1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-04 19:25:56 +01:00

Sitmo fast init

This commit is contained in:
paboyle 2017-04-02 00:28:22 +09:00
parent 935d82f5b1
commit 9dc7ca4c3b

View File

@ -69,40 +69,6 @@ namespace Grid {
return multiplicity;
}
// Wrap seed_seq to give common interface with random_device
// Should rather wrap random_device and have a generate
class fixedSeed {
public:
typedef std::seed_seq::result_type result_type;
std::seed_seq src;
template<class int_type> fixedSeed(const std::vector<int_type> &seeds) : src(seeds.begin(),seeds.end()) {};
template< class RandomIt > void generate( RandomIt begin, RandomIt end ) {
src.generate(begin,end);
}
};
class deviceSeed {
public:
std::random_device rd;
typedef std::random_device::result_type result_type;
deviceSeed(void) : rd(){};
template< class RandomIt > void generate( RandomIt begin, RandomIt end ) {
for(RandomIt it=begin; it!=end;it++){
*it = rd();
}
}
};
// real scalars are one component
template<class scalar,class distribution,class generator> void fillScalar(scalar &s,distribution &dist,generator & gen)
{
@ -118,67 +84,100 @@ namespace Grid {
}
class GridRNGbase {
public:
int _seeded;
// One generator per site.
// Uniform and Gaussian distributions from these generators.
#ifdef RNG_RANLUX
typedef uint64_t RngStateType;
typedef std::ranlux48 RngEngine;
typedef uint64_t RngStateType;
static const int RngStateCount = 15;
#elif RNG_MT19937
#endif
#ifdef RNG_MT19937
typedef std::mt19937 RngEngine;
typedef uint32_t RngStateType;
static const int RngStateCount = std::mt19937::state_size;
#elif RNG_SITMO
#endif
#ifdef RNG_SITMO
typedef sitmo::prng_engine RngEngine;
typedef uint64_t RngStateType;
static const int RngStateCount = 4;
#endif
std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD>> _uniform;
std::vector<std::normal_distribution<RealD>> _gaussian;
std::vector<std::discrete_distribution<int32_t>> _bernoulli;
///////////////////////
// support for parallel init
///////////////////////
#ifdef RNG_SITMO
static void Skip(RngEngine &eng)
{
uint64_t skip = 0x1; skip = skip<<40;
eng.discard(skip);
}
#endif
static RngEngine Reseed(RngEngine &eng)
{
const int reseeds=4;
std::uniform_int_distribution<uint32_t> uid;
std::vector<uint32_t> newseed(reseeds);
for(int i=0;i<reseeds;i++){
newseed[i] = uid(eng);
}
std::seed_seq sseq(newseed.begin(),newseed.end());
return RngEngine(sseq);
}
void GetState(std::vector<RngStateType> & saved,int gen) {
std::vector<RngEngine> _generators;
std::vector<std::uniform_real_distribution<RealD> > _uniform;
std::vector<std::normal_distribution<RealD> > _gaussian;
std::vector<std::discrete_distribution<int32_t> > _bernoulli;
std::vector<std::uniform_int_distribution<uint32_t> > _uid;
void GetState(std::vector<RngStateType> & saved,RngEngine &eng) {
saved.resize(RngStateCount);
std::stringstream ss;
ss<<_generators[gen];
ss<<eng;
ss.seekg(0,ss.beg);
for(int i=0;i<RngStateCount;i++){
ss>>saved[i];
}
}
void SetState(std::vector<RngStateType> & saved,int gen){
void GetState(std::vector<RngStateType> & saved,int gen) {
GetState(saved,_generators[gen]);
}
void SetState(std::vector<RngStateType> & saved,RngEngine &eng){
assert(saved.size()==RngStateCount);
std::stringstream ss;
for(int i=0;i<RngStateCount;i++){
ss<< saved[i]<<" ";
}
ss.seekg(0,ss.beg);
ss>>_generators[gen];
ss>>eng;
}
void SetState(std::vector<RngStateType> & saved,int gen){
SetState(saved,_generators[gen]);
}
void SetEngine(RngEngine &Eng, int gen){
_generators[gen]=Eng;
}
void GetEngine(RngEngine &Eng, int gen){
Eng=_generators[gen];
}
template<class source> void Seed(source &src, int gen)
{
_generators[gen] = RngEngine(src);
}
};
class GridSerialRNG : public GridRNGbase {
public:
// FIXME ... do we require lockstep draws of randoms
// from all nodes keeping seeds consistent.
// place a barrier/broadcast in the fill routine
GridSerialRNG() : GridRNGbase() {
_generators.resize(1);
_uniform.resize(1,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(1,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(1,std::discrete_distribution<int32_t>{1,1});
_seeded=0;
_uid.resize(1,std::uniform_int_distribution<uint32_t>() );
}
template <class sobj,class distribution> inline void fill(sobj &l,std::vector<distribution> &dist){
typedef typename sobj::scalar_type scalar_type;
@ -195,7 +194,6 @@ namespace Grid {
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
};
template <class distribution> inline void fill(ComplexF &l,std::vector<distribution> &dist){
dist[0].reset();
fillScalar(l,dist[0],_generators[0]);
@ -250,19 +248,10 @@ namespace Grid {
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template<class source> void Seed(source &src)
{
_generators[0] = RngEngine(src);
_seeded=1;
}
void SeedRandomDevice(void){
deviceSeed src;
Seed(src);
}
void SeedFixedIntegers(const std::vector<int> &seeds){
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
fixedSeed src(seeds);
Seed(src);
std::seed_seq src(seeds.begin(),seeds.end());
Seed(src,0);
}
};
@ -285,15 +274,9 @@ namespace Grid {
_uniform.resize(_vol,std::uniform_real_distribution<RealD>{0,1});
_gaussian.resize(_vol,std::normal_distribution<RealD>(0.0,1.0) );
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
_seeded=0;
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
}
//FIXME implement generic IO and create state save/restore
//void SaveState(const std::string<char> &file);
//void LoadState(const std::string<char> &file);
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
typedef typename vobj::scalar_object scalar_object;
@ -329,79 +312,88 @@ namespace Grid {
}
};
// This loop could be made faster to avoid the Ahmdahl by
// i) seed generators on each timeslice, for x=y=z=0;
// ii) seed generators on each z for x=y=0
// iii)seed generators on each y,z for x=0
// iv) seed generators on each y,z,x
// made possible by physical indexing.
template<class source> void Seed(source &src)
{
void SeedFixedIntegers(const std::vector<int> &seeds){
typedef typename source::result_type seed_t;
std::uniform_int_distribution<seed_t> uid;
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
int numseed=4;
int gsites = _grid->_gsites;
std::vector<seed_t> site_init(numseed);
std::seed_seq source(seeds.begin(),seeds.end());
RngEngine master_engine(source);
#ifdef RNG_SITMO
std::vector<int> gcoor;
for(int gidx=0;gidx<_grid->_gsites;gidx++){
// Master RngEngine
std::vector<seed_t> master_init(numseed); src.generate(master_init.begin(),master_init.end());
_grid->Broadcast(0,(void *)&master_init[0],sizeof(seed_t)*numseed);
fixedSeed master_seed(master_init);
RngEngine master_engine(master_seed);
Skip(master_engine); // advance the state; does this work?
// Per node RngEngine
std::vector<seed_t> node_init(numseed);
for(int r=0;r<_grid->ProcessorCount();r++) {
std::vector<seed_t> rank_init(numseed);
for(int i=0;i<numseed;i++) rank_init[i] = uid(master_engine);
std::cout << GridLogMessage << "SeedSeq for rank "<<r;
for(int i=0;i<numseed;i++) std::cout<<" "<<rank_init[i];
std::cout <<std::endl;
if ( r==_grid->ThisRank() ) {
for(int i=0;i<numseed;i++) node_init[i] = rank_init[i];
}
}
////////////////////////////////////////////////////
// Set up a seed_seq wrapper with these 8 words
// and draw for each site within node.
////////////////////////////////////////////////////
fixedSeed node_seed(node_init);
RngEngine node_engine(node_seed);
for(int gidx=0;gidx<gsites;gidx++){
int rank,o_idx,i_idx;
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
if( rank == _grid->ThisRank() ){
int l_idx=generator_idx(o_idx,i_idx);
for(int i=0;i<numseed;i++) site_init[i] = uid(node_engine);
fixedSeed site_seed(site_init);
_generators[l_idx] = RngEngine(site_seed);
_generators[l_idx] = master_engine;
}
}
#else
// Machine and thread decomposition dependent seeding
// is efficient and maximally parallel; but not
// reproducible from machine to machine. Not ideal, but fast.
// Different seed for each node.
{
int Nproc = _grid->ProcessorCount();
int me= _grid->ThisRank();
std::vector<RngEngine> seeders(Nproc);
for(int p=0;p<Nproc;p++){
seeders[p] = Reseed(master_engine);
}
master_engine = seeders[me];
}
// Different seed for each thread
{
int Nthread = GridThread::GetThreads();
std::vector<RngEngine> seeders(Nthread);
for(int t=0;t<Nthread;t++){
seeders[t] = Reseed(master_engine);
}
parallel_for(int t=0;t<Nthread;t++) {
master_engine = seeders[t];
for(int l=0;l<_grid->lSites();l++) {
if ( (l%Nthread)==t ) {
_generators[l] = Reseed(master_engine);
}
}
}
}
_seeded=1;
}
void SeedRandomDevice(void){
deviceSeed src;
Seed(src);
#endif
}
void SeedFixedIntegers(const std::vector<int> &seeds){
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
fixedSeed src(seeds);
Seed(src);
uint32_t GlobalU01(int gsite){
std::vector<int> gcoor;
_grid->GlobalIndexToGlobalCoor(gsite,gcoor);
int rank,o_idx,i_idx;
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
int l_idx=generator_idx(o_idx,i_idx);
uint32_t the_number;
if( rank == _grid->ThisRank() ){
the_number = _uid[l_idx](_generators[l_idx]);
}
_grid->Broadcast(rank,(void *)&the_number,sizeof(the_number));
return the_number;
}
};
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l){