1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 17:25:37 +01:00

Merge branch 'feature/feynman-rules' into feature/qed-fvol

This commit is contained in:
Antonin Portelli 2016-10-21 14:42:18 +01:00
commit ab31ad006a
17 changed files with 781 additions and 213 deletions

View File

@ -244,6 +244,9 @@ case ${ac_COMMS} in
mpi)
AC_DEFINE([GRID_COMMS_MPI],[1],[GRID_COMMS_MPI] )
;;
mpi3)
AC_DEFINE([GRID_COMMS_MPI3],[1],[GRID_COMMS_MPI3] )
;;
shmem)
AC_DEFINE([GRID_COMMS_SHMEM],[1],[GRID_COMMS_SHMEM] )
;;
@ -253,6 +256,7 @@ case ${ac_COMMS} in
esac
AM_CONDITIONAL(BUILD_COMMS_SHMEM,[ test "X${ac_COMMS}X" == "XshmemX" ])
AM_CONDITIONAL(BUILD_COMMS_MPI,[ test "X${ac_COMMS}X" == "XmpiX" || test "X${ac_COMMS}X" == "Xmpi-autoX" ])
AM_CONDITIONAL(BUILD_COMMS_MPI3,[ test "X${ac_COMMS}X" == "Xmpi3X"] )
AM_CONDITIONAL(BUILD_COMMS_NONE,[ test "X${ac_COMMS}X" == "XnoneX" ])
############### RNG selection

View File

@ -40,14 +40,6 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <mm_malloc.h>
#endif
#ifdef GRID_COMMS_SHMEM
extern "C" {
#include <mpp/shmem.h>
extern void * shmem_align(size_t, size_t);
extern void shmem_free(void *);
}
#endif
namespace Grid {
////////////////////////////////////////////////////////////////////
@ -65,28 +57,85 @@ public:
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef alignedAllocator<_Tp1> other; };
alignedAllocator() throw() { }
alignedAllocator(const alignedAllocator&) throw() { }
template<typename _Tp1> alignedAllocator(const alignedAllocator<_Tp1>&) throw() { }
~alignedAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
// const_pointer address(const_reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
pointer allocate(size_type __n, const void* _p= 0)
{
#ifdef HAVE_MM_MALLOC_H
_Tp * ptr = (_Tp *) _mm_malloc(__n*sizeof(_Tp),128);
#else
_Tp * ptr = (_Tp *) memalign(128,__n*sizeof(_Tp));
#endif
_Tp tmp;
#ifdef GRID_NUMA
#pragma omp parallel for schedule(static)
for(int i=0;i<__n;i++){
ptr[i]=tmp;
}
#endif
return ptr;
}
void deallocate(pointer __p, size_type) {
#ifdef HAVE_MM_MALLOC_H
_mm_free((void *)__p);
#else
free((void *)__p);
#endif
}
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
//////////////////////////////////////////////////////////////////////////////////////////
// MPI3 : comms must use shm region
// SHMEM: comms must use symmetric heap
//////////////////////////////////////////////////////////////////////////////////////////
#ifdef GRID_COMMS_SHMEM
_Tp *ptr = (_Tp *) shmem_align(__n*sizeof(_Tp),64);
extern "C" {
#include <mpp/shmem.h>
extern void * shmem_align(size_t, size_t);
extern void shmem_free(void *);
}
#define PARANOID_SYMMETRIC_HEAP
#endif
template<typename _Tp>
class commAllocator {
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1> struct rebind { typedef commAllocator<_Tp1> other; };
commAllocator() throw() { }
commAllocator(const commAllocator&) throw() { }
template<typename _Tp1> commAllocator(const commAllocator<_Tp1>&) throw() { }
~commAllocator() throw() { }
pointer address(reference __x) const { return &__x; }
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
#ifdef GRID_COMMS_SHMEM
pointer allocate(size_type __n, const void* _p= 0)
{
#ifdef CRAY
_Tp *ptr = (_Tp *) shmem_align(__n*sizeof(_Tp),64);
#else
_Tp *ptr = (_Tp *) shmem_align(64,__n*sizeof(_Tp));
#endif
#ifdef PARANOID_SYMMETRIC_HEAP
static void * bcast;
static long psync[_SHMEM_REDUCE_SYNC_SIZE];
@ -99,51 +148,53 @@ public:
BACKTRACEFILE();
exit(0);
}
assert( bcast == (void *) ptr);
#endif
return ptr;
}
void deallocate(pointer __p, size_type) {
shmem_free((void *)__p);
}
#elif defined(GRID_COMMS_MPI3)
pointer allocate(size_type __n, const void* _p= 0)
{
#error "implement MPI3 windowed allocate"
}
void deallocate(pointer __p, size_type) {
#error "implement MPI3 windowed allocate"
}
#else
pointer allocate(size_type __n, const void* _p= 0)
{
#ifdef HAVE_MM_MALLOC_H
_Tp * ptr = (_Tp *) _mm_malloc(__n*sizeof(_Tp),128);
#else
_Tp * ptr = (_Tp *) memalign(128,__n*sizeof(_Tp));
#endif
#endif
_Tp tmp;
#ifdef GRID_NUMA
#pragma omp parallel for schedule(static)
for(int i=0;i<__n;i++){
ptr[i]=tmp;
}
#endif
return ptr;
}
void deallocate(pointer __p, size_type) {
#ifdef GRID_COMMS_SHMEM
shmem_free((void *)__p);
#else
#ifdef HAVE_MM_MALLOC_H
_mm_free((void *)__p);
#else
free((void *)__p);
#endif
#endif
}
#endif
void construct(pointer __p, const _Tp& __val) { };
void construct(pointer __p) { };
void destroy(pointer __p) { };
};
template<typename _Tp> inline bool operator==(const commAllocator<_Tp>&, const commAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool operator!=(const commAllocator<_Tp>&, const commAllocator<_Tp>&){ return false; }
template<typename _Tp> inline bool
operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
template<typename _Tp> inline bool
operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
////////////////////////////////////////////////////////////////////////////////
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
template<class T> using Vector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,commAllocator<T> >;
template<class T> using Matrix = std::vector<std::vector<T,alignedAllocator<T> > >;
}; // namespace Grid
#endif

View File

@ -38,6 +38,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/cshift/Cshift_mpi.h>
#endif
#ifdef GRID_COMMS_MPI3
#include <Grid/cshift/Cshift_mpi.h>
#endif
#ifdef GRID_COMMS_SHMEM
#include <Grid/cshift/Cshift_mpi.h> // uses same implementation of communicator
#endif

View File

@ -3,6 +3,10 @@ if BUILD_COMMS_MPI
extra_sources+=communicator/Communicator_mpi.cc
endif
if BUILD_COMMS_MPI3
extra_sources+=communicator/Communicator_mpi3.cc
endif
if BUILD_COMMS_SHMEM
extra_sources+=communicator/Communicator_shmem.cc
endif

View File

@ -71,7 +71,7 @@
namespace Grid {
template<class vobj,class cobj,class compressor> void
Gather_plane_simple_table_compute (const Lattice<vobj> &rhs,std::vector<cobj,alignedAllocator<cobj> > &buffer,int dimension,int plane,int cbmask,compressor &compress, int off,std::vector<std::pair<int,int> >& table)
Gather_plane_simple_table_compute (const Lattice<vobj> &rhs,commVector<cobj> &buffer,int dimension,int plane,int cbmask,compressor &compress, int off,std::vector<std::pair<int,int> >& table)
{
table.resize(0);
int rd = rhs._grid->_rdimensions[dimension];
@ -109,7 +109,7 @@ Gather_plane_simple_table_compute (const Lattice<vobj> &rhs,std::vector<cobj,ali
}
template<class vobj,class cobj,class compressor> void
Gather_plane_simple_table (std::vector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,std::vector<cobj,alignedAllocator<cobj> > &buffer,
Gather_plane_simple_table (std::vector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,commVector<cobj> &buffer,
compressor &compress, int off,int so)
{
PARALLEL_FOR_LOOP
@ -119,7 +119,7 @@ PARALLEL_FOR_LOOP
}
template<class vobj,class cobj,class compressor> void
Gather_plane_simple_stencil (const Lattice<vobj> &rhs,std::vector<cobj,alignedAllocator<cobj> > &buffer,int dimension,int plane,int cbmask,compressor &compress, int off,
Gather_plane_simple_stencil (const Lattice<vobj> &rhs,commVector<cobj> &buffer,int dimension,int plane,int cbmask,compressor &compress, int off,
double &t_table ,double & t_data )
{
std::vector<std::pair<int,int> > table;
@ -347,10 +347,10 @@ Gather_plane_simple_stencil (const Lattice<vobj> &rhs,std::vector<cobj,alignedAl
}
// Comms buffers
std::vector<Vector<scalar_object> > u_simd_send_buf;
std::vector<Vector<scalar_object> > u_simd_recv_buf;
Vector<cobj> u_send_buf;
Vector<cobj> comm_buf;
std::vector<commVector<scalar_object> > u_simd_send_buf;
std::vector<commVector<scalar_object> > u_simd_recv_buf;
commVector<cobj> u_send_buf;
commVector<cobj> comm_buf;
int u_comm_offset;
int _unified_buffer_size;

View File

@ -34,6 +34,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifdef GRID_COMMS_MPI
#include <mpi.h>
#endif
#ifdef GRID_COMMS_MPI3
#include <mpi.h>
#endif
#ifdef GRID_COMMS_SHMEM
#include <mpp/shmem.h>
#endif
@ -52,6 +55,29 @@ class CartesianCommunicator {
#ifdef GRID_COMMS_MPI
MPI_Comm communicator;
typedef MPI_Request CommsRequest_t;
#elif GRID_COMMS_MPI3
MPI_Comm communicator;
typedef MPI_Request CommsRequest_t;
const int MAXLOG2RANKSPERNODE = 16; // 65536 ranks per node adequate for now
std::vector<int> WorldDims;
std::vector<int> GroupDims;
std::vector<int> ShmDims;
std::vector<int> GroupCoor;
std::vector<int> ShmCoor;
std::vector<int> WorldCoor;
int GroupRank;
int ShmRank;
int WorldRank;
int GroupSize;
int ShmSize;
int WorldSize;
std::vector<int> LexicographicToWorldRank;
#else
typedef int CommsRequest_t;
#endif

View File

@ -0,0 +1,358 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/communicator/Communicator_mpi.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include "Grid.h"
#include <mpi.h>
namespace Grid {
// Global used by Init and nowhere else. How to hide?
int Rank(void) {
int pe;
MPI_Comm_rank(MPI_COMM_WORLD,&pe);
return pe;
}
// Should error check all MPI calls.
void CartesianCommunicator::Init(int *argc, char ***argv) {
int flag;
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
MPI_Init(argc,argv);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Want to implement some magic ... Group sub-cubes into those on same node
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
std::vector<int> coor = _processor_coor;
assert(std::abs(shift) <_processors[dim]);
coor[dim] = (_processor_coor[dim] + shift + _processors[dim])%_processors[dim];
Lexicographic::IndexFromCoor(coor,source,_processors);
source = LexicographicToWorldRank[source];
coor[dim] = (_processor_coor[dim] - shift + _processors[dim])%_processors[dim];
Lexicographic::IndexFromCoor(coor,dest,_processors);
dest = LexicographicToWorldRank[dest];
}
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
{
int rank;
Lexicographic::IndexFromCoor(coor,rank,_processors);
rank = LexicographicToWorldRank[rank];
return rank;
}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
{
Lexicographic::CoorFromIndex(coor,rank,_processors);
rank = LexicographicToWorldRank[rank];
}
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
_ndimension = processors.size();
std::cout << "Creating "<< _ndimension << " dim communicator "<<std::endl;
for(int d =0;d<_ndimension;d++){
std::cout << processors[d]<<" ";
};
std::cout << std::endl;
WorldDims = processors;
communicator = MPI_COMM_WORLD;
MPI_Comm shmcomm;
MPI_Comm_split_type(communicator, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&shmcomm);
MPI_Comm_rank(communicator,&WorldRank);
MPI_Comm_size(communicator,&WorldSize);
MPI_Comm_rank(shmcomm ,&ShmRank);
MPI_Comm_size(shmcomm ,&ShmSize);
GroupSize = WorldSize/ShmSize;
std::cout<< "Ranks per node "<< ShmSize << std::endl;
std::cout<< "Nodes "<< GroupSize << std::endl;
std::cout<< "Ranks "<< WorldSize << std::endl;
////////////////////////////////////////////////////////////////
// Assert power of two shm_size.
////////////////////////////////////////////////////////////////
int log2size = -1;
for(int i=0;i<=MAXLOG2RANKSPERNODE;i++){
if ( (0x1<<i) == ShmSize ) {
log2size = i;
break;
}
}
assert(log2size != -1);
////////////////////////////////////////////////////////////////
// Identify subblock of ranks on node spreading across dims
// in a maximally symmetrical way
////////////////////////////////////////////////////////////////
int dim = 0;
ShmDims.resize(_ndimension,1);
GroupDims.resize(_ndimension);
ShmCoor.resize(_ndimension);
GroupCoor.resize(_ndimension);
WorldCoor.resize(_ndimension);
for(int l2=0;l2<log2size;l2++){
while ( WorldDims[dim] / ShmDims[dim] <= 1 ) dim=(dim+1)%_ndimension;
ShmDims[dim]*=2;
dim=(dim+1)%_ndimension;
}
std::cout << "Shm group dims "<<std::endl;
for(int d =0;d<_ndimension;d++){
std::cout << ShmDims[d]<<" ";
};
std::cout << std::endl;
////////////////////////////////////////////////////////////////
// Establish torus of processes and nodes with sub-blockings
////////////////////////////////////////////////////////////////
for(int d=0;d<_ndimension;d++){
GroupDims[d] = WorldDims[d]/ShmDims[d];
}
std::cout << "Group dims "<<std::endl;
for(int d =0;d<_ndimension;d++){
std::cout << GroupDims[d]<<" ";
};
std::cout << std::endl;
MPI_Group WorldGroup, ShmGroup;
MPI_Comm_group (communicator, &WorldGroup);
MPI_Comm_group (shmcomm, &ShmGroup);
std::vector<int> world_ranks(WorldSize);
std::vector<int> group_ranks(WorldSize);
std::vector<int> mygroup(GroupSize);
for(int r=0;r<WorldSize;r++) world_ranks[r]=r;
MPI_Group_translate_ranks (WorldGroup,WorldSize,&world_ranks[0],ShmGroup, &group_ranks[0]);
////////////////////////////////////////////////////////////////
// Check processor counts match
////////////////////////////////////////////////////////////////
_Nprocessors=1;
_processors = processors;
_processor_coor.resize(_ndimension);
for(int i=0;i<_ndimension;i++){
std::cout << " p " << _processors[i]<<std::endl;
_Nprocessors*=_processors[i];
}
std::cout << " World " <<WorldSize <<" Nproc "<<_Nprocessors<<std::endl;
assert(WorldSize==_Nprocessors);
///////////////////////////////////////////////////////////////////
// Identify who is in my group and noninate the leader
///////////////////////////////////////////////////////////////////
int g=0;
for(int rank=0;rank<WorldSize;rank++){
if(group_ranks[rank]!=MPI_UNDEFINED){
mygroup[g] = rank;
}
}
std::sort(mygroup.begin(),mygroup.end(),std::greater<int>());
int myleader = mygroup[0];
std::vector<int> leaders_1hot(WorldSize,0);
std::vector<int> leaders_group(GroupSize,0);
leaders_1hot [ myleader ] = 1;
///////////////////////////////////////////////////////////////////
// global sum leaders over comm world
///////////////////////////////////////////////////////////////////
int ierr=MPI_Allreduce(MPI_IN_PLACE,&leaders_1hot[0],WorldSize,MPI_INT,MPI_SUM,communicator);
assert(ierr==0);
///////////////////////////////////////////////////////////////////
// find the group leaders world rank
///////////////////////////////////////////////////////////////////
int group=0;
for(int l=0;l<WorldSize;l++){
if(leaders_1hot[l]){
leaders_group[group++] = l;
}
}
///////////////////////////////////////////////////////////////////
// Identify the rank of the group in which I (and my leader) live
///////////////////////////////////////////////////////////////////
GroupRank=-1;
for(int g=0;g<GroupSize;g++){
if (myleader == leaders_group[g]){
GroupRank=g;
}
}
assert(GroupRank!=-1);
////////////////////////////////////////////////////////////////
// Establish mapping between lexico physics coord and WorldRank
//
////////////////////////////////////////////////////////////////
LexicographicToWorldRank.resize(WorldSize,0);
Lexicographic::CoorFromIndex(GroupCoor,GroupRank,GroupDims);
Lexicographic::CoorFromIndex(ShmCoor,ShmRank,ShmDims);
for(int d=0;d<_ndimension;d++){
WorldCoor[d] = GroupCoor[d]*ShmDims[d]+ShmCoor[d];
}
_processor_coor = WorldCoor;
int lexico;
Lexicographic::IndexFromCoor(WorldCoor,lexico,WorldDims);
LexicographicToWorldRank[lexico]=WorldRank;
_processor = lexico;
///////////////////////////////////////////////////////////////////
// global sum Lexico to World mapping
///////////////////////////////////////////////////////////////////
ierr=MPI_Allreduce(MPI_IN_PLACE,&LexicographicToWorldRank[0],WorldSize,MPI_INT,MPI_SUM,communicator);
assert(ierr==0);
};
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(float *f,int N)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(double *d,int N)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
std::vector<CommsRequest_t> reqs(0);
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
SendToRecvFromComplete(reqs);
}
void CartesianCommunicator::SendRecvPacket(void *xmit,
void *recv,
int sender,
int receiver,
int bytes)
{
MPI_Status stat;
assert(sender != receiver);
int tag = sender;
if ( _processor == sender ) {
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
}
if ( _processor == receiver ) {
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
}
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
MPI_Request xrq;
MPI_Request rrq;
int rank = _processor;
int ierr;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
ierr|=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
assert(ierr==0);
list.push_back(xrq);
list.push_back(rrq);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
int nreq=list.size();
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
}
void CartesianCommunicator::Barrier(void)
{
int ierr = MPI_Barrier(communicator);
assert(ierr==0);
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{
int ierr=MPI_Bcast(data,
bytes,
MPI_BYTE,
root,
communicator);
assert(ierr==0);
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
int ierr= MPI_Bcast(data,
bytes,
MPI_BYTE,
root,
MPI_COMM_WORLD);
assert(ierr==0);
}
}

View File

@ -45,7 +45,7 @@ public:
// Gather for when there is no need to SIMD split with compression
///////////////////////////////////////////////////////////////////
template<class vobj,class cobj,class compressor> void
Gather_plane_simple (const Lattice<vobj> &rhs,std::vector<cobj,alignedAllocator<cobj> > &buffer,int dimension,int plane,int cbmask,compressor &compress, int off=0)
Gather_plane_simple (const Lattice<vobj> &rhs,commVector<cobj> &buffer,int dimension,int plane,int cbmask,compressor &compress, int off=0)
{
int rd = rhs._grid->_rdimensions[dimension];
@ -114,6 +114,7 @@ PARALLEL_NESTED_LOOP2
int o = n*n1;
int offset = b+n*n2;
cobj temp =compress(rhs._odata[so+o+b]);
extract<cobj>(temp,pointers,offset);
}
@ -121,6 +122,7 @@ PARALLEL_NESTED_LOOP2
} else {
assert(0); //Fixme think this is buggy
for(int n=0;n<e1;n++){
for(int b=0;b<e2;b++){
int o=n*rhs._grid->_slice_stride[dimension];
@ -139,7 +141,7 @@ PARALLEL_NESTED_LOOP2
//////////////////////////////////////////////////////
// Gather for when there is no need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Gather_plane_simple (const Lattice<vobj> &rhs,std::vector<vobj,alignedAllocator<vobj> > &buffer, int dimension,int plane,int cbmask)
template<class vobj> void Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask)
{
SimpleCompressor<vobj> dontcompress;
Gather_plane_simple (rhs,buffer,dimension,plane,cbmask,dontcompress);
@ -157,7 +159,7 @@ template<class vobj> void Gather_plane_extract(const Lattice<vobj> &rhs,std::vec
//////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,std::vector<vobj,alignedAllocator<vobj> > &buffer, int dimension,int plane,int cbmask)
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask)
{
int rd = rhs._grid->_rdimensions[dimension];

View File

@ -119,8 +119,8 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
assert(shift<fd);
int buffer_size = rhs._grid->_slice_nblock[dimension]*rhs._grid->_slice_block[dimension];
std::vector<vobj,alignedAllocator<vobj> > send_buf(buffer_size);
std::vector<vobj,alignedAllocator<vobj> > recv_buf(buffer_size);
commVector<vobj> send_buf(buffer_size);
commVector<vobj> recv_buf(buffer_size);
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs._grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
@ -191,8 +191,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
int words = sizeof(vobj)/sizeof(vector_type);
std::vector<Vector<scalar_object> > send_buf_extract(Nsimd,Vector<scalar_object>(buffer_size) );
std::vector<Vector<scalar_object> > recv_buf_extract(Nsimd,Vector<scalar_object>(buffer_size) );
std::vector<commVector<scalar_object> > send_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
std::vector<commVector<scalar_object> > recv_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
int bytes = buffer_size*sizeof(scalar_object);

View File

@ -65,9 +65,6 @@ public:
class LatticeExpressionBase {};
template<class T> using Vector = std::vector<T,alignedAllocator<T> >; // Aligned allocator??
template<class T> using Matrix = std::vector<std::vector<T,alignedAllocator<T> > >; // Aligned allocator??
template <typename Op, typename T1>
class LatticeUnaryExpression : public std::pair<Op,std::tuple<T1> > , public LatticeExpressionBase {
public:

View File

@ -45,7 +45,7 @@ WilsonKernels<Impl>::WilsonKernels(const ImplParams &p) : Base(p){};
template <class Impl>
void WilsonKernels<Impl>::DiracOptGenericDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf, int sF,
commVector<SiteHalfSpinor> &buf, int sF,
int sU, const FermionField &in, FermionField &out) {
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
@ -222,7 +222,7 @@ void WilsonKernels<Impl>::DiracOptGenericDhopSiteDag(
template <class Impl>
void WilsonKernels<Impl>::DiracOptGenericDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf, int sF,
commVector<SiteHalfSpinor> &buf, int sF,
int sU, const FermionField &in, FermionField &out) {
SiteHalfSpinor tmp;
SiteHalfSpinor chi;
@ -398,7 +398,7 @@ void WilsonKernels<Impl>::DiracOptGenericDhopSite(
template <class Impl>
void WilsonKernels<Impl>::DiracOptDhopDir(
StencilImpl &st, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf, int sF,
commVector<SiteHalfSpinor> &buf, int sF,
int sU, const FermionField &in, FermionField &out, int dir, int gamma) {
SiteHalfSpinor tmp;
SiteHalfSpinor chi;

View File

@ -58,7 +58,7 @@ namespace Grid {
typename std::enable_if<Impl::Dimension == 3 && Nc == 3 &&EnableBool, void>::type
DiracOptDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,
FermionField &out) {
#ifdef AVX512
@ -89,7 +89,7 @@ namespace Grid {
typename std::enable_if<(Impl::Dimension != 3 || (Impl::Dimension == 3 && Nc != 3)) && EnableBool, void>::type
DiracOptDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,
FermionField &out) {
for (int site = 0; site < Ns; site++) {
@ -107,7 +107,7 @@ namespace Grid {
void>::type
DiracOptDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,
FermionField &out) {
#ifdef AVX512
@ -139,7 +139,7 @@ namespace Grid {
void>::type
DiracOptDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,
FermionField &out) {
for (int site = 0; site < Ns; site++) {
@ -154,7 +154,7 @@ namespace Grid {
void DiracOptDhopDir(
StencilImpl &st, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, const FermionField &in, FermionField &out, int dirdisp,
int gamma);
@ -162,34 +162,34 @@ namespace Grid {
// Specialised variants
void DiracOptGenericDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, const FermionField &in, FermionField &out);
void DiracOptGenericDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, const FermionField &in, FermionField &out);
void DiracOptAsmDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,
FermionField &out);
void DiracOptAsmDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,
FermionField &out);
void DiracOptHandDhopSite(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, const FermionField &in, FermionField &out);
void DiracOptHandDhopSiteDag(
StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
std::vector<SiteHalfSpinor, alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF, int sU, const FermionField &in, FermionField &out);
public:

View File

@ -40,14 +40,14 @@ namespace Grid {
///////////////////////////////////////////////////////////
template<class Impl>
void WilsonKernels<Impl >::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
{
assert(0);
}
template<class Impl>
void WilsonKernels<Impl >::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
{
assert(0);
@ -86,14 +86,14 @@ namespace Grid {
#undef KERNEL_DAG
template<>
void WilsonKernels<WilsonImplF>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#define KERNEL_DAG
template<>
void WilsonKernels<WilsonImplF>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
@ -111,14 +111,14 @@ namespace Grid {
#undef KERNEL_DAG
template<>
void WilsonKernels<DomainWallVec5dImplF>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
#define KERNEL_DAG
template<>
void WilsonKernels<DomainWallVec5dImplF>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out)
#include <qcd/action/fermion/WilsonKernelsAsmBody.h>
@ -127,10 +127,10 @@ namespace Grid {
#define INSTANTIATE_ASM(A)\
template void WilsonKernels<A>::DiracOptAsmDhopSite(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,\
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,\
commVector<SiteHalfSpinor> &buf,\
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out);\
template void WilsonKernels<A>::DiracOptAsmDhopSiteDag(StencilImpl &st,LebesgueOrder & lo,DoubledGaugeField &U,\
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,\
commVector<SiteHalfSpinor> &buf,\
int ss,int ssU,int Ls,int Ns,const FermionField &in, FermionField &out);\

View File

@ -313,7 +313,7 @@ namespace QCD {
template<class Impl>
void WilsonKernels<Impl>::DiracOptHandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int ss,int sU,const FermionField &in, FermionField &out)
{
typedef typename Simd::scalar_type S;
@ -556,7 +556,7 @@ namespace QCD {
template<class Impl>
void WilsonKernels<Impl>::DiracOptHandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int ss,int sU,const FermionField &in, FermionField &out)
{
// std::cout << "Hand op Dhop "<<std::endl;
@ -804,7 +804,7 @@ namespace QCD {
////////////////////////////////////////////////
template<>
void WilsonKernels<GparityWilsonImplF>::DiracOptHandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF,int sU,const FermionField &in, FermionField &out)
{
assert(0);
@ -812,7 +812,7 @@ void WilsonKernels<GparityWilsonImplF>::DiracOptHandDhopSite(StencilImpl &st,Leb
template<>
void WilsonKernels<GparityWilsonImplF>::DiracOptHandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF,int sU,const FermionField &in, FermionField &out)
{
assert(0);
@ -820,7 +820,7 @@ void WilsonKernels<GparityWilsonImplF>::DiracOptHandDhopSiteDag(StencilImpl &st,
template<>
void WilsonKernels<GparityWilsonImplD>::DiracOptHandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF,int sU,const FermionField &in, FermionField &out)
{
assert(0);
@ -828,7 +828,7 @@ void WilsonKernels<GparityWilsonImplD>::DiracOptHandDhopSite(StencilImpl &st,Leb
template<>
void WilsonKernels<GparityWilsonImplD>::DiracOptHandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,
commVector<SiteHalfSpinor> &buf,
int sF,int sU,const FermionField &in, FermionField &out)
{
assert(0);
@ -841,10 +841,10 @@ void WilsonKernels<GparityWilsonImplD>::DiracOptHandDhopSiteDag(StencilImpl &st,
#define INSTANTIATE_THEM(A) \
template void WilsonKernels<A>::DiracOptHandDhopSite(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,\
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,\
commVector<SiteHalfSpinor> &buf,\
int ss,int sU,const FermionField &in, FermionField &out);\
template void WilsonKernels<A>::DiracOptHandDhopSiteDag(StencilImpl &st,LebesgueOrder &lo,DoubledGaugeField &U,\
std::vector<SiteHalfSpinor,alignedAllocator<SiteHalfSpinor> > &buf,\
commVector<SiteHalfSpinor> &buf,\
int ss,int sU,const FermionField &in, FermionField &out);
INSTANTIATE_THEM(WilsonImplF);

View File

@ -1,126 +1,233 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/gauge/Photon.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/gauge/Photon.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef QCD_PHOTON_ACTION_H
#define QCD_PHOTON_ACTION_H
namespace Grid{
namespace QCD{
namespace QCD{
template<class Gimpl>
class Photon
{
public:
INHERIT_GIMPL_TYPES(Gimpl);
enum class Gauge {Feynman, Coulomb, Landau};
enum class ZmScheme {QedL, QedTL};
public:
Photon(Gauge gauge, ZmScheme zmScheme);
virtual ~Photon(void) = default;
void FreePropagator(const GaugeField &in, GaugeField &out);
void MomentumSpacePropagator(const GaugeField &in, GaugeField &out);
void StochasticField(GaugeField &out, GridParallelRNG &rng);
private:
void invKHatSquared(GaugeLinkField &out);
void zmSub(GaugeLinkField &out);
private:
Gauge gauge_;
ZmScheme zmScheme_;
};
template<class Gimpl>
class Photon {
public:
INHERIT_GIMPL_TYPES(Gimpl);
enum PhotonType { FEYNMAN_L, FEYNMAN_TL };
PhotonType GaugeBC;
Photon(PhotonType _GaugeBC) : GaugeBC(_GaugeBC){};
void FreePropagator (const GaugeField &in,GaugeField &out) {
FFT theFFT((GridCartesian *) in._grid);
GaugeField in_k(in._grid);
GaugeField prop_k(in._grid);
theFFT.FFT_all_dim(in_k,in,FFT::forward);
MomentumSpacePropagator(prop_k,in_k);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
}
void MomentumSpacePropagator(GaugeField &out,const GaugeField &in) {
if ( GaugeBC == FEYNMAN_L ) {
FeynmanGaugeMomentumSpacePropagator_L(out,in);
} else if ( GaugeBC == FEYNMAN_TL ) {
FeynmanGaugeMomentumSpacePropagator_TL(out,in);
} else { // No coulomb yet
assert(0);
}
}
void FeynmanGaugeMomentumSpacePropagator_L(GaugeField &out, const GaugeField &in) {
FeynmanGaugeMomentumSpacePropagator_TL(out,in);
GridBase *grid = out._grid;
LatticeInteger coor(grid);
GaugeField zz(grid); zz=zero;
// xyzt
for(int d = 0; d < grid->_ndimension-1;d++){
LatticeCoordinate(coor,d);
out = where(coor==Integer(0),zz,out);
}
}
void FeynmanGaugeMomentumSpacePropagator_TL(GaugeField &out, const GaugeField &in) {
// what type LatticeComplex
GridBase *grid = out._grid;
int nd = grid->_ndimension;
typedef typename GaugeField::vector_type vector_type;
typedef typename GaugeField::scalar_type ScalComplex;
typedef Lattice<iSinglet<vector_type> > LatComplex;
template<class Gimpl>
Photon<Gimpl>::Photon(Gauge gauge, ZmScheme zmScheme)
: gauge_(gauge), zmScheme_(zmScheme)
{}
template<class Gimpl>
void Photon<Gimpl>::FreePropagator (const GaugeField &in,GaugeField &out)
{
FFT theFFT(in._grid);
std::vector<int> latt_size = grid->_fdimensions;
LatComplex denom(grid); denom= zero;
LatComplex one(grid); one = ScalComplex(1.0,0.0);
LatComplex kmu(grid);
ScalComplex ci(0.0,1.0);
// momphase = n * 2pi / L
for(int mu=0;mu<Nd;mu++) {
LatticeCoordinate(kmu,mu);
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu ;
denom = denom + 4.0*sin(kmu*0.5)*sin(kmu*0.5); // Wilson term
}
std::vector<int> zero_mode(nd,0);
TComplexD Tone = ComplexD(1.0,0.0);
TComplexD Tzero= ComplexD(0.0,0.0);
pokeSite(Tone,denom,zero_mode);
denom= one/denom;
pokeSite(Tzero,denom,zero_mode);
out = zero;
out = in*denom;
};
};
GaugeField in_k(in._grid);
GaugeField prop_k(in._grid);
theFFT.FFT_all_dim(in_k,in,FFT::forward);
MomentumSpacePropagator(prop_k,in_k);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
}
template<class Gimpl>
void Photon<Gimpl>::invKHatSquared(GaugeLinkField &out)
{
GridBase *grid = out._grid;
GaugeLinkField kmu(grid), one(grid);
const unsigned int nd = grid->_ndimension;
std::vector<int> &l = grid->_fdimensions;
std::vector<int> zm(nd,0);
TComplexD Tone = ComplexD(1.0,0.0);
TComplexD Tzero= ComplexD(0.0,0.0);
one = ComplexD(1.0,0.0);
out = zero;
for(int mu = 0; mu < nd; mu++)
{
RealD twoPiL = M_PI*2./l[mu];
LatticeCoordinate(kmu,mu);
kmu = 2.*sin(.5*twoPiL*kmu);
out = out + kmu*kmu;
}
pokeSite(Tone, out, zm);
out = one/out;
pokeSite(Tzero, out,zm);
}
template<class Gimpl>
void Photon<Gimpl>::zmSub(GaugeLinkField &out)
{
GridBase *grid = out._grid;
const unsigned int nd = grid->_ndimension;
switch (zmScheme_)
{
case ZmScheme::QedTL:
{
std::vector<int> zm(nd,0);
TComplexD Tzero = ComplexD(0.0,0.0);
pokeSite(Tzero, out, zm);
break;
}
case ZmScheme::QedL:
{
LatticeInteger spNrm(grid), coor(grid);
GaugeLinkField z(grid);
spNrm = zero;
for(int d = 0; d < grid->_ndimension - 1; d++)
{
LatticeCoordinate(coor,d);
spNrm = spNrm + coor*coor;
}
out = where(spNrm == 0, 0.*out, out);
break;
}
default:
break;
}
}
template<class Gimpl>
void Photon<Gimpl>::MomentumSpacePropagator(const GaugeField &in,
GaugeField &out)
{
GridBase *grid = out._grid;
LatticeComplex k2Inv(grid);
invKHatSquared(k2Inv);
zmSub(k2Inv);
out = in*k2Inv;
}
template<class Gimpl>
void Photon<Gimpl>::StochasticField(GaugeField &out, GridParallelRNG &rng)
{
auto *grid = out._grid;
const unsigned int nd = grid->_ndimension;
GaugeLinkField sqrtK2Inv(grid), r(grid);
GaugeField aTilde(grid);
FFT fft(grid);
invKHatSquared(sqrtK2Inv);
sqrtK2Inv = sqrt(real(sqrtK2Inv));
zmSub(sqrtK2Inv);
for(int mu = 0; mu < nd; mu++)
{
gaussian(rng, r);
r = sqrtK2Inv*r;
pokeLorentz(aTilde, r, mu);
}
fft.FFT_all_dim(out, aTilde, FFT::backward);
}
// template<class Gimpl>
// void Photon<Gimpl>::FeynmanGaugeMomentumSpacePropagator_L(GaugeField &out,
// const GaugeField &in)
// {
//
// FeynmanGaugeMomentumSpacePropagator_TL(out,in);
//
// GridBase *grid = out._grid;
// LatticeInteger coor(grid);
// GaugeField zz(grid); zz=zero;
//
// // xyzt
// for(int d = 0; d < grid->_ndimension-1;d++){
// LatticeCoordinate(coor,d);
// out = where(coor==Integer(0),zz,out);
// }
// }
//
// template<class Gimpl>
// void Photon<Gimpl>::FeynmanGaugeMomentumSpacePropagator_TL(GaugeField &out,
// const GaugeField &in)
// {
//
// // what type LatticeComplex
// GridBase *grid = out._grid;
// int nd = grid->_ndimension;
//
// typedef typename GaugeField::vector_type vector_type;
// typedef typename GaugeField::scalar_type ScalComplex;
// typedef Lattice<iSinglet<vector_type> > LatComplex;
//
// std::vector<int> latt_size = grid->_fdimensions;
//
// LatComplex denom(grid); denom= zero;
// LatComplex one(grid); one = ScalComplex(1.0,0.0);
// LatComplex kmu(grid);
//
// ScalComplex ci(0.0,1.0);
// // momphase = n * 2pi / L
// for(int mu=0;mu<Nd;mu++) {
//
// LatticeCoordinate(kmu,mu);
//
// RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
//
// kmu = TwoPiL * kmu ;
//
// denom = denom + 4.0*sin(kmu*0.5)*sin(kmu*0.5); // Wilson term
// }
// std::vector<int> zero_mode(nd,0);
// TComplexD Tone = ComplexD(1.0,0.0);
// TComplexD Tzero= ComplexD(0.0,0.0);
//
// pokeSite(Tone,denom,zero_mode);
//
// denom= one/denom;
//
// pokeSite(Tzero,denom,zero_mode);
//
// out = zero;
// out = in*denom;
// };
}}
#endif

View File

@ -41,6 +41,22 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
namespace Grid{
namespace Optimization {
template<class vtype>
union uconv {
__m512 f;
vtype v;
};
union u512f {
__m512 v;
float f[8];
};
union u512d {
__m512 v;
double f[4];
};
struct Vsplat{
//Complex float
@ -372,8 +388,9 @@ namespace Optimization {
// Some Template specialization
// Hack for CLANG until mm512_reduce_add_ps etc... are implemented in GCC and Clang releases
#undef GNU_CLANG_COMPILER
#ifdef GNU_CLANG_COMPILER
#ifndef __INTEL_COMPILER
#warning "Slow reduction due to incomplete reduce intrinsics"
//Complex float Reduce
template<>
inline Grid::ComplexF Reduce<Grid::ComplexF, __m512>::operator()(__m512 in){

View File

@ -250,8 +250,7 @@ void merge(vobj &vec,std::vector<typename vobj::scalar_object *> &extracted,int
}
}
template<class vobj> inline
void merge1(vobj &vec,std::vector<typename vobj::scalar_object *> &extracted,int offset)
template<class vobj> inline void merge1(vobj &vec,std::vector<typename vobj::scalar_object *> &extracted,int offset)
{
typedef typename vobj::scalar_type scalar_type ;
typedef typename vobj::vector_type vector_type ;
@ -269,8 +268,7 @@ void merge1(vobj &vec,std::vector<typename vobj::scalar_object *> &extracted,int
}}
}
template<class vobj> inline
void merge2(vobj &vec,std::vector<typename vobj::scalar_object *> &extracted,int offset)
template<class vobj> inline void merge2(vobj &vec,std::vector<typename vobj::scalar_object *> &extracted,int offset)
{
typedef typename vobj::scalar_type scalar_type ;
typedef typename vobj::vector_type vector_type ;