.0e-8,10000);
SchurDiagMooeeOperator<GparityDomainWallFermionR,FermionField> HermOpEO2f(GPDdwf);
ConjugateGradient<GparityFermionField> CG2f(1.0e-8,10000);
SchurDiagMooeeOperator<GparityDiracOp,GparityFermionField> HermOpEO2f(GPDdwf);
CG2f(HermOpEO2f,src_o_2f,result_o_2f);
std::cout << "2f cb "<<result_o_2f.checkerboard<<std::endl;
@ -227,10 +273,10 @@ int main (int argc, char ** argv)
std::cout << " result norms " <<norm2(result_o_2f)<<" " <<norm2(result_o_1f)<<std::endl;
LatticeFermion res0o (FrbGrid_2f);
LatticeFermion res1o (FrbGrid_2f);
LatticeFermion res0 (FGrid_2f);
LatticeFermion res1 (FGrid_2f);
StandardFermionField res0o (FrbGrid_2f);
StandardFermionField res1o (FrbGrid_2f);
StandardFermionField res0 (FGrid_2f);
StandardFermionField res1 (FGrid_2f);
res0=zero;
res1=zero;
@ -244,9 +290,9 @@ int main (int argc, char ** argv)
setCheckerboard(res0,res0o);
setCheckerboard(res1,res1o);
LatticeFermion replica (FGrid_1f);
LatticeFermion replica0(FGrid_1f);
LatticeFermion replica1(FGrid_1f);
StandardFermionField replica (FGrid_1f);
StandardFermionField replica0(FGrid_1f);
StandardFermionField replica1(FGrid_1f);
Replicate(res0,replica0);
Replicate(res1,replica1);

View File

@ -0,0 +1,241 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/core/Test_dwf_eofa_even_odd.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
const int Ls = 8;
// GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
LatticeFermion src (FGrid); random(RNG5, src);
LatticeFermion phi (FGrid); random(RNG5, phi);
LatticeFermion chi (FGrid); random(RNG5, chi);
LatticeFermion result(FGrid); result = zero;
LatticeFermion ref (FGrid); ref = zero;
LatticeFermion tmp (FGrid); tmp = zero;
LatticeFermion err (FGrid); err = zero;
LatticeGaugeField Umu (UGrid); SU3::HotConfiguration(RNG4, Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
// Only one non-zero (y)
Umu = zero;
for(int nn=0; nn<Nd; nn++){
random(RNG4, U[nn]);
if(nn>0){ U[nn] = zero; }
PokeIndex<LorentzIndex>(Umu, U[nn], nn);
}
RealD b = 2.5;
RealD c = 1.5;
RealD mq1 = 0.1;
RealD mq2 = 0.5;
RealD mq3 = 1.0;
RealD shift = 0.1234;
RealD M5 = 1.8;
int pm = 1;
MobiusEOFAFermionR Ddwf(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mq1, mq2, mq3, shift, pm, M5, b, c);
LatticeFermion src_e (FrbGrid);
LatticeFermion src_o (FrbGrid);
LatticeFermion r_e (FrbGrid);
LatticeFermion r_o (FrbGrid);
LatticeFermion r_eo (FGrid);
LatticeFermion r_eeoo(FGrid);
std::cout << GridLogMessage << "==========================================================" << std::endl;
std::cout << GridLogMessage << "= Testing that Meo + Moe + Moo + Mee = Munprec " << std::endl;
std::cout << GridLogMessage << "==========================================================" << std::endl;
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd, src_o, src);
Ddwf.Meooe(src_e, r_o); std::cout << GridLogMessage << "Applied Meo" << std::endl;
Ddwf.Meooe(src_o, r_e); std::cout << GridLogMessage << "Applied Moe" << std::endl;
setCheckerboard(r_eo, r_o);
setCheckerboard(r_eo, r_e);
Ddwf.Mooee(src_e, r_e); std::cout << GridLogMessage << "Applied Mee" << std::endl;
Ddwf.Mooee(src_o, r_o); std::cout << GridLogMessage << "Applied Moo" << std::endl;
setCheckerboard(r_eeoo, r_e);
setCheckerboard(r_eeoo, r_o);
r_eo = r_eo + r_eeoo;
Ddwf.M(src, ref);
// std::cout << GridLogMessage << r_eo << std::endl;
// std::cout << GridLogMessage << ref << std::endl;
err = ref - r_eo;
std::cout << GridLogMessage << "EO norm diff " << norm2(err) << " " << norm2(ref) << " " << norm2(r_eo) << std::endl;
LatticeComplex cerr(FGrid);
cerr = localInnerProduct(err,err);
// std::cout << GridLogMessage << cerr << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test Ddagger is the dagger of D by requiring " << std::endl;
std::cout << GridLogMessage << "= < phi | Deo | chi > * = < chi | Deo^dag| phi> " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
LatticeFermion chi_e (FrbGrid);
LatticeFermion chi_o (FrbGrid);
LatticeFermion dchi_e(FrbGrid);
LatticeFermion dchi_o(FrbGrid);
LatticeFermion phi_e (FrbGrid);
LatticeFermion phi_o (FrbGrid);
LatticeFermion dphi_e(FrbGrid);
LatticeFermion dphi_o(FrbGrid);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd , phi_o, phi);
Ddwf.Meooe (chi_e, dchi_o);
Ddwf.Meooe (chi_o, dchi_e);
Ddwf.MeooeDag(phi_e, dphi_o);
Ddwf.MeooeDag(phi_o, dphi_e);
ComplexD pDce = innerProduct(phi_e, dchi_e);
ComplexD pDco = innerProduct(phi_o, dchi_o);
ComplexD cDpe = innerProduct(chi_e, dphi_e);
ComplexD cDpo = innerProduct(chi_o, dphi_o);
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDce-conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDco-conj(cDpe) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInv Mee = 1 " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
Ddwf.Mooee (chi_e, src_e);
Ddwf.MooeeInv(src_e, phi_e);
Ddwf.Mooee (chi_o, src_o);
Ddwf.MooeeInv(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeeInvDag MeeDag = 1 " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
Ddwf.MooeeDag (chi_e, src_e);
Ddwf.MooeeInvDag(src_e, phi_e);
Ddwf.MooeeDag (chi_o, src_o);
Ddwf.MooeeInvDag(src_o, phi_o);
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
err = phi - chi;
std::cout << GridLogMessage << "norm diff " << norm2(err) << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
std::cout << GridLogMessage << "= Test MpcDagMpc is Hermitian " << std::endl;
std::cout << GridLogMessage << "==============================================================" << std::endl;
random(RNG5, phi);
random(RNG5, chi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd , chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd , phi_o, phi);
RealD t1,t2;
SchurDiagMooeeOperator<MobiusEOFAFermionR,LatticeFermion> HermOpEO(Ddwf);
HermOpEO.MpcDagMpc(chi_e, dchi_e, t1, t2);
HermOpEO.MpcDagMpc(chi_o, dchi_o, t1, t2);
HermOpEO.MpcDagMpc(phi_e, dphi_e, t1, t2);
HermOpEO.MpcDagMpc(phi_o, dphi_o, t1, t2);
pDce = innerProduct(phi_e, dchi_e);
pDco = innerProduct(phi_o, dchi_o);
cDpe = innerProduct(chi_e, dphi_e);
cDpo = innerProduct(chi_o, dphi_o);
std::cout << GridLogMessage << "e " << pDce << " " << cDpe << std::endl;
std::cout << GridLogMessage << "o " << pDco << " " << cDpo << std::endl;
std::cout << GridLogMessage << "pDce - conj(cDpo) " << pDco-conj(cDpo) << std::endl;
std::cout << GridLogMessage << "pDco - conj(cDpe) " << pDce-conj(cDpe) << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,102 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_heatbath_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//////////////////////////////////////////////////////////////////////////////////////////
// This program sets up the initial pseudofermion field |Phi> = Meofa^{-1/2}*|eta>, and
// then uses this Phi to compute the action <Phi|Meofa|Phi>.
// If all is working, one should find that <eta|eta> = <Phi|Meofa|Phi>.
//////////////////////////////////////////////////////////////////////////////////////////
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
// Parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Npoles = 12;
const RealD mf = 0.01;
const RealD mpv = 1.0;
const RealD M5 = 1.8;
int main(int argc, char** argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is set up to use " << threads << " threads" << std::endl;
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
DomainWallEOFAFermionR Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5);
DomainWallEOFAFermionR Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5);
// Construct the action and test the heatbath (zero initial guess)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, false);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
// Construct the action and test the heatbath (forecasted initial guesses)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, true);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
return 0;
}

View File

@ -0,0 +1,108 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_heatbath_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//////////////////////////////////////////////////////////////////////////////////////////
// This program sets up the initial pseudofermion field |Phi> = Meofa^{-1/2}*|eta>, and
// then uses this Phi to compute the action <Phi|Meofa|Phi>.
// If all is working, one should find that <eta|eta> = <Phi|Meofa|Phi>.
//////////////////////////////////////////////////////////////////////////////////////////
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef GparityWilsonImplR FermionImplPolicy;
typedef GparityDomainWallEOFAFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
// Parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Npoles = 12;
const RealD mf = 0.01;
const RealD mpv = 1.0;
const RealD M5 = 1.8;
int main(int argc, char** argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is set up to use " << threads << " threads" << std::endl;
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
// GparityDomainWallFermionR::ImplParams params;
FermionAction::ImplParams params;
FermionAction Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5, params);
FermionAction Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5, params);
// Construct the action and test the heatbath (zero initial guess)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, false);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
// Construct the action and test the heatbath (forecasted initial guesses)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, true);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
return 0;
}

View File

@ -0,0 +1,104 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_heatbath_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//////////////////////////////////////////////////////////////////////////////////////////
// This program sets up the initial pseudofermion field |Phi> = Meofa^{-1/2}*|eta>, and
// then uses this Phi to compute the action <Phi|Meofa|Phi>.
// If all is working, one should find that <eta|eta> = <Phi|Meofa|Phi>.
//////////////////////////////////////////////////////////////////////////////////////////
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
// Parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Npoles = 12;
const RealD b = 2.5;
const RealD c = 1.5;
const RealD mf = 0.01;
const RealD mpv = 1.0;
const RealD M5 = 1.8;
int main(int argc, char** argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is set up to use " << threads << " threads" << std::endl;
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
MobiusEOFAFermionR Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5, b, c);
MobiusEOFAFermionR Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5, b, c);
// Construct the action and test the heatbath (zero initial guess)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, false);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
// Construct the action and test the heatbath (forecasted initial guesses)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, true);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
return 0;
}

View File

@ -0,0 +1,109 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_heatbath_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
//////////////////////////////////////////////////////////////////////////////////////////
// This program sets up the initial pseudofermion field |Phi> = Meofa^{-1/2}*|eta>, and
// then uses this Phi to compute the action <Phi|Meofa|Phi>.
// If all is working, one should find that <eta|eta> = <Phi|Meofa|Phi>.
//////////////////////////////////////////////////////////////////////////////////////////
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef GparityWilsonImplR FermionImplPolicy;
typedef GparityMobiusEOFAFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
// Parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Npoles = 12;
const RealD b = 2.5;
const RealD c = 1.5;
const RealD mf = 0.01;
const RealD mpv = 1.0;
const RealD M5 = 1.8;
int main(int argc, char** argv)
{
Grid_init(&argc, &argv);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is set up to use " << threads << " threads" << std::endl;
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: " << grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
FermionAction::ImplParams params;
FermionAction Lop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mpv, 0.0, -1, M5, b, c, params);
FermionAction Rop(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mpv, mf, mpv, -1.0, 1, M5, b, c, params);
// Construct the action and test the heatbath (zero initial guess)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, false);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
// Construct the action and test the heatbath (forecasted initial guesses)
{
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, Npoles);
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, true);
Meofa.refresh(Umu, RNG5);
printf("<Phi|Meofa|Phi> = %1.15e\n", Meofa.S(Umu));
}
return 0;
}

View File

@ -0,0 +1,206 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_reweight_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
// parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Nhits = 25;
const int max_iter = 5000;
const RealD mf = 0.1;
const RealD mb = 0.11;
const RealD M5 = 1.8;
const RealD stop_tol = 1.0e-12;
RealD mean(const std::vector<RealD>& data)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ mean += data[i]; }
return mean/RealD(N);
}
RealD jack_mean(const std::vector<RealD>& data, int sample)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } }
return mean/RealD(N-1);
}
RealD jack_std(const std::vector<RealD>& jacks, RealD mean)
{
int N = jacks.size();
RealD std(0.0);
for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); }
return std::sqrt(RealD(N-1)/RealD(N)*std);
}
std::vector<RealD> jack_stats(const std::vector<RealD>& data)
{
int N = data.size();
std::vector<RealD> jack_samples(N);
std::vector<RealD> jack_stats(2);
jack_stats[0] = mean(data);
for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); }
jack_stats[1] = jack_std(jack_samples, jack_stats[0]);
return jack_stats;
}
int main(int argc, char **argv)
{
Grid_init(&argc, &argv);
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: "
<< grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
// Initialize RHMC fermion operators
DomainWallFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5);
DomainWallFermionR Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5);
SchurDiagMooeeOperator<DomainWallFermionR, LatticeFermion> MdagM(Ddwf_f);
SchurDiagMooeeOperator<DomainWallFermionR, LatticeFermion> VdagV(Ddwf_b);
// Degree 12 rational approximations to x^(1/4) and x^(-1/4)
double lo = 0.0001;
double hi = 95.0;
int precision = 64;
int degree = 12;
AlgRemez remez(lo, hi, precision);
std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl;
remez.generateApprox(degree, 1, 4);
MultiShiftFunction PowerQuarter(remez, stop_tol, false);
MultiShiftFunction PowerNegQuarter(remez, stop_tol, true);
// Stochastically estimate reweighting factor via RHMC
RealD scale = std::sqrt(0.5);
std::vector<RealD> rw_rhmc(Nhits);
ConjugateGradientMultiShift<LatticeFermion> msCG_V(max_iter, PowerQuarter);
ConjugateGradientMultiShift<LatticeFermion> msCG_M(max_iter, PowerNegQuarter);
std::cout.precision(12);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
LatticeFermion Phi (Ddwf_f.FermionGrid());
LatticeFermion PhiOdd (Ddwf_f.FermionRedBlackGrid());
std::vector<LatticeFermion> tmp(2, Ddwf_f.FermionRedBlackGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
pickCheckerboard(Odd, PhiOdd, Phi);
// evaluate -log(rw)
msCG_V(VdagV, PhiOdd, tmp[0]);
msCG_M(MdagM, tmp[0], tmp[1]);
rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd);
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
// Initialize EOFA fermion operators
RealD shift_L = 0.0;
RealD shift_R = -1.0;
int pm = 1;
DomainWallEOFAFermionR Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5);
DomainWallEOFAFermionR Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5);
MdagMLinearOperator<DomainWallEOFAFermionR, LatticeFermion> LdagL(Deofa_L);
MdagMLinearOperator<DomainWallEOFAFermionR, LatticeFermion> RdagR(Deofa_R);
// Stochastically estimate reweighting factor via EOFA
RealD k = Deofa_L.k;
std::vector<RealD> rw_eofa(Nhits);
ConjugateGradient<LatticeFermion> CG(stop_tol, max_iter);
SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
LatticeFermion Phi (Deofa_L.FermionGrid());
LatticeFermion spProj_Phi(Deofa_L.FermionGrid());
std::vector<LatticeFermion> tmp(2, Deofa_L.FermionGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
// evaluate -log(rw)
// LH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_L, tmp[1], tmp[0]);
Deofa_L.Omega(tmp[0], tmp[1], -1, 1);
rw_eofa[hit] = -k*innerProduct(spProj_Phi,tmp[1]).real();
// RH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_R, tmp[1], tmp[0]);
Deofa_R.Omega(tmp[0], tmp[1], 1, 1);
rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[1]).real();
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
std::vector<RealD> rhmc_result = jack_stats(rw_rhmc);
std::vector<RealD> eofa_result = jack_stats(rw_eofa);
std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl;
std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,209 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_reweight_dwf_eofa_gparity.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef typename GparityDomainWallFermionR::FermionField FermionField;
// parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Nhits = 10;
const int max_iter = 5000;
const RealD mf = 0.1;
const RealD mb = 0.11;
const RealD M5 = 1.8;
const RealD stop_tol = 1.0e-12;
RealD mean(const std::vector<RealD>& data)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ mean += data[i]; }
return mean/RealD(N);
}
RealD jack_mean(const std::vector<RealD>& data, int sample)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } }
return mean/RealD(N-1);
}
RealD jack_std(const std::vector<RealD>& jacks, RealD mean)
{
int N = jacks.size();
RealD std(0.0);
for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); }
return std::sqrt(RealD(N-1)/RealD(N)*std);
}
std::vector<RealD> jack_stats(const std::vector<RealD>& data)
{
int N = data.size();
std::vector<RealD> jack_samples(N);
std::vector<RealD> jack_stats(2);
jack_stats[0] = mean(data);
for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); }
jack_stats[1] = jack_std(jack_samples, jack_stats[0]);
return jack_stats;
}
int main(int argc, char **argv)
{
Grid_init(&argc, &argv);
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: "
<< grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
// Initialize RHMC fermion operators
GparityDomainWallFermionR::ImplParams params;
GparityDomainWallFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5, params);
GparityDomainWallFermionR Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5, params);
SchurDiagMooeeOperator<GparityDomainWallFermionR, FermionField> MdagM(Ddwf_f);
SchurDiagMooeeOperator<GparityDomainWallFermionR, FermionField> VdagV(Ddwf_b);
// Degree 12 rational approximations to x^(1/4) and x^(-1/4)
double lo = 0.0001;
double hi = 95.0;
int precision = 64;
int degree = 12;
AlgRemez remez(lo, hi, precision);
std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl;
remez.generateApprox(degree, 1, 4);
MultiShiftFunction PowerQuarter(remez, stop_tol, false);
MultiShiftFunction PowerNegQuarter(remez, stop_tol, true);
// Stochastically estimate reweighting factor via RHMC
RealD scale = std::sqrt(0.5);
std::vector<RealD> rw_rhmc(Nhits);
ConjugateGradientMultiShift<FermionField> msCG_V(max_iter, PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(max_iter, PowerNegQuarter);
std::cout.precision(12);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
FermionField Phi (Ddwf_f.FermionGrid());
FermionField PhiOdd (Ddwf_f.FermionRedBlackGrid());
std::vector<FermionField> tmp(2, Ddwf_f.FermionRedBlackGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
pickCheckerboard(Odd, PhiOdd, Phi);
// evaluate -log(rw)
msCG_V(VdagV, PhiOdd, tmp[0]);
msCG_M(MdagM, tmp[0], tmp[1]);
rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd);
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
// Initialize EOFA fermion operators
RealD shift_L = 0.0;
RealD shift_R = -1.0;
int pm = 1;
GparityDomainWallEOFAFermionR Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5, params);
GparityDomainWallEOFAFermionR Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5, params);
MdagMLinearOperator<GparityDomainWallEOFAFermionR, FermionField> LdagL(Deofa_L);
MdagMLinearOperator<GparityDomainWallEOFAFermionR, FermionField> RdagR(Deofa_R);
// Stochastically estimate reweighting factor via EOFA
RealD k = Deofa_L.k;
std::vector<RealD> rw_eofa(Nhits);
ConjugateGradient<FermionField> CG(stop_tol, max_iter);
SchurRedBlackDiagMooeeSolve<FermionField> SchurSolver(CG);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
FermionField Phi (Deofa_L.FermionGrid());
FermionField spProj_Phi(Deofa_L.FermionGrid());
std::vector<FermionField> tmp(2, Deofa_L.FermionGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
// evaluate -log(rw)
// LH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_L, tmp[1], tmp[0]);
Deofa_L.Omega(tmp[0], tmp[1], -1, 1);
rw_eofa[hit] = -k*innerProduct(spProj_Phi,tmp[1]).real();
// RH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_R, tmp[1], tmp[0]);
Deofa_R.Omega(tmp[0], tmp[1], 1, 1);
rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[1]).real();
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
std::vector<RealD> rhmc_result = jack_stats(rw_rhmc);
std::vector<RealD> eofa_result = jack_stats(rw_eofa);
std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl;
std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,215 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_reweight_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
// parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Nhits = 10;
const int max_iter = 5000;
const RealD b = 2.5;
const RealD c = 1.5;
const RealD mf = 0.1;
const RealD mb = 0.11;
const RealD M5 = 1.8;
const RealD stop_tol = 1.0e-12;
RealD mean(const std::vector<RealD>& data)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ mean += data[i]; }
return mean/RealD(N);
}
RealD jack_mean(const std::vector<RealD>& data, int sample)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } }
return mean/RealD(N-1);
}
RealD jack_std(const std::vector<RealD>& jacks, RealD mean)
{
int N = jacks.size();
RealD std(0.0);
for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); }
return std::sqrt(RealD(N-1)/RealD(N)*std);
}
std::vector<RealD> jack_stats(const std::vector<RealD>& data)
{
int N = data.size();
std::vector<RealD> jack_samples(N);
std::vector<RealD> jack_stats(2);
jack_stats[0] = mean(data);
for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); }
jack_stats[1] = jack_std(jack_samples, jack_stats[0]);
return jack_stats;
}
int main(int argc, char **argv)
{
Grid_init(&argc, &argv);
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: "
<< grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
// Initialize RHMC fermion operators
MobiusFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5, b, c);
MobiusFermionR Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5, b, c);
SchurDiagMooeeOperator<MobiusFermionR, LatticeFermion> MdagM(Ddwf_f);
SchurDiagMooeeOperator<MobiusFermionR, LatticeFermion> VdagV(Ddwf_b);
// Degree 12 rational approximations to x^(1/4) and x^(-1/4)
double lo = 0.0001;
double hi = 95.0;
int precision = 64;
int degree = 12;
AlgRemez remez(lo, hi, precision);
std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl;
remez.generateApprox(degree, 1, 4);
MultiShiftFunction PowerQuarter(remez, stop_tol, false);
MultiShiftFunction PowerNegQuarter(remez, stop_tol, true);
// Stochastically estimate reweighting factor via RHMC
RealD scale = std::sqrt(0.5);
std::vector<RealD> rw_rhmc(Nhits);
ConjugateGradientMultiShift<LatticeFermion> msCG_V(max_iter, PowerQuarter);
ConjugateGradientMultiShift<LatticeFermion> msCG_M(max_iter, PowerNegQuarter);
std::cout.precision(12);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
LatticeFermion Phi (Ddwf_f.FermionGrid());
LatticeFermion PhiOdd (Ddwf_f.FermionRedBlackGrid());
std::vector<LatticeFermion> tmp(2, Ddwf_f.FermionRedBlackGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
pickCheckerboard(Odd, PhiOdd, Phi);
// evaluate -log(rw)
msCG_V(VdagV, PhiOdd, tmp[0]);
msCG_M(MdagM, tmp[0], tmp[1]);
rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd);
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
// Initialize EOFA fermion operators
RealD shift_L = 0.0;
RealD shift_R = -1.0;
int pm = 1;
MobiusEOFAFermionR Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5, b, c);
MobiusEOFAFermionR Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5, b, c);
MdagMLinearOperator<MobiusEOFAFermionR, LatticeFermion> LdagL(Deofa_L);
MdagMLinearOperator<MobiusEOFAFermionR, LatticeFermion> RdagR(Deofa_R);
// Stochastically estimate reweighting factor via EOFA
RealD k = Deofa_L.k;
std::vector<RealD> rw_eofa(Nhits);
ConjugateGradient<LatticeFermion> CG(stop_tol, max_iter);
SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG);
// Compute -log(Z), where: ( RHMC det ratio ) = Z * ( EOFA det ratio )
RealD Z = std::pow(b+c+1.0,Ls) + mf*std::pow(b+c-1.0,Ls);
Z /= std::pow(b+c+1.0,Ls) + mb*std::pow(b+c-1.0,Ls);
Z = -12.0*grid_dim[0]*grid_dim[1]*grid_dim[2]*grid_dim[3]*std::log(Z);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
LatticeFermion Phi (Deofa_L.FermionGrid());
LatticeFermion spProj_Phi(Deofa_L.FermionGrid());
std::vector<LatticeFermion> tmp(2, Deofa_L.FermionGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
// evaluate -log(rw)
// LH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_L, tmp[1], tmp[0]);
Deofa_L.Dtilde(tmp[0], tmp[1]);
Deofa_L.Omega(tmp[1], tmp[0], -1, 1);
rw_eofa[hit] = Z - k*innerProduct(spProj_Phi,tmp[0]).real();
// RH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_R, tmp[1], tmp[0]);
Deofa_R.Dtilde(tmp[0], tmp[1]);
Deofa_R.Omega(tmp[1], tmp[0], 1, 1);
rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[0]).real();
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
std::vector<RealD> rhmc_result = jack_stats(rw_rhmc);
std::vector<RealD> eofa_result = jack_stats(rw_eofa);
std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl;
std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,218 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/debug/Test_reweight_dwf_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef typename GparityDomainWallFermionR::FermionField FermionField;
// parameters for test
const std::vector<int> grid_dim = { 8, 8, 8, 8 };
const int Ls = 8;
const int Nhits = 10;
const int max_iter = 5000;
const RealD b = 2.5;
const RealD c = 1.5;
const RealD mf = 0.1;
const RealD mb = 0.11;
const RealD M5 = 1.8;
const RealD stop_tol = 1.0e-12;
RealD mean(const std::vector<RealD>& data)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ mean += data[i]; }
return mean/RealD(N);
}
RealD jack_mean(const std::vector<RealD>& data, int sample)
{
int N = data.size();
RealD mean(0.0);
for(int i=0; i<N; ++i){ if(i != sample){ mean += data[i]; } }
return mean/RealD(N-1);
}
RealD jack_std(const std::vector<RealD>& jacks, RealD mean)
{
int N = jacks.size();
RealD std(0.0);
for(int i=0; i<N; ++i){ std += std::pow(jacks[i]-mean, 2.0); }
return std::sqrt(RealD(N-1)/RealD(N)*std);
}
std::vector<RealD> jack_stats(const std::vector<RealD>& data)
{
int N = data.size();
std::vector<RealD> jack_samples(N);
std::vector<RealD> jack_stats(2);
jack_stats[0] = mean(data);
for(int i=0; i<N; i++){ jack_samples[i] = jack_mean(data,i); }
jack_stats[1] = jack_std(jack_samples, jack_stats[0]);
return jack_stats;
}
int main(int argc, char **argv)
{
Grid_init(&argc, &argv);
// Initialize spacetime grid
std::cout << GridLogMessage << "Lattice dimensions: "
<< grid_dim << " Ls: " << Ls << std::endl;
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(grid_dim,
GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Set up RNGs
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
// Random gauge field
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4, Umu);
// Initialize RHMC fermion operators
GparityDomainWallFermionR::ImplParams params;
GparityMobiusFermionR Ddwf_f(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, M5, b, c, params);
GparityMobiusFermionR Ddwf_b(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, M5, b, c, params);
SchurDiagMooeeOperator<GparityMobiusFermionR, FermionField> MdagM(Ddwf_f);
SchurDiagMooeeOperator<GparityMobiusFermionR, FermionField> VdagV(Ddwf_b);
// Degree 12 rational approximations to x^(1/4) and x^(-1/4)
double lo = 0.0001;
double hi = 95.0;
int precision = 64;
int degree = 12;
AlgRemez remez(lo, hi, precision);
std::cout << GridLogMessage << "Generating degree " << degree << " for x^(1/4)" << std::endl;
remez.generateApprox(degree, 1, 4);
MultiShiftFunction PowerQuarter(remez, stop_tol, false);
MultiShiftFunction PowerNegQuarter(remez, stop_tol, true);
// Stochastically estimate reweighting factor via RHMC
RealD scale = std::sqrt(0.5);
std::vector<RealD> rw_rhmc(Nhits);
ConjugateGradientMultiShift<FermionField> msCG_V(max_iter, PowerQuarter);
ConjugateGradientMultiShift<FermionField> msCG_M(max_iter, PowerNegQuarter);
std::cout.precision(12);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
FermionField Phi (Ddwf_f.FermionGrid());
FermionField PhiOdd (Ddwf_f.FermionRedBlackGrid());
std::vector<FermionField> tmp(2, Ddwf_f.FermionRedBlackGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
pickCheckerboard(Odd, PhiOdd, Phi);
// evaluate -log(rw)
msCG_V(VdagV, PhiOdd, tmp[0]);
msCG_M(MdagM, tmp[0], tmp[1]);
rw_rhmc[hit] = norm2(tmp[1]) - norm2(PhiOdd);
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- RHMC: Hit " << hit << ": rw = " << rw_rhmc[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
// Initialize EOFA fermion operators
RealD shift_L = 0.0;
RealD shift_R = -1.0;
int pm = 1;
GparityMobiusEOFAFermionR Deofa_L(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, shift_L, pm, M5, b, c, params);
GparityMobiusEOFAFermionR Deofa_R(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, shift_R, pm, M5, b, c, params);
MdagMLinearOperator<GparityMobiusEOFAFermionR, FermionField> LdagL(Deofa_L);
MdagMLinearOperator<GparityMobiusEOFAFermionR, FermionField> RdagR(Deofa_R);
// Stochastically estimate reweighting factor via EOFA
RealD k = Deofa_L.k;
std::vector<RealD> rw_eofa(Nhits);
ConjugateGradient<FermionField> CG(stop_tol, max_iter);
SchurRedBlackDiagMooeeSolve<FermionField> SchurSolver(CG);
// Compute -log(Z), where: ( RHMC det ratio ) = Z * ( EOFA det ratio )
RealD Z = std::pow(b+c+1.0,Ls) + mf*std::pow(b+c-1.0,Ls);
Z /= std::pow(b+c+1.0,Ls) + mb*std::pow(b+c-1.0,Ls);
Z = -12.0*grid_dim[0]*grid_dim[1]*grid_dim[2]*grid_dim[3]*std::log(Z);
for(int hit=0; hit<Nhits; hit++){
// Gaussian source
FermionField Phi (Deofa_L.FermionGrid());
FermionField spProj_Phi(Deofa_L.FermionGrid());
std::vector<FermionField> tmp(2, Deofa_L.FermionGrid());
gaussian(RNG5, Phi);
Phi = Phi*scale;
// evaluate -log(rw)
// LH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_L.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_L, tmp[1], tmp[0]);
Deofa_L.Dtilde(tmp[0], tmp[1]);
Deofa_L.Omega(tmp[1], tmp[0], -1, 1);
rw_eofa[hit] = 2.0*Z - k*innerProduct(spProj_Phi,tmp[0]).real();
// RH term
for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(spProj_Phi, 0.0, Phi, 1.0, Phi, s, s); }
Deofa_R.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = zero;
SchurSolver(Deofa_R, tmp[1], tmp[0]);
Deofa_R.Dtilde(tmp[0], tmp[1]);
Deofa_R.Omega(tmp[1], tmp[0], 1, 1);
rw_eofa[hit] += k*innerProduct(spProj_Phi,tmp[0]).real();
std::cout << std::endl << "==================================================" << std::endl;
std::cout << " --- EOFA: Hit " << hit << ": rw = " << rw_eofa[hit];
std::cout << std::endl << "==================================================" << std::endl << std::endl;
}
std::vector<RealD> rhmc_result = jack_stats(rw_rhmc);
std::vector<RealD> eofa_result = jack_stats(rw_eofa);
std::cout << std::endl << "RHMC: rw = " << rhmc_result[0] << " +/- " << rhmc_result[1] << std::endl;
std::cout << std::endl << "EOFA: rw = " << eofa_result[0] << " +/- " << eofa_result[1] << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,164 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/forces/Test_dwf_force_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char** argv)
{
Grid_init(&argc, &argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
const int Ls = 8;
GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Want a different conf at every run
// First create an instance of an engine.
std::random_device rnd_device;
// Specify the engine and distribution.
std::mt19937 mersenne_engine(rnd_device());
std::uniform_int_distribution<int> dist(1, 100);
auto gen = std::bind(dist, mersenne_engine);
std::vector<int> seeds4(4);
generate(begin(seeds4), end(seeds4), gen);
//std::vector<int> seeds4({1,2,3,5});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
LatticeFermion phi (FGrid); gaussian(RNG5, phi);
LatticeFermion Mphi (FGrid);
LatticeFermion MphiPrime (FGrid);
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
////////////////////////////////////
RealD mf = 0.01;
RealD mb = 1.0;
RealD M5 = 1.8;
DomainWallEOFAFermionR Lop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, 0.0, -1, M5);
DomainWallEOFAFermionR Rop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, -1.0, 1, M5);
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, 12);
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, true);
Meofa.refresh(U, RNG5);
RealD S = Meofa.S(U); // pdag M p
// get the deriv of phidag M phi with respect to "U"
LatticeGaugeField UdSdU(UGrid);
Meofa.deriv(U, UdSdU);
////////////////////////////////////
// Modify the gauge field a little
////////////////////////////////////
RealD dt = 0.0001;
LatticeColourMatrix mommu(UGrid);
LatticeColourMatrix forcemu(UGrid);
LatticeGaugeField mom(UGrid);
LatticeGaugeField Uprime(UGrid);
for(int mu=0; mu<Nd; mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom, mommu, mu);
// fourth order exponential approx
parallel_for(auto i=mom.begin(); i<mom.end(); i++){
Uprime[i](mu) = U[i](mu) + mom[i](mu)*U[i](mu)*dt + mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt/2.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt/6.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt/24.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt/120.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt*dt/720.0);
}
}
/*Ddwf.ImportGauge(Uprime);
Ddwf.M (phi,MphiPrime);
ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);*/
RealD Sprime = Meofa.S(Uprime);
//////////////////////////////////////////////
// Use derivative to estimate dS
//////////////////////////////////////////////
LatticeComplex dS(UGrid);
dS = zero;
for(int mu=0; mu<Nd; mu++){
mommu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = Ta(mommu)*2.0;
PokeIndex<LorentzIndex>(UdSdU, mommu, mu);
}
for(int mu=0; mu<Nd; mu++){
forcemu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = PeekIndex<LorentzIndex>(mom, mu);
// Update PF action density
dS = dS + trace(mommu*forcemu)*dt;
}
ComplexD dSpred = sum(dS);
/*std::cout << GridLogMessage << " S " << S << std::endl;
std::cout << GridLogMessage << " Sprime " << Sprime << std::endl;
std::cout << GridLogMessage << "dS " << Sprime-S << std::endl;
std::cout << GridLogMessage << "predict dS " << dSpred << std::endl;*/
printf("\nS = %1.15e\n", S);
printf("Sprime = %1.15e\n", Sprime);
printf("dS = %1.15e\n", Sprime - S);
printf("real(dS_predict) = %1.15e\n", dSpred.real());
printf("imag(dS_predict) = %1.15e\n\n", dSpred.imag());
assert( fabs(real(Sprime-S-dSpred)) < 1.0 ) ;
std::cout << GridLogMessage << "Done" << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,169 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/forces/Test_dwf_force_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef GparityWilsonImplR FermionImplPolicy;
typedef GparityDomainWallEOFAFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
int main (int argc, char** argv)
{
Grid_init(&argc, &argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
const int Ls = 8;
GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Want a different conf at every run
// First create an instance of an engine.
std::random_device rnd_device;
// Specify the engine and distribution.
std::mt19937 mersenne_engine(rnd_device());
std::uniform_int_distribution<int> dist(1, 100);
auto gen = std::bind(dist, mersenne_engine);
std::vector<int> seeds4(4);
generate(begin(seeds4), end(seeds4), gen);
//std::vector<int> seeds4({1,2,3,5});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
FermionField phi (FGrid); gaussian(RNG5, phi);
FermionField Mphi (FGrid);
FermionField MphiPrime (FGrid);
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
////////////////////////////////////
RealD mf = 0.01;
RealD mb = 1.0;
RealD M5 = 1.8;
FermionAction::ImplParams params;
FermionAction Lop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, 0.0, -1, M5, params);
FermionAction Rop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, -1.0, 1, M5, params);
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, 12);
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, true);
Meofa.refresh(U, RNG5);
RealD S = Meofa.S(U); // pdag M p
// get the deriv of phidag M phi with respect to "U"
LatticeGaugeField UdSdU(UGrid);
Meofa.deriv(U, UdSdU);
////////////////////////////////////
// Modify the gauge field a little
////////////////////////////////////
RealD dt = 0.0001;
LatticeColourMatrix mommu(UGrid);
LatticeColourMatrix forcemu(UGrid);
LatticeGaugeField mom(UGrid);
LatticeGaugeField Uprime(UGrid);
for(int mu=0; mu<Nd; mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom, mommu, mu);
// fourth order exponential approx
parallel_for(auto i=mom.begin(); i<mom.end(); i++){
Uprime[i](mu) = U[i](mu) + mom[i](mu)*U[i](mu)*dt + mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt/2.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt/6.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt/24.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt/120.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt*dt/720.0);
}
}
/*Ddwf.ImportGauge(Uprime);
Ddwf.M (phi,MphiPrime);
ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);*/
RealD Sprime = Meofa.S(Uprime);
//////////////////////////////////////////////
// Use derivative to estimate dS
//////////////////////////////////////////////
LatticeComplex dS(UGrid);
dS = zero;
for(int mu=0; mu<Nd; mu++){
mommu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = Ta(mommu)*2.0;
PokeIndex<LorentzIndex>(UdSdU, mommu, mu);
}
for(int mu=0; mu<Nd; mu++){
forcemu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = PeekIndex<LorentzIndex>(mom, mu);
// Update PF action density
dS = dS + trace(mommu*forcemu)*dt;
}
ComplexD dSpred = sum(dS);
/*std::cout << GridLogMessage << " S " << S << std::endl;
std::cout << GridLogMessage << " Sprime " << Sprime << std::endl;
std::cout << GridLogMessage << "dS " << Sprime-S << std::endl;
std::cout << GridLogMessage << "predict dS " << dSpred << std::endl;*/
printf("\nS = %1.15e\n", S);
printf("Sprime = %1.15e\n", Sprime);
printf("dS = %1.15e\n", Sprime - S);
printf("real(dS_predict) = %1.15e\n", dSpred.real());
printf("imag(dS_predict) = %1.15e\n\n", dSpred.imag());
assert( fabs(real(Sprime-S-dSpred)) < 1.0 ) ;
std::cout << GridLogMessage << "Done" << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,166 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/forces/Test_dwf_force_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char** argv)
{
Grid_init(&argc, &argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
const int Ls = 8;
GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Want a different conf at every run
// First create an instance of an engine.
std::random_device rnd_device;
// Specify the engine and distribution.
std::mt19937 mersenne_engine(rnd_device());
std::uniform_int_distribution<int> dist(1, 100);
auto gen = std::bind(dist, mersenne_engine);
std::vector<int> seeds4(4);
generate(begin(seeds4), end(seeds4), gen);
//std::vector<int> seeds4({1,2,3,5});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
LatticeFermion phi (FGrid); gaussian(RNG5, phi);
LatticeFermion Mphi (FGrid);
LatticeFermion MphiPrime (FGrid);
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
////////////////////////////////////
RealD b = 2.5;
RealD c = 1.5;
RealD mf = 0.01;
RealD mb = 1.0;
RealD M5 = 1.8;
MobiusEOFAFermionR Lop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, 0.0, -1, M5, b, c);
MobiusEOFAFermionR Rop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, -1.0, 1, M5, b, c);
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, 12);
ConjugateGradient<LatticeFermion> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<WilsonImplR> Meofa(Lop, Rop, CG, Params, false);
Meofa.refresh(U, RNG5);
RealD S = Meofa.S(U); // pdag M p
// get the deriv of phidag M phi with respect to "U"
LatticeGaugeField UdSdU(UGrid);
Meofa.deriv(U, UdSdU);
////////////////////////////////////
// Modify the gauge field a little
////////////////////////////////////
RealD dt = 0.0001;
LatticeColourMatrix mommu(UGrid);
LatticeColourMatrix forcemu(UGrid);
LatticeGaugeField mom(UGrid);
LatticeGaugeField Uprime(UGrid);
for(int mu=0; mu<Nd; mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom, mommu, mu);
// fourth order exponential approx
parallel_for(auto i=mom.begin(); i<mom.end(); i++){
Uprime[i](mu) = U[i](mu) + mom[i](mu)*U[i](mu)*dt + mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt/2.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt/6.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt/24.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt/120.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt*dt/720.0);
}
}
/*Ddwf.ImportGauge(Uprime);
Ddwf.M (phi,MphiPrime);
ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);*/
RealD Sprime = Meofa.S(Uprime);
//////////////////////////////////////////////
// Use derivative to estimate dS
//////////////////////////////////////////////
LatticeComplex dS(UGrid);
dS = zero;
for(int mu=0; mu<Nd; mu++){
mommu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = Ta(mommu)*2.0;
PokeIndex<LorentzIndex>(UdSdU, mommu, mu);
}
for(int mu=0; mu<Nd; mu++){
forcemu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = PeekIndex<LorentzIndex>(mom, mu);
// Update PF action density
dS = dS + trace(mommu*forcemu)*dt;
}
ComplexD dSpred = sum(dS);
/*std::cout << GridLogMessage << " S " << S << std::endl;
std::cout << GridLogMessage << " Sprime " << Sprime << std::endl;
std::cout << GridLogMessage << "dS " << Sprime-S << std::endl;
std::cout << GridLogMessage << "predict dS " << dSpred << std::endl;*/
printf("\nS = %1.15e\n", S);
printf("Sprime = %1.15e\n", Sprime);
printf("dS = %1.15e\n", Sprime - S);
printf("real(dS_predict) = %1.15e\n", dSpred.real());
printf("imag(dS_predict) = %1.15e\n\n", dSpred.imag());
assert( fabs(real(Sprime-S-dSpred)) < 1.0 ) ;
std::cout << GridLogMessage << "Done" << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,171 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/forces/Test_dwf_force_eofa.cc
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
typedef GparityWilsonImplR FermionImplPolicy;
typedef GparityMobiusEOFAFermionR FermionAction;
typedef typename FermionAction::FermionField FermionField;
int main (int argc, char** argv)
{
Grid_init(&argc, &argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
const int Ls = 8;
GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
// Want a different conf at every run
// First create an instance of an engine.
std::random_device rnd_device;
// Specify the engine and distribution.
std::mt19937 mersenne_engine(rnd_device());
std::uniform_int_distribution<int> dist(1, 100);
auto gen = std::bind(dist, mersenne_engine);
std::vector<int> seeds4(4);
generate(begin(seeds4), end(seeds4), gen);
//std::vector<int> seeds4({1,2,3,5});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
int threads = GridThread::GetThreads();
std::cout << GridLogMessage << "Grid is setup to use " << threads << " threads" << std::endl;
FermionField phi (FGrid); gaussian(RNG5, phi);
FermionField Mphi (FGrid);
FermionField MphiPrime (FGrid);
LatticeGaugeField U(UGrid);
SU3::HotConfiguration(RNG4,U);
////////////////////////////////////
// Unmodified matrix element
////////////////////////////////////
RealD b = 2.5;
RealD c = 1.5;
RealD mf = 0.01;
RealD mb = 1.0;
RealD M5 = 1.8;
FermionAction::ImplParams params;
FermionAction Lop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mf, mf, mb, 0.0, -1, M5, b, c, params);
FermionAction Rop(U, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mb, mf, mb, -1.0, 1, M5, b, c, params);
OneFlavourRationalParams Params(0.95, 100.0, 5000, 1.0e-12, 12);
ConjugateGradient<FermionField> CG(1.0e-12, 5000);
ExactOneFlavourRatioPseudoFermionAction<FermionImplPolicy> Meofa(Lop, Rop, CG, Params, false);
Meofa.refresh(U, RNG5);
RealD S = Meofa.S(U); // pdag M p
// get the deriv of phidag M phi with respect to "U"
LatticeGaugeField UdSdU(UGrid);
Meofa.deriv(U, UdSdU);
////////////////////////////////////
// Modify the gauge field a little
////////////////////////////////////
RealD dt = 0.0001;
LatticeColourMatrix mommu(UGrid);
LatticeColourMatrix forcemu(UGrid);
LatticeGaugeField mom(UGrid);
LatticeGaugeField Uprime(UGrid);
for(int mu=0; mu<Nd; mu++){
SU3::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
PokeIndex<LorentzIndex>(mom, mommu, mu);
// fourth order exponential approx
parallel_for(auto i=mom.begin(); i<mom.end(); i++){
Uprime[i](mu) = U[i](mu) + mom[i](mu)*U[i](mu)*dt + mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt/2.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt/6.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt/24.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt/120.0)
+ mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *mom[i](mu) *U[i](mu)*(dt*dt*dt*dt*dt*dt/720.0);
}
}
/*Ddwf.ImportGauge(Uprime);
Ddwf.M (phi,MphiPrime);
ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);*/
RealD Sprime = Meofa.S(Uprime);
//////////////////////////////////////////////
// Use derivative to estimate dS
//////////////////////////////////////////////
LatticeComplex dS(UGrid);
dS = zero;
for(int mu=0; mu<Nd; mu++){
mommu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = Ta(mommu)*2.0;
PokeIndex<LorentzIndex>(UdSdU, mommu, mu);
}
for(int mu=0; mu<Nd; mu++){
forcemu = PeekIndex<LorentzIndex>(UdSdU, mu);
mommu = PeekIndex<LorentzIndex>(mom, mu);
// Update PF action density
dS = dS + trace(mommu*forcemu)*dt;
}
ComplexD dSpred = sum(dS);
/*std::cout << GridLogMessage << " S " << S << std::endl;
std::cout << GridLogMessage << " Sprime " << Sprime << std::endl;
std::cout << GridLogMessage << "dS " << Sprime-S << std::endl;
std::cout << GridLogMessage << "predict dS " << dSpred << std::endl;*/
printf("\nS = %1.15e\n", S);
printf("Sprime = %1.15e\n", Sprime);
printf("dS = %1.15e\n", Sprime - S);
printf("real(dS_predict) = %1.15e\n", dSpred.real());
printf("imag(dS_predict) = %1.15e\n\n", dSpred.imag());
assert( fabs(real(Sprime-S-dSpred)) < 1.0 ) ;
std::cout << GridLogMessage << "Done" << std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,87 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_wilson_cg_unprec.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
typedef typename ImprovedStaggeredFermionR::ComplexField ComplexField;
typename ImprovedStaggeredFermionR::ImplParams params;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
FermionField src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.1;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass);
FermionField res_o(&RBGrid);
FermionField src_o(&RBGrid);
pickCheckerboard(Odd,src_o,src);
res_o=zero;
SchurDiagMooeeOperator<ImprovedStaggeredFermionR,FermionField> HermOpEO(Ds);
ConjugateGradient<FermionField> CG(1.0e-8,10000);
CG(HermOpEO,src_o,res_o);
Grid_finalize();
}