1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00

Merge remote-tracking branch 'upstream/master'

This commit is contained in:
neo 2015-06-17 02:02:51 +09:00
commit 9c846bb0c7
7 changed files with 317 additions and 214 deletions

View File

@ -49,9 +49,9 @@ public:
void deallocate(pointer __p, size_type) {
#ifdef HAVE_MM_MALLOC_H
_mm_free(__p);
_mm_free((void *)__p);
#else
free(__p);
free((void *)__p);
#endif
}
void construct(pointer __p, const _Tp& __val) { };

View File

@ -142,7 +142,10 @@ public:
// Use a reduced simd grid
_simd_layout[d] = simd_layout[d];
_rdimensions[d]= _ldimensions[d]/_simd_layout[d];
// all elements of a simd vector must have same checkerboard.
if ( simd_layout[d]>1 ) assert((_rdimensions[d]&0x1)==0);
_osites *= _rdimensions[d];
_isites *= _simd_layout[d];

View File

@ -158,7 +158,7 @@ PARALLEL_FOR_LOOP
vobj tmp = eval(ss,expr);
vstream(_odata[ss] ,tmp);
#else
_odata[ss]=_eval(ss,expr);
_odata[ss]=eval(ss,expr);
#endif
}
};
@ -196,7 +196,7 @@ PARALLEL_FOR_LOOP
_odata.resize(_grid->oSites());
PARALLEL_FOR_LOOP
for(int ss=0;ss<_grid->oSites();ss++){
_odata[ss]=eval(ss,expr);
vstream(_odata[ss] ,eval(ss,expr));
}
};

View File

@ -1,7 +1,6 @@
#ifndef QCD_UTIL_SUN_H
#define QCD_UTIL_SUN_H
namespace Grid {
namespace QCD {
@ -13,6 +12,7 @@ public:
static int su2subgroups(void) { return (ncolour*(ncolour-1))/2; }
template<typename vtype> using iSUnMatrix = iScalar<iScalar<iMatrix<vtype, ncolour> > > ;
template<typename vtype> using iSU2Matrix = iScalar<iScalar<iMatrix<vtype, 2> > > ;
//////////////////////////////////////////////////////////////////////////////////////////////////
// Types can be accessed as SU<2>::Matrix , SU<2>::vSUnMatrix, SU<2>::LatticeMatrix etc...
@ -29,6 +29,19 @@ public:
typedef Lattice<vMatrixF> LatticeMatrixF;
typedef Lattice<vMatrixD> LatticeMatrixD;
typedef iSU2Matrix<Complex> SU2Matrix;
typedef iSU2Matrix<ComplexF> SU2MatrixF;
typedef iSU2Matrix<ComplexD> SU2MatrixD;
typedef iSU2Matrix<vComplex> vSU2Matrix;
typedef iSU2Matrix<vComplexF> vSU2MatrixF;
typedef iSU2Matrix<vComplexD> vSU2MatrixD;
typedef Lattice<vSU2Matrix> LatticeSU2Matrix;
typedef Lattice<vSU2MatrixF> LatticeSU2MatrixF;
typedef Lattice<vSU2MatrixD> LatticeSU2MatrixD;
////////////////////////////////////////////////////////////////////////
// There are N^2-1 generators for SU(N).
//
@ -122,6 +135,7 @@ public:
RealD nrm = 1.0/std::sqrt(2.0*trsq);
ta = ta *nrm;
}
////////////////////////////////////////////////////////////////////////
// Map a su2 subgroup number to the pair of rows that are non zero
////////////////////////////////////////////////////////////////////////
@ -135,208 +149,333 @@ public:
}
i2=i1+1+spare;
}
template<class vreal,class vcplx>
static void su2Extract(std::vector<Lattice<iSinglet <vreal> > > &r,
const Lattice<iSUnMatrix<vcplx> > &source,
int su2_index)
//////////////////////////////////////////////////////////////////////////////////////////
// Pull out a subgroup and project on to real coeffs x pauli basis
//////////////////////////////////////////////////////////////////////////////////////////
template<class vcplx>
static void su2Extract( Lattice<iSinglet<vcplx> > &Determinant,
Lattice<iSU2Matrix<vcplx> > &subgroup,
const Lattice<iSUnMatrix<vcplx> > &source,
int su2_index)
{
GridBase *grid(source._grid);
conformable(subgroup,source);
conformable(subgroup,Determinant);
int i0,i1;
su2SubGroupIndex(i0,i1,su2_index);
PARALLEL_FOR_LOOP
for(int ss=0;ss!=grid->oSites();ss++){
subgroup._odata[ss]()()(0,0) = source._odata[ss]()()(i0,i0);
subgroup._odata[ss]()()(0,1) = source._odata[ss]()()(i0,i1);
subgroup._odata[ss]()()(1,0) = source._odata[ss]()()(i1,i0);
subgroup._odata[ss]()()(1,1) = source._odata[ss]()()(i1,i1);
iSU2Matrix<vcplx> Sigma = subgroup._odata[ss];
Sigma = Sigma-adj(Sigma)+trace(adj(Sigma));
subgroup._odata[ss] = Sigma;
// this should be purely real
Determinant._odata[ss] = Sigma()()(0,0)*Sigma()()(1,1)
- Sigma()()(0,1)*Sigma()()(1,0);
assert(r.size() == 4); // store in 4 real parts
for(int i=0;i<4;i++){
conformable(r[i],source);
}
int i1,i2;
su2SubGroupIndex(i1,i2,su2_index);
/* Compute the b(k) of A_SU(2) = b0 + i sum_k bk sigma_k */
// r[0] = toReal(real(peekColour(source,i1,i1)) + real(peekColour(source,i2,i2)));
// r[1] = toReal(imag(peekColour(source,i1,i2)) + imag(peekColour(source,i2,i1)));
// r[2] = toReal(real(peekColour(source,i1,i2)) - real(peekColour(source,i2,i1)));
// r[3] = toReal(imag(peekColour(source,i1,i1)) - imag(peekColour(source,i2,i2)));
r[0] = toReal(real(peekColour(source,i1,i1)) + real(peekColour(source,i2,i2)));
r[1] = toReal(imag(peekColour(source,i1,i2)) + imag(peekColour(source,i2,i1)));
r[2] = toReal(real(peekColour(source,i1,i2)) - real(peekColour(source,i2,i1)));
r[3] = toReal(imag(peekColour(source,i1,i1)) - imag(peekColour(source,i2,i2)));
}
template<class vreal,class vcplx>
static void su2Insert(const std::vector<Lattice<iSinglet<vreal> > > &r,
Lattice<iSUnMatrix<vcplx> > &dest,
//////////////////////////////////////////////////////////////////////////////////////////
// Set matrix to one and insert a pauli subgroup
//////////////////////////////////////////////////////////////////////////////////////////
template<class vcplx>
static void su2Insert( const Lattice<iSU2Matrix<vcplx> > &subgroup,
Lattice<iSUnMatrix<vcplx> > &dest,
int su2_index)
{
typedef typename Lattice<iSUnMatrix<vcplx> >::scalar_type cplx;
typedef Lattice<iSinglet<vcplx> > Lcomplex;
GridBase * grid = dest._grid;
GridBase *grid(dest._grid);
conformable(subgroup,dest);
int i0,i1;
su2SubGroupIndex(i0,i1,su2_index);
assert(r.size() == 4); // store in 4 real parts
Lcomplex tmp(grid);
std::vector<Lcomplex > cr(4,grid);
for(int i=0;i<r.size();i++){
conformable(r[i],dest);
cr[i]=toComplex(r[i]);
dest = 1.0; // start out with identity
PARALLEL_FOR_LOOP
for(int ss=0;ss!=grid->oSites();ss++){
dest._odata[ss]()()(i0,i0) = subgroup._odata[ss]()()(0,0);
dest._odata[ss]()()(i0,i1) = subgroup._odata[ss]()()(0,1);
dest._odata[ss]()()(i1,i0) = subgroup._odata[ss]()()(1,0);
dest._odata[ss]()()(i1,i1) = subgroup._odata[ss]()()(1,1);
}
int i1,i2;
su2SubGroupIndex(i1,i2,su2_index);
cplx one (1.0,0.0);
cplx cplx_i(0.0,1.0);
tmp = cr[0]*one+ cr[3]*cplx_i; pokeColour(dest,tmp,i1,i2);
tmp = cr[2]*one+ cr[1]*cplx_i; pokeColour(dest,tmp,i1,i2);
tmp = -cr[2]*one+ cr[1]*cplx_i; pokeColour(dest,tmp,i2,i1);
tmp = cr[0]*one- cr[3]*cplx_i; pokeColour(dest,tmp,i2,i2);
}
///////////////////////////////////////////////
// Generate e^{ Re Tr Staple Link} dlink
//
// *** Note Staple should be appropriate linear compbination between all staples.
// *** If already by beta pass coefficient 1.0.
// *** This routine applies the additional 1/Nc factor that comes after trace in action.
//
///////////////////////////////////////////////
static void SubGroupHeatBath( GridSerialRNG &sRNG,
GridParallelRNG &pRNG,
RealD beta,
RealD beta,//coeff multiplying staple in action (with no 1/Nc)
LatticeMatrix &link,
const LatticeMatrix &staple,
const LatticeMatrix &barestaple, // multiplied by action coeffs so th
int su2_subgroup,
int nheatbath,
int& ntrials,
int& nfails,
LatticeInteger &wheremask)
{
GridBase *grid = link._grid;
LatticeMatrix V(grid);
V = link*staple;
std::vector<LatticeReal> r(4,grid);
std::vector<LatticeReal> a(4,grid);
su2Extract(r,V,su2_subgroup); // HERE
LatticeReal r_l(grid);
r_l = r[0]*r[0]+r[1]*r[1]+r[2]*r[2]+r[3]*r[3];
r_l = sqrt(r_l);
LatticeReal ftmp(grid);
LatticeReal ftmp1(grid);
LatticeReal ftmp2(grid);
LatticeReal one (grid); one = 1.0;
LatticeReal zz (grid); zz = zero;
LatticeReal recip(grid); recip = one/r_l;
Real machine_epsilon= 1.0e-14;
ftmp = where(r_l>machine_epsilon,recip,one);
a[0] = where(r_l>machine_epsilon, r[0] * ftmp , one);
a[1] = where(r_l>machine_epsilon, -(r[1] * ftmp), zz);
a[2] = where(r_l>machine_epsilon, -(r[2] * ftmp), zz);
a[3] = where(r_l>machine_epsilon, -(r[3] * ftmp), zz);
r_l *= beta / ncolour;
ftmp1 = where(wheremask,one,zz);
Real num_sites = TensorRemove(sum(ftmp1));
Integer itrials = (Integer)num_sites;
ntrials = 0;
nfails = 0;
LatticeInteger lupdate(grid);
LatticeInteger lbtmp(grid);
LatticeInteger lbtmp2(grid); lbtmp2=zero;
int n_done = 0;
int nhb = 0;
r[0] = a[0];
lupdate = 1;
LatticeReal ones (grid); ones = 1.0;
LatticeReal zeros(grid); zeros=zero;
int ntrials=0;
int nfails=0;
const RealD twopi=2.0*M_PI;
while ( nhb < nheatbath && n_done < num_sites ) {
ntrials += itrials;
LatticeMatrix staple(grid);
random(pRNG,r[1]);
std::cout<<"RANDOM SPARSE FLOAT r[1]"<<std::endl;
std::cout<<r[1]<<std::endl;
staple = barestaple * (beta/ncolour);
random(pRNG,r[2]);
random(pRNG,ftmp);
LatticeMatrix V(grid); V = link*staple;
r[1] = log(r[1]);
r[2] = log(r[2]);
// Subgroup manipulation in the lie algebra space
LatticeSU2Matrix u(grid); // Kennedy pendleton "u" real projected normalised Sigma
LatticeSU2Matrix uinv(grid);
LatticeSU2Matrix ua(grid); // a in pauli form
LatticeSU2Matrix b(grid); // rotated matrix after hb
ftmp = ftmp*twopi;
r[3] = cos(ftmp);
r[3] = r[3]*r[3];
// Some handy constant fields
LatticeComplex ones (grid); ones = 1.0;
LatticeComplex zeros(grid); zeros=zero;
LatticeReal rones (grid); rones = 1.0;
LatticeReal rzeros(grid); rzeros=zero;
LatticeComplex udet(grid); // determinant of real(staple)
LatticeInteger mask_true (grid); mask_true = 1;
LatticeInteger mask_false(grid); mask_false= 0;
r[1] += r[2] * r[3];
r[2] = r[1] / r_l;
/*
PLB 156 P393 (1985) (Kennedy and Pendleton)
random(pRNG,ftmp);
r[1] = ftmp*ftmp;
Note: absorb "beta" into the def of sigma compared to KP paper; staple
passed to this routine has "beta" already multiplied in
{
LatticeInteger mask_true (grid); mask_true = 1;
LatticeInteger mask_false(grid); mask_false= 0;
LatticeReal thresh(grid); thresh = (1.0 + 0.5*r[2]);
lbtmp = where(r[1] <= thresh,mask_true,mask_false);
}
lbtmp2= lbtmp && lupdate;
r[0] = where(lbtmp2, 1.0+r[2], r[0]);
Action linear in links h and of form:
ftmp1 = where(lbtmp2,ones,zeros);
RealD sitesum = sum(ftmp1);
Integer itmp = sitesum;
beta S = beta Sum_p (1 - 1/Nc Re Tr Plaq )
n_done += itmp;
itrials -= itmp;
nfails += itrials;
lbtmp = !lbtmp;
lupdate = lupdate & lbtmp;
++nhb;
}
// Now create r[1], r[2] and r[3] according to the spherical measure
// Take absolute value to guard against round-off
random(pRNG,ftmp1);
r[2] = 1.0 - 2.0*ftmp1;
ftmp1 = abs(1.0 - r[0]*r[0]);
r[3] = -(sqrt(ftmp1) * r[2]);
Writing Sigma = 1/Nc (beta Sigma') where sum over staples is "Sigma' "
// Take absolute value to guard against round-off
r_l = sqrt(abs(ftmp1 - r[3]*r[3]));
random(pRNG,ftmp1);
ftmp1 *= twopi;
r[1] = r_l * cos(ftmp1);
r[2] = r_l * sin(ftmp1);
beta S = const - beta/Nc Re Tr h Sigma'
= const - Re Tr h Sigma
Decompose h and Sigma into (1, sigma_j) ; h_i real, h^2=1, Sigma_i complex arbitrary.
// Update matrix is B = R * A, with B, R and A given by b_i, r_i and a_i
std::vector<LatticeReal> b(4,grid);
b[0] = r[0]*a[0] - r[1]*a[1] - r[2]*a[2] - r[3]*a[3];
b[1] = r[0]*a[1] + r[1]*a[0] - r[2]*a[3] + r[3]*a[2];
b[2] = r[0]*a[2] + r[2]*a[0] - r[3]*a[1] + r[1]*a[3];
b[3] = r[0]*a[3] + r[3]*a[0] - r[1]*a[2] + r[2]*a[1];
Tr h Sigma = h_i Sigma_j Tr (sigma_i sigma_j) = h_i Sigma_j 2 delta_ij
Re Tr h Sigma = 2 h_j Re Sigma_j
//
// Now fill an SU(3) matrix V with the SU(2) submatrix su2_index
// parametrized by a_k in the sigma matrix basis.
//
Normalised re Sigma_j = xi u_j
With u_j a unit vector and U can be in SU(2);
Re Tr h Sigma = 2 h_j Re Sigma_j = 2 xi (h.u)
4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
xi = sqrt(Det)/2;
Write a= u h in SU(2); a has pauli decomp a_j;
Note: Product b' xi is unvariant because scaling Sigma leaves
normalised vector "u" fixed; Can rescale Sigma so b' = 1.
*/
////////////////////////////////////////////////////////
// Real part of Pauli decomposition
// Note a subgroup can project to zero in cold start
////////////////////////////////////////////////////////
su2Extract(udet,u,V,su2_subgroup);
//////////////////////////////////////////////////////
// Normalising this vector if possible; else identity
//////////////////////////////////////////////////////
LatticeComplex xi(grid);
LatticeSU2Matrix lident(grid);
SU2Matrix ident = Complex(1.0);
SU2Matrix pauli1; SU<2>::generator(0,pauli1);
SU2Matrix pauli2; SU<2>::generator(1,pauli2);
SU2Matrix pauli3; SU<2>::generator(2,pauli3);
pauli1 = timesI(pauli1)*2.0;
pauli2 = timesI(pauli2)*2.0;
pauli3 = timesI(pauli3)*2.0;
LatticeComplex cone(grid);
LatticeReal adet(grid);
adet = abs(toReal(udet));
lident=Complex(1.0);
cone =Complex(1.0);
Real machine_epsilon=1.0e-7;
u = where(adet>machine_epsilon,u,lident);
udet= where(adet>machine_epsilon,udet,cone);
xi = 0.5*sqrt(udet); //4xi^2 = Det [ Sig - Sig^dag + 1 Tr Sigdag]
u = 0.5*u*pow(xi,-1.0); // u = 1/2xi [ Sig - Sig^dag + 1 Tr Sigdag]
// Debug test for sanity
uinv=adj(u);
b=u*uinv-1.0;
assert(norm2(b)<1.0e-4);
/*
Measure: Haar measure dh has d^4a delta(1-|a^2|)
In polars:
da = da0 r^2 sin theta dr dtheta dphi delta( 1 - r^2 -a0^2)
= da0 r^2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r)(sqrt(1-a0^) + r) )
= da0 r/2 sin theta dr dtheta dphi delta( (sqrt(1-a0^) - r) )
Action factor Q(h) dh = e^-S[h] dh = e^{ xi Tr uh} dh // beta enters through xi
= e^{2 xi (h.u)} dh
= e^{2 xi h0u0}.e^{2 xi h1u1}.e^{2 xi h2u2}.e^{2 xi h3u3} dh
Therefore for each site, take xi for that site
i) generate |a0|<1 with dist
(1-a0^2)^0.5 e^{2 xi a0 } da0
Take alpha = 2 xi = 2 xi [ recall 2 beta/Nc unmod staple norm]; hence 2.0/Nc factor in Chroma ]
A. Generate two uniformly distributed pseudo-random numbers R and R', R'', R''' in the unit interval;
B. Set X = -(ln R)/alpha, X' =-(ln R')/alpha;
C. Set C = cos^2(2pi R"), with R" another uniform random number in [0,1] ;
D. Set A = XC;
E. Let d = X'+A;
F. If R'''^2 :> 1 - 0.5 d, go back to A;
G. Set a0 = 1 - d;
Note that in step D setting B ~ X - A and using B in place of A in step E will generate a second independent a 0 value.
*/
/////////////////////////////////////////////////////////
// count the number of sites by picking "1"'s out of hat
/////////////////////////////////////////////////////////
Integer hit=0;
LatticeReal rtmp(grid);
rtmp=where(wheremask,rones,rzeros);
RealD numSites = sum(rtmp);
RealD numAccepted;
LatticeInteger Accepted(grid); Accepted = zero;
LatticeInteger newlyAccepted(grid);
std::vector<LatticeReal> xr(4,grid);
std::vector<LatticeReal> a(4,grid);
LatticeReal d(grid); d=zero;
LatticeReal alpha(grid);
// std::cout<<"xi "<<xi <<std::endl;
alpha = toReal(2.0*xi);
do {
// A. Generate two uniformly distributed pseudo-random numbers R and R', R'', R''' in the unit interval;
random(pRNG,xr[0]);
random(pRNG,xr[1]);
random(pRNG,xr[2]);
random(pRNG,xr[3]);
// B. Set X = - ln R/alpha, X' = -ln R'/alpha
xr[1] = -log(xr[1])/alpha;
xr[2] = -log(xr[2])/alpha;
// C. Set C = cos^2(2piR'')
xr[3] = cos(xr[3]*twopi);
xr[3] = xr[3]*xr[3];
LatticeReal xrsq(grid);
//D. Set A = XC;
//E. Let d = X'+A;
xrsq = xr[2]+xr[1]*xr[3];
d = where(Accepted,d,xr[2]+xr[1]*xr[3]);
//F. If R'''^2 :> 1 - 0.5 d, go back to A;
LatticeReal thresh(grid); thresh = 1.0-d*0.5;
xrsq = xr[0]*xr[0];
LatticeInteger ione(grid); ione = 1;
LatticeInteger izero(grid); izero=zero;
newlyAccepted = where ( xrsq < thresh,ione,izero);
Accepted = where ( newlyAccepted, newlyAccepted,Accepted);
Accepted = where ( wheremask, Accepted,izero);
// FIXME need an iSum for integer to avoid overload on return type??
rtmp=where(Accepted,rones,rzeros);
numAccepted = sum(rtmp);
hit++;
} while ( (numAccepted < numSites) && ( hit < nheatbath) );
// G. Set a0 = 1 - d;
a[0]=zero;
a[0]=where(wheremask,1.0-d,a[0]);
//////////////////////////////////////////
// ii) generate a_i uniform on two sphere radius (1-a0^2)^0.5
//////////////////////////////////////////
LatticeReal a123mag(grid);
a123mag = sqrt(abs(1.0-a[0]*a[0]));
LatticeReal cos_theta (grid);
LatticeReal sin_theta (grid);
LatticeReal phi (grid);
random(pRNG,phi); phi = phi * twopi; // uniform in [0,2pi]
random(pRNG,cos_theta); cos_theta=(cos_theta*2.0)-1.0; // uniform in [-1,1]
sin_theta = sqrt(abs(1.0-cos_theta*cos_theta));
a[1] = a123mag * sin_theta * cos(phi);
a[2] = a123mag * sin_theta * sin(phi);
a[3] = a123mag * cos_theta;
ua = toComplex(a[0])*ident
+ toComplex(a[1])*pauli1
+ toComplex(a[2])*pauli2
+ toComplex(a[3])*pauli3;
b = 1.0;
b = where(wheremask,uinv*ua,b);
su2Insert(b,V,su2_subgroup);
// U = V*U
LatticeMatrix tmp(grid);
tmp = V * link;
//mask the assignment back based on Accptance
link = where(Accepted,V * link,link);
//mask the assignment back
link = where(wheremask,tmp,link);
//////////////////////////////
// Debug Checks
// SU2 check
LatticeSU2Matrix check(grid); // rotated matrix after hb
u = zero;
check = ua * adj(ua) - 1.0;
check = where(Accepted,check,u);
assert(norm2(check)<1.0e-4);
check = b*adj(b)-1.0;
check = where(Accepted,check,u);
assert(norm2(check)<1.0e-4);
LatticeMatrix Vcheck(grid);
Vcheck = zero;
Vcheck = where(Accepted,V*adj(V) - 1.0,Vcheck);
// std::cout << "SU3 check " <<norm2(Vcheck)<<std::endl;
assert(norm2(Vcheck)<1.0e-4);
// Verify the link stays in SU(3)
// std::cout <<"Checking the modified link"<<std::endl;
Vcheck = link*adj(link) - 1.0;
assert(norm2(Vcheck)<1.0e-4);
/////////////////////////////////
}
static void printGenerators(void)

View File

@ -30,6 +30,7 @@ public:
static void sitePlaquette(LatticeComplex &Plaq,const std::vector<GaugeMat> &U)
{
LatticeComplex sitePlaq(U[0]._grid);
Plaq=zero;
for(int mu=1;mu<Nd;mu++){
for(int nu=0;nu<mu;nu++){
traceDirPlaquette(sitePlaq,U,mu,nu);
@ -42,6 +43,7 @@ public:
//////////////////////////////////////////////////
static RealD sumPlaquette(const GaugeLorentz &Umu){
std::vector<GaugeMat> U(4,Umu._grid);
for(int mu=0;mu<Nd;mu++){
U[mu] = peekIndex<LorentzIndex>(Umu,mu);
}
@ -72,13 +74,15 @@ public:
//////////////////////////////////////////////////
static void Staple(GaugeMat &staple,const GaugeLorentz &Umu,int mu){
std::vector<GaugeMat> U(4,Umu._grid);
GridBase *grid = Umu._grid;
std::vector<GaugeMat> U(4,grid);
for(int d=0;d<Nd;d++){
U[d] = peekIndex<LorentzIndex>(Umu,d);
}
staple = zero;
GaugeMat tmp(U[0]._grid);
GaugeMat tmp(grid);
for(int nu=0;nu<Nd;nu++){

View File

@ -100,7 +100,7 @@ namespace Grid {
}
template < class S, class V >
inline Grid_simd<S,V> sin(const Grid_simd<S,V> &r) {
return SimdApply(CosRealFunctor<S>(),r);
return SimdApply(SinRealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> log(const Grid_simd<S,V> &r) {

View File

@ -44,49 +44,6 @@ int main (int argc, char ** argv)
// SU5::printGenerators();
// SU5::testGenerators();
///////////////////////////////
// Configuration of known size
///////////////////////////////
NerscField header;
std::string file("./ckpoint_lat.400");
LatticeGaugeField Umu(grid);
// readNerscConfiguration(Umu,header,file);
Umu=1.0; // Cold start
// RNG set up for test
std::vector<int> pseeds({1,2,3,4,5}); // once I caught a fish alive
std::vector<int> sseeds({6,7,8,9,10});// then i let it go again
GridParallelRNG pRNG(grid); pRNG.SeedFixedIntegers(pseeds);
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(sseeds);
// SU3 colour operatoions
LatticeColourMatrix link(grid);
LatticeColourMatrix staple(grid);
int mu=0;
// Get Staple
ColourWilsonLoops::Staple(staple,Umu,mu);
// Get Link
link = peekIndex<LorentzIndex>(Umu,mu);
// Apply heatbath to the link
RealD beta=6.0;
int subgroup=0;
int nhb=1;
int trials=0;
int fails=0;
LatticeInteger one(rbGrid); one = 1; // fill with ones
LatticeInteger mask(grid); mask= zero;
one.checkerboard=Even;
setCheckerboard(mask,one);
// update Even checkerboard
SU3::SubGroupHeatBath(sRNG,pRNG,beta,link,staple,subgroup,
nhb,trials,fails,mask);
Grid_finalize();
}