1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Merge branch 'develop' into feature/hmc_generalise

This commit is contained in:
Guido Cossu 2016-10-20 17:04:41 +01:00
commit 977b0a6dd9
28 changed files with 1119 additions and 348 deletions

View File

@ -9,10 +9,6 @@ matrix:
- os: osx
osx_image: xcode7.2
compiler: clang
- os: osx
osx_image: xcode7.2
compiler: gcc
env: VERSION=-5
- compiler: gcc
addons:
apt:

View File

@ -86,18 +86,6 @@ int main (int argc, char ** argv)
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
/* src=zero;
std::vector<int> origin(5,0);
SpinColourVector f=zero;
for(int sp=0;sp<4;sp++){
for(int co=0;co<3;co++){
f()(sp)(co)=Complex(1.0,0.0);
}}
pokeSite(f,src,origin);
*/
ColourMatrix cm = Complex(1.0,0.0);
LatticeGaugeField Umu(UGrid);
random(RNG4,Umu);
@ -144,10 +132,12 @@ int main (int argc, char ** argv)
DomainWallFermionR Dw(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
std::cout<<GridLogMessage << "Calling Dw"<<std::endl;
std::cout<<GridLogMessage << "Naive wilson implementation "<<std::endl;
std::cout << GridLogMessage<< "Calling Dw"<<std::endl;
int ncall =100;
if (1) {
Dw.ZeroCounters();
double t0=usecond();
for(int i=0;i<ncall;i++){
__SSC_START;
@ -166,7 +156,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NP<<std::endl;
err = ref-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
// Dw.Report();
Dw.Report();
}
if (1)
@ -188,8 +178,9 @@ int main (int argc, char ** argv)
peekSite(tmp,src,site);
pokeSite(tmp,ssrc,site);
}}}}}
std::cout<<"src norms "<< norm2(src)<<" " <<norm2(ssrc)<<std::endl;
std::cout<<GridLogMessage<< "src norms "<< norm2(src)<<" " <<norm2(ssrc)<<std::endl;
double t0=usecond();
sDw.ZeroCounters();
for(int i=0;i<ncall;i++){
__SSC_START;
sDw.Dhop(ssrc,sresult,0);
@ -199,23 +190,23 @@ int main (int argc, char ** argv)
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=1344*volume*ncall;
std::cout<<GridLogMessage << "Called Dw sinner "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "Called Dw s_inner "<<ncall<<" times in "<<t1-t0<<" us"<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NP<<std::endl;
// sDw.Report();
sDw.Report();
if(0){
for(int i=0;i< PerformanceCounter::NumTypes(); i++ ){
sDw.Dhop(ssrc,sresult,0);
PerformanceCounter Counter(i);
Counter.Start();
sDw.Dhop(ssrc,sresult,0);
Counter.Stop();
Counter.Report();
sDw.Dhop(ssrc,sresult,0);
PerformanceCounter Counter(i);
Counter.Start();
sDw.Dhop(ssrc,sresult,0);
Counter.Stop();
Counter.Report();
}
}
std::cout<<"res norms "<< norm2(result)<<" " <<norm2(sresult)<<std::endl;
std::cout<<GridLogMessage<< "res norms "<< norm2(result)<<" " <<norm2(sresult)<<std::endl;
RealF sum=0;
@ -230,12 +221,12 @@ int main (int argc, char ** argv)
peekSite(simd,sresult,site);
sum=sum+norm2(normal-simd);
if (norm2(normal-simd) > 1.0e-6 ) {
std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" "<<norm2(normal-simd)<<std::endl;
std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" normal "<<normal<<std::endl;
std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" simd "<<simd<<std::endl;
std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" "<<norm2(normal-simd)<<std::endl;
std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" normal "<<normal<<std::endl;
std::cout << "site "<<x<<","<<y<<","<<z<<","<<t<<","<<s<<" simd "<<simd<<std::endl;
}
}}}}}
std::cout<<" difference between normal and simd is "<<sum<<std::endl;
std::cout<<GridLogMessage<<" difference between normal and simd is "<<sum<<std::endl;
if (1) {
@ -259,17 +250,21 @@ int main (int argc, char ** argv)
sr_e = zero;
sr_o = zero;
sDw.ZeroCounters();
sDw.stat.init("DhopEO");
double t0=usecond();
for(int i=0;i<ncall;i++){
sDw.DhopEO(ssrc_o,sr_e,DaggerNo);
for (int i = 0; i < ncall; i++) {
sDw.DhopEO(ssrc_o, sr_e, DaggerNo);
}
double t1=usecond();
sDw.stat.print();
double volume=Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt4[mu];
double flops=(1344.0*volume*ncall)/2;
std::cout<<GridLogMessage << "sDeo mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "sDeo mflop/s per node "<< flops/(t1-t0)/NP<<std::endl;
sDw.Report();
sDw.DhopEO(ssrc_o,sr_e,DaggerNo);
sDw.DhopOE(ssrc_e,sr_o,DaggerNo);
@ -294,18 +289,19 @@ int main (int argc, char ** argv)
// ref = src - Gamma(Gamma::GammaX)* src ; // 1+gamma_x
tmp = U[mu]*Cshift(src,mu+1,1);
for(int i=0;i<ref._odata.size();i++){
ref._odata[i]+= tmp._odata[i] + Gamma(Gmu[mu])*tmp._odata[i]; ;
ref._odata[i]+= tmp._odata[i] + Gamma(Gmu[mu])*tmp._odata[i]; ;
}
tmp =adj(U[mu])*src;
tmp =Cshift(tmp,mu+1,-1);
for(int i=0;i<ref._odata.size();i++){
ref._odata[i]+= tmp._odata[i] - Gamma(Gmu[mu])*tmp._odata[i]; ;
ref._odata[i]+= tmp._odata[i] - Gamma(Gmu[mu])*tmp._odata[i]; ;
}
}
ref = -0.5*ref;
}
Dw.Dhop(src,result,1);
std::cout << GridLogMessage << "Naive wilson implementation Dag" << std::endl;
std::cout<<GridLogMessage << "Called DwDag"<<std::endl;
std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "norm ref "<< norm2(ref)<<std::endl;
@ -327,6 +323,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "src_o"<<norm2(src_o)<<std::endl;
{
Dw.ZeroCounters();
double t0=usecond();
for(int i=0;i<ncall;i++){
Dw.DhopEO(src_o,r_e,DaggerNo);
@ -338,6 +335,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Deo mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "Deo mflop/s per node "<< flops/(t1-t0)/NP<<std::endl;
Dw.Report();
}
Dw.DhopEO(src_o,r_e,DaggerNo);
Dw.DhopOE(src_e,r_o,DaggerNo);

View File

@ -51,7 +51,7 @@ int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=16;
const int Ls=8;
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;

View File

@ -47,7 +47,7 @@ AC_ARG_WITH([gmp],
[AS_HELP_STRING([--with-gmp=prefix],
[try this for a non-standard install prefix of the GMP library])],
[AM_CXXFLAGS="-I$with_gmp/include $AM_CXXFLAGS"]
[AM_LDFLAGS="-L$with_gmp/lib" $AM_LDFLAGS])
[AM_LDFLAGS="-L$with_gmp/lib $AM_LDFLAGS"])
AC_ARG_WITH([mpfr],
[AS_HELP_STRING([--with-mpfr=prefix],
[try this for a non-standard install prefix of the MPFR library])],
@ -70,6 +70,20 @@ case ${ac_LAPACK} in
AC_DEFINE([USE_LAPACK],[1],[use LAPACK])
esac
################## first-touch ####################
AC_ARG_ENABLE([numa],
[AC_HELP_STRING([--enable-numa=yes|no|prefix], [enable first touch numa opt])],
[ac_NUMA=${enable_NUMA}],[ac_NUMA=no])
case ${ac_NUMA} in
no)
;;
yes)
AC_DEFINE([GRID_NUMA],[1],[First touch numa locality]);;
*)
AC_DEFINE([GRID_NUMA],[1],[First touch numa locality]);;
esac
################## FFTW3 ####################
AC_ARG_WITH([fftw],
[AS_HELP_STRING([--with-fftw=prefix],
@ -117,7 +131,7 @@ CXXFLAGS=$CXXFLAGS_CPY
LDFLAGS=$LDFLAGS_CPY
############### SIMD instruction selection
AC_ARG_ENABLE([simd],[AC_HELP_STRING([--enable-simd=SSE4|AVX|AVXFMA4|AVX2|AVX512|AVX512MIC|IMCI|KNL|KNC],\
AC_ARG_ENABLE([simd],[AC_HELP_STRING([--enable-simd=SSE4|AVX|AVXFMA4|AVXFMA|AVX2|AVX512|AVX512MIC|IMCI|KNL|KNC],\
[Select instructions to be SSE4.0, AVX 1.0, AVX 2.0+FMA, AVX 512, IMCI])],\
[ac_SIMD=${enable_simd}],[ac_SIMD=GEN])
@ -133,6 +147,9 @@ case ${ax_cv_cxx_compiler_vendor} in
AVXFMA4)
AC_DEFINE([AVXFMA4],[1],[AVX intrinsics with FMA4])
SIMD_FLAGS='-mavx -mfma4';;
AVXFMA)
AC_DEFINE([AVXFMA],[1],[AVX intrinsics with FMA3])
SIMD_FLAGS='-mavx -mfma';;
AVX2)
AC_DEFINE([AVX2],[1],[AVX2 intrinsics])
SIMD_FLAGS='-mavx2 -mfma';;
@ -161,7 +178,10 @@ case ${ax_cv_cxx_compiler_vendor} in
SIMD_FLAGS='-mavx -xavx';;
AVXFMA4)
AC_DEFINE([AVXFMA4],[1],[AVX intrinsics with FMA4])
SIMD_FLAGS='-mavx -xavx -mfma';;
SIMD_FLAGS='-mavx -mfma';;
AVXFMA)
AC_DEFINE([AVXFMA],[1],[AVX intrinsics with FMA4])
SIMD_FLAGS='-mavx -mfma';;
AVX2)
AC_DEFINE([AVX2],[1],[AVX2 intrinsics])
SIMD_FLAGS='-march=core-avx2 -xcore-avx2';;

View File

@ -113,9 +113,8 @@ public:
#endif
_Tp tmp;
#undef FIRST_TOUCH_OPTIMISE
#ifdef FIRST_TOUCH_OPTIMISE
#pragma omp parallel for
#ifdef GRID_NUMA
#pragma omp parallel for schedule(static)
for(int i=0;i<__n;i++){
ptr[i]=tmp;
}

View File

@ -246,15 +246,15 @@ void Grid_init(int *argc,char ***argv)
std::cout <<std::endl;
std::cout <<COL_RED << "__|__|__|__|__"<< "|__|__|_"<<COL_PURPLE<<"_|__|__|"<< "__|__|__|__|__"<<std::endl;
std::cout <<COL_RED << "__|__|__|__|__"<< "|__|__|_"<<COL_PURPLE<<"_|__|__|"<< "__|__|__|__|__"<<std::endl;
std::cout <<COL_RED << "__|__| | | "<< "| | | "<<COL_PURPLE<<" | | |"<< " | | | _|__"<<std::endl;
std::cout <<COL_RED << "__|__ "<< " "<<COL_PURPLE<<" "<< " _|__"<<std::endl;
std::cout <<COL_RED << "__|_ | | | "<< "| | | "<<COL_PURPLE<<" | | |"<< " | | | _|__"<<std::endl;
std::cout <<COL_RED << "__|_ "<< " "<<COL_PURPLE<<" "<< " _|__"<<std::endl;
std::cout <<COL_RED << "__|_ "<<COL_GREEN<<" GGGG "<<COL_RED<<" RRRR "<<COL_BLUE <<" III "<<COL_PURPLE<<"DDDD "<<COL_PURPLE<<" _|__"<<std::endl;
std::cout <<COL_RED << "__|_ "<<COL_GREEN<<"G "<<COL_RED<<" R R "<<COL_BLUE <<" I "<<COL_PURPLE<<"D D "<<COL_PURPLE<<" _|__"<<std::endl;
std::cout <<COL_RED << "__|_ "<<COL_GREEN<<"G "<<COL_RED<<" R R "<<COL_BLUE <<" I "<<COL_PURPLE<<"D D"<<COL_PURPLE<<" _|__"<<std::endl;
std::cout <<COL_BLUE << "__|_ "<<COL_GREEN<<"G GG "<<COL_RED<<" RRRR "<<COL_BLUE <<" I "<<COL_PURPLE<<"D D"<<COL_GREEN <<" _|__"<<std::endl;
std::cout <<COL_BLUE << "__|_ "<<COL_GREEN<<"G G "<<COL_RED<<" R R "<<COL_BLUE <<" I "<<COL_PURPLE<<"D D "<<COL_GREEN <<" _|__"<<std::endl;
std::cout <<COL_BLUE << "__|_ "<<COL_GREEN<<" GGGG "<<COL_RED<<" R R "<<COL_BLUE <<" III "<<COL_PURPLE<<"DDDD "<<COL_GREEN <<" _|__"<<std::endl;
std::cout <<COL_BLUE << "__|__ "<< " "<<COL_GREEN <<" "<< " _|__"<<std::endl;
std::cout <<COL_BLUE << "__|_ "<< " "<<COL_GREEN <<" "<< " _|__"<<std::endl;
std::cout <<COL_BLUE << "__|__|__|__|__"<< "|__|__|_"<<COL_GREEN <<"_|__|__|"<< "__|__|__|__|__"<<std::endl;
std::cout <<COL_BLUE << "__|__|__|__|__"<< "|__|__|_"<<COL_GREEN <<"_|__|__|"<< "__|__|__|__|__"<<std::endl;
std::cout <<COL_BLUE << " | | | | "<< "| | | "<<COL_GREEN <<" | | |"<< " | | | | "<<std::endl;

247
lib/Stat.cc Normal file
View File

@ -0,0 +1,247 @@
#include <Grid.h>
#include <PerfCount.h>
#include <Stat.h>
namespace Grid {
bool PmuStat::pmu_initialized=false;
void PmuStat::init(const char *regname)
{
#ifdef __x86_64__
name = regname;
if (!pmu_initialized)
{
std::cout<<"initialising pmu"<<std::endl;
pmu_initialized = true;
pmu_init();
}
clear();
#endif
}
void PmuStat::clear(void)
{
#ifdef __x86_64__
count = 0;
tregion = 0;
pmc0 = 0;
pmc1 = 0;
inst = 0;
cyc = 0;
ref = 0;
tcycles = 0;
reads = 0;
writes = 0;
#endif
}
void PmuStat::print(void)
{
#ifdef __x86_64__
std::cout <<"Reg "<<std::string(name)<<":\n";
std::cout <<" region "<<tregion<<std::endl;
std::cout <<" cycles "<<tcycles<<std::endl;
std::cout <<" inst "<<inst <<std::endl;
std::cout <<" cyc "<<cyc <<std::endl;
std::cout <<" ref "<<ref <<std::endl;
std::cout <<" pmc0 "<<pmc0 <<std::endl;
std::cout <<" pmc1 "<<pmc1 <<std::endl;
std::cout <<" count "<<count <<std::endl;
std::cout <<" reads "<<reads <<std::endl;
std::cout <<" writes "<<writes <<std::endl;
#endif
}
void PmuStat::start(void)
{
#ifdef __x86_64__
pmu_start();
++count;
xmemctrs(&mrstart, &mwstart);
tstart = __rdtsc();
#endif
}
void PmuStat::enter(int t)
{
#ifdef __x86_64__
counters[0][t] = __rdpmc(0);
counters[1][t] = __rdpmc(1);
counters[2][t] = __rdpmc((1<<30)|0);
counters[3][t] = __rdpmc((1<<30)|1);
counters[4][t] = __rdpmc((1<<30)|2);
counters[5][t] = __rdtsc();
#endif
}
void PmuStat::exit(int t)
{
#ifdef __x86_64__
counters[0][t] = __rdpmc(0) - counters[0][t];
counters[1][t] = __rdpmc(1) - counters[1][t];
counters[2][t] = __rdpmc((1<<30)|0) - counters[2][t];
counters[3][t] = __rdpmc((1<<30)|1) - counters[3][t];
counters[4][t] = __rdpmc((1<<30)|2) - counters[4][t];
counters[5][t] = __rdtsc() - counters[5][t];
#endif
}
void PmuStat::accum(int nthreads)
{
#ifdef __x86_64__
tend = __rdtsc();
xmemctrs(&mrend, &mwend);
pmu_stop();
for (int t = 0; t < nthreads; ++t) {
pmc0 += counters[0][t];
pmc1 += counters[1][t];
inst += counters[2][t];
cyc += counters[3][t];
ref += counters[4][t];
tcycles += counters[5][t];
}
uint64_t region = tend - tstart;
tregion += region;
uint64_t mreads = mrend - mrstart;
reads += mreads;
uint64_t mwrites = mwend - mwstart;
writes += mwrites;
#endif
}
void PmuStat::pmu_fini(void) {}
void PmuStat::pmu_start(void) {};
void PmuStat::pmu_stop(void) {};
void PmuStat::pmu_init(void)
{
#ifdef _KNIGHTS_LANDING_
KNLsetup();
#endif
}
void PmuStat::xmemctrs(uint64_t *mr, uint64_t *mw)
{
#ifdef _KNIGHTS_LANDING_
ctrs c;
KNLreadctrs(c);
uint64_t emr = 0, emw = 0;
for (int i = 0; i < NEDC; ++i)
{
emr += c.edcrd[i];
emw += c.edcwr[i];
}
*mr = emr;
*mw = emw;
#else
*mr = *mw = 0;
#endif
}
#ifdef _KNIGHTS_LANDING_
struct knl_gbl_ PmuStat::gbl;
#define PMU_MEM
void PmuStat::KNLevsetup(const char *ename, int &fd, int event, int umask)
{
char fname[1024];
snprintf(fname, sizeof(fname), "%s/type", ename);
FILE *fp = fopen(fname, "r");
if (fp == 0) {
::printf("open %s", fname);
::exit(0);
}
int type;
int ret = fscanf(fp, "%d", &type);
assert(ret == 1);
fclose(fp);
// std::cout << "Using PMU type "<<type<<" from " << std::string(ename) <<std::endl;
struct perf_event_attr hw = {};
hw.size = sizeof(hw);
hw.type = type;
// see /sys/devices/uncore_*/format/*
// All of the events we are interested in are configured the same way, but
// that isn't always true. Proper code would parse the format files
hw.config = event | (umask << 8);
//hw.read_format = PERF_FORMAT_GROUP;
// unfortunately the above only works within a single PMU; might
// as well just read them one at a time
int cpu = 0;
fd = perf_event_open(&hw, -1, cpu, -1, 0);
if (fd == -1) {
::printf("CPU %d, box %s, event 0x%lx", cpu, ename, hw.config);
::exit(0);
} else {
// std::cout << "event "<<std::string(ename)<<" set up for fd "<<fd<<" hw.config "<<hw.config <<std::endl;
}
}
void PmuStat::KNLsetup(void){
int ret;
char fname[1024];
// MC RPQ inserts and WPQ inserts (reads & writes)
for (int mc = 0; mc < NMC; ++mc)
{
::snprintf(fname, sizeof(fname), "/sys/devices/uncore_imc_%d",mc);
// RPQ Inserts
KNLevsetup(fname, gbl.mc_rd[mc], 0x1, 0x1);
// WPQ Inserts
KNLevsetup(fname, gbl.mc_wr[mc], 0x2, 0x1);
}
// EDC RPQ inserts and WPQ inserts
for (int edc=0; edc < NEDC; ++edc)
{
::snprintf(fname, sizeof(fname), "/sys/devices/uncore_edc_eclk_%d",edc);
// RPQ inserts
KNLevsetup(fname, gbl.edc_rd[edc], 0x1, 0x1);
// WPQ inserts
KNLevsetup(fname, gbl.edc_wr[edc], 0x2, 0x1);
}
// EDC HitE, HitM, MissE, MissM
for (int edc=0; edc < NEDC; ++edc)
{
::snprintf(fname, sizeof(fname), "/sys/devices/uncore_edc_uclk_%d", edc);
KNLevsetup(fname, gbl.edc_hite[edc], 0x2, 0x1);
KNLevsetup(fname, gbl.edc_hitm[edc], 0x2, 0x2);
KNLevsetup(fname, gbl.edc_misse[edc], 0x2, 0x4);
KNLevsetup(fname, gbl.edc_missm[edc], 0x2, 0x8);
}
}
uint64_t PmuStat::KNLreadctr(int fd)
{
uint64_t data;
size_t s = ::read(fd, &data, sizeof(data));
if (s != sizeof(uint64_t)){
::printf("read counter %lu", s);
::exit(0);
}
return data;
}
void PmuStat::KNLreadctrs(ctrs &c)
{
for (int i = 0; i < NMC; ++i)
{
c.mcrd[i] = KNLreadctr(gbl.mc_rd[i]);
c.mcwr[i] = KNLreadctr(gbl.mc_wr[i]);
}
for (int i = 0; i < NEDC; ++i)
{
c.edcrd[i] = KNLreadctr(gbl.edc_rd[i]);
c.edcwr[i] = KNLreadctr(gbl.edc_wr[i]);
}
for (int i = 0; i < NEDC; ++i)
{
c.edchite[i] = KNLreadctr(gbl.edc_hite[i]);
c.edchitm[i] = KNLreadctr(gbl.edc_hitm[i]);
c.edcmisse[i] = KNLreadctr(gbl.edc_misse[i]);
c.edcmissm[i] = KNLreadctr(gbl.edc_missm[i]);
}
}
#endif
}

104
lib/Stat.h Normal file
View File

@ -0,0 +1,104 @@
#ifndef _GRID_STAT_H
#define _GRID_STAT_H
#ifdef AVX512
#define _KNIGHTS_LANDING_ROOTONLY
#endif
namespace Grid {
///////////////////////////////////////////////////////////////////////////////
// Extra KNL counters from MCDRAM
///////////////////////////////////////////////////////////////////////////////
#ifdef _KNIGHTS_LANDING_
#define NMC 6
#define NEDC 8
struct ctrs
{
uint64_t mcrd[NMC];
uint64_t mcwr[NMC];
uint64_t edcrd[NEDC];
uint64_t edcwr[NEDC];
uint64_t edchite[NEDC];
uint64_t edchitm[NEDC];
uint64_t edcmisse[NEDC];
uint64_t edcmissm[NEDC];
};
// Peter/Azusa:
// Our modification of a code provided by Larry Meadows from Intel
// Verified by email exchange non-NDA, ok for github. Should be as uses /sys/devices/ FS
// so is already public and in the linux kernel for KNL.
struct knl_gbl_
{
int mc_rd[NMC];
int mc_wr[NMC];
int edc_rd[NEDC];
int edc_wr[NEDC];
int edc_hite[NEDC];
int edc_hitm[NEDC];
int edc_misse[NEDC];
int edc_missm[NEDC];
};
#endif
///////////////////////////////////////////////////////////////////////////////
class PmuStat
{
uint64_t counters[8][256];
#ifdef _KNIGHTS_LANDING_
static struct knl_gbl_ gbl;
#endif
const char *name;
uint64_t reads; // memory reads
uint64_t writes; // memory writes
uint64_t mrstart; // memory read counter at start of parallel region
uint64_t mrend; // memory read counter at end of parallel region
uint64_t mwstart; // memory write counter at start of parallel region
uint64_t mwend; // memory write counter at end of parallel region
// cumulative counters
uint64_t count; // number of invocations
uint64_t tregion; // total time in parallel region (from thread 0)
uint64_t tcycles; // total cycles inside parallel region
uint64_t inst, ref, cyc; // fixed counters
uint64_t pmc0, pmc1;// pmu
// add memory counters here
// temp variables
uint64_t tstart; // tsc at start of parallel region
uint64_t tend; // tsc at end of parallel region
// map for ctrs values
// 0 pmc0 start
// 1 pmc0 end
// 2 pmc1 start
// 3 pmc1 end
// 4 tsc start
// 5 tsc end
static bool pmu_initialized;
public:
static bool is_init(void){ return pmu_initialized;}
static void pmu_init(void);
static void pmu_fini(void);
static void pmu_start(void);
static void pmu_stop(void);
void accum(int nthreads);
static void xmemctrs(uint64_t *mr, uint64_t *mw);
void start(void);
void enter(int t);
void exit(int t);
void print(void);
void init(const char *regname);
void clear(void);
#ifdef _KNIGHTS_LANDING_
static void KNLsetup(void);
static uint64_t KNLreadctr(int fd);
static void KNLreadctrs(ctrs &c);
static void KNLevsetup(const char *ename, int &fd, int event, int umask);
#endif
};
}
#endif

View File

@ -70,9 +70,70 @@
namespace Grid {
template<class vobj,class cobj,class compressor> void
Gather_plane_simple_table_compute (const Lattice<vobj> &rhs,std::vector<cobj,alignedAllocator<cobj> > &buffer,int dimension,int plane,int cbmask,compressor &compress, int off,std::vector<std::pair<int,int> >& table)
{
table.resize(0);
int rd = rhs._grid->_rdimensions[dimension];
if ( !rhs._grid->CheckerBoarded(dimension) ) {
cbmask = 0x3;
}
int so= plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int stride=rhs._grid->_slice_stride[dimension];
if ( cbmask == 0x3 ) {
table.resize(e1*e2);
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int bo = n*e2;
table[bo+b]=std::pair<int,int>(bo+b,o+b);
}
}
} else {
int bo=0;
table.resize(e1*e2/2);
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int ocb=1<<rhs._grid->CheckerBoardFromOindexTable(o+b);
if ( ocb &cbmask ) {
table[bo]=std::pair<int,int>(bo,o+b); bo++;
}
}
}
}
}
template<class vobj,class cobj,class compressor> void
Gather_plane_simple_table (std::vector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,std::vector<cobj,alignedAllocator<cobj> > &buffer,
compressor &compress, int off,int so)
{
PARALLEL_FOR_LOOP
for(int i=0;i<table.size();i++){
buffer[off+table[i].first]=compress(rhs._odata[so+table[i].second]);
}
}
template<class vobj,class cobj,class compressor> void
Gather_plane_simple_stencil (const Lattice<vobj> &rhs,std::vector<cobj,alignedAllocator<cobj> > &buffer,int dimension,int plane,int cbmask,compressor &compress, int off,
double &t_table ,double & t_data )
{
std::vector<std::pair<int,int> > table;
Gather_plane_simple_table_compute (rhs, buffer,dimension,plane,cbmask,compress,off,table);
int so = plane*rhs._grid->_ostride[dimension]; // base offset for start of plane
Gather_plane_simple_table (table,rhs,buffer,compress,off,so);
}
struct StencilEntry {
uint32_t _offset;
uint32_t _byte_offset;
uint64_t _offset;
uint64_t _byte_offset;
uint16_t _is_local;
uint16_t _permute;
uint32_t _around_the_world; //256 bits, 32 bytes, 1/2 cacheline
@ -101,12 +162,14 @@
};
std::vector<Packet> Packets;
int face_table_computed;
std::vector<std::vector<std::pair<int,int> > > face_table ;
#define SEND_IMMEDIATE
#define SERIAL_SENDS
#define SEND_IMMEDIATE
#define SERIAL_SENDS
void AddPacket(void *xmit,void * rcv, Integer to,Integer from,Integer bytes){
comms_bytes+=2.0*bytes;
#ifdef SEND_IMMEDIATE
commtime-=usecond();
_grid->SendToRecvFrom(xmit,to,rcv,from,bytes);
@ -256,7 +319,8 @@
if( _entries[i]._is_local ) {
_entries[i]._byte_offset = _entries[i]._offset*sizeof(vobj);
} else {
_entries[i]._byte_offset =(uint64_t)&comm_buf[0]+ _entries[i]._offset*sizeof(cobj);
// PrecomputeByteOffsets [5] 16384/32768 140735768678528 140735781261056 2581581952
_entries[i]._byte_offset = _entries[i]._offset*sizeof(cobj);
}
}
};
@ -265,17 +329,21 @@
// _mm_prefetch((char *)&_entries[ent],_MM_HINT_T0);
}
inline uint64_t GetInfo(int &ptype,int &local,int &perm,int point,int ent,uint64_t base) {
//_mm_prefetch((char *)&_entries[ent+1],_MM_HINT_T0);
uint64_t cbase = (uint64_t)&comm_buf[0];
local = _entries[ent]._is_local;
perm = _entries[ent]._permute;
if (perm) ptype = _permute_type[point];
if (local) return base + _entries[ent]._byte_offset;
else return _entries[ent]._byte_offset;
if (local) {
return base + _entries[ent]._byte_offset;
} else {
return cbase + _entries[ent]._byte_offset;
}
}
inline uint64_t GetPFInfo(int ent,uint64_t base) {
uint64_t cbase = (uint64_t)&comm_buf[0];
int local = _entries[ent]._is_local;
if (local) return base + _entries[ent]._byte_offset;
else return _entries[ent]._byte_offset;
if (local) return base + _entries[ent]._byte_offset;
else return cbase + _entries[ent]._byte_offset;
}
// Comms buffers
@ -301,6 +369,48 @@
double gathermtime;
double splicetime;
double nosplicetime;
double t_data;
double t_table;
double calls;
void ZeroCounters(void) {
gathertime = 0.;
jointime = 0.;
commtime = 0.;
halogtime = 0.;
mergetime = 0.;
spintime = 0.;
gathermtime = 0.;
splicetime = 0.;
nosplicetime = 0.;
t_data = 0.0;
t_table= 0.0;
comms_bytes = 0.;
calls = 0.;
};
void Report(void) {
#define PRINTIT(A) \
std::cout << GridLogMessage << " Stencil " << #A << " "<< A/calls<<std::endl;
if ( calls > 0. ) {
std::cout << GridLogMessage << " Stencil calls "<<calls<<std::endl;
PRINTIT(halogtime);
PRINTIT(gathertime);
PRINTIT(gathermtime);
PRINTIT(mergetime);
if(comms_bytes>1.0){
PRINTIT(comms_bytes);
PRINTIT(commtime);
std::cout << GridLogMessage << " Stencil " << comms_bytes/commtime/1000. << " GB/s "<<std::endl;
}
PRINTIT(jointime);
PRINTIT(spintime);
PRINTIT(splicetime);
PRINTIT(nosplicetime);
PRINTIT(t_table);
PRINTIT(t_data);
}
};
#endif
CartesianStencil(GridBase *grid,
@ -310,18 +420,7 @@
const std::vector<int> &distances)
: _permute_type(npoints), _comm_buf_size(npoints)
{
#ifdef TIMING_HACK
gathertime=0;
jointime=0;
commtime=0;
halogtime=0;
mergetime=0;
spintime=0;
gathermtime=0;
splicetime=0;
nosplicetime=0;
comms_bytes=0;
#endif
face_table_computed=0;
_npoints = npoints;
_grid = grid;
_directions = directions;
@ -623,6 +722,7 @@
template<class compressor>
void HaloExchange(const Lattice<vobj> &source,compressor &compress)
{
calls++;
Mergers.resize(0);
Packets.resize(0);
HaloGather(source,compress);
@ -648,7 +748,7 @@
}
#endif
template<class compressor>
void HaloGatherDir(const Lattice<vobj> &source,compressor &compress,int point)
void HaloGatherDir(const Lattice<vobj> &source,compressor &compress,int point,int & face_idx)
{
int dimension = _directions[point];
int displacement = _distances[point];
@ -676,23 +776,23 @@
if ( sshift[0] == sshift[1] ) {
if (splice_dim) {
splicetime-=usecond();
GatherSimd(source,dimension,shift,0x3,compress);
GatherSimd(source,dimension,shift,0x3,compress,face_idx);
splicetime+=usecond();
} else {
nosplicetime-=usecond();
Gather(source,dimension,shift,0x3,compress);
Gather(source,dimension,shift,0x3,compress,face_idx);
nosplicetime+=usecond();
}
} else {
if(splice_dim){
splicetime-=usecond();
GatherSimd(source,dimension,shift,0x1,compress);// if checkerboard is unfavourable take two passes
GatherSimd(source,dimension,shift,0x2,compress);// both with block stride loop iteration
GatherSimd(source,dimension,shift,0x1,compress,face_idx);// if checkerboard is unfavourable take two passes
GatherSimd(source,dimension,shift,0x2,compress,face_idx);// both with block stride loop iteration
splicetime+=usecond();
} else {
nosplicetime-=usecond();
Gather(source,dimension,shift,0x1,compress);
Gather(source,dimension,shift,0x2,compress);
Gather(source,dimension,shift,0x1,compress,face_idx);
Gather(source,dimension,shift,0x2,compress,face_idx);
nosplicetime+=usecond();
}
}
@ -710,17 +810,19 @@
u_comm_offset=0;
// Gather all comms buffers
int face_idx=0;
for(int point = 0 ; point < _npoints; point++) {
compress.Point(point);
HaloGatherDir(source,compress,point);
HaloGatherDir(source,compress,point,face_idx);
}
face_table_computed=1;
assert(u_comm_offset==_unified_buffer_size);
halogtime+=usecond();
}
template<class compressor>
void Gather(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor & compress)
void Gather(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor & compress,int &face_idx)
{
typedef typename cobj::vector_type vector_type;
typedef typename cobj::scalar_type scalar_type;
@ -757,8 +859,20 @@
int bytes = words * sizeof(cobj);
gathertime-=usecond();
Gather_plane_simple (rhs,u_send_buf,dimension,sx,cbmask,compress,u_comm_offset);
int so = sx*rhs._grid->_ostride[dimension]; // base offset for start of plane
if ( !face_table_computed ) {
t_table-=usecond();
face_table.resize(face_idx+1);
Gather_plane_simple_table_compute (rhs,u_send_buf,dimension,sx,cbmask,compress,u_comm_offset,face_table[face_idx]);
t_table+=usecond();
}
t_data-=usecond();
Gather_plane_simple_table (face_table[face_idx],rhs,u_send_buf,compress,u_comm_offset,so);
face_idx++;
t_data+=usecond();
gathertime+=usecond();
// Gather_plane_simple_stencil (rhs,u_send_buf,dimension,sx,cbmask,compress,u_comm_offset,t_table,t_data);
int rank = _grid->_processor;
int recv_from_rank;
@ -781,7 +895,7 @@
template<class compressor>
void GatherSimd(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor &compress)
void GatherSimd(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,compressor &compress,int & face_idx)
{
const int Nsimd = _grid->Nsimd();

View File

@ -37,7 +37,11 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifdef GRID_OMP
#include <omp.h>
#define PARALLEL_FOR_LOOP _Pragma("omp parallel for ")
#ifdef GRID_NUMA
#define PARALLEL_FOR_LOOP _Pragma("omp parallel for schedule(static)")
#else
#define PARALLEL_FOR_LOOP _Pragma("omp parallel for schedule(runtime)")
#endif
#define PARALLEL_NESTED_LOOP2 _Pragma("omp parallel for collapse(2)")
#else
#define PARALLEL_FOR_LOOP

View File

@ -1,153 +1,168 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/ConjugateGradient.h
Source file: ./lib/algorithms/iterative/ConjugateGradient.h
Copyright (C) 2015
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_CONJUGATE_GRADIENT_H
#define GRID_CONJUGATE_GRADIENT_H
namespace Grid {
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////
// Base classes for iterative processes based on operators
// single input vec, single output vec.
/////////////////////////////////////////////////////////////
template<class Field>
class ConjugateGradient : public OperatorFunction<Field> {
public:
bool ErrorOnNoConverge; //throw an assert when the CG fails to converge. Defaults true.
RealD Tolerance;
Integer MaxIterations;
ConjugateGradient(RealD tol,Integer maxit, bool err_on_no_conv = true) : Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){
};
template <class Field>
class ConjugateGradient : public OperatorFunction<Field> {
public:
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
// Defaults true.
RealD Tolerance;
Integer MaxIterations;
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
: Tolerance(tol),
MaxIterations(maxit),
ErrorOnNoConverge(err_on_no_conv){};
void operator()(LinearOperatorBase<Field> &Linop, const Field &src,
Field &psi) {
psi.checkerboard = src.checkerboard;
conformable(psi, src);
void operator() (LinearOperatorBase<Field> &Linop,const Field &src, Field &psi){
RealD cp, c, a, d, b, ssq, qq, b_pred;
psi.checkerboard = src.checkerboard;
conformable(psi,src);
Field p(src);
Field mmp(src);
Field r(src);
RealD cp,c,a,d,b,ssq,qq,b_pred;
Field p(src);
Field mmp(src);
Field r(src);
//Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess)==0);
// Initial residual computation & set up
RealD guess = norm2(psi);
assert(std::isnan(guess) == 0);
Linop.HermOpAndNorm(psi,mmp,d,b);
r= src-mmp;
p= r;
a =norm2(p);
cp =a;
ssq=norm2(src);
Linop.HermOpAndNorm(psi, mmp, d, b);
std::cout<<GridLogIterative <<std::setprecision(4)<< "ConjugateGradient: guess "<<guess<<std::endl;
std::cout<<GridLogIterative <<std::setprecision(4)<< "ConjugateGradient: src "<<ssq <<std::endl;
std::cout<<GridLogIterative <<std::setprecision(4)<< "ConjugateGradient: mp "<<d <<std::endl;
std::cout<<GridLogIterative <<std::setprecision(4)<< "ConjugateGradient: mmp "<<b <<std::endl;
std::cout<<GridLogIterative <<std::setprecision(4)<< "ConjugateGradient: cp,r "<<cp <<std::endl;
std::cout<<GridLogIterative <<std::setprecision(4)<< "ConjugateGradient: p "<<a <<std::endl;
r = src - mmp;
p = r;
RealD rsq = Tolerance* Tolerance*ssq;
//Check if guess is really REALLY good :)
if ( cp <= rsq ) {
return;
}
std::cout<<GridLogIterative << std::setprecision(4)<< "ConjugateGradient: k=0 residual "<<cp<<" target "<<rsq<<std::endl;
a = norm2(p);
cp = a;
ssq = norm2(src);
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: guess " << guess << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: src " << ssq << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: mp " << d << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: mmp " << b << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: cp,r " << cp << std::endl;
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: p " << a << std::endl;
SolverTimer.Start();
int k;
for (k=1;k<=MaxIterations;k++){
c=cp;
RealD rsq = Tolerance * Tolerance * ssq;
MatrixTimer.Start();
Linop.HermOpAndNorm(p,mmp,d,qq);
MatrixTimer.Stop();
LinalgTimer.Start();
// RealD qqck = norm2(mmp);
// ComplexD dck = innerProduct(p,mmp);
a = c/d;
b_pred = a*(a*qq-d)/c;
cp = axpy_norm(r,-a,mmp,r);
b = cp/c;
// Fuse these loops ; should be really easy
psi= a*p+psi;
p = p*b+r;
LinalgTimer.Stop();
std::cout<<GridLogIterative<<"ConjugateGradient: Iteration " <<k<<" residual "<<cp<< " target "<< rsq<<std::endl;
// Stopping condition
if ( cp <= rsq ) {
SolverTimer.Stop();
Linop.HermOpAndNorm(psi,mmp,d,qq);
p=mmp-src;
RealD mmpnorm = sqrt(norm2(mmp));
RealD psinorm = sqrt(norm2(psi));
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm/srcnorm;
std::cout<<GridLogMessage<<"ConjugateGradient: Converged on iteration " <<k
<<" computed residual "<<sqrt(cp/ssq)
<<" true residual " <<true_residual
<<" target "<<Tolerance<<std::endl;
std::cout<<GridLogMessage<<"Time elapsed: Total "<< SolverTimer.Elapsed() << " Matrix "<<MatrixTimer.Elapsed() << " Linalg "<<LinalgTimer.Elapsed();
std::cout<<std::endl;
if(ErrorOnNoConverge)
assert(true_residual/Tolerance < 1000.0);
return;
}
}
std::cout<<GridLogMessage<<"ConjugateGradient did NOT converge"<<std::endl;
if(ErrorOnNoConverge)
assert(0);
// Check if guess is really REALLY good :)
if (cp <= rsq) {
return;
}
};
std::cout << GridLogIterative << std::setprecision(4)
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq
<< std::endl;
GridStopWatch LinalgTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
c = cp;
MatrixTimer.Start();
Linop.HermOpAndNorm(p, mmp, d, qq);
MatrixTimer.Stop();
LinalgTimer.Start();
// RealD qqck = norm2(mmp);
// ComplexD dck = innerProduct(p,mmp);
a = c / d;
b_pred = a * (a * qq - d) / c;
cp = axpy_norm(r, -a, mmp, r);
b = cp / c;
// Fuse these loops ; should be really easy
psi = a * p + psi;
p = p * b + r;
LinalgTimer.Stop();
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
// Stopping condition
if (cp <= rsq) {
SolverTimer.Stop();
Linop.HermOpAndNorm(psi, mmp, d, qq);
p = mmp - src;
RealD mmpnorm = sqrt(norm2(mmp));
RealD psinorm = sqrt(norm2(psi));
RealD srcnorm = sqrt(norm2(src));
RealD resnorm = sqrt(norm2(p));
RealD true_residual = resnorm / srcnorm;
std::cout << GridLogMessage
<< "ConjugateGradient: Converged on iteration " << k << std::endl;
std::cout << GridLogMessage << "Computed residual " << sqrt(cp / ssq)
<< " true residual " << true_residual << " target "
<< Tolerance << std::endl;
std::cout << GridLogMessage << "Time elapsed: Iterations "
<< SolverTimer.Elapsed() << " Matrix "
<< MatrixTimer.Elapsed() << " Linalg "
<< LinalgTimer.Elapsed();
std::cout << std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 1000.0);
return;
}
}
std::cout << GridLogMessage << "ConjugateGradient did NOT converge"
<< std::endl;
if (ErrorOnNoConverge) assert(0);
}
};
}
#endif

View File

@ -81,11 +81,8 @@ public:
virtual int CheckerBoardDestination(int source_cb,int shift,int dim)=0;
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite)=0;
virtual int CheckerBoardShiftForCB(int source_cb,int dim,int shift,int cb)=0;
int CheckerBoardFromOindex (int Oindex){
std::vector<int> ocoor;
oCoorFromOindex(ocoor,Oindex);
return CheckerBoard(ocoor);
}
virtual int CheckerBoardFromOindex (int Oindex)=0;
virtual int CheckerBoardFromOindexTable (int Oindex)=0;
//////////////////////////////////////////////////////////////////////////////////////////////
// Local layout calculations

View File

@ -39,6 +39,13 @@ class GridCartesian: public GridBase {
public:
virtual int CheckerBoardFromOindexTable (int Oindex) {
return 0;
}
virtual int CheckerBoardFromOindex (int Oindex)
{
return 0;
}
virtual int CheckerBoarded(int dim){
return 0;
}

View File

@ -43,6 +43,7 @@ class GridRedBlackCartesian : public GridBase
public:
std::vector<int> _checker_dim_mask;
int _checker_dim;
std::vector<int> _checker_board;
virtual int CheckerBoarded(int dim){
if( dim==_checker_dim) return 1;
@ -72,12 +73,20 @@ public:
// or by looping over x,y,z and multiply rather than computing checkerboard.
if ( (source_cb+ocb)&1 ) {
return (shift)/2;
} else {
return (shift+1)/2;
}
}
virtual int CheckerBoardFromOindexTable (int Oindex) {
return _checker_board[Oindex];
}
virtual int CheckerBoardFromOindex (int Oindex)
{
std::vector<int> ocoor;
oCoorFromOindex(ocoor,Oindex);
return CheckerBoard(ocoor);
}
virtual int CheckerBoardShift(int source_cb,int dim,int shift,int osite){
if(dim != _checker_dim) return shift;
@ -169,7 +178,7 @@ public:
// all elements of a simd vector must have same checkerboard.
// If Ls vectorised, this must still be the case; e.g. dwf rb5d
if ( _simd_layout[d]>1 ) {
if ( d != _checker_dim ) {
if ( checker_dim_mask[d] ) {
assert( (_rdimensions[d]&0x1) == 0 );
}
}
@ -185,6 +194,8 @@ public:
_ostride[d] = _ostride[d-1]*_rdimensions[d-1];
_istride[d] = _istride[d-1]*_simd_layout[d-1];
}
}
////////////////////////////////////////////////////////////////////////////////////////////
@ -205,6 +216,18 @@ public:
_slice_nblock[d]=nblock;
block = block*_rdimensions[d];
}
////////////////////////////////////////////////
// Create a checkerboard lookup table
////////////////////////////////////////////////
int rvol = 1;
for(int d=0;d<_ndimension;d++){
rvol=rvol * _rdimensions[d];
}
_checker_board.resize(rvol);
for(int osite=0;osite<_osites;osite++){
_checker_board[osite] = CheckerBoardFromOindex (osite);
}
};
protected:

View File

@ -1,3 +1,4 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -56,6 +57,7 @@ Gather_plane_simple (const Lattice<vobj> &rhs,std::vector<cobj,alignedAllocator<
int e1=rhs._grid->_slice_nblock[dimension];
int e2=rhs._grid->_slice_block[dimension];
int stride=rhs._grid->_slice_stride[dimension];
if ( cbmask == 0x3 ) {
PARALLEL_NESTED_LOOP2
@ -68,15 +70,20 @@ PARALLEL_NESTED_LOOP2
}
} else {
int bo=0;
std::vector<std::pair<int,int> > table;
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o = n*stride;
int ocb=1<<rhs._grid->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
int ocb=1<<rhs._grid->CheckerBoardFromOindexTable(o+b);
if ( ocb &cbmask ) {
buffer[off+bo++]=compress(rhs._odata[so+o+b]);
table.push_back(std::pair<int,int> (bo++,o+b));
}
}
}
PARALLEL_FOR_LOOP
for(int i=0;i<table.size();i++){
buffer[off+table[i].first]=compress(rhs._odata[so+table[i].second]);
}
}
}

View File

@ -186,10 +186,10 @@ namespace Grid {
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField &Atilde,int mu){
int Ls=Btilde._grid->_fdimensions[0];
GaugeLinkField tmp(mat._grid);
tmp = zero;
PARALLEL_FOR_LOOP
PARALLEL_FOR_LOOP
for(int sss=0;sss<tmp._grid->oSites();sss++){
int sU=sss;
for(int s=0;s<Ls;s++){
@ -198,7 +198,7 @@ namespace Grid {
}
}
PokeIndex<LorentzIndex>(mat,tmp,mu);
}
};

View File

@ -42,11 +42,11 @@ const std::vector<int> WilsonFermion5DStatic::displacements({1,1,1,1,-1,-1,-1,-1
// 5d lattice for DWF.
template<class Impl>
WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _M5,const ImplParams &p) :
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _M5,const ImplParams &p) :
Kernels(p),
_FiveDimGrid (&FiveDimGrid),
_FiveDimRedBlackGrid(&FiveDimRedBlackGrid),
@ -135,10 +135,10 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
/*
template<class Impl>
WilsonFermion5D<Impl>::WilsonFermion5D(int simd,GaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
RealD _M5,const ImplParams &p) :
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
RealD _M5,const ImplParams &p) :
{
int nsimd = Simd::Nsimd();
@ -175,6 +175,73 @@ WilsonFermion5D<Impl>::WilsonFermion5D(int simd,GaugeField &_Umu,
}
*/
template<class Impl>
void WilsonFermion5D<Impl>::Report(void)
{
std::vector<int> latt = GridDefaultLatt();
RealD volume = Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
RealD NP = _FourDimGrid->_Nprocessors;
if ( DhopCalls > 0 ) {
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Number of Dhop Calls : " << DhopCalls << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Total Communication time : " << DhopCommTime
<< " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D CommTime/Calls : "
<< DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Total Compute time : "
<< DhopComputeTime << " us" << std::endl;
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime/Calls : "
<< DhopComputeTime / DhopCalls << " us" << std::endl;
RealD mflops = 1344*volume*DhopCalls/DhopComputeTime;
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NP << std::endl;
}
if ( DerivCalls > 0 ) {
std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Number of Deriv Calls : " <<DerivCalls <<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Total Communication time : " <<DerivCommTime <<" us"<<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D CommTime/Calls : " <<DerivCommTime/DerivCalls<<" us" <<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Total Compute time : " <<DerivComputeTime <<" us"<<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime/Calls : " <<DerivComputeTime/DerivCalls<<" us" <<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Total Dhop Compute time : " <<DerivDhopComputeTime <<" us"<<std::endl;
std::cout << GridLogMessage << "WilsonFermion5D Dhop ComputeTime/Calls : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NP << std::endl;
}
if (DerivCalls > 0 || DhopCalls > 0){
std::cout << GridLogMessage << "WilsonFermion5D Stencil"<<std::endl; Stencil.Report();
std::cout << GridLogMessage << "WilsonFermion5D StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "WilsonFermion5D StencilOdd"<<std::endl; StencilOdd.Report();
}
}
template<class Impl>
void WilsonFermion5D<Impl>::ZeroCounters(void) {
DhopCalls = 0;
DhopCommTime = 0;
DhopComputeTime = 0;
DerivCalls = 0;
DerivCommTime = 0;
DerivComputeTime = 0;
DerivDhopComputeTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
}
template<class Impl>
void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
{
@ -215,12 +282,13 @@ PARALLEL_FOR_LOOP
template<class Impl>
void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
DoubledGaugeField & U,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
DoubledGaugeField & U,
GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
{
DerivCalls++;
assert((dag==DaggerNo) ||(dag==DaggerYes));
conformable(st._grid,A._grid);
@ -231,51 +299,53 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
FermionField Btilde(B._grid);
FermionField Atilde(B._grid);
DerivCommTime-=usecond();
st.HaloExchange(B,compressor);
DerivCommTime+=usecond();
Atilde=A;
for(int mu=0;mu<Nd;mu++){
DerivComputeTime-=usecond();
for (int mu = 0; mu < Nd; mu++) {
////////////////////////////////////////////////////////////////////////
// Flip gamma if dag
////////////////////////////////////////////////////////////////////////
int gamma = mu;
if ( !dag ) gamma+= Nd;
if (!dag) gamma += Nd;
////////////////////////
// Call the single hop
////////////////////////
PARALLEL_FOR_LOOP
for(int sss=0;sss<U._grid->oSites();sss++){
for(int s=0;s<Ls;s++){
int sU=sss;
int sF = s+Ls*sU;
DerivDhopComputeTime -= usecond();
PARALLEL_FOR_LOOP
for (int sss = 0; sss < U._grid->oSites(); sss++) {
for (int s = 0; s < Ls; s++) {
int sU = sss;
int sF = s + Ls * sU;
assert ( sF< B._grid->oSites());
assert ( sU< U._grid->oSites());
assert(sF < B._grid->oSites());
assert(sU < U._grid->oSites());
Kernels::DiracOptDhopDir(st,U,st.comm_buf,sF,sU,B,Btilde,mu,gamma);
////////////////////////////
// spin trace outer product
////////////////////////////
Kernels::DiracOptDhopDir(st, U, st.comm_buf, sF, sU, B, Btilde, mu,
gamma);
////////////////////////////
// spin trace outer product
////////////////////////////
}
}
Impl::InsertForce5D(mat,Btilde,Atilde,mu);
DerivDhopComputeTime += usecond();
Impl::InsertForce5D(mat, Btilde, Atilde, mu);
}
DerivComputeTime += usecond();
}
template<class Impl>
void WilsonFermion5D<Impl>::DhopDeriv( GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A._grid,FermionGrid());
conformable(A._grid,B._grid);
@ -288,9 +358,9 @@ void WilsonFermion5D<Impl>::DhopDeriv( GaugeField &mat,
template<class Impl>
void WilsonFermion5D<Impl>::DhopDerivEO(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A._grid,FermionRedBlackGrid());
conformable(GaugeRedBlackGrid(),mat._grid);
@ -306,9 +376,9 @@ void WilsonFermion5D<Impl>::DhopDerivEO(GaugeField &mat,
template<class Impl>
void WilsonFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
const FermionField &A,
const FermionField &B,
int dag)
const FermionField &A,
const FermionField &B,
int dag)
{
conformable(A._grid,FermionRedBlackGrid());
conformable(GaugeRedBlackGrid(),mat._grid);
@ -323,32 +393,61 @@ void WilsonFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
template<class Impl>
void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
DoubledGaugeField & U,
const FermionField &in, FermionField &out,int dag)
{
DhopCalls++;
// assert((dag==DaggerNo) ||(dag==DaggerYes));
Compressor compressor(dag);
int LLs = in._grid->_rdimensions[0];
DhopCommTime-=usecond();
st.HaloExchange(in,compressor);
DhopCommTime+=usecond();
DhopComputeTime-=usecond();
// Dhop takes the 4d grid from U, and makes a 5d index for fermion
if ( dag == DaggerYes ) {
PARALLEL_FOR_LOOP
for(int ss=0;ss<U._grid->oSites();ss++){
int sU=ss;
int sF=LLs*sU;
Kernels::DiracOptDhopSiteDag(st,lo,U,st.comm_buf,sF,sU,LLs,1,in,out);
if (dag == DaggerYes) {
PARALLEL_FOR_LOOP
for (int ss = 0; ss < U._grid->oSites(); ss++) {
int sU = ss;
int sF = LLs * sU;
Kernels::DiracOptDhopSiteDag(st, lo, U, st.comm_buf, sF, sU, LLs, 1, in,
out);
}
#ifdef AVX512
} else if (stat.is_init() ) {
int nthreads;
stat.start();
#pragma omp parallel
{
#pragma omp master
nthreads = omp_get_num_threads();
int mythread = omp_get_thread_num();
stat.enter(mythread);
#pragma omp for nowait
for(int ss=0;ss<U._grid->oSites();ss++)
{
int sU=ss;
int sF=LLs*sU;
Kernels::DiracOptDhopSite(st,lo,U,st.comm_buf,sF,sU,LLs,1,in,out);
}
stat.exit(mythread);
}
stat.accum(nthreads);
#endif
} else {
PARALLEL_FOR_LOOP
for(int ss=0;ss<U._grid->oSites();ss++){
int sU=ss;
int sF=LLs*sU;
Kernels::DiracOptDhopSite(st,lo,U,st.comm_buf,sF,sU,LLs,1,in,out);
PARALLEL_FOR_LOOP
for (int ss = 0; ss < U._grid->oSites(); ss++) {
int sU = ss;
int sF = LLs * sU;
Kernels::DiracOptDhopSite(st, lo, U, st.comm_buf, sF, sU, LLs, 1, in,
out);
}
}
DhopComputeTime+=usecond();
}

View File

@ -31,6 +31,8 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_QCD_WILSON_FERMION_5D_H
#define GRID_QCD_WILSON_FERMION_5D_H
#include <Grid/Stat.h>
namespace Grid {
namespace QCD {
@ -60,6 +62,18 @@ namespace Grid {
public:
INHERIT_IMPL_TYPES(Impl);
typedef WilsonKernels<Impl> Kernels;
PmuStat stat;
void Report(void);
void ZeroCounters(void);
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DerivCalls;
double DerivCommTime;
double DerivComputeTime;
double DerivDhopComputeTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base

View File

@ -196,24 +196,11 @@ namespace Grid {
WilsonKernels(const ImplParams &p = ImplParams());
};
///////////////////////////////////////////////////////////
// Default to no assembler implementation
///////////////////////////////////////////////////////////
template<class Impl>
void WilsonKernels<Impl >::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
{
assert(0);
}
template<class Impl>
void WilsonKernels<Impl >::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
{
assert(0);
}
}
}
#endif

View File

@ -31,9 +31,30 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#include <Grid.h>
namespace Grid {
namespace QCD {
///////////////////////////////////////////////////////////
// Default to no assembler implementation
///////////////////////////////////////////////////////////
template<class Impl>
void WilsonKernels<Impl >::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
{
assert(0);
}
template<class Impl>
void WilsonKernels<Impl >::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
{
assert(0);
}
#if defined(AVX512)
@ -102,6 +123,27 @@ namespace Grid {
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#endif
#define INSTANTIATE_ASM(A)\
template void WilsonKernels<A>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,\
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,\
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out);\
template void WilsonKernels<A>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,\
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,\
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out);\
INSTANTIATE_ASM(WilsonImplF);
INSTANTIATE_ASM(WilsonImplD);
INSTANTIATE_ASM(ZWilsonImplF);
INSTANTIATE_ASM(ZWilsonImplD);
INSTANTIATE_ASM(GparityWilsonImplF);
INSTANTIATE_ASM(GparityWilsonImplD);
INSTANTIATE_ASM(DomainWallVec5dImplF);
INSTANTIATE_ASM(DomainWallVec5dImplD);
INSTANTIATE_ASM(ZDomainWallVec5dImplF);
INSTANTIATE_ASM(ZDomainWallVec5dImplD);
}
}

View File

@ -134,7 +134,9 @@
////////////////////////////////
// Xm
////////////////////////////////
#ifndef STREAM_STORE
basep= (uint64_t) &out._odata[ss];
#endif
// basep= st.GetPFInfo(nent,plocal); nent++;
if ( local ) {
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
@ -229,7 +231,9 @@
LOAD_CHI(base);
}
base= (uint64_t) &out._odata[ss];
#ifndef STREAM_STORE
PREFETCH_CHIMU(base);
#endif
{
MULT_2SPIN_DIR_PFTM(Tm,basep);
}

View File

@ -131,9 +131,11 @@ namespace Grid{
Vpc.MpcDag(PhiOdd,Y); // Y= Vdag phi
X=zero;
ActionSolver(Mpc,Y,X); // X= (MdagM)^-1 Vdag phi
Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
//Mpc.Mpc(X,Y); // Y= Mdag^-1 Vdag phi
// Multiply by Ydag
RealD action = real(innerProduct(Y,X));
RealD action = norm2(Y);
//RealD action = norm2(Y);
// The EE factorised block; normally can replace with zero if det is constant (gauge field indept)
// Only really clover term that creates this. Leave the EE portion as a future to do to make most

View File

@ -442,7 +442,7 @@ namespace Optimization {
#define _mm256_alignr_epi64(ret,a,b,n) ret=(__m256d) _mm256_alignr_epi8((__m256i)a,(__m256i)b,(n*8)%16)
#endif
#if defined (AVX1)
#if defined (AVX1) || defined (AVXFMA)
#define _mm256_alignr_epi32(ret,a,b,n) { \
__m128 aa, bb; \

View File

@ -359,7 +359,67 @@ namespace Optimization {
//////////////////////////////////////////////
// Some Template specialization
// Hack for CLANG until mm512_reduce_add_ps etc... are implemented in GCC and Clang releases
#undef GNU_CLANG_COMPILER
#ifdef GNU_CLANG_COMPILER
//Complex float Reduce
template<>
inline Grid::ComplexF Reduce<Grid::ComplexF, __m512>::operator()(__m512 in){
__m512 v1,v2;
v1=Optimization::Permute::Permute0(in); // avx 512; quad complex single
v1= _mm512_add_ps(v1,in);
v2=Optimization::Permute::Permute1(v1);
v1 = _mm512_add_ps(v1,v2);
v2=Optimization::Permute::Permute2(v1);
v1 = _mm512_add_ps(v1,v2);
u512f conv; conv.v = v1;
return Grid::ComplexF(conv.f[0],conv.f[1]);
}
//Real float Reduce
template<>
inline Grid::RealF Reduce<Grid::RealF, __m512>::operator()(__m512 in){
__m512 v1,v2;
v1 = Optimization::Permute::Permute0(in); // avx 512; octo-double
v1 = _mm512_add_ps(v1,in);
v2 = Optimization::Permute::Permute1(v1);
v1 = _mm512_add_ps(v1,v2);
v2 = Optimization::Permute::Permute2(v1);
v1 = _mm512_add_ps(v1,v2);
v2 = Optimization::Permute::Permute3(v1);
v1 = _mm512_add_ps(v1,v2);
u512f conv; conv.v=v1;
return conv.f[0];
}
//Complex double Reduce
template<>
inline Grid::ComplexD Reduce<Grid::ComplexD, __m512d>::operator()(__m512d in){
__m512d v1;
v1 = Optimization::Permute::Permute0(in); // sse 128; paired complex single
v1 = _mm512_add_pd(v1,in);
v1 = Optimization::Permute::Permute1(in); // sse 128; paired complex single
v1 = _mm512_add_pd(v1,in);
u512d conv; conv.v = v1;
return Grid::ComplexD(conv.f[0],conv.f[1]);
}
//Real double Reduce
template<>
inline Grid::RealD Reduce<Grid::RealD, __m512d>::operator()(__m512d in){
__m512d v1,v2;
v1 = Optimization::Permute::Permute0(in); // avx 512; quad double
v1 = _mm512_add_pd(v1,in);
v2 = Optimization::Permute::Permute1(v1);
v1 = _mm512_add_pd(v1,v2);
v2 = Optimization::Permute::Permute2(v1);
v1 = _mm512_add_pd(v1,v2);
u512d conv; conv.v = v1;
return conv.f[0];
}
#else
//Complex float Reduce
template<>
inline Grid::ComplexF Reduce<Grid::ComplexF, __m512>::operator()(__m512 in){
@ -371,7 +431,6 @@ namespace Optimization {
return _mm512_reduce_add_ps(in);
}
//Complex double Reduce
template<>
inline Grid::ComplexD Reduce<Grid::ComplexD, __m512d>::operator()(__m512d in){
@ -391,6 +450,7 @@ namespace Optimization {
printf("Reduce : Missing integer implementation -> FIX\n");
assert(0);
}
#endif
}

View File

@ -138,9 +138,14 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define ZLOADf(OFF,PTR,ri,ir) VLOADf(OFF,PTR,ir) VSHUFf(ir,ri)
#define ZLOADd(OFF,PTR,ri,ir) VLOADd(OFF,PTR,ir) VSHUFd(ir,ri)
#define STREAM_STORE
#ifdef STREAM_STORE
#define VSTOREf(OFF,PTR,SRC) "vmovntps " #SRC "," #OFF "*64(" #PTR ")" ";\n"
#define VSTOREd(OFF,PTR,SRC) "vmovntpd " #SRC "," #OFF "*64(" #PTR ")" ";\n"
#else
#define VSTOREf(OFF,PTR,SRC) "vmovaps " #SRC "," #OFF "*64(" #PTR ")" ";\n"
#define VSTOREd(OFF,PTR,SRC) "vmovapd " #SRC "," #OFF "*64(" #PTR ")" ";\n"
#endif
// Swaps Re/Im ; could unify this with IMCI
#define VSHUFd(A,DEST) "vpshufd $0x4e," #A "," #DEST ";\n"

View File

@ -75,7 +75,15 @@ public:
Level1.push_back(&Waction);
TheAction.push_back(Level1);
NumOp.ZeroCounters();
DenOp.ZeroCounters();
Run(argc,argv);
std::cout << GridLogMessage << "Numerator report, Pauli-Villars term : " << std::endl;
NumOp.Report();
std::cout << GridLogMessage << "Denominator report, Dw(m) term (includes CG) : " << std::endl;
DenOp.Report();
};
};

View File

@ -1,87 +1,105 @@
/*************************************************************************************
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_cg_prec.cc
Source file: ./tests/Test_dwf_cg_prec.cc
Copyright (C) 2015
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
template <class d>
struct scal {
d internal;
};
Gamma::GammaMatrix Gmu [] = {
Gamma::GammaX,
Gamma::GammaY,
Gamma::GammaZ,
Gamma::GammaT
};
Gamma::GammaMatrix Gmu[] = {Gamma::GammaX, Gamma::GammaY, Gamma::GammaZ,
Gamma::GammaT};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
int main(int argc, char** argv) {
Grid_init(&argc, &argv);
const int Ls=8;
const int Ls = 16;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
GridCartesian* UGrid = SpaceTimeGrid::makeFourDimGrid(
GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian* UrbGrid =
SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian* FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian* FrbGrid =
SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
LatticeFermion src(FGrid); random(RNG5,src);
LatticeFermion result(FGrid); result=zero;
LatticeGaugeField Umu(UGrid);
LatticeFermion src(FGrid);
random(RNG5, src);
LatticeFermion result(FGrid);
result = zero;
LatticeGaugeField Umu(UGrid);
SU3::HotConfiguration(RNG4,Umu);
SU3::HotConfiguration(RNG4, Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){
U[mu] = PeekIndex<LorentzIndex>(Umu,mu);
std::cout << GridLogMessage << "Lattice dimensions: " << GridDefaultLatt()
<< " Ls: " << Ls << std::endl;
std::vector<LatticeColourMatrix> U(4, UGrid);
for (int mu = 0; mu < Nd; mu++) {
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
}
RealD mass=0.1;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
LatticeFermion src_o(FrbGrid);
RealD mass = 0.01;
RealD M5 = 1.8;
DomainWallFermionR Ddwf(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5);
LatticeFermion src_o(FrbGrid);
LatticeFermion result_o(FrbGrid);
pickCheckerboard(Odd,src_o,src);
result_o=zero;
pickCheckerboard(Odd, src_o, src);
result_o = zero;
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
CG(HermOpEO,src_o,result_o);
GridStopWatch CGTimer;
SchurDiagMooeeOperator<DomainWallFermionR, LatticeFermion> HermOpEO(Ddwf);
ConjugateGradient<LatticeFermion> CG(1.0e-8, 10000, 0);// switch off the assert
CGTimer.Start();
CG(HermOpEO, src_o, result_o);
CGTimer.Stop();
std::cout << GridLogMessage << "Total CG time : " << CGTimer.Elapsed()
<< std::endl;
std::cout << GridLogMessage << "######## Dhop calls summary" << std::endl;
Ddwf.Report();
Grid_finalize();
}

View File

@ -83,6 +83,7 @@ int main (int argc, char ** argv)
SchurDiagMooeeOperator<WilsonFermionR,LatticeFermion> HermOpEO(Dw);
ConjugateGradient<LatticeFermion> CG(1.0e-8,10000);
CG(HermOpEO,src_o,result_o);
Grid_finalize();
}