mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-09 23:45:36 +00:00
refactor slicesum: slicesum uses GPU version by default now
This commit is contained in:
parent
1514b4f137
commit
9514035b87
@ -27,12 +27,11 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
||||
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)
|
||||
#include <Grid/lattice/Lattice_reduction_gpu.h>
|
||||
#include <Grid/lattice/Lattice_slicesum_gpu.h>
|
||||
#endif
|
||||
#if defined(GRID_SYCL)
|
||||
#include <Grid/lattice/Lattice_reduction_sycl.h>
|
||||
#include <Grid/lattice/Lattice_slicesum_sycl.h>
|
||||
#endif
|
||||
#include <Grid/lattice/Lattice_slicesum_core.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
@ -450,19 +449,10 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
|
||||
int e1= grid->_slice_nblock[orthogdim];
|
||||
int e2= grid->_slice_block [orthogdim];
|
||||
int stride=grid->_slice_stride[orthogdim];
|
||||
|
||||
// sum over reduced dimension planes, breaking out orthog dir
|
||||
// Parallel over orthog direction
|
||||
autoView( Data_v, Data, CpuRead);
|
||||
thread_for( r,rd, {
|
||||
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int ss= so+n*stride+b;
|
||||
lvSum[r]=lvSum[r]+Data_v[ss];
|
||||
}
|
||||
}
|
||||
});
|
||||
int ostride=grid->_ostride[orthogdim];
|
||||
|
||||
//Reduce Data down to lvSum
|
||||
sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
|
||||
|
||||
// Sum across simd lanes in the plane, breaking out orthog dir.
|
||||
Coordinate icoor(Nd);
|
||||
@ -506,19 +496,6 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
|
||||
return result;
|
||||
}
|
||||
|
||||
template<class vobj> inline
|
||||
std::vector<typename vobj::scalar_object>
|
||||
sliceSumGpu(const Lattice<vobj> &Data,int orthogdim)
|
||||
{
|
||||
std::vector<typename vobj::scalar_object> result;
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
sliceSumGpu(Data,result,orthogdim);
|
||||
#elif defined(GRID_SYCL)
|
||||
sliceSum_sycl(Data,result,orthogdim);
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
|
||||
|
204
Grid/lattice/Lattice_slicesum_core.h
Normal file
204
Grid/lattice/Lattice_slicesum_core.h
Normal file
@ -0,0 +1,204 @@
|
||||
#pragma once
|
||||
#if defined(GRID_CUDA)
|
||||
|
||||
#include <cub/cub.cuh>
|
||||
#define gpucub cub
|
||||
#define gpuMalloc cudaMalloc
|
||||
#define gpuMemcpyAsync cudaMemcpyAsync
|
||||
#define gpuMemcpyDeviceToHost cudaMemcpyDeviceToHost
|
||||
#define gpuMemcpyHostToDevice cudaMemcpyHostToDevice
|
||||
#define gpuError_t cudaError_t
|
||||
#define gpuSuccess cudaSuccess
|
||||
|
||||
#elif defined(GRID_HIP)
|
||||
|
||||
#include <hipcub/hipcub.hpp>
|
||||
#define gpucub hipcub
|
||||
#define gpuMalloc hipMalloc
|
||||
#define gpuMemcpyAsync hipMemcpyAsync
|
||||
#define gpuMemcpyDeviceToHost hipMemcpyDeviceToHost
|
||||
#define gpuMemcpyHostToDevice hipMemcpyHostToDevice
|
||||
#define gpuError_t hipError_t
|
||||
#define gpuSuccess hipSuccess
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
size_t subvol_size = e1*e2;
|
||||
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
|
||||
vobj vobj_zero; //Need to provide initial value for reduction operation
|
||||
zeroit(vobj_zero);
|
||||
|
||||
|
||||
void *temp_storage_array = NULL;
|
||||
size_t temp_storage_bytes = 0;
|
||||
vobj *d_out;
|
||||
int* d_offsets;
|
||||
|
||||
std::vector<int> offsets(rd+1,0);
|
||||
|
||||
for (int i = 0; i < offsets.size(); i++) {
|
||||
offsets[i] = i*subvol_size;
|
||||
}
|
||||
|
||||
//Allocate memory for output and offset arrays on device
|
||||
gpuError_t gpuErr = gpuMalloc(&d_out,rd*sizeof(vobj));
|
||||
if (gpuErr != gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc (d_out)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
gpuErr = gpuMalloc(&d_offsets,sizeof(int)*(rd+1));
|
||||
if (gpuErr != gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc (d_offsets)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//copy offsets to device
|
||||
gpuErr = gpuMemcpyAsync(d_offsets,&offsets[0],sizeof(int)*(rd+1),gpuMemcpyHostToDevice,computeStream);
|
||||
if (gpuErr != gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMemcpy (d_offsets)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//determine temp_storage_array size
|
||||
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), vobj_zero, computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//allocate memory for temp_storage_array
|
||||
gpuErr = gpuMalloc(&temp_storage_array,temp_storage_bytes);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc (temp_storage_array)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
autoView( Data_v, Data, AcceleratorRead);
|
||||
//prepare buffer for reduction
|
||||
//use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
|
||||
//use 2d accelerator_for to avoid launch latencies found when serially looping over rd
|
||||
|
||||
accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
|
||||
|
||||
});
|
||||
|
||||
//issue segmented reductions in computeStream
|
||||
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), vobj_zero, computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
gpuErr = gpuMemcpyAsync(&lvSum[0],d_out,rd*sizeof(vobj),gpuMemcpyDeviceToHost,computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMemcpy (d_out)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//sync after copy
|
||||
accelerator_barrier();
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(GRID_SYCL)
|
||||
template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
size_t subvol_size = e1*e2;
|
||||
|
||||
vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
|
||||
vobj vobj_zero;
|
||||
zeroit(vobj_zero);
|
||||
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
|
||||
autoView(Data_v, Data, AcceleratorRead);
|
||||
|
||||
//prepare reduction buffer
|
||||
accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
|
||||
|
||||
});
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
|
||||
Reduction,
|
||||
[=](cl::sycl::id<1> item, auto &sum) {
|
||||
auto s = item[0];
|
||||
sum += rb_p[r*subvol_size+s];
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
lvSum[r] = mysum[0];
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
// sum over reduced dimension planes, breaking out orthog dir
|
||||
// Parallel over orthog direction
|
||||
autoView( Data_v, Data, CpuRead);
|
||||
thread_for( r,rd, {
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int ss= so+n*stride+b;
|
||||
lvSum[r]=lvSum[r]+Data_v[ss];
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
|
||||
sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#elif defined(GRID_SYCL)
|
||||
|
||||
sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#else
|
||||
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,180 +0,0 @@
|
||||
#pragma once
|
||||
#if defined(GRID_CUDA)
|
||||
|
||||
#include <cub/cub.cuh>
|
||||
#define gpucub cub
|
||||
#define gpuMalloc cudaMalloc
|
||||
#define gpuMemcpyAsync cudaMemcpyAsync
|
||||
#define gpuMemcpyDeviceToHost cudaMemcpyDeviceToHost
|
||||
#define gpuMemcpyHostToDevice cudaMemcpyHostToDevice
|
||||
#define gpuError_t cudaError_t
|
||||
#define gpuSuccess cudaSuccess
|
||||
|
||||
#elif defined(GRID_HIP)
|
||||
|
||||
#include <hipcub/hipcub.hpp>
|
||||
#define gpucub hipcub
|
||||
#define gpuMalloc hipMalloc
|
||||
#define gpuMemcpyAsync hipMemcpyAsync
|
||||
#define gpuMemcpyDeviceToHost hipMemcpyDeviceToHost
|
||||
#define gpuMemcpyHostToDevice hipMemcpyHostToDevice
|
||||
#define gpuError_t hipError_t
|
||||
#define gpuSuccess hipSuccess
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class vobj> inline void sliceSumGpu(const Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
|
||||
{
|
||||
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_object::scalar_type scalar_type;
|
||||
GridBase *grid = Data.Grid();
|
||||
assert(grid!=NULL);
|
||||
|
||||
const int Nd = grid->_ndimension;
|
||||
const int Nsimd = grid->Nsimd();
|
||||
|
||||
assert(orthogdim >= 0);
|
||||
assert(orthogdim < Nd);
|
||||
|
||||
int fd=grid->_fdimensions[orthogdim];
|
||||
int ld=grid->_ldimensions[orthogdim];
|
||||
int rd=grid->_rdimensions[orthogdim];
|
||||
|
||||
int e1= grid->_slice_nblock[orthogdim];
|
||||
int e2= grid->_slice_block [orthogdim];
|
||||
int stride=grid->_slice_stride[orthogdim];
|
||||
int ostride=grid->_ostride[orthogdim];
|
||||
size_t subvol_size = e1*e2;
|
||||
|
||||
Vector<vobj> lvSum(rd);
|
||||
Vector<sobj> lsSum(ld,Zero());
|
||||
commVector<vobj> reduction_buffer(rd*e1*e2);
|
||||
ExtractBuffer<sobj> extracted(Nsimd);
|
||||
|
||||
result.resize(fd);
|
||||
|
||||
for(int r=0;r<rd;r++){
|
||||
lvSum[r]=Zero();
|
||||
}
|
||||
|
||||
vobj vobj_zero; //Need to provide initial value for reduction operation
|
||||
zeroit(vobj_zero);
|
||||
|
||||
autoView( Data_v, Data, AcceleratorRead);
|
||||
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
void *helperArray = NULL;
|
||||
vobj *d_out;
|
||||
size_t temp_storage_bytes = 0;
|
||||
int* d_offsets;
|
||||
|
||||
std::vector<int> offsets(rd+1,0);
|
||||
|
||||
for (int i = 0; i < offsets.size(); i++) {
|
||||
offsets[i] = i*subvol_size;
|
||||
}
|
||||
|
||||
//Allocate memory for output and offset arrays on device
|
||||
gpuError_t gpuErr = gpuMalloc(&d_out,rd*sizeof(vobj));
|
||||
if (gpuErr != gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc (d_out)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
gpuErr = gpuMalloc(&d_offsets,sizeof(int)*(rd+1));
|
||||
if (gpuErr != gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc (d_offsets)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//copy offsets to device
|
||||
gpuErr = gpuMemcpyAsync(d_offsets,&offsets[0],sizeof(int)*(rd+1),gpuMemcpyHostToDevice,computeStream);
|
||||
if (gpuErr != gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMemcpy (d_offsets)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//determine helperArray size
|
||||
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(helperArray, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), vobj_zero, computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//allocate memory for helperArray
|
||||
gpuErr = gpuMalloc(&helperArray,temp_storage_bytes);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMalloc (helperArray)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//prepare buffer for reduction
|
||||
//use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
|
||||
//use 2d accelerator_for to avoid launch latencies found when serially looping over rd
|
||||
|
||||
accelerator_for2dNB( s,subvol_size, r,rd, grid->Nsimd(),{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
|
||||
|
||||
});
|
||||
|
||||
//issue segmented reductions in computeStream
|
||||
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(helperArray, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), vobj_zero, computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
gpuErr = gpuMemcpyAsync(&lvSum[0],d_out,rd*sizeof(vobj),gpuMemcpyDeviceToHost,computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpuMemcpy (d_out)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//sync after copy
|
||||
accelerator_barrier();
|
||||
|
||||
// Sum across simd lanes in the plane, breaking out orthog dir.
|
||||
Coordinate icoor(Nd);
|
||||
|
||||
for(int rt=0;rt<rd;rt++){
|
||||
|
||||
extract(lvSum[rt],extracted);
|
||||
|
||||
for(int idx=0;idx<Nsimd;idx++){
|
||||
|
||||
grid->iCoorFromIindex(icoor,idx);
|
||||
|
||||
int ldx =rt+icoor[orthogdim]*rd;
|
||||
|
||||
lsSum[ldx]=lsSum[ldx]+extracted[idx];
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// sum over nodes.
|
||||
for(int t=0;t<fd;t++){
|
||||
int pt = t/ld; // processor plane
|
||||
int lt = t%ld;
|
||||
if ( pt == grid->_processor_coor[orthogdim] ) {
|
||||
result[t]=lsSum[lt];
|
||||
} else {
|
||||
result[t]=Zero();
|
||||
}
|
||||
|
||||
}
|
||||
scalar_type * ptr = (scalar_type *) &result[0];
|
||||
int words = fd*sizeof(sobj)/sizeof(scalar_type);
|
||||
grid->GlobalSumVector(ptr, words);
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,110 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <class vobj>
|
||||
inline void sliceSum_sycl(const Lattice<vobj> &Data, std::vector<typename vobj::scalar_object> &result, int orthogdim)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_object::scalar_type scalar_type;
|
||||
|
||||
GridBase *grid = Data.Grid();
|
||||
assert(grid!=NULL);
|
||||
|
||||
const int Nd = grid->_ndimension;
|
||||
const size_t Nsimd = grid->Nsimd();
|
||||
|
||||
assert(orthogdim >= 0);
|
||||
assert(orthogdim < Nd);
|
||||
|
||||
int fd=grid->_fdimensions[orthogdim];
|
||||
int ld=grid->_ldimensions[orthogdim];
|
||||
int rd=grid->_rdimensions[orthogdim];
|
||||
|
||||
int e1= grid->_slice_nblock[orthogdim];
|
||||
int e2= grid->_slice_block [orthogdim];
|
||||
int stride=grid->_slice_stride[orthogdim];
|
||||
int ostride=grid->_ostride[orthogdim];
|
||||
size_t subvol_size = e1*e2;
|
||||
|
||||
vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
|
||||
|
||||
result.resize(fd);
|
||||
|
||||
Vector<vobj> lvSum(rd);
|
||||
Vector<sobj> lsSum(ld,Zero());
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
ExtractBuffer<sobj> extracted(Nsimd);
|
||||
vobj vobj_zero;
|
||||
zeroit(vobj_zero);
|
||||
|
||||
for(int r=0;r<rd;r++){
|
||||
lvSum[r]=Zero();
|
||||
}
|
||||
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
|
||||
autoView(Data_v, Data, AcceleratorRead);
|
||||
|
||||
//prepare reduction buffer
|
||||
accelerator_for2d( s,subvol_size, r,rd, Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
|
||||
|
||||
});
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
|
||||
Reduction,
|
||||
[=](cl::sycl::id<1> item, auto &sum) {
|
||||
auto s = item[0];
|
||||
sum += rb_p[r*subvol_size+s];
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
lvSum[r] = mysum[0];
|
||||
}
|
||||
|
||||
Coordinate icoor(Nd);
|
||||
|
||||
for(int rt=0;rt<rd;rt++){
|
||||
|
||||
extract(lvSum[rt],extracted);
|
||||
|
||||
for(int idx=0;idx<Nsimd;idx++){
|
||||
|
||||
grid->iCoorFromIindex(icoor,idx);
|
||||
|
||||
int ldx =rt+icoor[orthogdim]*rd;
|
||||
|
||||
lsSum[ldx]=lsSum[ldx]+extracted[idx];
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// sum over nodes.
|
||||
for(int t=0;t<fd;t++){
|
||||
int pt = t/ld; // processor plane
|
||||
int lt = t%ld;
|
||||
if ( pt == grid->_processor_coor[orthogdim] ) {
|
||||
result[t]=lsSum[lt];
|
||||
} else {
|
||||
result[t]=Zero();
|
||||
}
|
||||
|
||||
}
|
||||
scalar_type * ptr = (scalar_type *) &result[0];
|
||||
int words = fd*sizeof(sobj)/sizeof(scalar_type);
|
||||
grid->GlobalSumVector(ptr, words);
|
||||
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,5 +1,79 @@
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
template<class vobj> inline void sliceSumCPU(const Grid::Lattice<vobj> &Data,std::vector<typename vobj::scalar_object> &result,int orthogdim)
|
||||
{
|
||||
using namespace Grid;
|
||||
///////////////////////////////////////////////////////
|
||||
// FIXME precision promoted summation
|
||||
// may be important for correlation functions
|
||||
// But easily avoided by using double precision fields
|
||||
///////////////////////////////////////////////////////
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_object::scalar_type scalar_type;
|
||||
GridBase *grid = Data.Grid();
|
||||
assert(grid!=NULL);
|
||||
|
||||
const int Nd = grid->_ndimension;
|
||||
const int Nsimd = grid->Nsimd();
|
||||
|
||||
assert(orthogdim >= 0);
|
||||
assert(orthogdim < Nd);
|
||||
|
||||
int fd=grid->_fdimensions[orthogdim];
|
||||
int ld=grid->_ldimensions[orthogdim];
|
||||
int rd=grid->_rdimensions[orthogdim];
|
||||
|
||||
Vector<vobj> lvSum(rd); // will locally sum vectors first
|
||||
Vector<sobj> lsSum(ld,Zero()); // sum across these down to scalars
|
||||
ExtractBuffer<sobj> extracted(Nsimd); // splitting the SIMD
|
||||
|
||||
result.resize(fd); // And then global sum to return the same vector to every node
|
||||
for(int r=0;r<rd;r++){
|
||||
lvSum[r]=Zero();
|
||||
}
|
||||
|
||||
int e1= grid->_slice_nblock[orthogdim];
|
||||
int e2= grid->_slice_block [orthogdim];
|
||||
int stride=grid->_slice_stride[orthogdim];
|
||||
int ostride=grid->_ostride[orthogdim];
|
||||
|
||||
//Reduce Data down to lvSum
|
||||
sliceSumReduction_cpu(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
|
||||
|
||||
// Sum across simd lanes in the plane, breaking out orthog dir.
|
||||
Coordinate icoor(Nd);
|
||||
|
||||
for(int rt=0;rt<rd;rt++){
|
||||
|
||||
extract(lvSum[rt],extracted);
|
||||
|
||||
for(int idx=0;idx<Nsimd;idx++){
|
||||
|
||||
grid->iCoorFromIindex(icoor,idx);
|
||||
|
||||
int ldx =rt+icoor[orthogdim]*rd;
|
||||
|
||||
lsSum[ldx]=lsSum[ldx]+extracted[idx];
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// sum over nodes.
|
||||
for(int t=0;t<fd;t++){
|
||||
int pt = t/ld; // processor plane
|
||||
int lt = t%ld;
|
||||
if ( pt == grid->_processor_coor[orthogdim] ) {
|
||||
result[t]=lsSum[lt];
|
||||
} else {
|
||||
result[t]=Zero();
|
||||
}
|
||||
|
||||
}
|
||||
scalar_type * ptr = (scalar_type *) &result[0];
|
||||
int words = fd*sizeof(sobj)/sizeof(scalar_type);
|
||||
grid->GlobalSumVector(ptr, words);
|
||||
}
|
||||
|
||||
|
||||
int main (int argc, char ** argv) {
|
||||
|
||||
@ -26,7 +100,7 @@ int main (int argc, char ** argv) {
|
||||
|
||||
//warmup
|
||||
for (int sweeps = 0; sweeps < 5; sweeps++) {
|
||||
reduction_result = sliceSumGpu(test_data,0);
|
||||
reduction_result = sliceSum(test_data,0);
|
||||
}
|
||||
|
||||
int trace_id = traceStart("sliceSum benchmark");
|
||||
@ -35,23 +109,23 @@ int main (int argc, char ** argv) {
|
||||
RealD t=-usecond();
|
||||
|
||||
tracePush("sliceSum");
|
||||
sliceSum(test_data,reduction_reference,i);
|
||||
sliceSumCPU(test_data,reduction_reference,i);
|
||||
tracePop("sliceSum");
|
||||
|
||||
t+=usecond();
|
||||
|
||||
std::cout << GridLogMessage << " sliceSum took "<<t<<" usecs"<<std::endl;
|
||||
std::cout << GridLogMessage << "Orthog. dir. = " << i << std::endl;
|
||||
std::cout << GridLogMessage << "CPU sliceSum took "<<t<<" usecs"<<std::endl;
|
||||
|
||||
|
||||
RealD tgpu=-usecond();
|
||||
|
||||
tracePush("sliceSumGpu");
|
||||
reduction_result = sliceSumGpu(test_data,i);
|
||||
reduction_result = sliceSum(test_data,i);
|
||||
tracePop("sliceSumGpu");
|
||||
|
||||
tgpu+=usecond();
|
||||
|
||||
std::cout << GridLogMessage <<" sliceSumGpu took "<<tgpu<<" usecs"<<std::endl;
|
||||
std::cout << GridLogMessage <<"GPU sliceSum took "<<tgpu<<" usecs"<<std::endl<<std::endl;;
|
||||
|
||||
|
||||
for(int t=0;t<reduction_reference.size();t++) {
|
||||
|
Loading…
Reference in New Issue
Block a user