mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-04 19:25:56 +01:00
Sitmo fast init
This commit is contained in:
parent
935d82f5b1
commit
9dc7ca4c3b
@ -69,40 +69,6 @@ namespace Grid {
|
||||
return multiplicity;
|
||||
}
|
||||
|
||||
// Wrap seed_seq to give common interface with random_device
|
||||
// Should rather wrap random_device and have a generate
|
||||
class fixedSeed {
|
||||
public:
|
||||
|
||||
typedef std::seed_seq::result_type result_type;
|
||||
|
||||
std::seed_seq src;
|
||||
|
||||
template<class int_type> fixedSeed(const std::vector<int_type> &seeds) : src(seeds.begin(),seeds.end()) {};
|
||||
|
||||
template< class RandomIt > void generate( RandomIt begin, RandomIt end ) {
|
||||
src.generate(begin,end);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
class deviceSeed {
|
||||
public:
|
||||
|
||||
std::random_device rd;
|
||||
|
||||
typedef std::random_device::result_type result_type;
|
||||
|
||||
deviceSeed(void) : rd(){};
|
||||
|
||||
template< class RandomIt > void generate( RandomIt begin, RandomIt end ) {
|
||||
for(RandomIt it=begin; it!=end;it++){
|
||||
*it = rd();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// real scalars are one component
|
||||
template<class scalar,class distribution,class generator> void fillScalar(scalar &s,distribution &dist,generator & gen)
|
||||
{
|
||||
@ -118,67 +84,100 @@ namespace Grid {
|
||||
}
|
||||
|
||||
class GridRNGbase {
|
||||
|
||||
public:
|
||||
|
||||
int _seeded;
|
||||
// One generator per site.
|
||||
// Uniform and Gaussian distributions from these generators.
|
||||
#ifdef RNG_RANLUX
|
||||
typedef uint64_t RngStateType;
|
||||
typedef std::ranlux48 RngEngine;
|
||||
typedef uint64_t RngStateType;
|
||||
static const int RngStateCount = 15;
|
||||
#elif RNG_MT19937
|
||||
#endif
|
||||
#ifdef RNG_MT19937
|
||||
typedef std::mt19937 RngEngine;
|
||||
typedef uint32_t RngStateType;
|
||||
static const int RngStateCount = std::mt19937::state_size;
|
||||
#elif RNG_SITMO
|
||||
#endif
|
||||
#ifdef RNG_SITMO
|
||||
typedef sitmo::prng_engine RngEngine;
|
||||
typedef uint64_t RngStateType;
|
||||
static const int RngStateCount = 4;
|
||||
#endif
|
||||
std::vector<RngEngine> _generators;
|
||||
std::vector<std::uniform_real_distribution<RealD>> _uniform;
|
||||
std::vector<std::normal_distribution<RealD>> _gaussian;
|
||||
std::vector<std::discrete_distribution<int32_t>> _bernoulli;
|
||||
///////////////////////
|
||||
// support for parallel init
|
||||
///////////////////////
|
||||
#ifdef RNG_SITMO
|
||||
static void Skip(RngEngine &eng)
|
||||
{
|
||||
uint64_t skip = 0x1; skip = skip<<40;
|
||||
eng.discard(skip);
|
||||
}
|
||||
#endif
|
||||
static RngEngine Reseed(RngEngine &eng)
|
||||
{
|
||||
const int reseeds=4;
|
||||
std::uniform_int_distribution<uint32_t> uid;
|
||||
std::vector<uint32_t> newseed(reseeds);
|
||||
for(int i=0;i<reseeds;i++){
|
||||
newseed[i] = uid(eng);
|
||||
}
|
||||
std::seed_seq sseq(newseed.begin(),newseed.end());
|
||||
return RngEngine(sseq);
|
||||
}
|
||||
|
||||
void GetState(std::vector<RngStateType> & saved,int gen) {
|
||||
std::vector<RngEngine> _generators;
|
||||
std::vector<std::uniform_real_distribution<RealD> > _uniform;
|
||||
std::vector<std::normal_distribution<RealD> > _gaussian;
|
||||
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
|
||||
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
|
||||
|
||||
void GetState(std::vector<RngStateType> & saved,RngEngine &eng) {
|
||||
saved.resize(RngStateCount);
|
||||
std::stringstream ss;
|
||||
ss<<_generators[gen];
|
||||
ss<<eng;
|
||||
ss.seekg(0,ss.beg);
|
||||
for(int i=0;i<RngStateCount;i++){
|
||||
ss>>saved[i];
|
||||
}
|
||||
}
|
||||
void SetState(std::vector<RngStateType> & saved,int gen){
|
||||
void GetState(std::vector<RngStateType> & saved,int gen) {
|
||||
GetState(saved,_generators[gen]);
|
||||
}
|
||||
void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
|
||||
assert(saved.size()==RngStateCount);
|
||||
std::stringstream ss;
|
||||
for(int i=0;i<RngStateCount;i++){
|
||||
ss<< saved[i]<<" ";
|
||||
}
|
||||
ss.seekg(0,ss.beg);
|
||||
ss>>_generators[gen];
|
||||
ss>>eng;
|
||||
}
|
||||
void SetState(std::vector<RngStateType> & saved,int gen){
|
||||
SetState(saved,_generators[gen]);
|
||||
}
|
||||
void SetEngine(RngEngine &Eng, int gen){
|
||||
_generators[gen]=Eng;
|
||||
}
|
||||
void GetEngine(RngEngine &Eng, int gen){
|
||||
Eng=_generators[gen];
|
||||
}
|
||||
|
||||
template<class source> void Seed(source &src, int gen)
|
||||
{
|
||||
_generators[gen] = RngEngine(src);
|
||||
}
|
||||
};
|
||||
|
||||
class GridSerialRNG : public GridRNGbase {
|
||||
public:
|
||||
|
||||
// FIXME ... do we require lockstep draws of randoms
|
||||
// from all nodes keeping seeds consistent.
|
||||
// place a barrier/broadcast in the fill routine
|
||||
|
||||
GridSerialRNG() : GridRNGbase() {
|
||||
_generators.resize(1);
|
||||
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
|
||||
_gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
|
||||
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
|
||||
_seeded=0;
|
||||
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class sobj,class distribution> inline void fill(sobj &l,std::vector<distribution> &dist){
|
||||
|
||||
typedef typename sobj::scalar_type scalar_type;
|
||||
@ -195,7 +194,6 @@ namespace Grid {
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
|
||||
|
||||
};
|
||||
|
||||
template <class distribution> inline void fill(ComplexF &l,std::vector<distribution> &dist){
|
||||
dist[0].reset();
|
||||
fillScalar(l,dist[0],_generators[0]);
|
||||
@ -250,19 +248,10 @@ namespace Grid {
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
|
||||
}
|
||||
|
||||
template<class source> void Seed(source &src)
|
||||
{
|
||||
_generators[0] = RngEngine(src);
|
||||
_seeded=1;
|
||||
}
|
||||
void SeedRandomDevice(void){
|
||||
deviceSeed src;
|
||||
Seed(src);
|
||||
}
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds){
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
|
||||
fixedSeed src(seeds);
|
||||
Seed(src);
|
||||
std::seed_seq src(seeds.begin(),seeds.end());
|
||||
Seed(src,0);
|
||||
}
|
||||
|
||||
};
|
||||
@ -285,15 +274,9 @@ namespace Grid {
|
||||
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
|
||||
_gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
|
||||
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
|
||||
_seeded=0;
|
||||
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
|
||||
}
|
||||
|
||||
|
||||
|
||||
//FIXME implement generic IO and create state save/restore
|
||||
//void SaveState(const std::string<char> &file);
|
||||
//void LoadState(const std::string<char> &file);
|
||||
|
||||
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
|
||||
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
@ -329,79 +312,88 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
// This loop could be made faster to avoid the Ahmdahl by
|
||||
// i) seed generators on each timeslice, for x=y=z=0;
|
||||
// ii) seed generators on each z for x=y=0
|
||||
// iii)seed generators on each y,z for x=0
|
||||
// iv) seed generators on each y,z,x
|
||||
// made possible by physical indexing.
|
||||
template<class source> void Seed(source &src)
|
||||
{
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds){
|
||||
|
||||
typedef typename source::result_type seed_t;
|
||||
std::uniform_int_distribution<seed_t> uid;
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
|
||||
|
||||
int numseed=4;
|
||||
int gsites = _grid->_gsites;
|
||||
std::vector<seed_t> site_init(numseed);
|
||||
std::seed_seq source(seeds.begin(),seeds.end());
|
||||
|
||||
RngEngine master_engine(source);
|
||||
|
||||
#ifdef RNG_SITMO
|
||||
std::vector<int> gcoor;
|
||||
|
||||
for(int gidx=0;gidx<_grid->_gsites;gidx++){
|
||||
|
||||
// Master RngEngine
|
||||
std::vector<seed_t> master_init(numseed); src.generate(master_init.begin(),master_init.end());
|
||||
_grid->Broadcast(0,(void *)&master_init[0],sizeof(seed_t)*numseed);
|
||||
fixedSeed master_seed(master_init);
|
||||
RngEngine master_engine(master_seed);
|
||||
Skip(master_engine); // advance the state; does this work?
|
||||
|
||||
// Per node RngEngine
|
||||
std::vector<seed_t> node_init(numseed);
|
||||
for(int r=0;r<_grid->ProcessorCount();r++) {
|
||||
|
||||
std::vector<seed_t> rank_init(numseed);
|
||||
for(int i=0;i<numseed;i++) rank_init[i] = uid(master_engine);
|
||||
|
||||
std::cout << GridLogMessage << "SeedSeq for rank "<<r;
|
||||
for(int i=0;i<numseed;i++) std::cout<<" "<<rank_init[i];
|
||||
std::cout <<std::endl;
|
||||
|
||||
if ( r==_grid->ThisRank() ) {
|
||||
for(int i=0;i<numseed;i++) node_init[i] = rank_init[i];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// Set up a seed_seq wrapper with these 8 words
|
||||
// and draw for each site within node.
|
||||
////////////////////////////////////////////////////
|
||||
fixedSeed node_seed(node_init);
|
||||
RngEngine node_engine(node_seed);
|
||||
|
||||
for(int gidx=0;gidx<gsites;gidx++){
|
||||
int rank,o_idx,i_idx;
|
||||
|
||||
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
|
||||
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||
|
||||
if( rank == _grid->ThisRank() ){
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
for(int i=0;i<numseed;i++) site_init[i] = uid(node_engine);
|
||||
fixedSeed site_seed(site_init);
|
||||
_generators[l_idx] = RngEngine(site_seed);
|
||||
_generators[l_idx] = master_engine;
|
||||
}
|
||||
|
||||
}
|
||||
#else
|
||||
// Machine and thread decomposition dependent seeding
|
||||
// is efficient and maximally parallel; but not
|
||||
// reproducible from machine to machine. Not ideal, but fast.
|
||||
// Different seed for each node.
|
||||
{
|
||||
int Nproc = _grid->ProcessorCount();
|
||||
int me= _grid->ThisRank();
|
||||
std::vector<RngEngine> seeders(Nproc);
|
||||
|
||||
for(int p=0;p<Nproc;p++){
|
||||
seeders[p] = Reseed(master_engine);
|
||||
}
|
||||
master_engine = seeders[me];
|
||||
}
|
||||
|
||||
// Different seed for each thread
|
||||
{
|
||||
int Nthread = GridThread::GetThreads();
|
||||
std::vector<RngEngine> seeders(Nthread);
|
||||
for(int t=0;t<Nthread;t++){
|
||||
seeders[t] = Reseed(master_engine);
|
||||
}
|
||||
|
||||
parallel_for(int t=0;t<Nthread;t++) {
|
||||
master_engine = seeders[t];
|
||||
for(int l=0;l<_grid->lSites();l++) {
|
||||
if ( (l%Nthread)==t ) {
|
||||
_generators[l] = Reseed(master_engine);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
_seeded=1;
|
||||
}
|
||||
void SeedRandomDevice(void){
|
||||
deviceSeed src;
|
||||
Seed(src);
|
||||
#endif
|
||||
}
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds){
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
|
||||
fixedSeed src(seeds);
|
||||
Seed(src);
|
||||
|
||||
uint32_t GlobalU01(int gsite){
|
||||
|
||||
std::vector<int> gcoor;
|
||||
_grid->GlobalIndexToGlobalCoor(gsite,gcoor);
|
||||
|
||||
int rank,o_idx,i_idx;
|
||||
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
|
||||
uint32_t the_number;
|
||||
if( rank == _grid->ThisRank() ){
|
||||
the_number = _uid[l_idx](_generators[l_idx]);
|
||||
}
|
||||
|
||||
_grid->Broadcast(rank,(void *)&the_number,sizeof(the_number));
|
||||
|
||||
return the_number;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l){
|
||||
|
Loading…
x
Reference in New Issue
Block a user