mirror of
https://github.com/paboyle/Grid.git
synced 2024-12-23 19:35:26 +00:00
Cleaning up the dense matrix and lanczos sector
This commit is contained in:
parent
a9c22d5f43
commit
a8db024c92
62
TODO
62
TODO
@ -1,6 +1,27 @@
|
||||
TODO:
|
||||
---------------
|
||||
|
||||
Peter's work list:
|
||||
|
||||
-- Merge high precision reduction into develop
|
||||
-- Physical propagator interface
|
||||
-- Precision conversion and sort out localConvert
|
||||
-- slice* linalg routines for multiRHS, BlockCG
|
||||
-- Profile CG, BlockCG, etc... Flop count/rate
|
||||
-- Binary I/O speed up & x-strips
|
||||
-- Half-precision comms
|
||||
-- multiRHS DWF; benchmark on Cori/BNL for comms elimination
|
||||
-- GaugeFix into central location
|
||||
-- Help Julia with NPR code
|
||||
-- Switch to measurements
|
||||
-- Multigrid Wilson and DWF, compare to other Multigrid implementations
|
||||
-- Remove DenseVector, DenseMatrix; Use Eigen instead.
|
||||
-- quaternions -- Might not need
|
||||
|
||||
|
||||
-- Conserved currents
|
||||
|
||||
-----
|
||||
* Forces; the UdSdU term in gauge force term is half of what I think it should
|
||||
be. This is a consequence of taking ONLY the first term in:
|
||||
|
||||
@ -21,16 +42,8 @@ TODO:
|
||||
This means we must double the force in the Test_xxx_force routines, and is the origin of the factor of two.
|
||||
This 2x is applied by hand in the fermion routines and in the Test_rect_force routine.
|
||||
|
||||
|
||||
Policies:
|
||||
|
||||
* Link smearing/boundary conds; Policy class based implementation ; framework more in place
|
||||
|
||||
* Support different boundary conditions (finite temp, chem. potential ... )
|
||||
|
||||
* Support different fermion representations?
|
||||
- contained entirely within the integrator presently
|
||||
|
||||
- Sign of force term.
|
||||
|
||||
- Reversibility test.
|
||||
@ -41,11 +54,6 @@ Policies:
|
||||
|
||||
- Audit oIndex usage for cb behaviour
|
||||
|
||||
- Rectangle gauge actions.
|
||||
Iwasaki,
|
||||
Symanzik,
|
||||
... etc...
|
||||
|
||||
- Prepare multigrid for HMC. - Alternate setup schemes.
|
||||
|
||||
- Support for ILDG --- ugly, not done
|
||||
@ -55,9 +63,11 @@ Policies:
|
||||
- FFTnD ?
|
||||
|
||||
- Gparity; hand opt use template specialisation elegance to enable the optimised paths ?
|
||||
|
||||
- Gparity force term; Gparity (R)HMC.
|
||||
- Random number state save restore
|
||||
|
||||
- Mobius implementation clean up to rmove #if 0 stale code sequences
|
||||
|
||||
- CG -- profile carefully, kernel fusion, whole CG performance measurements.
|
||||
|
||||
================================================================
|
||||
@ -90,6 +100,7 @@ Insert/Extract
|
||||
Not sure of status of this -- reverify. Things are working nicely now though.
|
||||
|
||||
* Make the Tensor types and Complex etc... play more nicely.
|
||||
|
||||
- TensorRemove is a hack, come up with a long term rationalised approach to Complex vs. Scalar<Scalar<Scalar<Complex > > >
|
||||
QDP forces use of "toDouble" to get back to non tensor scalar. This role is presently taken TensorRemove, but I
|
||||
want to introduce a syntax that does not require this.
|
||||
@ -112,6 +123,8 @@ Not sure of status of this -- reverify. Things are working nicely now though.
|
||||
RECENT
|
||||
---------------
|
||||
|
||||
- Support different fermion representations? -- DONE
|
||||
- contained entirely within the integrator presently
|
||||
- Clean up HMC -- DONE
|
||||
- LorentzScalar<GaugeField> gets Gauge link type (cleaner). -- DONE
|
||||
- Simplified the integrators a bit. -- DONE
|
||||
@ -123,6 +136,26 @@ RECENT
|
||||
- Parallel io improvements -- DONE
|
||||
- Plaquette and link trace checks into nersc reader from the Grid_nersc_io.cc test. -- DONE
|
||||
|
||||
|
||||
DONE:
|
||||
- MultiArray -- MultiRHS done
|
||||
- ConjugateGradientMultiShift -- DONE
|
||||
- MCR -- DONE
|
||||
- Remez -- Mike or Boost? -- DONE
|
||||
- Proto (ET) -- DONE
|
||||
- uBlas -- DONE ; Eigen
|
||||
- Potentially Useful Boost libraries -- DONE ; Eigen
|
||||
- Aligned allocator; memory pool -- DONE
|
||||
- Multiprecision -- DONE
|
||||
- Serialization -- DONE
|
||||
- Regex -- Not needed
|
||||
- Tokenize -- Why?
|
||||
|
||||
- Random number state save restore -- DONE
|
||||
- Rectangle gauge actions. -- DONE
|
||||
Iwasaki,
|
||||
Symanzik,
|
||||
... etc...
|
||||
Done: Cayley, Partial , ContFrac force terms.
|
||||
|
||||
DONE
|
||||
@ -207,6 +240,7 @@ Done
|
||||
FUNCTIONALITY: it pleases me to keep track of things I have done (keeps me arguably sane)
|
||||
======================================================================================================
|
||||
|
||||
* Link smearing/boundary conds; Policy class based implementation ; framework more in place -- DONE
|
||||
* Command line args for geometry, simd, etc. layout. Is it necessary to have -- DONE
|
||||
user pass these? Is this a QCD specific?
|
||||
|
||||
|
@ -46,7 +46,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||
|
||||
// Lanczos support
|
||||
#include <Grid/algorithms/iterative/MatrixUtils.h>
|
||||
//#include <Grid/algorithms/iterative/MatrixUtils.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/FFT.h>
|
||||
|
@ -30,6 +30,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#define GRID_IRL_H
|
||||
|
||||
#include <string.h> //memset
|
||||
|
||||
#ifdef USE_LAPACK
|
||||
void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
|
||||
double *vl, double *vu, int *il, int *iu, double *abstol,
|
||||
@ -37,8 +38,9 @@ void LAPACK_dstegr(char *jobz, char *range, int *n, double *d, double *e,
|
||||
double *work, int *lwork, int *iwork, int *liwork,
|
||||
int *info);
|
||||
#endif
|
||||
#include "DenseMatrix.h"
|
||||
#include "EigenSort.h"
|
||||
|
||||
#include <Grid/algorithms/densematrix/DenseMatrix.h>
|
||||
#include <Grid/algorithms/iterative/EigenSort.h>
|
||||
|
||||
namespace Grid {
|
||||
|
||||
@ -1088,8 +1090,6 @@ static void Lock(DenseMatrix<T> &H, // Hess mtx
|
||||
int dfg,
|
||||
bool herm)
|
||||
{
|
||||
|
||||
|
||||
//ForceTridiagonal(H);
|
||||
|
||||
int M = H.dim;
|
||||
@ -1121,7 +1121,6 @@ static void Lock(DenseMatrix<T> &H, // Hess mtx
|
||||
|
||||
AH = Hermitian(QQ)*AH;
|
||||
AH = AH*QQ;
|
||||
|
||||
|
||||
for(int i=con;i<M;i++){
|
||||
for(int j=con;j<M;j++){
|
||||
|
@ -1,453 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/Matrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef MATRIX_H
|
||||
#define MATRIX_H
|
||||
|
||||
#include <cstdlib>
|
||||
#include <string>
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <complex>
|
||||
#include <typeinfo>
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
|
||||
/** Sign function **/
|
||||
template <class T> T sign(T p){return ( p/abs(p) );}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////// Hijack STL containers for our wicked means /////////////////////////////////////////
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class T> using Vector = Vector<T>;
|
||||
template<class T> using Matrix = Vector<Vector<T> >;
|
||||
|
||||
template<class T> void Resize(Vector<T > & vec, int N) { vec.resize(N); }
|
||||
|
||||
template<class T> void Resize(Matrix<T > & mat, int N, int M) {
|
||||
mat.resize(N);
|
||||
for(int i=0;i<N;i++){
|
||||
mat[i].resize(M);
|
||||
}
|
||||
}
|
||||
template<class T> void Size(Vector<T> & vec, int &N)
|
||||
{
|
||||
N= vec.size();
|
||||
}
|
||||
template<class T> void Size(Matrix<T> & mat, int &N,int &M)
|
||||
{
|
||||
N= mat.size();
|
||||
M= mat[0].size();
|
||||
}
|
||||
template<class T> void SizeSquare(Matrix<T> & mat, int &N)
|
||||
{
|
||||
int M; Size(mat,N,M);
|
||||
assert(N==M);
|
||||
}
|
||||
template<class T> void SizeSame(Matrix<T> & mat1,Matrix<T> &mat2, int &N1,int &M1)
|
||||
{
|
||||
int N2,M2;
|
||||
Size(mat1,N1,M1);
|
||||
Size(mat2,N2,M2);
|
||||
assert(N1==N2);
|
||||
assert(M1==M2);
|
||||
}
|
||||
|
||||
//*****************************************
|
||||
//* (Complex) Vector operations *
|
||||
//*****************************************
|
||||
|
||||
/**Conj of a Vector **/
|
||||
template <class T> Vector<T> conj(Vector<T> p){
|
||||
Vector<T> q(p.size());
|
||||
for(int i=0;i<p.size();i++){q[i] = conj(p[i]);}
|
||||
return q;
|
||||
}
|
||||
|
||||
/** Norm of a Vector**/
|
||||
template <class T> T norm(Vector<T> p){
|
||||
T sum = 0;
|
||||
for(int i=0;i<p.size();i++){sum = sum + p[i]*conj(p[i]);}
|
||||
return abs(sqrt(sum));
|
||||
}
|
||||
|
||||
/** Norm squared of a Vector **/
|
||||
template <class T> T norm2(Vector<T> p){
|
||||
T sum = 0;
|
||||
for(int i=0;i<p.size();i++){sum = sum + p[i]*conj(p[i]);}
|
||||
return abs((sum));
|
||||
}
|
||||
|
||||
/** Sum elements of a Vector **/
|
||||
template <class T> T trace(Vector<T> p){
|
||||
T sum = 0;
|
||||
for(int i=0;i<p.size();i++){sum = sum + p[i];}
|
||||
return sum;
|
||||
}
|
||||
|
||||
/** Fill a Vector with constant c **/
|
||||
template <class T> void Fill(Vector<T> &p, T c){
|
||||
for(int i=0;i<p.size();i++){p[i] = c;}
|
||||
}
|
||||
/** Normalize a Vector **/
|
||||
template <class T> void normalize(Vector<T> &p){
|
||||
T m = norm(p);
|
||||
if( abs(m) > 0.0) for(int i=0;i<p.size();i++){p[i] /= m;}
|
||||
}
|
||||
/** Vector by scalar **/
|
||||
template <class T, class U> Vector<T> times(Vector<T> p, U s){
|
||||
for(int i=0;i<p.size();i++){p[i] *= s;}
|
||||
return p;
|
||||
}
|
||||
template <class T, class U> Vector<T> times(U s, Vector<T> p){
|
||||
for(int i=0;i<p.size();i++){p[i] *= s;}
|
||||
return p;
|
||||
}
|
||||
/** inner product of a and b = conj(a) . b **/
|
||||
template <class T> T inner(Vector<T> a, Vector<T> b){
|
||||
T m = 0.;
|
||||
for(int i=0;i<a.size();i++){m = m + conj(a[i])*b[i];}
|
||||
return m;
|
||||
}
|
||||
/** sum of a and b = a + b **/
|
||||
template <class T> Vector<T> add(Vector<T> a, Vector<T> b){
|
||||
Vector<T> m(a.size());
|
||||
for(int i=0;i<a.size();i++){m[i] = a[i] + b[i];}
|
||||
return m;
|
||||
}
|
||||
/** sum of a and b = a - b **/
|
||||
template <class T> Vector<T> sub(Vector<T> a, Vector<T> b){
|
||||
Vector<T> m(a.size());
|
||||
for(int i=0;i<a.size();i++){m[i] = a[i] - b[i];}
|
||||
return m;
|
||||
}
|
||||
|
||||
/**
|
||||
*********************************
|
||||
* Matrices *
|
||||
*********************************
|
||||
**/
|
||||
|
||||
template<class T> void Fill(Matrix<T> & mat, T&val) {
|
||||
int N,M;
|
||||
Size(mat,N,M);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<M;j++){
|
||||
mat[i][j] = val;
|
||||
}}
|
||||
}
|
||||
|
||||
/** Transpose of a matrix **/
|
||||
Matrix<T> Transpose(Matrix<T> & mat){
|
||||
int N,M;
|
||||
Size(mat,N,M);
|
||||
Matrix C; Resize(C,M,N);
|
||||
for(int i=0;i<M;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
C[i][j] = mat[j][i];
|
||||
}}
|
||||
return C;
|
||||
}
|
||||
/** Set Matrix to unit matrix **/
|
||||
template<class T> void Unity(Matrix<T> &mat){
|
||||
int N; SizeSquare(mat,N);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
if ( i==j ) A[i][j] = 1;
|
||||
else A[i][j] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
/** Add C * I to matrix **/
|
||||
template<class T>
|
||||
void PlusUnit(Matrix<T> & A,T c){
|
||||
int dim; SizeSquare(A,dim);
|
||||
for(int i=0;i<dim;i++){A[i][i] = A[i][i] + c;}
|
||||
}
|
||||
|
||||
/** return the Hermitian conjugate of matrix **/
|
||||
Matrix<T> HermitianConj(Matrix<T> &mat){
|
||||
|
||||
int dim; SizeSquare(mat,dim);
|
||||
|
||||
Matrix<T> C; Resize(C,dim,dim);
|
||||
|
||||
for(int i=0;i<dim;i++){
|
||||
for(int j=0;j<dim;j++){
|
||||
C[i][j] = conj(mat[j][i]);
|
||||
}
|
||||
}
|
||||
return C;
|
||||
}
|
||||
|
||||
/** return diagonal entries as a Vector **/
|
||||
Vector<T> diag(Matrix<T> &A)
|
||||
{
|
||||
int dim; SizeSquare(A,dim);
|
||||
Vector<T> d; Resize(d,dim);
|
||||
|
||||
for(int i=0;i<dim;i++){
|
||||
d[i] = A[i][i];
|
||||
}
|
||||
return d;
|
||||
}
|
||||
|
||||
/** Left multiply by a Vector **/
|
||||
Vector<T> operator *(Vector<T> &B,Matrix<T> &A)
|
||||
{
|
||||
int K,M,N;
|
||||
Size(B,K);
|
||||
Size(A,M,N);
|
||||
assert(K==M);
|
||||
|
||||
Vector<T> C; Resize(C,N);
|
||||
|
||||
for(int j=0;j<N;j++){
|
||||
T sum = 0.0;
|
||||
for(int i=0;i<M;i++){
|
||||
sum += B[i] * A[i][j];
|
||||
}
|
||||
C[j] = sum;
|
||||
}
|
||||
return C;
|
||||
}
|
||||
|
||||
/** return 1/diagonal entries as a Vector **/
|
||||
Vector<T> inv_diag(Matrix<T> & A){
|
||||
int dim; SizeSquare(A,dim);
|
||||
Vector<T> d; Resize(d,dim);
|
||||
for(int i=0;i<dim;i++){
|
||||
d[i] = 1.0/A[i][i];
|
||||
}
|
||||
return d;
|
||||
}
|
||||
/** Matrix Addition **/
|
||||
inline Matrix<T> operator + (Matrix<T> &A,Matrix<T> &B)
|
||||
{
|
||||
int N,M ; SizeSame(A,B,N,M);
|
||||
Matrix C; Resize(C,N,M);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<M;j++){
|
||||
C[i][j] = A[i][j] + B[i][j];
|
||||
}
|
||||
}
|
||||
return C;
|
||||
}
|
||||
/** Matrix Subtraction **/
|
||||
inline Matrix<T> operator- (Matrix<T> & A,Matrix<T> &B){
|
||||
int N,M ; SizeSame(A,B,N,M);
|
||||
Matrix C; Resize(C,N,M);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<M;j++){
|
||||
C[i][j] = A[i][j] - B[i][j];
|
||||
}}
|
||||
return C;
|
||||
}
|
||||
|
||||
/** Matrix scalar multiplication **/
|
||||
inline Matrix<T> operator* (Matrix<T> & A,T c){
|
||||
int N,M; Size(A,N,M);
|
||||
Matrix C; Resize(C,N,M);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<M;j++){
|
||||
C[i][j] = A[i][j]*c;
|
||||
}}
|
||||
return C;
|
||||
}
|
||||
/** Matrix Matrix multiplication **/
|
||||
inline Matrix<T> operator* (Matrix<T> &A,Matrix<T> &B){
|
||||
int K,L,N,M;
|
||||
Size(A,K,L);
|
||||
Size(B,N,M); assert(L==N);
|
||||
Matrix C; Resize(C,K,M);
|
||||
|
||||
for(int i=0;i<K;i++){
|
||||
for(int j=0;j<M;j++){
|
||||
T sum = 0.0;
|
||||
for(int k=0;k<N;k++) sum += A[i][k]*B[k][j];
|
||||
C[i][j] =sum;
|
||||
}
|
||||
}
|
||||
return C;
|
||||
}
|
||||
/** Matrix Vector multiplication **/
|
||||
inline Vector<T> operator* (Matrix<T> &A,Vector<T> &B){
|
||||
int M,N,K;
|
||||
Size(A,N,M);
|
||||
Size(B,K); assert(K==M);
|
||||
Vector<T> C; Resize(C,N);
|
||||
for(int i=0;i<N;i++){
|
||||
T sum = 0.0;
|
||||
for(int j=0;j<M;j++) sum += A[i][j]*B[j];
|
||||
C[i] = sum;
|
||||
}
|
||||
return C;
|
||||
}
|
||||
|
||||
/** Some version of Matrix norm **/
|
||||
/*
|
||||
inline T Norm(){ // this is not a usual L2 norm
|
||||
T norm = 0;
|
||||
for(int i=0;i<dim;i++){
|
||||
for(int j=0;j<dim;j++){
|
||||
norm += abs(A[i][j]);
|
||||
}}
|
||||
return norm;
|
||||
}
|
||||
*/
|
||||
|
||||
/** Some version of Matrix norm **/
|
||||
template<class T> T LargestDiag(Matrix<T> &A)
|
||||
{
|
||||
int dim ; SizeSquare(A,dim);
|
||||
|
||||
T ld = abs(A[0][0]);
|
||||
for(int i=1;i<dim;i++){
|
||||
T cf = abs(A[i][i]);
|
||||
if(abs(cf) > abs(ld) ){ld = cf;}
|
||||
}
|
||||
return ld;
|
||||
}
|
||||
|
||||
/** Look for entries on the leading subdiagonal that are smaller than 'small' **/
|
||||
template <class T,class U> int Chop_subdiag(Matrix<T> &A,T norm, int offset, U small)
|
||||
{
|
||||
int dim; SizeSquare(A,dim);
|
||||
for(int l = dim - 1 - offset; l >= 1; l--) {
|
||||
if((U)abs(A[l][l - 1]) < (U)small) {
|
||||
A[l][l-1]=(U)0.0;
|
||||
return l;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Look for entries on the leading subdiagonal that are smaller than 'small' **/
|
||||
template <class T,class U> int Chop_symm_subdiag(Matrix<T> & A,T norm, int offset, U small)
|
||||
{
|
||||
int dim; SizeSquare(A,dim);
|
||||
for(int l = dim - 1 - offset; l >= 1; l--) {
|
||||
if((U)abs(A[l][l - 1]) < (U)small) {
|
||||
A[l][l - 1] = (U)0.0;
|
||||
A[l - 1][l] = (U)0.0;
|
||||
return l;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
/**Assign a submatrix to a larger one**/
|
||||
template<class T>
|
||||
void AssignSubMtx(Matrix<T> & A,int row_st, int row_end, int col_st, int col_end, Matrix<T> &S)
|
||||
{
|
||||
for(int i = row_st; i<row_end; i++){
|
||||
for(int j = col_st; j<col_end; j++){
|
||||
A[i][j] = S[i - row_st][j - col_st];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**Get a square submatrix**/
|
||||
template <class T>
|
||||
Matrix<T> GetSubMtx(Matrix<T> &A,int row_st, int row_end, int col_st, int col_end)
|
||||
{
|
||||
Matrix<T> H; Resize(row_end - row_st,col_end-col_st);
|
||||
|
||||
for(int i = row_st; i<row_end; i++){
|
||||
for(int j = col_st; j<col_end; j++){
|
||||
H[i-row_st][j-col_st]=A[i][j];
|
||||
}}
|
||||
return H;
|
||||
}
|
||||
|
||||
/**Assign a submatrix to a larger one NB remember Vector Vectors are transposes of the matricies they represent**/
|
||||
template<class T>
|
||||
void AssignSubMtx(Matrix<T> & A,int row_st, int row_end, int col_st, int col_end, Matrix<T> &S)
|
||||
{
|
||||
for(int i = row_st; i<row_end; i++){
|
||||
for(int j = col_st; j<col_end; j++){
|
||||
A[i][j] = S[i - row_st][j - col_st];
|
||||
}}
|
||||
}
|
||||
|
||||
/** compute b_i A_ij b_j **/ // surprised no Conj
|
||||
template<class T> T proj(Matrix<T> A, Vector<T> B){
|
||||
int dim; SizeSquare(A,dim);
|
||||
int dimB; Size(B,dimB);
|
||||
assert(dimB==dim);
|
||||
T C = 0;
|
||||
for(int i=0;i<dim;i++){
|
||||
T sum = 0.0;
|
||||
for(int j=0;j<dim;j++){
|
||||
sum += A[i][j]*B[j];
|
||||
}
|
||||
C += B[i]*sum; // No conj?
|
||||
}
|
||||
return C;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
*************************************************************
|
||||
*
|
||||
* Matrix Vector products
|
||||
*
|
||||
*************************************************************
|
||||
*/
|
||||
// Instead make a linop and call my CG;
|
||||
|
||||
/// q -> q Q
|
||||
template <class T,class Fermion> void times(Vector<Fermion> &q, Matrix<T> &Q)
|
||||
{
|
||||
int M; SizeSquare(Q,M);
|
||||
int N; Size(q,N);
|
||||
assert(M==N);
|
||||
|
||||
times(q,Q,N);
|
||||
}
|
||||
|
||||
/// q -> q Q
|
||||
template <class T> void times(multi1d<LatticeFermion> &q, Matrix<T> &Q, int N)
|
||||
{
|
||||
GridBase *grid = q[0]._grid;
|
||||
int M; SizeSquare(Q,M);
|
||||
int K; Size(q,K);
|
||||
assert(N<M);
|
||||
assert(N<K);
|
||||
Vector<Fermion> S(N,grid );
|
||||
for(int j=0;j<N;j++){
|
||||
S[j] = zero;
|
||||
for(int k=0;k<N;k++){
|
||||
S[j] = S[j] + q[k]* Q[k][j];
|
||||
}
|
||||
}
|
||||
for(int j=0;j<q.size();j++){
|
||||
q[j] = S[j];
|
||||
}
|
||||
}
|
||||
#endif
|
@ -1,75 +0,0 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/MatrixUtils.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_MATRIX_UTILS_H
|
||||
#define GRID_MATRIX_UTILS_H
|
||||
|
||||
namespace Grid {
|
||||
|
||||
namespace MatrixUtils {
|
||||
|
||||
template<class T> inline void Size(Matrix<T>& A,int &N,int &M){
|
||||
N=A.size(); assert(N>0);
|
||||
M=A[0].size();
|
||||
for(int i=0;i<N;i++){
|
||||
assert(A[i].size()==M);
|
||||
}
|
||||
}
|
||||
|
||||
template<class T> inline void SizeSquare(Matrix<T>& A,int &N)
|
||||
{
|
||||
int M;
|
||||
Size(A,N,M);
|
||||
assert(N==M);
|
||||
}
|
||||
|
||||
template<class T> inline void Fill(Matrix<T>& A,T & val)
|
||||
{
|
||||
int N,M;
|
||||
Size(A,N,M);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<M;j++){
|
||||
A[i][j]=val;
|
||||
}}
|
||||
}
|
||||
template<class T> inline void Diagonal(Matrix<T>& A,T & val)
|
||||
{
|
||||
int N;
|
||||
SizeSquare(A,N);
|
||||
for(int i=0;i<N;i++){
|
||||
A[i][i]=val;
|
||||
}
|
||||
}
|
||||
template<class T> inline void Identity(Matrix<T>& A)
|
||||
{
|
||||
Fill(A,0.0);
|
||||
Diagonal(A,1.0);
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
#endif
|
@ -1,15 +0,0 @@
|
||||
- ConjugateGradientMultiShift
|
||||
- MCR
|
||||
|
||||
- Potentially Useful Boost libraries
|
||||
|
||||
- MultiArray
|
||||
- Aligned allocator; memory pool
|
||||
- Remez -- Mike or Boost?
|
||||
- Multiprecision
|
||||
- quaternians
|
||||
- Tokenize
|
||||
- Serialization
|
||||
- Regex
|
||||
- Proto (ET)
|
||||
- uBlas
|
@ -1,122 +0,0 @@
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
#include <vector>
|
||||
|
||||
struct Bisection {
|
||||
|
||||
static void get_eig2(int row_num,std::vector<RealD> &ALPHA,std::vector<RealD> &BETA, std::vector<RealD> & eig)
|
||||
{
|
||||
int i,j;
|
||||
std::vector<RealD> evec1(row_num+3);
|
||||
std::vector<RealD> evec2(row_num+3);
|
||||
RealD eps2;
|
||||
ALPHA[1]=0.;
|
||||
BETHA[1]=0.;
|
||||
for(i=0;i<row_num-1;i++) {
|
||||
ALPHA[i+1] = A[i*(row_num+1)].real();
|
||||
BETHA[i+2] = A[i*(row_num+1)+1].real();
|
||||
}
|
||||
ALPHA[row_num] = A[(row_num-1)*(row_num+1)].real();
|
||||
bisec(ALPHA,BETHA,row_num,1,row_num,1e-10,1e-10,evec1,eps2);
|
||||
bisec(ALPHA,BETHA,row_num,1,row_num,1e-16,1e-16,evec2,eps2);
|
||||
|
||||
// Do we really need to sort here?
|
||||
int begin=1;
|
||||
int end = row_num;
|
||||
int swapped=1;
|
||||
while(swapped) {
|
||||
swapped=0;
|
||||
for(i=begin;i<end;i++){
|
||||
if(mag(evec2[i])>mag(evec2[i+1])) {
|
||||
swap(evec2+i,evec2+i+1);
|
||||
swapped=1;
|
||||
}
|
||||
}
|
||||
end--;
|
||||
for(i=end-1;i>=begin;i--){
|
||||
if(mag(evec2[i])>mag(evec2[i+1])) {
|
||||
swap(evec2+i,evec2+i+1);
|
||||
swapped=1;
|
||||
}
|
||||
}
|
||||
begin++;
|
||||
}
|
||||
|
||||
for(i=0;i<row_num;i++){
|
||||
for(j=0;j<row_num;j++) {
|
||||
if(i==j) H[i*row_num+j]=evec2[i+1];
|
||||
else H[i*row_num+j]=0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void bisec(std::vector<RealD> &c,
|
||||
std::vector<RealD> &b,
|
||||
int n,
|
||||
int m1,
|
||||
int m2,
|
||||
RealD eps1,
|
||||
RealD relfeh,
|
||||
std::vector<RealD> &x,
|
||||
RealD &eps2)
|
||||
{
|
||||
std::vector<RealD> wu(n+2);
|
||||
|
||||
RealD h,q,x1,xu,x0,xmin,xmax;
|
||||
int i,a,k;
|
||||
|
||||
b[1]=0.0;
|
||||
xmin=c[n]-fabs(b[n]);
|
||||
xmax=c[n]+fabs(b[n]);
|
||||
for(i=1;i<n;i++){
|
||||
h=fabs(b[i])+fabs(b[i+1]);
|
||||
if(c[i]+h>xmax) xmax= c[i]+h;
|
||||
if(c[i]-h<xmin) xmin= c[i]-h;
|
||||
}
|
||||
xmax *=2.;
|
||||
|
||||
eps2=relfeh*((xmin+xmax)>0.0 ? xmax : -xmin);
|
||||
if(eps1<=0.0) eps1=eps2;
|
||||
eps2=0.5*eps1+7.0*(eps2);
|
||||
x0=xmax;
|
||||
for(i=m1;i<=m2;i++){
|
||||
x[i]=xmax;
|
||||
wu[i]=xmin;
|
||||
}
|
||||
|
||||
for(k=m2;k>=m1;k--){
|
||||
xu=xmin;
|
||||
i=k;
|
||||
do{
|
||||
if(xu<wu[i]){
|
||||
xu=wu[i];
|
||||
i=m1-1;
|
||||
}
|
||||
i--;
|
||||
}while(i>=m1);
|
||||
if(x0>x[k]) x0=x[k];
|
||||
while((x0-xu)>2*relfeh*(fabs(xu)+fabs(x0))+eps1){
|
||||
x1=(xu+x0)/2;
|
||||
|
||||
a=0;
|
||||
q=1.0;
|
||||
for(i=1;i<=n;i++){
|
||||
q=c[i]-x1-((q!=0.0)? b[i]*b[i]/q:fabs(b[i])/relfeh);
|
||||
if(q<0) a++;
|
||||
}
|
||||
// printf("x1=%e a=%d\n",x1,a);
|
||||
if(a<k){
|
||||
if(a<m1){
|
||||
xu=x1;
|
||||
wu[m1]=x1;
|
||||
}else {
|
||||
xu=x1;
|
||||
wu[a+1]=x1;
|
||||
if(x[a]>x1) x[a]=x1;
|
||||
}
|
||||
}else x0=x1;
|
||||
}
|
||||
x[k]=(x0+xu)/2;
|
||||
}
|
||||
}
|
||||
}
|
@ -1 +0,0 @@
|
||||
|
@ -311,8 +311,8 @@ void Grid_init(int *argc,char ***argv)
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Performance:"<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<" --comms-isend : Asynchronous MPI calls; several dirs at a time "<<std::endl;
|
||||
std::cout<<GridLogMessage<<" --comms-sendrecv: Synchronous MPI calls; one dirs at a time "<<std::endl;
|
||||
std::cout<<GridLogMessage<<" --comms-concurrent : Asynchronous MPI calls; several dirs at a time "<<std::endl;
|
||||
std::cout<<GridLogMessage<<" --comms-sequential : Synchronous MPI calls; one dirs at a time "<<std::endl;
|
||||
std::cout<<GridLogMessage<<" --comms-overlap : Overlap comms with compute "<<std::endl;
|
||||
std::cout<<GridLogMessage<<std::endl;
|
||||
std::cout<<GridLogMessage<<" --dslash-generic: Wilson kernel for generic Nc"<<std::endl;
|
||||
|
@ -115,8 +115,8 @@ int main (int argc, char ** argv)
|
||||
RNG.SeedFixedIntegers(seeds);
|
||||
|
||||
|
||||
RealD alpha = 1.0;
|
||||
RealD beta = 0.03;
|
||||
RealD alpha = 1.2;
|
||||
RealD beta = 0.1;
|
||||
RealD mu = 0.0;
|
||||
int order = 11;
|
||||
ChebyshevLanczos<LatticeComplex> Cheby(alpha,beta,mu,order);
|
||||
@ -131,10 +131,9 @@ int main (int argc, char ** argv)
|
||||
const int Nit= 10000;
|
||||
|
||||
int Nconv;
|
||||
RealD eresid = 1.0e-8;
|
||||
RealD eresid = 1.0e-6;
|
||||
|
||||
ImplicitlyRestartedLanczos<LatticeComplex> IRL(HermOp,X,Nk,Nm,eresid,Nit);
|
||||
|
||||
ImplicitlyRestartedLanczos<LatticeComplex> ChebyIRL(HermOp,Cheby,Nk,Nm,eresid,Nit);
|
||||
|
||||
LatticeComplex src(grid); gaussian(RNG,src);
|
||||
@ -145,9 +144,9 @@ int main (int argc, char ** argv)
|
||||
}
|
||||
|
||||
{
|
||||
// std::vector<RealD> eval(Nm);
|
||||
// std::vector<LatticeComplex> evec(Nm,grid);
|
||||
// ChebyIRL.calc(eval,evec,src, Nconv);
|
||||
std::vector<RealD> eval(Nm);
|
||||
std::vector<LatticeComplex> evec(Nm,grid);
|
||||
ChebyIRL.calc(eval,evec,src, Nconv);
|
||||
}
|
||||
|
||||
Grid_finalize();
|
||||
|
Loading…
Reference in New Issue
Block a user