1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

Added all elements for Hirep HMC

TODO: Test and debug
This commit is contained in:
Guido Cossu 2016-07-18 12:05:23 +01:00
parent 7edf4c6c04
commit 9c77bb69a5
9 changed files with 148 additions and 79 deletions

View File

@ -97,7 +97,8 @@ struct ActionLevelHirep {
//std::vector<ActPtr> actions;
// construct a tuple of vectors of the actions for the corresponding higher
// representation fields
typename AccessTypes<Action, Repr>::VectorCollection actions_hirep;
typedef typename AccessTypes<Action, Repr>::VectorCollection action_collection;
action_collection actions_hirep;
typedef typename AccessTypes<Action, Repr>::ClassCollection actions_hirep_ptrs_type;
std::vector<ActPtr>& actions;
@ -109,7 +110,7 @@ struct ActionLevelHirep {
ActionLevelHirep(unsigned int mul = 1) : actions(std::get<0>(actions_hirep)), multiplier(mul) {
// initialize the hirep vectors to zero.
//apply(&ActionLevelHirep::resize, actions_hirep, 0); //need a working resize
//apply(this->resize, actions_hirep, 0); //need a working resize
assert(mul >= 1);
};
@ -128,18 +129,19 @@ struct ActionLevelHirep {
}
template <std::size_t I>
auto getRepresentation(Repr& R)->decltype(std::get<I>(R).U) {return std::get<I>(R).U;}
// Loop on tuple for a callable function
template <std::size_t I = 0, class Tuple, typename Callable, typename ...Args>
inline typename std::enable_if<(I == std::tuple_size<Tuple>::value), void>::type apply(
Callable&, Tuple& , Args...) {}
template <std::size_t I = 1, typename Callable, typename ...Args>
inline typename std::enable_if<I == std::tuple_size<action_collection>::value, void>::type apply(
Callable, Repr& R,Args...) const {}
template <std::size_t I = 0, class Tuple, typename Callable, typename ...Args>
inline typename std::enable_if<(I < std::tuple_size<Tuple>::value), void>::type apply(
Callable& fn, Tuple& T, Args... arguments) {
fn(std::get<I>(T), arguments...);
apply<I + 1>(T, fn, arguments...);
template <std::size_t I = 1, typename Callable, typename ...Args>
inline typename std::enable_if<I < std::tuple_size<action_collection>::value, void>::type apply(
Callable fn, Repr& R, Args... arguments) const {
fn(std::get<I>(actions_hirep), std::get<I>(R.rep), arguments...);
apply<I + 1>(fn, R, arguments...);
}
};

View File

@ -111,12 +111,15 @@ namespace Grid {
///////
// Single flavour four spinors with colour index
///////
template <class S, int Nrepresentation = Nc>
template <class S, class Representation = FundamentalRepresentation >
class WilsonImpl
: public PeriodicGaugeImpl<GaugeImplTypes<S, Nrepresentation> > {
: public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
public:
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Nrepresentation> > Gimpl;
constexpr bool is_fundamental() const{return Nrepresentation == Nc ? 1 : 0;}
static const int Nrepresentation = Representation::Dimension;
typedef PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > Gimpl;
//Necessary?
constexpr bool is_fundamental() const{return Representation::Dimension == Nc ? 1 : 0;}
INHERIT_GIMPL_TYPES(Gimpl);
@ -501,13 +504,13 @@ class GparityWilsonImpl
}
};
typedef WilsonImpl<vComplex, Nc> WilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, Nc> WilsonImplF; // Float
typedef WilsonImpl<vComplexD, Nc> WilsonImplD; // Double
typedef WilsonImpl<vComplex, FundamentalRepresentation> WilsonImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, FundamentalRepresentation> WilsonImplF; // Float
typedef WilsonImpl<vComplexD, FundamentalRepresentation> WilsonImplD; // Double
typedef WilsonImpl<vComplex, SU_Adjoint<Nc>::Dimension > WilsonAdjImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, SU_Adjoint<Nc>::Dimension > WilsonAdjImplF; // Float
typedef WilsonImpl<vComplexD, SU_Adjoint<Nc>::Dimension > WilsonAdjImplD; // Double
typedef WilsonImpl<vComplex, AdjointRepresentation > WilsonAdjImplR; // Real.. whichever prec
typedef WilsonImpl<vComplexF, AdjointRepresentation > WilsonAdjImplF; // Float
typedef WilsonImpl<vComplexD, AdjointRepresentation > WilsonAdjImplD; // Double
typedef DomainWallRedBlack5dImpl<vComplex, Nc>
DomainWallRedBlack5dImplR; // Real.. whichever prec

View File

@ -113,7 +113,7 @@ class NerscHmcRunnerTemplate {
//////////////
typedef MinimumNorm2<GaugeField, SmearedConfiguration<Gimpl>, RepresentationsPolicy >
IntegratorType; // change here to change the algorithm
IntegratorParameters MDpar(20);
IntegratorParameters MDpar(20, 1.0);
IntegratorType MDynamics(UGrid, MDpar, TheAction, SmearingPolicy);
// Checkpoint strategy

View File

@ -64,7 +64,7 @@ struct IntegratorParameters {
};
/*! @brief Class for Molecular Dynamics management */
template <class GaugeField, class SmearingPolicy ,class RepresentationPolicy >
template <class GaugeField, class SmearingPolicy, class RepresentationPolicy>
class Integrator {
protected:
typedef IntegratorParameters ParameterType;
@ -81,7 +81,7 @@ class Integrator {
SmearingPolicy& Smearer;
RepresentationPolicy Representations;
RepresentationPolicy Representations;
// Should match any legal (SU(n)) gauge field
// Need to use this template to match Ncol to pass to SU<N> class
@ -112,26 +112,26 @@ class Integrator {
// to be used by the actionlevel class to iterate
// over the representations
template <class Level>
void update_P_hireps(Level repr_level, GaugeField& Mom, GaugeField& U,
double ep) {
typedef typename Level::LatticeField FieldType;
FieldType Ur = repr_level->getRepresentation();// update U is better
for (int a = 0; a < repr_level.size(); ++a) {
FieldType forceR(U._grid);
// Implement smearing only for the fundamental representation now
repr_level.at(a)->deriv(Ur, forceR);
GaugeField force = repr_level.at(a)->RtoFundamentalProject(forceR);
std::cout << GridLogIntegrator
<< "Hirep Force average: " << norm2(force) / (U._grid->gSites())
<< std::endl;
Mom -= force * ep;
struct _updateP {
template <class FieldType, class GF, class Repr>
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep,
GF& Mom, GF& U, double ep) {
for (int a = 0; a < repr_set.size(); ++a) {
FieldType forceR(U._grid);
// Implement smearing only for the fundamental representation now
repr_set.at(a)->deriv(Rep.U, forceR);
GF force =
Rep.RtoFundamentalProject(forceR); // Ta for the fundamental rep
std::cout << GridLogIntegrator << "Hirep Force average: "
<< norm2(force) / (U._grid->gSites()) << std::endl;
Mom -= force * ep;
}
}
}
} update_P_hireps{};
void update_P(GaugeField& Mom, GaugeField& U, int level, double ep) {
// input U actually not used in the fundamental case
// Fundamental updates, include smearing
// Fundamental updates, include smearing
for (int a = 0; a < as[level].actions.size(); ++a) {
GaugeField force(U._grid);
GaugeField& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
@ -147,8 +147,9 @@ class Integrator {
<< std::endl;
Mom -= force * ep;
}
// Add here the other representations
//apply(update_P_hireps, as[level], Args...)
// Force from the other representations
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
}
void update_U(GaugeField& U, double ep) {
@ -172,15 +173,21 @@ class Integrator {
// Update the smeared fields, can be implemented as observer
Smearer.set_GaugeField(U);
// Update the higher representations fields
//Representations.update(U);// void functions if fundamental representation
Representations.update(U); // void functions if fundamental representation
}
virtual void step(GaugeField& U, int level, int first, int last) = 0;
public:
Integrator(GridBase* grid, IntegratorParameters Par,
ActionSetHirep<GaugeField, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
: Params(Par), as(Aset), P(grid), levels(Aset.size()), Smearer(Sm), Representations(grid) {
ActionSetHirep<GaugeField, RepresentationPolicy>& Aset,
SmearingPolicy& Sm)
: Params(Par),
as(Aset),
P(grid),
levels(Aset.size()),
Smearer(Sm),
Representations(grid) {
t_P.resize(levels, 0.0);
t_U = 0.0;
// initialization of smearer delegated outside of Integrator
@ -188,13 +195,24 @@ class Integrator {
virtual ~Integrator() {}
// to be used by the actionlevel class to iterate
// over the representations
struct _refresh {
template <class FieldType, class Repr>
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep,
GridParallelRNG& pRNG) {
for (int a = 0; a < repr_set.size(); ++a)
repr_set.at(a)->refresh(Rep.U, pRNG);
}
} refresh_hireps{};
// Initialization of momenta and actions
void refresh(GaugeField& U, GridParallelRNG& pRNG) {
std::cout << GridLogIntegrator << "Integrator refresh\n";
generate_momenta(P, pRNG);
// Update the smeared fields, can be implemented as observer
// necessary to keep the fields updated even after a reject
// necessary to keep the fields updated even after a reject
// of the Metropolis
Smearer.set_GaugeField(U);
// Set the (eventual) representations gauge fields
@ -211,12 +229,27 @@ class Integrator {
Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
as[level].actions.at(actionID)->refresh(Us, pRNG);
}
as[level].apply(refresh_hireps, Representations, pRNG);
}
}
// to be used by the actionlevel class to iterate
// over the representations
struct _S {
template <class FieldType, class Repr>
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep,
int level, RealD& H) {
RealD H_hirep = 0.0;
for (int a = 0; a < repr_set.size(); ++a) {
RealD Hterm = repr_set.at(a)->S(Rep.U);
std::cout << GridLogMessage << "S Level " << level << " term " << a
<< " H Hirep = " << Hterm << std::endl;
H += Hterm;
}
}
} S_hireps{};
// Calculate action
RealD S(GaugeField& U) { // here also U not used
@ -245,6 +278,7 @@ class Integrator {
<< actionID << " H = " << Hterm << std::endl;
H += Hterm;
}
as[level].apply(S_hireps, Representations, level, H);
}
return H;
@ -257,8 +291,7 @@ class Integrator {
t_P[level] = 0;
}
for (int step = 0; step < Params.MDsteps; ++step) { // MD step
for (int step = 0; step < Params.MDsteps; ++step) { // MD step
int first_step = (step == 0);
int last_step = (step == Params.MDsteps - 1);
this->step(U, 0, first_step, last_step);

View File

@ -1,12 +1,11 @@
/*
* Policy classes for the HMC
* Author: Guido Cossu
*/
*/
#ifndef ADJOINT_H
#define ADJOINT_H
namespace Grid {
namespace QCD {
@ -19,17 +18,16 @@ namespace QCD {
template <int ncolour>
class AdjointRep {
public:
// typdef to be used by the Representations class in HMC to get the
// types for the higher representation fields
// typdef to be used by the Representations class in HMC to get the
// types for the higher representation fields
typedef typename SU_Adjoint<ncolour>::LatticeAdjMatrix LatticeMatrix;
typedef typename SU_Adjoint<ncolour>::LatticeAdjField LatticeField;
const int Dimension = ncolour * ncolour - 1;
static const int Dimension = ncolour * ncolour - 1;
LatticeField U;
explicit AdjointRep(GridBase* grid) : U(grid) {}
void update_representation(const LatticeGaugeField& Uin) {
explicit AdjointRep(GridBase *grid) : U(grid) {}
void update_representation(const LatticeGaugeField &Uin) {
// Uin is in the fundamental representation
// get the U in AdjointRep
// (U_adj)_B = tr[e^a U e^b U^dag]
@ -38,31 +36,59 @@ class AdjointRep {
// T_F is 1/2 for the fundamental representation
conformable(U, Uin);
U = zero;
LatticeGaugeField tmp(Uin._grid);
LatticeColourMatrix tmp(Uin._grid);
Vector<typename SU<ncolour>::Matrix> ta(ncolour * ncolour - 1);
Vector<typename SU<ncolour>::Matrix> ta(Dimension);
// FIXME probably not very efficient to get all the generators
// everytime
for (int a = 0; a < Dimension; a++) SU<ncolour>::generator(a, ta[a]);
for (int a = 0; a < Dimension; a++) {
tmp = 2.0 * adj(Uin) * ta[a] * Uin;
for (int b = 0; b < (ncolour * ncolour - 1); b++) {
auto Tr = TensorRemove(trace(tmp * ta[b]));
pokeColour(U, Tr, a, b);
for (int mu = 0; mu < Nd; mu++) {
auto Uin_mu = peekLorentz(Uin, mu);
auto U_mu = peekLorentz(U, mu);
for (int a = 0; a < Dimension; a++) {
tmp = 2.0 * adj(Uin_mu) * ta[a] * Uin_mu;
for (int b = 0; b < (ncolour * ncolour - 1); b++)
pokeColour(U_mu, trace(tmp * ta[b]), a, b);
}
}
pokeLorentz(U, U_mu, mu);
}
}
LatticeGaugeField RtoFundamentalProject(const LatticeField &in,
Real scale = 1.0) const {
LatticeGaugeField out(in._grid);
for (int mu = 0; mu < Nd; mu++) {
LatticeColourMatrix out_mu(in._grid); // fundamental representation
LatticeMatrix in_mu = peekLorentz(in, mu);
out_mu = zero;
typename SU<ncolour>::LatticeAlgebraVector h(in._grid);
projectOnAlgebra(h, in_mu, scale);
FundamentalLieAlgebraMatrix(h, out_mu, 1.0); // apply scale only once
pokeLorentz(out, out_mu, mu);
}
return out;
}
private:
void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out,
const LatticeMatrix &in, Real scale = 1.0) const {
SU_Adjoint<ncolour>::projectOnAlgebra(h_out, in, scale);
}
void FundamentalLieAlgebraMatrix(
typename SU<ncolour>::LatticeAlgebraVector &h,
typename SU<ncolour>::LatticeMatrix &out, Real scale = 1.0) const {
SU<ncolour>::FundamentalLieAlgebraMatrix(h, out, scale);
}
};
typedef AdjointRep<Nc> AdjointRepresentation;
typedef AdjointRep<Nc> AdjointRepresentation;
}
}
#endif

View File

@ -18,7 +18,7 @@ namespace QCD {
template <int ncolour>
class FundamentalRep {
public:
const int Dimension = ncolour;
static const int Dimension = ncolour;
// typdef to be used by the Representations class in HMC to get the
// types for the higher representation fields
@ -27,6 +27,11 @@ class FundamentalRep {
explicit FundamentalRep(GridBase* grid) {} //do nothing
void update_representation(const LatticeGaugeField& Uin) {} // do nothing
LatticeField RtoFundamentalProject(const LatticeField& in, Real scale = 1.0) const{
return (scale * in);
}
};
typedef FundamentalRep<Nc> FundamentalRepresentation;

View File

@ -28,7 +28,7 @@ class Representations {
template <std::size_t N>
using repr_type = typename std::tuple_element<N, Representation_type>::type;
// in order to get the typename of the field use
// type repr_type::LatticeField
// type repr_type<I>::LatticeField
Representation_type rep;

View File

@ -111,7 +111,7 @@ class SU_Adjoint : public SU<ncolour> {
}
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
static void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out, LatticeAdjMatrix &in, Real scale = 1.0) {
static void projectOnAlgebra(typename SU<ncolour>::LatticeAlgebraVector &h_out, const LatticeAdjMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
h_out = zero;
AMatrix iTa;
@ -124,7 +124,7 @@ class SU_Adjoint : public SU<ncolour> {
}
// a projector that keeps the generators stored to avoid the overhead of recomputing.
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out, LatticeAdjMatrix &in, Real scale = 1.0) {
static void projector(typename SU<ncolour>::LatticeAlgebraVector &h_out, const LatticeAdjMatrix &in, Real scale = 1.0) {
conformable(h_out, in);
static std::vector<AMatrix> iTa(Dimension); // to store the generators
h_out = zero;

View File

@ -40,7 +40,7 @@ namespace Grid {
namespace QCD {
// Here change the allowed (higher) representations
typedef Representations< FundamentalRepresentation, FundamentalRepresentation > TheRepresentations;
typedef Representations< FundamentalRepresentation, AdjointRepresentation > TheRepresentations;
class HmcRunner : public NerscHmcRunnerHirep< TheRepresentations > {